DB2 Universal Database for OS/390 and z/0S

Administration Guide

Version 7

<|ll

SC26-9931-01

DB2 Universal Database for OS/390 and z/0S

Administration Guide

Version 7

<|ll

SC26-9931-01

Note
Before using this information and the product it supports, be sure to read the

general information under [Notices” on page 1095.

Second Edition, Softcopy Only (August 2001)

This edition applies to Version 7 of IBM DATABASE 2 Universal Database Server for OS/390 and z/OS (DB2 for
0S/390 and z/0S), 5675-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure
you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 for OS/390 and z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/0s390/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright International Business Machines Corporation 1982, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book . . . e e
Who should read this book e el
Product terminology and citations Xxi
How to send your commentsXXv
Summary of changes to this book XXv
Part 1. Introduction . .1
Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7. .3
Enhancements for managing data . 3
Enhancements for reliability, scalability, and avarlabrlrty .3
Easier development and integration of e-business applications. .4
Improved connectivity . . . 5
Features of DB2 for OS/390 and z/OS . 6
Migration considerations . . 6
Chapter 2. System planning concepts . Y
The structure of DB2 T
Data structures Y 4
System structures . . . e
More information about data structures I
Control and maintenanceof DB215
Commands16
Utilites.1
High availability.16
More information about control and marntenance of DBZ T 4
The DB2 environment .18
Addressspaces .18
DB2’'s lock manager .18
DB2’s attachment facilites.19
DB2 and distributed data .22
DB2 and OS/390andz/OS23
DB2 and the Parallel Sysplex . . . e e24
DB2 and the SecureWay Security Server for OS/390 e ... 24
DB2 and DFSMS 2
More information about the OS/390 envrronment 4
Part 2. Designing a database: advanced topics27
Chapter 3. Introduction to designing a database: advanced topics 29
Chapter 4. Creating storage groups and managing DB2 datasets 31
Creating DB2 storagegroups3
Defining index space storage.33
Managing your own DB2 data sets33
Managing your data sets using access method services.34
Requirements for your own datasets.34
DEFINE CLUSTER command . . . e e36
Deferring allocation of data sets for table spaces . e36
Managing your DB2 data sets with DFSMShsm™37
Recalling archivelogs .37

© Copyright IBM Corp. 1982, 2001 i

iV Administration Guide

Migrating to DFSMShsm

Using DFSMShsm with the RECOVER ut|I|ty
Creating EA-enabled table spaces and index spaces .
Extending DB2-managed data sets
Extending user-managed data sets

Chapter 5. Implementing your design.
Implementing your databases
Implementing your table spaces
Creating a table space explicitly
Creating a table space implicitly
Choosing a page size
Choosing a page size for LOBs

Distinctions between DB2 base tables and temporary tables .

Using schemas. .
Authorization to process schema def|n|t|ons .
Processing schema definitions .

Chapter 6. Loading data into DB2 tables
Loading methods .

Loading tables with the LOAD ut|I|ty

Replacing data .

Loading data using the SQL INSERT statement
Loading data from DL/I . .o

Chapter 7. Altering your database design .
Using the ALTER statement .
Dropping and re-creating DB2 objects
Altering DB2 storage groups .
Letting SMS manage your DB2 storage groups
Adding or removing volumes from a DB2 storage group.
Altering DB2 databases.
Altering table spaces.

Changing the space aIIocatlon for user- managed data sets

Dropping, re-creating, or converting a table space .
Altering tables . .
Using the ALTER TABLE statement
Adding a new column
Altering a table for referential mtegnty
Altering the assignment of a validation routine
Altering a table for capture of changed data .
Changing an edit procedure or a field procedure
Altering the subtype of a string column .
Altering data types and deleting columns
Redefining the attributes on an identity column . .
Moving a table to a table space of a different page size .
Altering indexes
Changing the descnptron of an |ndex
Rebalancing data in partrtroned table spaces .
Altering views
Altering stored procedures and user- defrned functlons
Altering stored procedures.
Altering user-defined functions .
Changing the high-level qualifier for DB2 data sets
Define a new integrated catalog alias
Change the qualifier for system data sets .

. 38
. 38
.39
. 39
. 40

.41
.41
. 42
. 42
. 42
. 43
. 44
. 45
. 48
. 49
. 49

. 51
. 51
. 51
. 52
. 53
. 54

. 55
. 55
. 55
. 56
. 56
. 56
. 57
. 57
. 57
. 57
. 59
. 59
. 59
. 61
. 63
. 64
. 64
. 65
. 65
. 68
. 69
. 69
. 69
. 70
. 70
. 70
. 70
.71
.71
.72
.72

Change qualifiers for other databases and user datasets75

Moving DB2 data Y <
Tools for moving DB2 data e e e e e, T8
MovingaDB2dataset. .80
Copying a relational database81
Copying an entire DB2 subsystem.81

Chapter 8. Estimating disk storage foruserdata83

Factors that affect storage. . . e < X

Calculating the space required for a tabIe - 71
Calculating record lengthsandpages84
Saving space with data compression.86
Estimating storage for LOBs e86
Estimating storage when using the LOAD ut|I|ty86

Calculating the space required for a dictionary87
Disk requirements. .88
Virtual storage requirements N < 1<

Calculating the space required for an |ndex e < 1
Levels of index pages < 1
Calculating the space required for an |ndex . [0

Part 3. Security and auditing09

Chapter 9. Introduction to security and auditinginDB297

Security planning L L L0 L ... L9
IfyouarenewtoDB2 ..9
If you have used DB2 before.97

Auditing . . . O ° <

Controlling dataaccess. .98
Access control within DB2. . . . e e e 99
Controlling access to a DB2 subsystem P 10 [0
Data set protection .11

Chapter 10. Controlling access to DB2 objects 103

Explicit privileges and authorites.104
Authorization identifiers .104
Explicit privileges .104
Administrative authorites.108
Field-level access control by views12
Authority over the catalog and directory13

Implicit privileges of ownership. . . P
Establishing ownership of objects Wlth unquaI|f|ed names. 114
Establishing ownership of objects with qualified names. 115
Privileges by type of object116
Granting implicit privileges116
Changing ownership e N X

Privileges exercised through a plan ora package e 4
Establishing ownership of a plan or a package. 117
Qualifying unqualified names118
Checking authorization to execute 118
Controls in the program . . . T 2 |
Privileges required for remote packages A .o 122

Special considerations for user-defined functions and stored procedures .. . 123
Additional authorization for stored procedures . . . I 22
Controlling access to catalog tables for stored procedures 22}
Example of routine roles and authorizations. 125

Contents V

Vi

Administration Guide

Which IDs can exercise which privileges .
Authorization for dynamic SQL statements
Composite privileges
Multiple actions in one statement

Some role models . .

Examples of granting and revoklng pr|V|Ieges .
Examples using GRANT . .o
Examples with secondary IDs .

The REVOKE statement .

Finding catalog information about prrvrleges
Retrieving information in the catalog
Using views of the DB2 catalog tables.

Chapter 11. Controlling access through a closed application .

Controlling data definition
Required installation options
Controlling by application name
Controlling by application name with exceptrons
Registering sets of objects .

Controlling by object name . .
Controlling by object name with exceptlons .
Managing the registration tables and their indexes

An overview of the registration tables .

Creating the tables and indexes .
Adding columns .

Updating the tables.

Columns for optional use.
Stopping data definition control

Chapter 12. Controlling access to a DB2 subsystem
Controlling local requests
Processing connections .
The steps in detail .
Supplying secondary IDs for connectlon requests
Required CICS specifications .
Processing sign-ons
The steps in detail . .
Supplying secondary IDs for srgn on requests .
Controlling requests from remote applications .
Overview of security mechanisms for DRDA and SNA
The communications database for the server .
Controlling inbound connections that use SNA protocols .

Controlling inbound connections that use TCP/IP protocols .

Planning to send remote requests .
The communications database for the requester .
What IDs you send .

Translating outbound IDs.
Sending passwords.

Establishing RACF protection for DBZ

Defining DB2 resources to RACF.

Permitting RACF access .

Establishing RACF protection for stored procedures

Establishing RACF protection for TCP/IP .
Establishing Kerberos authentication through RACF .
Other methods of controlling access

. 129
. 132
. 139
. 139
. 139
. 140
. 142
. 143
. 146
. 152
. 152
. 155

. 157
. 157
. 158
. 158
. 160
. 161
. 162
. 163
. 164
. 164
. 166
. 167
. 167
. 167
. 167

. 169
. 169
. 170
. 170
. 172
. 173
. 173
. 173
. 175
. 176
. 176
. 178
. 180
. 187
. 189
. 190
. 193
. 195
. 197
. 198
. 200
. 202
. 209
. 212
. 212
. 214

Chapter 13. Protecting datasets215

Controlling data sets through RACF.215
Adding groups to control DB2 datasets215
Creating generic profiles for data sets215
Permitting DB2 authorization IDs to use the proflles - W £
Allowing DB2 authorization IDs to create datasets 217

Chapter 14. Auditing . . . e e e o219

How can | tell who has accessed the data’? 2 K
Options of the audittrace220
Auditing a specifictable .222

Using audit records. . . . C e e e e oo 228

Other sources of audit mformatlon e e e e e o225

What security measures are in force? . . . 4

What helps ensure data accuracy and con5|stency’> Coe e 226
Is required data present? Is it of the required type? 226
Are data values unigue where required? . . . Coe 226
Has data a required pattern? Is it in a specific range’? . e, . 226
Is new data in a specific set? Is it consistent with other tables? 227
What ensures that updates are tracked? A
What ensures that concurrent users access conS|stent data’P 228
Have any transactions been lost or left incomplete?. 228

How can | tell that data is consistent?229
SQL queries L . L L0229
Data modifications .229
CHECK utility 22 {0
DISPLAY DATABASE command e e e .. 230
REPORT utility .230
Operationlog .. .23
Internal integrity reports . . . 2 0]

How can DB2 recover data after fa|Iures? 2 |

How can | protect the software? . . . e e e o232

How can | ensure efficient usage of resources'? e e o232

Chapter 15. A sample security plan for employeedata 233

Managers’ access . . A K
To what ID is the SELECT pnwlege granted’> C e e e ... 234
Allowing distributedaccess23
Auditing managers’use .236

Payroll operations .236
Salaryupdates .237
Additional controls . . . 2 ¥ 4
To what ID are privileges granted? Coe238
Auditing use by payroll operations and payroll management.238

Others who have access. . . . e238
IDs with database administrative authonty e238
IDs with system administrative authority 239
The employee table owner23
Auditing for otherusers .24

Part 4. Operation and recovery24

Chapter 16. Basic operation249

Entering commands .249
DB2 operator commands.250
Authorities for DB2 commands255

Contents Vi

Starting and stopping DB2 .
Starting DB2
Stopping DB2 .
Submitting work to be processed
Using DB2I (DB2 Interactive) .
Running TSO application programs .
Running IMS application programs .
Running CICS application programs
Running batch application programs
Running application programs using CAF.
Running application programs using RRSAF
Receiving messages S
Receiving unsolicited DB2 messages .
Determining operational control

Chapter 17. Monitoring and controlling DB2 and its connections
Controlling DB2 databases and buffer pools.
Starting databases .
Monitoring databases .
Stopping databases.
Altering buffer pools
Monitoring buffer pools
Controlling user-defined functions
Starting user-defined functions.
Monitoring user-defined functions.
Stopping user-defined functions .
Controlling DB2 utilities
Starting online utilities .
Monitoring online utilities .
Stand-alone utilities.
Controlling the IRLM
Starting the IRLM
Modifying the IRLM. .o
Monitoring the IRLM connection .
Stopping the IRLM .
Monitoring threads .
Display thread output .
Controlling TSO connections
Connecting to DB2 from TSO .
Monitoring TSO and CAF connections .
Disconnecting from DB2 while under TSO
Controlling CICS connections .
Connecting from CICS
Controlling CICS application connectlons
Disconnecting from CICS
Controlling IMS connections
Connecting to the IMS control reglon .
Controlling IMS dependent region connections .
Disconnecting from IMS . .
Controlling OS/390 RRS connections .
Connecting to 0S/390 RRS using RRSAF
Monitoring RRSAF connections .
Controlling connections to remote systems .
Starting DDF . .
Suspending and resummg DDF server act|V|ty .
Monitoring connections to other systems .

Vili Administration Guide

. 256
. 256
. 258
. 259
. 259
. 259
. 260
. 261
. 261
. 262
. 263
. 263
. 264
. 264

. 267
. 267
. 268
. 269
. 274
. 276
. 276
. 277
. 277
. 277
. 278
. 278
. 278
. 278
. 279
. 280
. 281
. 281
. 281
. 282
. 283
. 283
. 284
. 284
. 285
. 286
. 287
. 288
. 289
. 294
. 295
. 295
. 300
. 303
. 304
. 305
. 306
. 307
. 308
. 308
. 309

Monitoring and controlling stored procedures
Using NetView® to monitor errors in the network .
Stopping DDF.
Controlling traces .
Controlling the DB2 trace
Diagnostic traces for the attachment faC|I|t|es
Diagnostic trace for the IRLM .
Controlling the resource limit facility (governor)
Changing subsystem parameter values

Chapter 18. Managing the log and the bootstrap data set
How database changes are made
Units of recovery.
Rolling back work .
Establishing the logging enV|r0nment
Creation of log records
Retrieval of log records
Writing the active log . .
Writing the archive log (offloadlng)
Controlling the log
Archiving the log. .
Changing the checkpoint frequency dynamlcally .
Setting limits for archive log tape units.
Displaying log information
Managing the bootstrap data set (BSDS)
BSDS copies with archive log data sets
Changing the BSDS log inventory
Discarding archive log records.
Deleting archive log data sets or tapes automatlcally
Locating archive log data sets to delete

Chapter 19. Restarting DB2 after termination
Termination . .
Normal termination .
Abends . .
Normal restart and recovery
Phase 1: Log initialization
Phase 2: Current status rebuild
Phase 3: Forward log recovery
Phase 4: Backward log recovery .
Restarting automatically .
Deferring restart processing.
Restarting with conditions
Resolving postponed units of recovery
Recovery operations you can choose for condltlonal restart
Records associated with conditional restart .

Chapter 20. Maintaining consistency across multiple systems
Consistency with other systems .
The two-phase commit process: coordlnator and partrcrpant
lllustration of two-phase commit .
Maintaining consistency after termlnatlon or fallure
Termination.
Normal restart and recovery
Restarting with conditions
Resolving indoubt units of recovery .

. 320
. 323
. 325
. 326
. 326
. 327
. 328
. 328
. 329

. 331
. 331
. 331
. 332
. 333
. 333
. 333
. 333
. 334
. 337
. 337
. 340
. 340
. 340
. 341
. 342
. 342
. 343
. 343
. 343

. 347
. 347
. 347
. 348
. 348
. 349
. 350
. 351
. 352
. 353
. 354
. 355
. 355
. 357
. 357

. 359
. 359
. 359
. 360
. 361
. 362
. 362
. 363
. 363

Contents

iX

Resolution of indoubt units of recovery fromIMS. 364

Resolution of indoubt units of recovery from CICS 364
Resolution of indoubt units of recovery between DB2 and a remote system 365
Resolution of indoubt units of recovery from OS/390 RRS 367
Consistency across more than two systems. 368
Commit coordinator and multiple participants 368
lllustration of multi-site update.370
Chapter 21. Backing up and recovering databases 373
Planning for backup and recovery . . . e e e373
Considerations for recovering distributed data e e e 374
Extended recovery facility (XRF) toleration 374
Considerations for recovering indexes 375
Preparing for recovery. .375
What happens during recovery 376
Making backup and recovery plans that maximize avallablllty ... 2379
How to find recovery information . . . R C 12722
Preparing to recover to a prior point of consrstency .o . . . 383
Preparing to recover the entire DB2 subsystem to a prior pomt in trme 384
Preparing for disaster recovery385
Ensuring more effective recovery from |nconS|stency probIems. 388
Running RECOVER in parallel.39
Using fast log apply during RECOVER.39
Reading the log without RECOVER.39
Copying page setsand datasets.39
Recovering page sets and datasets393
Recovering the work file database3%
Recovering the catalog and directory e39
Recovering data to a prior point of consrstency R 1o)
Restoring data by using DSN1COPY Coe ... 0399
Backing up and restoring data with non-DB2 dump and restore 400
Using RECOVER to restore data to a previous pointintime. 400
Recovery of dropped objects403
Avoiding the problem .403
Procedures for recovery . . . Y [
Recovery of an accidentally dropped table eo .408
Recovery of an accidentally dropped table space. 405
Discarding SYSCOPY and SYSLGRNX records 407
Chapter 22. Recovery scenarios409
IRLM failure 409
MVS or power failure .410
Disk failure e M 0]
Application program error .412
IMS-related failures. . . e RS
IMS control region (CTL) fa|lure 2
Resolution of indoubt units of recovery.414
IMS application failure. .416
CICS-related failures .. . 417
CICS application failure .417
CICS is not operational .417
CICS cannot connectto DB2A418
Manually recovering CICS indoubt units of recovery e M e |
CICS attachment facility failure422
Subsystem termination .422
DB2 system resource failures423

X Administration Guide

Active log failure .
Archive log failure .
Temporary resource failure .
BSDS failure .
Recovering the BSDS from a backup copy
DB2 database failures. :
Recovery from down-level page sets
Procedure for recovering invalid LOBs.
Table space input/output errors
DB2 catalog or directory input/output errors .
Integrated catalog facility catalog VSAM volume data set fallures
VSAM volume data set (VVDS) destroyed
Out of disk space or extent limit reached .
Violations of referential constraints . .
Failures related to the distributed data facrlrty .
Conversation failure
Communications database farlure
Failure of a database access thread
VTAM failure .
TCP/IP failure .
Failure of a remote Iogrcal un|t
Indefinite wait conditions for distributed threads
Security failures for database access threads .
Remote site recovery from disaster at a local site.
Using a tracker site for disaster recovery .
Characteristics of a tracker site
Setting up a tracker site .
Establishing a recovery cycle at the tracker srte
Maintaining the tracker site .
The disaster happens: making the tracker srte the takeover srte
Resolving indoubt threads
Description of the environment .
Communication failure between two systems
Making a heuristic decision .
IMS outage that results in an IMS cold start .
DB2 outage at a requester results in a DB2 cold start .
DB2 outage at a server results in a DB2 cold start
Correcting a heuristic decision.

Chapter 23. Recovery from BSDS or log failure during restart
Failure during log initialization or current status rebuild .
Description of failure during log initialization .
Description of failure during current status rebuild
Restart by truncating the log
Failure during forward log recovery .
Starting DB2 by limiting restart processrng
Failure during backward log recovery .
Bypassing backout before restarting
Failure during a log RBA read request .
Unresolvable BSDS or log data set problem durrng restart
Preparing for recovery of restart .
Performing the fall back to a prior shutdown pornt
Failure resulting from total or excessive loss of log data
Total loss of log .
Excessive loss of data in the actrve Iog .
Resolving inconsistencies resulting from conditional restart .

. 423
. 427
. 429
. 429
. 431
. 434
. 435
. 436
. 437
. 438
. 439
. 439
. 440
. 443
. 444
. 444
. 445
. 446
. 447
. 447
. 447
. 448
. 448
. 449
. 459
. 460
. 460
. 461
. 464
. 464
. 465
. 466
. 467
. 468
. 469
. 469
. 472
. 473

. 475
. 477
. 478
. 479
. 479
. 486
. 487
. 491
. 492
. 493
. 494
. 495
. 495
. 496
. 497
. 498
. 500

Contents

Xi

Inconsistencies in a distributed environment. . 500
Procedures for resolving inconsistencies . . . 500
Method 1. Recover to a prior point of consistency . 501
Method 2. Re-create the table space . . 501
Method 3. Use the REPAIR utility on the data . . 502
Part 5. Performance monitoring and tuning . 505
Chapter 24. Planning your performance strategy . . 517
Further topics in monitoring and tuning . 517
Managing performance in general . 518
Establishing performance objectives . 518
Defining the workload . . 519
Initial planning. . . 519
Post-development review. . 521
Planning for monitoring . 522
Continuous monitoring. . 523
Periodic monitoring . . 523
Detailed monitoring . . 523
Exception monitoring . . 524

A monitoring strategy . . 524
Reviewing performance data . 524
Typical review questions . . . 525
Are your performance objectives reasonable’? . . 526
Tuning DB2. . 526
Chapter 25. Analyzing performance data . . 527
Investigating the problem overall . . 527
Looking at the entire system . 527
Beginning to look at DB2. . 527
Reading accounting reports from DB2 PM . 528
The accounting report—short . . 528
The accounting report—long . 529

A general approach to problem analysis in DBZ . 533
Chapter 26. Improving response time and throughput. . B37
Reducing 1/0O operations . . 537
Use RUNSTATS to keep access path statlstlcs current . 537
Reserve free space in table spaces and indexes . . 538
Make buffer pools large enough for the workload . . 540
Speed up preformatting by allocating in cylinders . . 540
Reducing the time needed to perform I/O operations . 541
Create additional work file table spaces . 541
Distribute data sets efficiently . . 542
Ensure sufficient primary allocation quant|ty . . 544
Reducing the amount of processor resources consumed . . 544
Reuse threads for your high-volume transactions . . 545
Minimize the use of DB2 traces . 545
Use fixed-length records . . . 546
Understanding response time reporting . 546
Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools . 549
Tuning database buffer pools . . e . 549
Choose backing storage: primary or data space . 550
Terminology: Types of buffer pool pages . . 553
Read operations . . 554

Xii

Administration Guide

Write operations .
Assigning a table space or |ndex to a vrrtual buffer pool
Buffer pool thresholds .
Determining size and number of buffer pools
Choosing a page-stealing algorithm . .
Monitoring and tuning buffer pools using onI|ne commands .
Using DB2 PM to monitor buffer pool statistics .

Tuning the EDM pool .
EDM pool space handling
Tips for managing EDM pool storage

Increasing RID pool size . .

Controlling sort pool size and sort processrng .
Estimating the maximum size of the sort pool .
Understanding how sort work files are allocated
Improving the performance of sort processing .

Chapter 28. Improving resource utilization
Controlling resource usage .

Prioritize resources .

Limit resources for each]Ob

Limit resources for TSO sessions

Limit resources for IMS and CICS

Limit resources for a stored procedure.

Resource limit facility (governor) .

Using resource limit tables (RLSTS) .
Governing dynamic queries .
Restricting bind operations .
Restricting parallelism modes .

Managing the opening and closing of data sets
Determining the maximum number of open data sets
Understanding the CLOSE YES and CLOSE NO options .
Switching to read-only for infrequently updated page sets.

Planning the placement of DB2 data sets.

Estimating concurrent 1/O requests .

Crucial DB2 data sets .

Changing catalog and directory size and Iocatlon
Monitoring 1/O activity of data sets

Work file data sets .

DB2 logging
Logging performance issues and recommendatrons
Log capacity
Controlling the amount of Iog data .

Improving disk utilization: space and device utlllzatlon .
Allocating and extending data sets .

Compressing your data

Improving main storage utilization

Performance and the storage hierarchy
Real storage .

Expanded storage .
Storage controller cache . .

MVS performance options for DB2 .

Using SRM (compatibility mode) . .
Determining MVS workload management veIocrty goals

Chapter 29. Managing DB2 threads .
Setting thread limits. .o

Contents

. 554
. 555
. 555
. 560
. 562
. 563
. 567
. 570
. 570
. 573
. 574
. 574
. 575
. 575
. 576

. 579
. 579
. 580
. 580
. 581
. 581
. 581
. 581
. 582
. 587
. 592
. 592
. 593
. 593
. 595
. 596
. 597
. 597
. 597
. 598
. 598
. 599
. 599
. 599
. 602
. 604
. 606
. 606
. 606
. 609
. 611
. 611
. 612
. 612
. 614
. 614
. 616

. 619
. 619

Xiii

XiV Administration Guide

Allied thread allocation
Step 1: Thread creation .
Step 2: Resource allocation.
Step 3: SQL statement execution.
Step 4: Commit and thread termination
Variations on thread management
Providing for thread reuse

Database access threads

Understanding allied threads and database access threads .

Setting thread limits for database access threads.

Using inactive threads. .

Establishing a remote connection.

Reusing threads for remote connections .

Using Workload Manager to set performance objectrves
CICS design options .

Overview of RCT options.

Plans for CICS applications.

Thread creation, reuse, and termrnatron

Recommendations for RCT definitions . .

Recommendations for CICS system definitions.

Recommendations for accounting information for CICS threads

IMS design options .
TSO design options.
QMF design options

Chapter 30. Improving concurrency .
Definitions of concurrency and locks
Effects of DB2 locks
Suspension.
Timeout .
Deadlock . .
Basic recommendations to promote concurrency
Recommendations for system options .
Recommendations for database design
Recommendations for application design .
Aspects of transaction locks
The size of a lock
The duration of a lock .
The mode of a lock.
The object of a lock.
DB2's choice of lock types .
Lock tuning.
Startup procedure optrons
Installation options for wait times .
Other options that affect locking .
Bind options
Isolation overriding Wlth SQL statements .
The statement LOCK TABLE
LOB locks .
Relationship between transactron Iocks and LOB Iocks
Hierarchy of LOB locks
LOB and LOB table space lock modes
Duration of locks. .
Instances when locks on LOB table space are not taken .
Control of the number of locks.
The LOCK TABLE statement .

. 620
. 620
. 621
. 621
. 622
. 623
. 623
. 624
. 625
. 625
. 626
. 628
. 629
. 629
. 633
. 634
. 634
. 634
. 637
. 639
. 639
. 639
. 640
. 641

. 643
. 643
. 644
. 644
. 645
. 645
. 646
. 646
. 647
. 648
. 650
. 650
. 654
. 654
. 656
. 659
. 664
. 665
. 665
. 670
. 675
. 689
. 690
. 691
. 691
. 693
. 693
. 693
. 694
. 694
. 695

The LOCKSIZE clause for LOB table spaces
Claims and drains for concurrency control
Objects subject to takeover .
Definition of claims and drains.
Usage of drain locks
Utility locks on the catalog and dlrectory
Compatibility of utilities
Concurrency during REORG .
Utility operations with nonpartitioning mdexes .
Monitoring of DB2 locking
Using EXPLAIN to tell which Iocks DBZ chooses .
Using the statistics and accounting traces to monitor Iocklng
Analyzing a concurrency scenario
Deadlock detection scenarios . .
Scenario 1: Two-way deadlock, two resources .
Scenario 2: Three-way deadlock, three resources.

Chapter 31. Tuning your gueries
General tips and questions .
Is the query coded as simply as pOSS|bIe’?
Are all predicates coded correctly? .
Are there subqueries in your query?
Does your query involve column functions? .

Do you have an input variable in the predicate of a statlc SQL query’>

Do you have a problem with column correlation? .

Can your query be written to use a noncolumn expre55|on’>
Writing efficient predicates .

Properties of predicates .

Predicates in the ON clause
General rules about predicate evaluat|on

Order of evaluating predicates.

Summary of predicate processing

Examples of predicate properties.

Predicate filter factors .

DB2 predicate manipulation.

Column correlation .
Using host variables efﬂmently

Using REOPT(VARS) to change the access path at run tlme

Rewriting queries to influence access path selection.
Writing efficient subqueries .

Correlated subqueries .

Noncorrelated subqueries

Subquery transformation into join.

Subquery tuning .
Using scrollable cursors efﬂmently .
Writing efficient queries on views with UNION operators .
Special techniques to influence access path selection .

Obtaining information about access paths

Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS

Fetching a limited number of rows: FETCH FIRST n ROWS ONLY .
Reducing the number of matching columns .

Adding extra local predicates . .

Creating indexes for efficient star schemas .

Rearranging the order of tables in a FROM clause

Updating catalog statistics

Using a subsystem parameter .

Contents

. 695
. 695
. 695
. 696
. 697
. 697
. 698
. 699
. 700
. 700
. 700
. 701
. 702
. 707
. 707
. 709

. 711
.71
.71
.71
. 712
. 713

713

. 713
. 714
. 714
. 714
. 717
. 717
. 718
. 718
. 722
. 723
. 728
. 731
. 734
. 734
. 735
. 738
. 739
. 740
. 741
. 743
. 744
. 745
. 746
. 147

747

. 749
. 750
. 751
. 752
. 754
. 754
. 756

XV

XVi

Administration Guide

Giving optimization hints to DB2 .

Chapter 32. Maintaining statistics in the catalog .
Understanding statistics used for access path selection
Filter factors and catalog statistics
Statistics for partitioned table spaces
Setting default statistics for created temporary tables
History statistics .
Gathering monitor and update statlstlcs
Updating the catalog .
Correlations in the catalog .
Recommendation for COLCARDF and FIRSTKEYCARDF
Recommendation for HIGH2KEY and LOW2KEY .
Statistics for distributions.
Recommendation for using the TIMESTAMP column
Querying the catalog for statistics
Improving index and table space access .
How clustering affects access path selection
What other statistics provide index costs .
When to reorganize indexes and table spaces .
Whether to rebind after gathering statistics .
Modeling your production system.

Chapter 33. Using EXPLAIN to improve SQL performance .
Obtaining PLAN_TABLE information from EXPLAIN .
Creating PLAN_TABLE A
Populating and maintaining a plan table .
Reordering rows from a plan table
Asking questions about data access
Is access through an index? (ACCESSTYPE is I Il N or MX)
Is access through more than one index? (ACCESSTYPE=M)
How many columns of the index are used in matching? (MATCHCOLS n)
Is the query satisfied using only the index? (INDEXONLY=Y)
Is direct row access possible? (PRIMARY_ACCESSTYPE = D)
Is a view or nested table expression materialized? . .
Was a scan limited to certain partitions? (PAGE_RANGE= Y)
What kind of prefetching is done? (PREFETCH =L, S, or blank) .
Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C,
or X)
Are sorts performed’7 .
Is a subquery transformed |nto a Jom’>
When are column functions evaluated? (COLUMN FN EVAL)
Interpreting access to a single table. .o
Table space scans (ACCESSTYPE=R PREFETCH S)
Overview of index access G e
Index access paths .
UPDATE using an index .
Interpreting access to two or more tables (Jom)
Definitions and examples.
Nested loop join (METHOD=1)
Merge scan join (METHOD=2).
Hybrid join (METHOD=4).
Star schema (star join)
Interpreting data prefetch. .
Sequential prefetch (PREFETCH= S)
List prefetch (PREFETCH=L) .

. 157

. 765
. 765
. 771
. 772
. 772
. 773
. 775
L 777
777
. 779
. 779
. 779
. 779
. 779
. 780
. 781
. 783
. 784
. 786
. 786

. 789
. 790
. 790
. 796
. 7197
. 798
. 799
. 799

800

. 800
. 801
. 803
. 803
. 803

. 804
. 804
. 805
. 805
. 805
. 805
. 806
. 807
. 812
. 812
. 813
. 815
. 816
. 818
. 820
. 824
. 824
. 825

Sequential detection at execution time .

Determining sort activity .
Sorts of data .
Sorts of RIDs
The effect of sorts on OPEN CURSOR

Processing for views and nested table expressions .
Merge. .
Materialization.
Using EXPLAIN to determme when materlallzat|on occurs
Using EXPLAIN to determine UNION activity and query rewrite
Performance of merge versus materialization

Estimating a statement’s cost .
Creating a statement table . .
Populating and maintaining a statement table .
Retrieving rows from a statement table
Understanding the implications of cost categories.

Chapter 34. Parallel operations and query performance .

Comparing the methods of parallelism .

Partitioning for optimal parallel performance. .
Determining if a query is I/O- or processor- mtenswe
Determining the number of partitions
Working with a table space that is already partltloned7
Making the partitions the same size.

Enabling parallel processing

When parallelism is not used .

Interpreting EXPLAIN output
A method for examining PLAN TABLE columns for parallehsm
PLAN_TABLE examples showing parallelism

Monitoring parallel operations .

Using DISPLAY BUFFERPOOL
Using DISPLAY THREAD
Using DB2 trace .

Tuning parallel processing

Disabling query parallelism .

Chapter 35. Tuning and monitoring in a distributed environment
Understanding remote access types
Characteristics of DRDA .
Characteristics of DB2 private protocol
Tuning distributed applications. .
The application and the requesting system .
The serving system.
Monitoring DB2 in a distributed enwronment
Using the DISPLAY command .
Tracing distributed events
Reporting server-elapsed time .
Using RMF to monitor distributed processmg
Duration of an enclave
RMF records for enclaves

Chapter 36. Monitoring and tuning stored procedures and user-defined

functions
Controlling address space storage
Assigning procedures and functions to WLM appllcatlon enwronments

Providing DB2 cost information for accessing user-defined table functions

. 826
. 828
. 828
. 829
. 829
. 829
. 830
. 830
. 832
. 834
. 835
. 836
. 836
. 838
. 838
. 839

. 841
. 842
. 844
. 845
. 845
. 846
. 846
. 847
. 848
. 848
. 848
. 849
. 850
. 851
. 851
. 851
. 853
. 854

. 857
. 857
. 857
. 857
. 858
. 858
. 865
. 866
. 866
. 866
. 870
. 870
. 870
. 871

. 873
. 874
. 875

876

XVii

Accounting trace .

. 877

Accounting for nested actlvmes . 879
Part 6. Appendixes . . 881
Appendix A. DB2 sample tables . 883
Activity table (DSN8710.ACT) . . 883
Content . . 883
Relationship to other tables . 884
Department table (DSN8710. DEPT). . 884
Content . . . 884
Relationship to other tables . 885
Employee table (DSN8710. EMP). . 885
Content . . . 886
Relationship to other tables . 886
Employee photo and resume table (DSN8710 EMP PHOTO RESUME) . 888
Content . Ce e . 889
Relationship to other tables . 889
Project table (DSN8710. PROJ) . 890
Content . . 890
Relationship to other tables . 891
Project activity table (DSN8710 PROJACT) . 891
Content . e . 891
Relationship to other tables . 891
Employee to project activity table (DSN8710 EMPPROJACT) . 892
Content . C e e . 892
Relationship to other tables . 892
Relationships among the tables . 893
Views on the sample tables. . 893
Storage of sample application tables . 896
Storage group. . 897
Databases . . 897
Table spaces . . 897
Appendix B. Writing exit routines. . 901
Connection and sign-on routines . . 901
General considerations . 901
Specifying the routines . 901
Sample exit routines . 902
When exits are taken . . 902
EXPL for connection and S|gn on routlnes . 903
Exit parameter list . . 903
Authorization ID parameter |ISt . 904
Input values . 905
Expected output . . . 906
Processing in the sample routrnes . 907
Performance considerations. . 908
Debugging your exit routine. . 908
Access control authorization exit . . 909
General considerations . 910
Specifying the routine . . 910
The default routine . . 910
When the exit is taken. . . 910
Other considerations for using the access control authorlzatron exrt . .91
Parameter list for the access control authorization routine. . 912
Expected output . . 919

XViii

Administration Guide

Debugging your exit routine.
Determining if the exit routine is actlve
Edit routines
General conS|deratlons
Specifying the routine .
When exits are taken .
Parameter lists on entry .
Processing requirements..
Incomplete rows .
Expected output .
Validation routines .
General considerations
Specifying the routine .
When exits are taken .
Parameter lists on entry .
Processing requirements .
Incomplete rows .
Expected output .
Date and time routines
General considerations
Specifying the routine .
When exits are taken .
Parameter lists on entry .
Expected output .
Conversion procedures
General considerations
Specifying the routine .
When exits are taken .
Parameter lists on entry .
Expected output .
Field procedures.
Field definition.
General considerations
Specifying the procedure.
When exits are taken .
Control blocks for execution.
Field-definition (function code 8) .
Field-encoding (function code 0) .
Field-decoding (function code 4) .
Log capture routines
General considerations
Specifying the routine .
When exits are taken .
Parameter lists on entry . .
Routines for dynamic plan selection in CICS
What the exit routine does .
General considerations
Execution environment
Specifying the routine .
Sample exit routine .
When exits are taken .
Dynamic plan switching
Coding the exit routine
Parameter list on entry

General considerations for writing eX|t routmes.

Coding rules

Contents

. 921
. 921
. 921
. 922
. 922
. 922
. 923
. 923
. 923
. 924
. 925
. 925
. 925
. 925
. 925
. 926
. 926
. 926
. 927
. 928
. 928
. 928
. 929
. 930
. 931
. 931
. 931
. 932
. 932
. 932
. 934
. 935
. 935
. 935
. 935
. 936
. 939
. 941
. 943
. 944
. 944
. 944
. 944
. 945
. 946
. 947
. 947
. 947
. 947
. 948
. 948
. 948
. 949
. 949
. 950
. 950

XiX

XX Administration Guide

Modifying exit routines.
Execution environment
Registers at invocation
Parameter lists
Row formats for edit and valldatlon routlnes
Column boundaries .
Null values .
Fixed-length rows
Varying-length rows.
Varying-length rows with nuIIs
Internal formats for dates, times, and trmestamps
Parameter list for row format descriptions.
DB2 codes for numeric data
Routine for CICS transaction invocation stored procedure

Appendix C. Reading log records.
What the log contains . -
Unit of recovery log records.
Checkpoint log records .
Database page set control records .
Other exception information.
The physical structure of the log .
Physical and logical log records .
The log record header.
The log control interval definition (LCID)
Log record type codes. Co
Log record subtype codes .
Interpreting data change log records
Reading log records with IFI
Reading log records into a buffer.
Reading specific log records (IFCID 0129)
Reading complete log data (IFCID 0306) .
Reading log records with OPEN, GET, and CLOSE .
Data sharing users: Which members participate in the read'?
Registers and return codes .
Stand-alone log OPEN request
Stand-alone log GET request .
Stand-alone log CLOSE request .

Sample application program using stand- alone Iog services .

Reading log records with the log capture exit .

Appendix D. Interpreting DB2 trace output .
Processing trace records. .o
SMF writer header section .
GTF writer header section
Self-defining section
Product section .
Trace field descriptions

Appendix E. Programming for the Instrumentation Facility Interface (IFl)

Submitting DB2 commands through IFI
Obtaining trace data

Passing data to DB2 through IFI

IFI functions

Invoking IFI from your program

Using IFI from stored procedures .

. 950
. 950
. 951
. 951
. 952
. 952
. 952
. 952
. 953
. 953
. 954
. 954
. 955
. 955

. 957
. 957
. 958
. 961
. 962
. 962
. 962
. 962
. 963
. 964
. 966
. 966
. 967
. 968
. 968
. 968
. 969
. 971
. 974
. 974
. 975
. 976
. 978
. 979
. 980

. 981
. 981
. 982
. 984
. 988
. 990
. 995

997

. 997
. 998
. 998
. 998

. 999

. 1000

COMMAND: Syntax and usage .
Authorization. ..
Syntax .

Example .

READS: Syntax and usage
Authorization. .

Syntax . .
Which qualrfrcatrons are used’) .
Usage notes .

Synchronous data .

Using READS calls to mon|tor the dynam|c statement cache .

. 1000
. 1000
. 1000
. 1002
. 1002
. 1003
. 1003
. 1010
. 1011
. 1012
. 1013

Controlling collection of dynamic statement cache statistics with IFCID

0318 .

READA: Syntax and usage
Authorization. .
Syntax .

Usage notes .
Asynchronous data
Example .

WRITE: Syntax and usage
Authorization. .

Syntax .
Usage notes . .

Common communication areas .
IFCA.

Return area .
IFCID area
Output area . .

Using IFI in a data sharrng group .

Interpreting records returned by IFI

Trace data record format

Command record format

Data integrity.

Auditing data. .

Locking considerations .

Recovery considerations

Errors

Appendix F. Using tools to monitor performance
Using MVS, CICS, and IMS tools .
Monitoring system resources .
Monitoring transaction manager throughput
DB2 trace . .
Types of traces .
Effect on DB2 performance
Recording SMF trace data.
Activating SMF . .
Allocating additional SMF buffers .
Reporting data in SMF .
Recording GTF trace data.
DB2 Performance Monitor (DB2 PM)
Performance Reporter for MVS . .
Monitoring application plans and packages.

Appendix G. Real-time statistics tables .
Setting up your system for real-time statistics.

. 1015
. 1015
. 1015
. 1015
. 1016
. 1017
. 1017
. 1017
. 1018
. 1018
. 1018
. 1019
. 1019
. 1022
. 1023
. 1023
. 1023
. 1025
. 1025
. 1026
. 1027
. 1027
. 1028
. 1028
. 1028

. 1029
. 1030
. 1031
. 1033
. 1033
. 1034
. 1037
. 1037
. 1038
. 1038
. 1038
. 1039
. 1039
. 1040
. 1040

. 1043
. 1043

Contents

XXi

HHEIFHEHFHFHFFEHEHFHHFHRHFR

HHEHFHFIFRHRHFHFEHRHHEHHHFHHRHF

XXii

Creating and altering the real-time statistics objects
Setting the interval for writing real-time statistics.
Starting the real-time statistics database

Contents of the real-time statistics tables

Operating with real-time statistics . .
When DB2 externalizes real-time statlstlcs
How DB2 utilities affect the real-time statistics
How non-DB2 utilities affect real-time statistics .
Real-time statistics on objects in work file databases and the TEMP

database

Real-time statistics on read onIy obJects
How dropping objects affects real-time statistics .
How SQL operations affect real-time statistics counters .
Real-time statistics in data sharing.
Improving concurrency with real-time statlstrcs
Recovering the real-time statistics tables
Statistics accuracy.

Appendix H. Stored procedures shipped with DB2.
The DB2 real-time statistics stored procedure.
Environment .
Authorization required .
DSNACCOR syntax diagram .
DSNACCOR option descriptions
Formulas for recommending actions .
Using an exception table
Example of DSNACCOR mvocatron
DSNACCOR output . .
The CICS transaction |nvocat|on stored procedure (DSNACICS).
Environment .
Authorization required
DSNACICS syntax diagram
DSNACICS option descriptions .
DSNACICX user exit .
Example of DSNACICS |nvocat|on
DSNACICS output.
DSNACICS restrictions .
DSNACICS debugging .

Notices

Programming Interface Informat|on
Trademarks .

Glossary .

Bibliography

Index .

Administration Guide

. 1043
. 1044
. 1045
. 1045
. 1057
. 1057
. 1058
. 1064

. 1065
. 1065
. 1065
. 1065
. 1066
. 1066
. 1066
. 1066

. 1069
. 1069
. 1070
. 1070
. 1070
. 1071
. 1077
. 1079
. 1080
. 1084
. 1087
. 1087
. 1088
. 1088
. 1088
. 1090
. 1092
. 1094
. 1094
. 1094

. 1095
. 1096
. 1098
. 1099

. 1121

X-1

About this book

This two-volume book provides guidance information that you can use to perform a
variety of administrative tasks with DB2 Universal Database™ for 0S/390® and
z/0S (DB2®).

Important
In this version of DB2 for OS/390 and z/OS, some utility functions are
available as optional products. You must separately order and purchase a
license to such utilities, and discussion of those utility functions in this
publication is not intended to otherwise imply that you have a license to them.

Who should read this book

This book is primarily intended for system and database administrators. It assumes
that the user is familiar with:

* The basic concepts and facilities of DB2

* The MVS Time Sharing Option (TSO) and the MVS Interactive System
Productivity Facility (ISPF)

* The basic concepts of Structured Query Language (SQL)
+ The basic concepts of Customer Information Control System (CICS®)
+ The basic concepts of Information Management System (IMS™)

* How to define and allocate MVS data sets using MVS job control language
(JCL).

Certain tasks require additional skills, such as knowledge of Virtual
Telecommunications Access Method (VTAM®) to set up communication between
DB2 subsystems, or knowledge of the IBM System Modification Program (SMP/E)
to install IBM licensed programs.

Product terminology and citations

In this book, DB2 Universal Database Server for OS/390 and z/OS is referred to as
"DB2 for OS/390 and z/OS." In cases where the context makes the meaning cleatr,
DB2 for OS/390 and z/OS is referred to as "DB2." When this book refers to other
books in this library, a short title is used. (For example, "See DB2 SQL Reference"
is a citation to IBM® DATABASE 2™ Universal Database Server for 0S/390 and
z/0S SQL Reference.)

When referring to a DB2 product other than DB2 for OS/390 and z/OS, this book
uses the product’s full name to avoid ambiguity.
The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C and C language
Represent the C programming language.

CICS Represents CICS/ESA® and CICS Transaction Server for 0S/390.
IMS Represents IMS or IMS/ESA®.

© Copyright IBM Corp. 1982, 2001 XXiii

MVS Represents the MVS element of OS/390.

0S/390
Represents the OS/390 or z/OS operating system.

RACF®
Represents the functions that are provided by the RACF component of the
SecureWay® Security Server for 0S/390 or by the RACF component of the
0OS/390 Security Server.

How to send your comments

Your feedback helps IBM to provide quality information. Please send any comments
that you have about this book or other DB2 for OS/390 and z/OS documentation.
You can use any of the following methods to provide comments:

* Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name
of the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

* Send your comments from the Web. Visit the Web site at:
http://www.ibm.com/software/db20s390

The Web site has a feedback page that you can use to send comments.

* Complete the readers’ comment form at the back of the book and return it by
mail, by fax (800-426-7773 for the United States and Canada), or by giving it to
an IBM representative.

XXV Administration Guide

Summary of changes to this book

This section summarizes the major changes to this book for Version 7. See

i B ”

for an overview of the changes in Version 7 of DB2 for OS/390 and z/OS.

Part 1_Introductiod has changed as follows: EChapter 2._System planning concepts]
b page 7 provides a summary of system planning concepts for DB2 for OS/390
and z/OS and provides pointers to other information sources for more detailed
information. This chapter contains higher-level information than it did in previous
releases, because |An Introduction to DB2 for QS/390, new in Version 7, has
extensive conceptual information about DB2 for OS/390 and z/OS.

Part 2_Designing a database: advanced topicd, formerly entitled, "Designing a
database,” has undergone a change in scope for Version 7. In prior versions,
"Designing a database” provided a range of information, from basic to advanced,
about designing a database. LEaLt.Z_DeSIgnmg_a_database_adMaJmed_toplcs_ad
now presents only the advanced topics. The newest member of the DB2
for OS/390 and z/OS library, An Introduction to DB2 for OS/390, covers basic
information about designing and implementing a database. [Table 6 on page 29 and

Tahble 7 on page 41 provide roadmaps to information that was formerly part of
"Designing a database.”

Bart 3_Security and auditing has changed as follows:
« [Explicit privileges and autharities” on page 104 describes the explicit Java class

privileges and also the updated DBADM authority.

« Mmplicit privileges of ownership” on page 114 describes the implicit Java class

privileges and also the updated DBADM authority.

+ ['Controlling access ta catalog tables for stored pracedures” an page 124 has
guidelines for granting access to catalog tables that programmers need to
develop stored procedures.

+ [The REVOKE statement” an page 1468 describes how the RESTRICT clause of

the REVOKE statment applies to Jars (Java classes for a routine).

+ ['Controlling requests from remate applications” on page 176 explains Kerberos
security tickets, encrypted user IDs and encrypted passwords, and encrypted
changed passwords.

« [Estahlishing Kerberos authentication through RACE” on page 212 explains how

to implement Kerberos authentication through RACF.

+ tChapter 14 Auditing” on page 219 describes how an authorization ID can be

mapped to a RACF ID from a Kerberos security ticket.

EaLt_A.__Qpe.LaI.Lan_and_Le.mMer_)J has changed as follows:

 I'Chapter 16. Basic operation” on page 249 adds new commands DISPLAY DDF
and SET SYSPARM, and highlights new options for the commands DISPLAY

LOG, SET LOG, and RECOVER POSTPONED in [DB2 operator commands” on

describes:

— How to reset restrictions so that DBZ can execute START DATABASE
ACCESS(FORCE) as described in

© Copyright IBM Corp. 1982, 2001 XXV

XXVi

— The sample output in EThe command DISPLAY DDF” on page 309; the

DETAIL report includes the number of connections that are waiting to be
associated with database access threads.

— How to modify subsystem parameter values dynamlcally while DBZ is running
by using the SET SYSPARM command as described in

describes:

— How to cancel long running threads without backing out data changes, by
using the NOBACKOUT option of the CANCEL THREAD command (see
3 H ti)

— How to use either the LOGLOAD option or the CHKTIME option of the SET
LOG command to dynamically change the checkpoint frequency (see

tChanging the checkpaint frequency dynamically” on page 340)

EChapter 19_Restarting DR2 after termination” on page 347 describes:

— How to use the UR log threshold option to inform you about long running URs
(see Normal restart and recovery” on page 348)

— Why you might want to use the CANCEL option of the RECOVER

POSTPONED command (see ['Resalving postponed units of recovery” on
EChapter 21 _Racking up and recovering datahases” on page 373 describes why

you might want to use the LIGHT(YES) option of the START DB2 command for
some members of a data sharing environment (see tPreparing for disastet
tecovery” on page 385).

IChapter 22 Recovery scenarios” on page 409 describes a procedure for
enlarging a data set for the work file database (see tQut of disk space ar extent
limit reached” on page 44d).

Part 5 Performance monitoring and tuning has changed as follows:

Administration Guide

IChapter 28 lmpraving resource utilization” on page 579 contains revised

recommendations on setting address space priorities.

'Chapter 30 lmproving concurrency” on page 643 describes optimistic
concurrency control for scrollable cursors, which can shorten the amount of time
that locks might be held. For queries with isolation level RS or CS, the chapter
also explains why you might want to use an installation option that indicates if
predicate evaluation can occur on the uncommitted data of other transactions,
which can reduce the number of locks that are acquired.

IChapter 31. Tuning your queries” on page 711 contains recommendations on

using scrollable cursors efficiently.

EChapter 32_Maintaining statistics in the catalog” on page 763 has information

about the new DB2 catalog tables for history statistics. The chapter also explains
how to use the new catalog columns LEAFNEAR and LEAFFAR to determine
when an index should be reorganized.

contains
information about views and table expressions that are defined with UNION and
UNION ALL operators.

" - N - N - - - "

explains how block fetch works for scrollable cursors. The chapter also describes
how to use the FETCH FIRST n ROWS ONLY clause of the SELECT statement
to limit the number of rows that DB2 prefetches to a specific number for a
distributed query that uses DRDA access.

Iappendlx_B_AALtlmg_emuaLmnesl has changed as follows:

- I'Connection and sign-on routines” on page 901 has information on using the
USER and USING keywords on the CONNECT statement.

- EAccess control authorization exit” on page 909 has information on function
resolution during an AUTOBIND. Also, the parameter list for the access control
authorization routine has been updated for Jars (Java classes for a routine).

- L j ing” explains how the EXPLRCL1 value affects

DB2 processing.

explains how to determine
whether the exit routine or DB2 is performing authorization checks.

Summary of changes to this book XXVii

XXViii Administration Guide

Part 1. Introduction

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7.

Enhancements for managing data .

Enhancements for reliability, scalability, and avallablhty

Easier development and integration of e-business applications.
Improved connectivity . .

Features of DB2 for OS/390 and z/OS

Migration considerations .

Chapter 2. System planning concepts .
The structure of DB2 .
Data structures
Databases .
Storage groups .
Table spaces .
Tables .
Indexes
Views
System structures
DB2 catalog .
DB2 directory
Active and archive Iogs
Bootstrap data set (BSDS)
Buffer pools .
Data definition control support database
Resource limit facility database .
Work file database
TEMP database .
More information about data structures .
Control and maintenance of DB2 .
Commands .
Utilities . .
High availability.
Daily operations and tunrng
Backup and recovery
Restart .
More information about control and marntenance of DBZ
The DB2 environment
Address spaces
DB2’s lock manager .
What IRLM does .
Administering IRLM .
DB2’s attachment facilities.
Cics
IMS .
TSO.
CAF.
RRS. .
DB2 and dlstrlbuted data .
DB2 and OS/390 and z/OS
DB2 and the Parallel Sysplex
DB2 and the SecureWay Security Server for OS/390
DB2 and DFSMS .
More information about the OS/390 envrronment

© Copyright IBM Corp. 1982, 2001

DO U, WWW

© © N~

2 Administration Guide

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS
Version 7

DB2 for OS/390 and z/OS Version 7 delivers an enhanced relational database
server solution for OS/390. This release focuses on greater ease and flexibility in
managing your data, better reliability, scalability, and availability, and better
integration with the DB2 family.

In Version 7, some utility functions are available as optional products; you must
separately order and purchase a license to such utilities. Discussion of utility
functions in this publication is not intended to otherwise imply that you have a

license to them. See DB2 Utility Guide and Referencd for more information about

utilities products.

Enhancements for managing data

Version 7 delivers the following enhancements for managing data:

» DB2 now collects a comprehensive statistics history that:
— Lets you track changes to the physical design of DB2 objects
— Lets DB2 predict future space requirements for table spaces and indexes
more accurately and run utilities to improve performance

» Database administrators can now manage DB2 objects more easily and no
longer must maintain their utility jobs (even when new objects are added) by
using enhancements that let them:

— Dynamically create object lists from a pattern-matching expression
— Dynamically allocate the data sets that are required to process those objects

* More flexible DBADM authority lets database administrators create views for
other users.

* Enhancements to management of constraints let you specify a constraint at the
time you create primary or unique keys. A new restriction on the DROP INDEX
statement requires that you drop the primary key, unique key, or referential
constraint before you drop the index that enforces a constraint.

Enhancements for reliability, scalability, and availability

Version 7 delivers the following enhancements for the reliability, scalability, and
availability of your e-business:

» The DB2 Utilities Suite provides utilities for all of your data management tasks
that are associated with the DB2 catalog.

* The new UNLOAD utility lets you unload data from a table space or an image
copy data set. In most cases, the UNLOAD utility is faster than the DSNTIAUL
sample program, especially when you activate partition parallelism for a large
partitioned table space. UNLOAD is also easier to use than REORG UNLOAD
EXTERNAL.

* The new COPYTOCOPY utility lets you make additional image copies from a
primary image copy and registers those copies in the DB2 catalog.
COPYTOCOPY leaves the target object in read/write access mode (UTRW),
which allows Structured Query Language (SQL) statements and some utilities to
run concurrently with the same target objects.

© Copyright IBM Corp. 1982, 2001

Parallel LOAD with multiple inputs lets you easily load large amounts of data into
partitioned table spaces for use in data warehouse applications or business
intelligence applications. Parallel LOAD with multiple inputs runs in a single step,
rather than in different jobs.

A faster online REORG is achieved through the following enhancements:

— Online REORG no longer renames data sets, which greatly reduces the time
that data is unavailable during the SWITCH phase.

— Additional parallel processing improves the elapsed time of the BUILD2 phase
of REORG SHRLEVEL(CHANGE) or SHRLEVEL(REFERENCE).

More concurrency with online LOAD RESUME is achieved by letting you give
users read and write access to the data during LOAD processing so that you can
load data concurrently with user transactions.

More efficient processing for SQL queries:

— More transformations of subqueries into a join for some UPDATE and
DELETE statements

— Fewer sort operations for queries that have an ORDER BY clause and
WHERE clauses with predicates of the form COL=constant

— More parallelism for IN-list index access, which can improve performance for
gueries involving IN-list index access

The ability to change system parameters without stopping DB2 supports online
transaction processing and e-business without interruption.

Improved availability of user objects that are associated with failed or canceled
transactions:

— You can cancel a thread without performing rollback processing.

— Some restrictions imposed by the restart function have been removed.

— A NOBACKOUT option has been added to the CANCEL THREAD command.

Improved availability of the DB2 subsystem when a log-read failure occurs: DB2
now provides a timely warning about failed log-read requests and the ability to
retry the log read so that you can take corrective action and avoid a DB2 outage.

Improved availability in the data sharing environment:

— Group attachment enhancements let DB2 applications generically attach to a
DB2 data sharing group.

— A new LIGHT option of the START DB2 command lets you restart a DB2 data
sharing member with a minimal storage footprint, and then terminate normally
after DB2 frees the retained locks that it can.

— You can let changes in structure size persist when you rebuild or reallocate a
structure.

Additional data sharing enhancements include:

— Notification of incomplete units of recovery

— Use of a new OS/390 and z/OS function to improve failure recovery of group
buffer pools

An additional enhancement for e-business provides improved performance with
preformatting for INSERT operations.

Easier development and integration of e-business applications

4 Administration Guide

Version 7 provides the following enhancements, which let you more easily develop
and integrate applications that access data from various DB2 operating systems
and distributed environments:

DB2 XML Extender for OS/390 and z/OS, a new member of the DB2 Extender
family, lets you store, retrieve, and search XML documents in a DB2 database.

HHHHHH

Improved support for UNION and UNION ALL operators in a view definition, a
nested table expression, or a subquery predicate, improves DB2 family
compatibility and is consistent with SQL99 standards.

More flexibility with SQL gives you greater compatibility with DB2 on other
operating systems:

— Scrollable cursors let you move forward, backward, or randomly through a
result table or a result set. You can use scrollable cursors in any DB2
applications that do not use DB2 private protocol access.

— A search condition in the WHERE clause can include a subquery in which the
base object of both the subquery and the searched UPDATE or DELETE
statement are the same.

— Anew SQL clause, FETCH FIRST n ROWS, improves performance of
applications in a distributed environment.

— Fast implicit close in which the DB2 server, during a distributed query,
automatically closes the cursor when the application attempts to fetch beyond
the last row.

— Support for options USER and USING in a new authorization clause for
CONNECT statements lets you easily port applications that are developed on
the workstation to DB2 for OS/390 and z/OS. These options also let
applications that run under WebSphere to reuse DB2 connections for different
users and to enable DB2 for OS/390 and z/OS to check passwords.

— For positioned updates, you can specify the FOR UPDATE clause of the
cursor SELECT statement without a list of columns. As a result, all updatable
columns of the table or view that is identified in the first FROM clause of the
fullselect are included.

— A new option of the SELECT statement, ORDER BY expression, lets you
specify operators as the sort key for the result table of the SELECT
statement.

— New datetime ISO functions return the day of the week with Monday as day 1
and every week with seven days.

Enhancements to Open Database Connectivity (ODBC) provide partial ODBC 3.0
support, including many new application programming interfaces (APIs), which
increase application portability and alignment with industry standards.

Enhancements to the LOAD utility let you load the output of an SQL SELECT
statement directly into a table.

A new component called Precompiler Services lets compiler writers modify their
compilers to invoke Precompiler Services and produce an SQL statement
coprocessor. An SQL statement coprocessor performs the same functions as the
DB2 precompiler, but it performs those functions at compile time. If your compiler
has an SQL statement coprocessor, you can eliminate the precompile step in
your batch program preparation jobs for COBOL and PL/l programs.

Support for Unicode-encoded data lets you easily store multilingual data within
the same table or on the same DB2 subsystem. The Unicode encoding scheme
represents the code points of many different geographies and languages.

Improved connectivity

Version 7 offers improved connectivity:
» Support for COMMIT and ROLLBACK in stored procedures lets you commit or

roll back an entire unit of work, including uncommitted changes that are made
from the calling application before the stored procedure call is made.

Chapter 1. Summary of changes to DB2 for 0S/390 and z/OS Version7 5

H* H R

HHHH

Support for Windows Kerberos security lets you more easily manage workstation
clients who seek access to data and services from heterogeneous environments.

Global transaction support for distributed applications lets independent DB2
agents participate in a global transaction that is coordinated by an XA-compliant
transaction manager on a workstation or a gateway server (Microsoft Transaction
Server or Encina, for example).

Support for a DB2 Connect Version 7 enhancement lets remote workstation
clients quickly determine the amount of time that DB2 takes to process a request
(the server elapsed time).

Additional enhancements include:

— Support for connection pooling and transaction pooling for IBM DB2 Connect

— Support for DB2 Call Level Interface (DB2 CLI) bookmarks on DB2 UDB for
UNIX, Windows, OS/2

Features of DB2 for OS/390 and z/OS

Version 7 of DB2 UDB Server for 0S/390 and z/OS offers several features that help
you integrate, analyze, summarize, and share data across your enterprise:

DB2 Warehouse Manager feature. The DB2 Warehouse Manager feature brings
together the tools to build, manage, govern, and access DB2 for OS/390 and
z/OS-based data warehouses. The DB2 Warehouse Manager feature uses
proven technologies with new enhancements that are not available in previous
releases, including:

DB2 Warehouse Center, which includes:

- DB2 Universal Database Version 7 Release 1 Enterprise Edition

- Warehouse agents for UNIX, Windows, and OS/390

- Information Catalog

QMF Version 7

QMF High Performance Option

QMF for Windows

DB2 Management Clients Package. The elements of the DB2 Management
Clients Package are:

— DB2 Control Center

— DB2 Stored Procedure Builder

— DB2 Installer

— DB2 Visual Explain

— DB2 Estimator

Net Search Extender for in-memory text search for e-business applications

Net.Data for secure Web applications

Migration considerations

Migration with full fallback protection is available when you have either DB2 for
0S/390 Version 5 or Version 6 installed. You should ensure that you are fully
operational on DB2 for OS/390 Version 5, or later, before migrating to DB2 for
0S/390 and z/OS Version 7.

6 Administration Guide

To learn about all of the migration considerations from Version 5 to Version 7, read
the DB2 Release Planning Guide for Version 6 and Version 7; to learn about
content information, also read appendixes A through F in both books.

Chapter 2. System planning concepts

This chapter introduces the DB2 for OS/390 and z/OS system and explains the
concepts that relate to system and database administration. It consists of the

following sections:

+ ['The structure of DB2'] describes the elements you deal with when using DB2.

« [Control and maintenance of DB2” on page 15 briefly describes commands and

utility jobs.

 ['The DB2 environment” on page 18 describes the main DB2 components and

explains how DB2 operates with certain related IBM products.

Each section concludes with a list of citations to more detailed information about the

topics that the section introduces.

If you are new DB2 for OS/390 and z/OS, begin with lAn Introduction to DB2 fai

for extensive conceptual information.

General information about DB2 for OS/390 and z/OS is available from the DB2 for

0S/390 and z/OS World Wide Web page:
http://www.software.ibm.com/data/db2/0s390/

The structure of DB2

The elements that DB2 manages can be divided into two broad categories:
» Data structures, which are accessed under the user’s direction and by which the

user’s data (and some system data) is organized.
» System structures, which are controlled and accessed by DB2.

Data structures
DB2 data structures described in this section include:

The brief descriptions here show how the structures fit into an overall view of DB2.

Eigure 1 on page 8 shows how some DB2 structures contain others. To some
extent, the notion of “containment” provides a hierarchy of structures. This section

introduces those structures from the most to the least inclusive.

© Copyright IBM Corp. 1982, 2001

8 Administration Guide

Database
Nonpartitioned table space
Table T1 Table T2
Storage group G1
Index space | | Index space >
Index Index
X1 X2
Partitioned
|
table space ndex space >
Table Partitioning
|| Part1 | | [index Part 1| | |
Part 2 Part 2
Part 3 Part 3
Part 4 Part 4

Storage group G2

_‘/

Volume 1

Figure 1. A hierarchy of DB2 structures

The DB2 objects that m introduces are:

Databases
A set of DB2 structures that include a collection of tables, their associated
indexes, and the table spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and
indexes are actually stored.

Table spaces
A set of volumes on disks that hold the data sets in which tables and
indexes are actually stored.

Tables
All data in a DB2 database is presented in tables—collections of rows all
having the same columns. A table that holds persistent user data is a base
table. A table that stores data temporarily is a global temporary table.

Indexes
An index is an ordered set of pointers to the data in a DB2 table. The index
is stored separately from the table.

Views A view is an alternate way of representing data that exists in one or more
tables. A view can include all or some of the columns from one or more
base tables.

Databases

A single database can contain all the data associated with one application or with a
group of related applications. Collecting that data into one database allows you to
start or stop access to all the data in one operation and grant authorization for
access to all the data as a single unit. Assuming that you are authorized to do so,
you can access data stored in different databases.

If you create a table space or a table and do not specify a database, the table or
table space is created in the default database, DSNDB04. DSNDBO04 is defined for
you at installation time. All users have the authority to create table spaces or tables
in database DSNDBO04. The system administrator can revoke those privileges and
grant them only to particular users as necessatry.

When you migrate to Version 7, DB2 adopts the default database and default
storage group you used in Version 6. You have the same authority for Version 7 as
you did in Version 6.

Storage groups

The description of a storage group names the group and identifies its volumes and
the VSAM (virtual storage access method) catalog that records the data sets. The
default storage group, SYSDEFLT, is created when you install DB2.

All volumes of a given storage group must have the same device type. But, as
Eigure 1 on page 8 suggests, parts of a single database can be stored in different
storage groups.

Table spaces

A table space can consist of a number of VSAM data sets. Data sets are VSAM
linear data sets (LDSs). Table spaces are divided into equal-sized units, called
pages, which are written to or read from disk in one operation. You can specify
page sizes for the data; the default page size is 4 KB.

When you create a table space, you can specify the database to which the table
space belongs and the storage group it uses. If you do not specify the database
and storage group, DB2 assigns the table space to the default database and the
default storage group.

You also determine what kind of table spaces is created.

Partitioned
Divides the available space into separate units of storage called partitions.
Each partition contains one data set of one table. You assign the number of
partitions (from 1 to 254) and you can assign partitions independently to
different storage groups.

Segmented
Divides the available space into groups of pages called segments. Each
segment is the same size. A segment contains rows from only one table.

Large object (LOB)
Holds large object data such as graphics, video, or very large text strings. A
LOB table space is always associated with the table space that contains the
logical LOB column values. The table space that contains the table with the
LOB columns is called, in this context, the base table space.

Chapter 2. System planning concepts 9

10 Administration Guide

Simple
Can contain more than one table. The rows of different tables are not kept
separate (unlike segmented table spaces).

Tables
When you create a table in DB2, you define an ordered set of columns.

Sample tables: The examples in this book are based on the set of tables described

in Appendix A (Volume 2) of DB2 Administration Guidd. The sample tables are part

of the DB2 licensed program and represent data related to the activities of an

imaﬂinary computer services company, the Spiffy Computer Services Company.
shows an example of a DB2 sample table.

Table 1. Example of a DB2 sample table (Department table)

DEPTNO DEPTNAME MGRNO ADMRDEPT
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
BO1 PLANNING 000020 A00
Co1 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER AO0
EO1 SUPPORT SERVICES 000050 AO0
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 Do1
Ell OPERATIONS 000090 EO1
E21 SOFTWARE SUPPORT 000100 EO1

The department table contains:

¢ Columns: The ordered set of columns are DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT. All the data in a given column must be of the same data type.

* Row: Each row contains data for a single department.

* Value: At the intersection of a column and row is a value. For example,
PLANNING is the value of the DEPTNAME column in the row for department
BO1.

» Referential constraints: You can assign a primary key and foreign keys to
tables. DB2 can automatically enforce the integrity of references from a foreign
key to a primary key by guarding against insertions, updates, or deletions that
violate the integrity.

— Primary key: A column or set of columns whose values uniquely identify each
row, for example, DEPTNO.

— Foreign key: Columns of other tables, whose values must be equal to values
of the primary key of the first table (in this case, the department table). In the
sample employee table, the column that shows what department an employee
works in is a foreign key; its values must be values of the department number
column in the department table.

Indexes

Each index is based on the values of data in one or more columns of a table. After
you create an index, DB2 maintains the index, but you can perform necessary
maintenance such as reorganizing it or recovering the index.

Indexes take up physical storage in index spaces. Each index occupies its own
index space.

The main purposes of indexes are:

» To improve performance. Access to data is often faster with an index than
without.

» To ensure that a row is unique. For example, a unique index on the employee
table ensures that no two employees have the same employee number.

Except for changes in performance, users of the table are unaware that an index is
in use. DB2 decides whether to use the index to access the table. There are ways
to influence how indexes affect performance when you calculate the storage size of
an index and determine what type of index to use. An index can be partitioning,
nonpartitioning, or clustered. For example, you can apportion data by last names,
maybe using one partition for each letter of the alphabet. Your choice of a
partitioning scheme is based on how an application accesses data, how much data
you have, and how large you expect the total amount of data to grow.

Views
Views allow you to shield some table data from end users. A view can be based on
other views or on a combination of views and tables.

When you define a view, DB2 stores the definition of the view in the DB2 catalog.

However, DB2 does not store any data for the view itself, because the data already
exists in the base table or tables.

System structures

DB2 Séstem structures described in this section include:

In addition, Parallel Sysplex® data sharing uses shared system structures.

DB2 catalog

The DB2 catalog consists of tables of data about everything defined to the DB2
system, including table spaces, indexes, tables, copies of table spaces and indexes,
storage groups, and so forth. The system database DSNDBO06 contains the DB2
catalog.

When you create, alter, or drop any structure, DB2 inserts, updates, or deletes rows
of the catalog that describe the structure and tell how the structure relates to other
structures. For example, SYSIBM.SYSTABLES is one catalog table that records
information when a table is created. DB2 inserts a row into SYSIBM.SYSTABLES
that includes the table name, its owner, its creator, and the name of its table space
and its database.

Because the catalog consists of DB2 tables in a DB2 database, authorized users
can use SQL statements to retrieve information from it.

The communications database (CDB) is part of the DB2 catalog. The CDB consists
of a set of tables that establish conversations with remote database management
systems (DBMSs). The distributed data facility (DDF) uses the CDB to send and
receive distributed data requests.

Chapter 2. System planning concepts 11

12 Administration Guide

DB2 directory
The DB2 directory contains information that DB2 uses during normal operation. You

cannot access the directory using SQL, although much of the same information is
contained in the DB2 catalog, for which you can submit queries. The structures in
the directory are not described in the DB2 catalog.

The directory consists of a set of DB2 tables stored in five table spaces in system
database DSNDBO1. Each of the table spaces listed in is contained in a
VSAM linear data set.

Table 2. Directory table spaces

Table space name

Description

SCT02
Skeleton cursor (SKCT)

Contains the internal form of SQL statements
contained in an application. When you bind a plan,
DB2 creates a skeleton cursor table in SCT02.

SPTO1 Similar to SCT02 except that the skeleton package

Skeleton package table is created when you bind a package.

SYSLGRNX Tracks the opening and closing of table spaces,

Log range indexes, or partitions. By tracking this information
and associating it with relative byte addresses
(RBASs) as contained in the DB2 log, DB2 can
reduce recovery time by reducing the amount of
log that must be scanned for a particular table
space, index, or partition.

SYSUTILX Contains a row for every utility job that is running.

System utilities

The row stays until the utility is finished. If the
utility terminates without completing, DB2 uses the
information in the row when you restart the utility.

DBDO1
Database descriptor (DBD)

Contains internal information, called database
descriptors (DBDs), about the databases that exist
within DB2.

Each database has exactly one corresponding
DBD that describes the database, table spaces,
tables, table check constraints, indexes, and
referential relationships. A DBD also contains other
information about accessing tables in the database.
DB2 creates and updates DBDs whenever their
corresponding databases are created or updated.

Active and archive logs
DB2 records all data changes and significant events in a log as they occur. In the
case of failure, DB2 uses this data to recover.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies the contents of the active log to a disk or magnetic tape data
set called the archive log.

You can choose either single logging or dual logging.

* A single active log contains between 2 and 31 active log data sets.

» With dual logging, the active log has the capacity for 4 to 62 active log data sets,
because two identical copies of the log records are kept.

Each active log data set is a single-volume, single-extent VSAM LDS.

Bootstrap data set (BSDS)
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that

contains information critical to DB2. Specifically, the BSDS contains:

* An inventory of all active and archive log data sets known to DB2. DB2 uses this
information to track the active and archive log data sets. DB2 also uses this
information to locate log records to satisfy log read requests during hormal DB2
system activity and during restart and recovery processing.

* A wrap-around inventory of all recent DB2 checkpoint activity. DB2 uses this
information during restart processing.

* The distributed data facility (DDF) communication record, which contains
information necessary to use DB2 as a distributed server or requester.

» Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during
installation DB2 automatically creates two copies of the BSDS and, if space
permits, places them on separate volumes.

Buffer pools

Buffer pools, also known as virtual buffer pools, are areas of virtual storage in which
DB2 temporarily stores pages of table spaces or indexes. When an application
program accesses a row of a table, DB2 retrieves the page containing that row and
places the page in a buffer. If the needed data is already in a buffer, the application
program does not have to wait for it to be retrieved from disk, significantly reducing
the cost of retrieving the page.

Buffer pools require monitoring and tuning. The size of buffer pools is critical to the
performance characteristics of an application or group of applications that access
data in those buffer pools.

When you use Parallel Sysplex data sharing, buffer pools map to structures called
group buffer pools. These structures reside in a special PR/SM™ LPAR logical
partition called a coupling facility, which enables several DB2s to share information
and control the coherency of data.

There are several options for where buffer pools reside:

 Strictly within DB2's DBM1 primary address space. This option offers the best
performance, but limits the amount of space to 1.6 GB.

* Partly within the DBM1 address space, but using extended storage (ESO
hiperspace) for infrequently updated data (“clean” data). Using extended storage
expands the storage capacity to 1.6 GB of primary and 8 GB of extended
storage. DB2 must move the data back into the DBM1 address space to address
it.

» Solely within an MVS data space. Data spaces greatly expand capacity and are
provided to position DB2 for future S/390® processor enhancements that will
provide large real memory.

If storage constraints in DB2’'s DBM1 address space are likely to be a problem for
your site, consider the hiperspace and data space options.

Buffer pools in data spaces: A buffer pool in a data space can support up to 8
million buffers. For a 32 KB buffer pool, that is 256 gigabytes of virtual storage.
Because of these very large sizes, a buffer pool can span multiple data spaces,
although a single data space never has more than one buffer pool in it.

Chapter 2. System planning concepts 13

Buffer pools in hiperspace: Mutually exclusive from data spaces is the option to
store clean data in extended storage, called hiperpools.

The second level of storage, the hiperpool, is an extension to the virtual buffer pool.
Virtual buffer pools hold the most frequently accessed data. Clean data in virtual
buffer pools that is not accessed frequently can be moved to its corresponding
hiperpool—only one hiperpool can exist for each virtual buffer pool.

Hiperpools can span up to four hiperspaces, 2 GB expanded storage areas. Using
hiperspaces and hiperpools improves performance because you can cache up to 8
GB to help avoid I/O operations.

Data definition control support database

The data definition control support database is automatically created during
installation. This database is a user-maintained collection of tables used by data
definition control support to restrict the submission of specific DB2 DDL (data
definition language) statements to selected application identifiers (plans or
collections of packages). After this database is created, you must populate the
tables to use of this facility. The system name for this database is DSNRGFDB.

Resource limit facility database
The resource limit facility database (DSNRLST) is a facility that lets you control the

amount of processor resources used by dynamic SELECT statements. For
example, you might choose to disable bind operations during critical times of day to
avoid contention with the DB2 catalog.

You can establish a single limit for all users, different limits for individual users, or
both. You can choose to have these limits applied before the statement is executed
(this is called predictive governing), or while a statement is running (sometimes
called reactive governing). You can even use both modes of governing. You define
these limits in one or more resource limit specification tables (RLST).

Work file database

The work file database is used as storage for processing SQL statements that
require working space, such as that required for a sort. DB2 creates a work file
database for you at installation time, and you can create additional work file table
spaces at any time using CREATE TABLESPACE statements.

In a non-data-sharing environment, the work file database is called DSNDBO7. In a
data sharing environment, each DB2 member in the data sharing group has its own
work file database.

TEMP database
The TEMP database is for declared temporary tables only. DB2 stores all declared

temporary tables in this database. You can create one TEMP database for each
DB2 subsystem or data sharing member.

| More information about data structures

[able 3 on page 19 lists additional information sources about topics that this section
| introduces.

14 Administration Guide

Table 3. More information about DB2 structures

For more information about...

See...

Basic concepts for designing data structures,
including:

* Table spaces

* Tables, views

» Columns

* Indexes

An Introduction to DB2 for OS/390

Data structures

Data structures, defining

¢ An Introduction to DB2 for OS/390

e [”

Table space size limits Appendix A of DB2 SQL Reference

Table columns, data types Volume 1 of DB2-SQL Referencd

Referential integrity Volume 1 of DB2 Application Programming

System structures

Shared system structures DB2 Data Sharing: Planning and
[administratiod

Catalog tables Appendix D of DB2 SQL Referencd

Catalog, data set naming conventions DB2 Installation Guidd

CDB DB2 Installation Guidd

Directory, data set naming conventions QB2 Installation Guidd

Logs

BSDS usage, functions

Buffer pools, tuning

Group buffer pools

Data definition control support database

RLST

Work file and TEMP database, defining

Volume 2 of DB2 SQI Referencd

Control and maintenance of DB2

You use commands and utilities to perform the tasks required to control and

maintain DB2:

+« Commands can be entered at a terminal
APF-authorized program or application t
interface (IFI)

I, an MVS console, or through an
hat uses the instrumentation facility

» Utility jobs run as standard MVS batch jobs

Chapter 2. System planning concepts 15

Commands

Utilities

The commands are divided into the following categories:
* DSN command and subcommands

* DB2 commands

* IMS commands

* CICS attachment facility commands

* MVS IRLM commands

* TSO CLIST commands

To enter a DB2 command from an authorized MVS console, you use a subsystem
command prefix (composed of 1 to 8 characters) at the beginning of the command.
The default subsystem command prefix is -DSN1, which you can change when you
install or migrate DB2.

Example: The following command starts the DB2 subsystem that is associated with
the command prefix -DSN1:

-DSN1 START DB2

You use utilities to perform many of the tasks required to maintain DB2 data. Those
tasks include loading a table, copying a table space, or recovering a database to a
previous point in time.

The utilities run as batch jobs under MVS. DB2 interactive (DB2I) provides a simple
way to prepare the job control language (JCL) for those jobs and to perform many
other operations by entering values on panels. DB2I runs under TSO using ISPF
services. A utility control statement tells a particular utility what task to perform.

High availability

16 Administration Guide

It is not necessary to start or stop DB2 often. DB2 continually adds function to
improve availability, especially in the following areas:
+ ['Daily operations and tuning’

Daily operations and tuning

Some of the high availability features related to normal DB2 operations include:

* You can bind application plans and packages online. Packages let you change
and rebind smaller units. Using package versions permits binding while the
applications continue to run.

* You can define and change databases and authorizations online.
* You can change buffer pool sizes online.

* You can use utilities to reorganize indexes, table spaces, or partitions of indexes
or table spaces.

» DB2's data sharing function lets several DB2 subsystems process applications on
shared data. While the different subsystems share data, they appear as a single
DB2 to end users. Applications can be rerouted to avoid outages if one of the
subsystems must be taken down for maintenance.

Backup and recovery
Unplanned outages are difficult to avoid entirely. However, a good backup strategy

can reduce the elapsed time of an unplanned outage. To reduce the probability and
duration of unplanned outages, you should periodically back up and reorganize your
data.

A lot of factors affect the availability of the databases. Here are some key points to
be aware of:

* You should limit your use of, and understand the options of, utilities such as
COPY and REORG.

— You can recover online such structures as table spaces, partitions, data sets,
a range of pages, a single page, and indexes.

— You can recover table spaces and indexes at the same time to reduce
recovery time.

— With some options on the COPY utility, you can read and update a table
space while copying it.
» 1/O errors have the following affects:
— 1/O errors on a range of data do not affect availability to the rest of the data.

— If an 1/O error occurs when DB2 is writing to the log, DB2 continues to
operate.

— If an I/O error is on the active log, DB2 moves to the next data set. If the error
is on the archive log, DB2 dynamically allocates another data set.

» Documented disaster recovery methods are crucial in the case of disasters that
might cause a complete shutdown of your local DB2 system.

» If DB2 is forced to a single mode of operations for the bootstrap data set or logs,
you can usually restore dual operation while DB2 continues to run.

Restart
A key to the perception of high availability is getting the DB2 subsystem back up
and running quickly after an unplanned outage.

* Some restart processing can occur concurrently with new work. Also, you can
choose to postpone some processing.

» During a restart, DB2 applies data changes from its log that was not written at
the time of failure. Some of this process can be run in parallel.

* You can register DB2 to the Automatic Restart Manager of OS/390. This facility
automatically restarts DB2 should it go down as a result of a failure.

More information about control and maintenance of DB2

[Cahle 4 lists additional information sources about topics that this section introduces.

Table 4. More information about DB2 control and maintenance

For more information about... See...

Commands « [Part 4 Operation and recavery” on

Utilities DB2 Utility Guide and Referencd

Data sharing DB2 Data Sharing: Planning and
Bdministratiod

Recovery . [; =

Chapter 2. System planning concepts 17

The DB2 environment

This section provides an overview of DB2 components and environments that work
together in the OS/390 and z/OS environment. DB2 operates as a formal
subsystem of OS/390. DB2 utilities run in the batch environment, and applications
that access DB2 resources can run in the batch, TSO, IMS, or CICS environments.
IBM provides attachment facilities to connect DB2 to each of these environments.

Address spaces

DB2 uses several different address spaces for the following purposes:

Database services
ssnmDBM1 manipulates most of the structures in user-created databases.

System services
ssnmMSR performs a variety of system-related functions.

Distributed data facility
ssnmDIST provides support for remote requests.

IRLM (Internal resource lock manager)
IRLMPROC controls DB2 locking.

DB2-established
ssnmSPAS, for stored procedures, provides an isolated execution
environment for user-written SQL programs at a DB2 server.

WLM-established
Zero to many address spaces for stored procedures and user-defined
functions. WLM-established address spaces are handled in order of priority
and isolated from other stored procedures or user-defined functions running
in other address spaces

User address spaces
At least one, possibly several, of the following types of user address
spaces:
*+ TSO
* Batch
+ CICS
* IMS dependent region
* IMS control region

DB2's lock manager

18 Administration Guide

DB2’s internal resource lock manager (IRLM) is both a separate subsystem and an
integral component of DB2. IRLM is shipped with DB2, and each DB2 subsystem
must have its own instance of IRLM.

Recommendation: Always run with the latest level of IRLM.

You cannot share IRLM between DB2s or between DB2 and IMS. (IRLM is also
shipped with IMS.) If you are running a DB2 data sharing group, there is a
corresponding IRLM group.

What IRLM does

IRLM works with DB2 to serialize access to your data. DB2 requests locks from
IRLM to ensure data integrity when applications, utilities, commands, and so forth,
are all attempting to access the same data.

Administering IRLM
IRLM requires some control and monitoring. The external interfaces to the IRLM

include:
* Installation

Install IRLM when you install DB2. Consider that locks take up storage, and
adequate storage for IRLM is crucial to the performance of your system.

Another important performance item is to make the priority of the IRLM address
space above all the DB2 address spaces.

« Commands

Some MVS commands specifically for IRLM let you modify parameters, display
information about the status of the IRLM and its storage use, and start and stop
IRLM.

» Tracing
DB2's trace facility gives you the ability to trace lock interactions.

IRLM uses the MVS component trace services for its diagnostic traces. You
normally use these under the direction of IBM Service.

DB2’'s attachment facilities

This section describes the attachment facilities that you can use in the OS/390
environment to begin a DB2 session. You can also begin DB2 sessions from other
environments on clients such as Windows® or UNIX® by using interfaces that
include ODBC, JDBC™, and SQLJ.

An attachment facility provides the interface between DB2 and another
environment. shows the OS/390 attachment facilities with interfaces to
DB2.

TSO
e cics

1 / A

CAF
RRS CAF

RRS IMS IMS Q

Figure 2. Attaching to DB2

The OS/390 environments include:

* CICS (Customer Information Control System)
* IMS (Information Management System)

* TSO (Time Sharing Option)

* Batch

The OS/390 attachment facilities include:
+ CICS

+ IMS

+ TSO

* CAF (call attachment facility)

* RRS (Resource Recovery Services)

Chapter 2. System planning concepts 19

20 Administration Guide

In the TSO and batch environments, you can use the TSO, CAF, and RRS
attachment facilities to access DB2.

CICS

The Customer Information Control System (CICS) attachment facility provided with
the CICS transaction server lets you access DB2 from CICS. After you start DB2,
you can operate DB2 from a CICS terminal. You can start and stop CICS and DB2
independently, and you can establish or terminate the connection between them at
any time. You also have the option of allowing CICS to connect to DB2
automatically.

The CICS attachment facility also provides CICS applications with access to DB2
data while operating in the CICS environment. CICS applications, therefore, can
access both DB2 data and CICS data. In case of system failure, CICS coordinates
recovery of both DB2 and CICS data.

CICS operations: The CICS attachment facility uses standard CICS
command-level services where needed.

Examples:

EXEC CICS WAIT
EXEC CICS ABEND

A portion of the CICS attachment facility executes under the control of the
transaction issuing the SQL requests. Therefore these calls for CICS services
appear to be issued by the application transaction.

With proper planning, you can include DB2 in a CICS XRF recovery scenario.

Application programming with CICS: Programmers writing CICS command-level
programs can use the same data communication coding techniques to write the
data communication portions of application programs that access DB2 data. Only
the database portion of the programming changes. For the database portions,
programmers use SQL statements to retrieve or modify data in DB2 tables.

To a CICS terminal user, application programs that access both CICS and DB2 data
appear identical to application programs that access only CICS data.

DB2 supports this cross-product programming by coordinating recovery resources
with those of CICS. CICS applications can therefore access CICS-controlled
resources as well as DB2 databases.

Function shipping of SQL requests is not supported. In a CICS multi-region
operation (MRO) environment, each CICS address space can have its own
attachment to the DB2 subsystem. A single CICS region can be connected to only
one DB2 subsystem at a time.

System administration and operation with CICS: An authorized CICS terminal
operator can issue DB2 commands to control and monitor both the attachment
facility and DB2 itself. Authorized terminal operators can also start and stop DB2
databases.

Even though you perform DB2 functions through CICS, you need to have the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment to
bind application plans and packages.

IMS

The Information Management System (IMS) attachment facility allows you to access
DB2 from IMS. The IMS attachment facility receives and interprets requests for
access to DB2 databases using exits provided by IMS subsystems. Usually, IMS
connects to DB2 automatically with no operator intervention.

In addition to Data Language | (DL/l) and Fast Path calls, IMS applications can
make calls to DB2 using embedded SQL statements. In case of system failure, IMS
coordinates recovery of both DB2 and IMS data.

With proper planning, you can include DB2 in an IMS XRF recovery scenario.

Application programming with IMS: With the IMS attachment facility, DB2
provides database services for IMS dependent regions. DL/l batch support allows
users to access both IMS data (DL/l) and DB2 data in the IMS batch environment,
which includes:

* Access to DB2 and DL/I data from application programs.
» Coordinated recovery through a two-phase commit process.

* Use of the IMS extended restart (XRST) and symbolic checkpoint (CHKP) calls
by application programs to coordinate recovery with IMS, DB2, and generalized
sequential access method (GSAM) files.

IMS programmers writing the data communication portion of application programs
do not need to alter their coding technique to write the data communication portion
when accessing DB2; only the database portions of the application programs
change. For the database portions, programmers code SQL statements to retrieve
or modify data in DB2 tables.

To an IMS terminal user, IMS application programs that access DB2 appear
identical to IMS.

DB2 supports this cross-product programming by coordinating database recovery
services with those of IMS. Any IMS program uses the same synchronization and
rollback calls in application programs that access DB2 data as they use in IMS
DB/DC application programs that access DL/ data.

Another aid for cross-product programming is the DataPropagator NonRelational
(DPropNR) licensed program. DPropNR allows automatic updates to DB2 tables
when corresponding information in an IMS database is updated, and it allows
automatic updates to an IMS database when a DB2 table is updated.

System administration and operation with IMS: An authorized IMS terminal
operator can issue DB2 commands to control and monitor DB2. The terminal
operator can also start and stop DB2 databases.

Even though you perform DB2 functions through IMS, you need the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment
facility to bind application plans and packages.

TSO

The Time Sharing Option (TSO) attachment facility is required for binding
application plans and packages and for executing several online functions that are
provided with DB2.

Chapter 2. System planning concepts 21

Using the TSO attachment facility, you can access DB2 by running in either
foreground or batch. You gain foreground access through a TSO terminal; you gain
batch access by invoking the TSO terminal monitor program (TMP) from an MVS
batch job.

The following two command processors are available:

» DSN command processor — Runs as a TSO command processor and uses the
TSO attachment facility.

» DB2 Interactive (DB2I) — Consists of Interactive System Productivity Facility
(ISPF) panels. ISPF has an interactive connection to DB2, which invokes the
DSN command processor. Using DB2I panels, you can perform most DB2 tasks
interactively, such as running SQL statements, commands, and utilities.

Whether you access DB2 in foreground or batch, attaching through the TSO
attachment facility and the DSN command processor makes access easier. DB2
subcommands that execute under DSN are subject to the command size limitations
as defined by TSO. TSO allows authorized DB2 users or jobs to create, modify, and
maintain databases and application programs. You invoke the DSN processor from
the foreground by issuing a command at a TSO terminal. From batch, first invoke
TMP from within an MVS batch job, and then pass commands to TMP in the
SYSTSIN data set.

After DSN is running, you can issue DB2 commands or DSN subcommands. You
cannot issue a -START DB2 command from within DSN. If DB2 is not running, DSN
cannot establish a connection to it; a connection is required so that DSN can
transfer commands to DB2 for processing.

CAF
Most TSO applications must use the TSO attachment facility, which invokes the

DSN command processor. Together, DSN and TSO provide services such as
automatic connection to DB2, attention key support, and translation of return codes
into error messages. However, when using DSN services, your application must run
under the control of DSN.

The call attachment facility (CAF) provides an alternative connection for TSO and
batch applications needing tight control over the session environment. Applications
using CAF can explicitly control the state of their connections to DB2 by using
connection functions that CAF supplies.

RRS
0S/390 Resource Recovery Services (RRS) is a feature of OS/390 that coordinates

two-phase commit processing of recoverable resources in an MVS system. DB2
supports use of these services for DB2 applications that use the RRS attachment
facility provided with DB2. Use the RRS attachment to access resources such as
SQL tables, DL/l databases, MQSeries® messages, and recoverable VSAM files
within a single transaction scope.

The RRS attachment is required for stored procedures that run in a
WLM-established address space.

DB2 and distributed data

22 Administration Guide

In a distributed data environment, DB2 applications can access data at many
different DB2 sites and at remote relational database systems.

Example: Assume a company needs to satisfy customer requests at hundreds of
locations and the company representatives who answer those requests work at
locations that span a wide geographic area. You can document requests on
workstations that have DB2 Connect® Personal Edition. This information is
uploaded to DB2 for OS/390 and z/OS. The representatives can then use Java
applications to access the customer request information in DB2 from their local
offices.

The company’s distributed environment relies on the distributed data facility (DDF),
which is part of DB2 for OS/390 and z/OS. DB2 applications can use DDF to
access data at other DB2 sites and at remote relational database systems that
support Distributed Relational Database Architecture (DRDA). DRDA is a standard
for distributed connectivity. All IBM DB2 servers support this DRDA standard.

DDF also enables applications that run in a remote environment that supports
DRDA. These applications can use DDF to access data in DB2 servers. Examples
of application requesters include IBM DB2 Connect and other DRDA-compliant
client products.

With DDF, you can have up to 150 000 distributed threads connect to a DB2 server
at the same time. A thread is a DB2 structure that describes an application's
connection and traces its progress.

Use stored procedures to reduce processor and elapsed time costs of distributed
access. A stored procedure is user-written SQL program that a requester can invoke
at the server. By encapsulating the SQL, many fewer messages flow across the
wire.

Local DB2 applications can use stored procedures as well to take advantage of the
ability to encapsulate SQL that is shared among different applications.

The decision to access distributed data has implications for many DB2 activities:
application programming, data recovery, authorization, and so on.

DB2 and OS/390 and z/OS

z/OS is the next generation of the OS/390 operating system. z/OS and the IBM
@server zSeries 900 server offer architecture that provides qualities of service that
are critical for e-business. The z/OS operating system is based on 64-bit
z/Architecture. The operating system is highly secure, scalable, and high
performing. With these characteristics, z/OS provides a strong base for Internet and
Java-enabled applications and a comprehensive and diverse environment for
running your applications.

0S/390 is the operating system software for the IBM System/390® family of
enterprise servers. At the core of OS/390 is the base control program, MVS.

As a formal subsystem of OS/390, DB2 uses:

» Availability and scalability features that include System/390 Parallel Sysplex
cluster technology that enables multiple processors to perform work.

* VTAM and TCP/IP for distributed data facility

» Reliability features that include protection from unplanned outages and recovery
routines

» Serviceability features that include:
SYS1.LOGREC

Chapter 2. System planning concepts 23

SYS1.DUMP
» Synchronous cross-memory services for address space switching

» System Management Facilities (SMF) for statistics, accounting information, and
performance data

DB2 and the Parallel Sysplex

The Parallel Sysplex is a key example of the synergy of DB2 and System/390. DB2
takes advantage of the System/390 Parallel Sysplex, with its superior processing
capabilities. By allowing two or more processors to share the same data, you can
maximize performance while minimizing cost; improve system availability and
concurrency; expand system capacity; and configure your system environment more
flexibly. With data sharing, applications running on more than one DB2 subsystem
can read from and write to the same set of data concurrently.

Sharing DB2s must belong to a DB2 data sharing group. A data sharing group is a
collection of one or more DB2 subsystems accessing shared DB2 data. Each DB2
subsystem belonging to a particular data sharing group is a member of that group.
All members of a group use the same shared DB2 catalog and directory.

With data sharing, you can grow your system incrementally by adding additional
central processor complexes and DB2s to the data sharing group. You don’t have to
move part of the workload onto another system, alleviating the need to manage
copies of the data or to use distributed processing to access the data.

You can configure your environment flexibly. For example, you can tailor each
0S/390 image to meet the requirements for the user set on that image. For
processing that occurs during peak workload periods, you can bring up a dormant
DB2 to help process the work.

DB2 and the SecureWay Security Server for OS/390

You can use the Resource Access Control Facility (RACF) component of the
SecureWay Security Server for OS/390, or an equivalent product, to control access
to your OS/390 system. When users begin sessions with TSO, IMS, or CICS, their
identities are checked to prevent unauthorized access to the system.

Recommendation: Use the Security Server check the security of DB2 users and to
protect DB2 resources. The Security Server provides effective protection for DB2
data by permitting only DB2-mediated access to DB2 data sets.

Much authorization to DB2 objects can be controlled directly from the Security
Server. An exit routine (a program that runs as an extension of DB2) that is shipped
with the OS/390 Security Server lets you centralize access control.

DB2 and DFSMS

24 Administration Guide

The DFSMSdfp™ storage management subsystem (SMS) can be used to manage
DB2 disk data sets. The purpose of SMS is to automate as much as possible the
management of physical storage by centralizing control, automating tasks, and
providing interactive controls for system administrators. SMS can reduce users’
needs to be concerned about physical details of performance, space, and device
management.

Consult with your site’s storage administrator about using SMS for DB2 private
data, image copies, and archive logs. For data that is especially
performance-sensitive, there might need to be more manual control over data set

placement.

Table spaces or indexes with data sets larger than 4 gigabytes require

SMS-managed data sets.

Extended partitioned data sets (PDSE), a feature of DFSMSdfp, are useful for
managing stored procedures that run in a stored procedures address space. PDSE
enables extent information for the load libraries to be dynamically updated, reducing
the need to start and stop the stored procedures address space.

More information about the OS/390 environment

[rable | lists additional information sources about topics that this section introduces.

Table 5. More information about the OS/390 environment

For more information about...

See...

z/OS

www.ibm.com/servers/eserver/zseries/zos/

0S/390

www.s390.ibm.com/0s390/

IRLM installation DB2 Installation Guidd

IRLM address spaces tSetting address space priority” on page 614
IRLM commands DB2 Command Referencd

IRLM lock tracing tLsing the statistics and accounting traces td

Exit routines

AEEendix B (Volume 2) of DR2 Administration

Security methods

PDSE data sets

MVS/DFP: Using Data Sets

SMS i3 1 H ”
DFSMShsm :
Attachment facilities, programming Volume 2 of DB2 Application Programming

CICS XRF

[— 274
* CICS for MVS/ESA Operations and Utilities
Guide

CICS connections tChapter 17 _Monitoring and controlling DBA
CICS administration DB2 Installation Guidd
IMS XRF - [Extended recovery facility (XRF)
[— 274
* IMS Administration Guide: System
DL/I batch Volume 2 of DB2 Application Programming

DataPropagator NonRelational

DataPropagator NonRelational MVS/ESA
Administration Guide

Chapter 2. System planning concepts 25

26 Administration Guide

Table 5. More information about the OS/390 environment (continued)

For more information about... See...

ISPF Volume 2 of DB2 Application Programming
Bnd SQI_Guidd

Distributed data Volume 1 of DB2 Application Programming

Parallel Sysplex data sharing DB2 Data Sharing: Planning and
Bdministratiod

Part 2. Designing a database: advanced topics
Chapter 3. Introduction to designing a database: advanced topics .

Chapter 4. Creating storage groups and managing DB2 data sets

Creating DB2 storage groups
Defining index space storage.
Managing your own DB2 data sets
Managing your data sets using access method services.
Requirements for your own data sets.
DEFINE CLUSTER command
Deferring allocation of data sets for table spaces
Managing your DB2 data sets with DFSMShsm™
Recalling archive logs
Migrating to DFSMShsm
Using DFSMShsm with the RECOVER utrlrty
Creating EA-enabled table spaces and index spaces .
Extending DB2-managed data sets
Extending user-managed data sets

Chapter 5. Implementing your design.
Implementing your databases
Implementing your table spaces
Creating a table space explicitly
Creating a table space implicitly
Choosing a page size
Choosing a page size for LOBs

Distinctions between DB2 base tables and temporary tables .

Using schemas. .
Authorization to process schema deflnltlons .
Processing schema definitions .

Chapter 6. Loading data into DB2 tables
Loading methods . .
Loading tables with the LOAD ut|I|ty

Replacing data .

Loading data using the SQL INSERT statement
Loading data from DL/I .

Chapter 7. Altering your database design .
Using the ALTER statement .
Dropping and re-creating DB2 objects
Altering DB2 storage groups .
Letting SMS manage your DB2 storage groups
Adding or removing volumes from a DB2 storage group.
Altering DB2 databases.
Altering table spaces.

Changing the space aIIocatron for user- managed data sets

Dropping, re-creating, or converting a table space .
Altering tables .
Using the ALTER TABLE statement
Adding a new column
Altering a table for referential |ntegr|ty .
Adding referential constraints to existing tables .
Adding parent keys and foreign keys.

© Copyright IBM Corp. 1982, 2001

. 29

.31
.31
. 33
. 33
. 34
. 34
. 36
. 36
. 37
. 37
. 38
. 38
. 39
. 39
. 40

.41
.41
. 42
. 42
. 42
. 43
.44
. 45
. 48
. 49
. 49

. 51
. 51
. 51
. 52
. 53
. 54

. 55
. 55
. 55
. 56
. 56
. 56
. 57
. 57
. 57
. 57
. 59
. 59
. 59
. 61
. 61
. 62

27

28

Administration Guide

Dropping parent keys and foreign keys .
Adding or dropping table check constraints
Altering the assignment of a validation routine
Checking rows of a table with a new validation routlne
Altering a table for capture of changed data .
Changing an edit procedure or a field procedure
Altering the subtype of a string column .
Altering data types and deleting columns
Implications of dropping a table .
Check objects that depend on the table .
Re-creating a table .
Redefining the attributes on an |dent|ty column .
Moving a table to a table space of a different page size .
Altering indexes
Changing the descrlptlon of an mdex
Rebalancing data in partmoned table spaces .
Altering views
Altering stored procedures and user- deflned funcuons
Altering stored procedures.
Altering user-defined functions .
Changing the high-level qualifier for DB2 data sets
Define a new integrated catalog alias
Change the qualifier for system data sets .
Step 1: Change the load module to reflect the new quallfler
Step 2: Stop DB2 with no outstanding activity
Step 3: Rename system data sets with the new quallfler
Step 4: Update the BSDS with the new qualifier.
Step 5: Establish a new xxxxmstr cataloged procedure .
Step 6: Start DB2 with the new xxxxmstr and load module .
Change qualifiers for other databases and user data sets .
Changing your work database to use the new high-level qualifier
Changing user-managed objects to use the new qualifier
Changing DB2-managed objects to use the new qualifier
Moving DB2 data .
Tools for moving DB2 data
Moving a DB2 data set .
Copying a relational database
Copying an entire DB2 subsystem.

Chapter 8. Estimating disk storage for user data .
Factors that affect storage. .
Calculating the space required for a table .
Calculating record lengths and pages
Saving space with data compression .
Estimating storage for LOBs .
Estimating storage when using the LOAD ut|I|ty
Calculating the space required for a dictionary .
Disk requirements.
Virtual storage requwements
Calculating the space required for an |ndex
Levels of index pages
Calculating the space required for an mdex

. 62
. 63
. 63
. 64
. 64
. 64
. 65
. 65
. 66
. 67
. 67
. 68
. 69
. 69
. 69
. 70
. 70
. 70
. 70
.71
.71
.72
.72
.72
. 73
. 73
.74
. 75
. 75
. 75
. 76
. 76
.77
. 78
. 78
. 80
. 81
. 81

. 83
. 83
. 84
. 84
. 86
. 86
. 86
. 87
. 88
. 88
. 88
. 89
. 90

Chapter 3. Introduction to designing a database: advanced

topics

The scope of [Part 2_Designing a database: advanced topics” on page 27, formerly

entitled,”Designing a database,” has been changed in Version 7. In previous
versions, "Designing a database” provided a range of information, from basic to

advanced, about designing a database. ['Part 2. Designing a database: advanced
topics” on page 27 now presents only the advanced topics. The newest member of

the DB2 for OS/390 and z/OS library, An Introduction to DB2 for OS/390, covers
basic information about designing and implementing a database.

[able d shows where you can find more information about topics related to

designing a database.

Table 6. More information about designing a database

For more information about...

See...

Basic database design concepts for DB2
Universal Database for OS/390 and z/OS,
including:

» Designing tables and views

» Designing columns

» Designing indexes

» Designing table spaces

An Introduction to DB2 for OS/390

Maintaining data integrity, including: Part 2 of bBZApplmaﬂan_Bmg.:a.nmng_a.nd
* Maintaining referential constraints w

» Defining table check constraints

* Planning to use triggers

Maintaining data integrity, including Chapter 5 of DB2 SQL Referencd
implications for the following SQL statements:

INSERT, UPDATE, DELETE, and DROP

Maintaining data integrity, including Part 2 of DB2 Ltility Guide and Reference

implications for the following utilities: COPY,
QUIESCE, RECOVER, and REPORT

Detailed information on partitioning and
nonpartitioning indexes

Chapter 5 of DB2 SQI Referencd

Compressing data in a table space or a
partition

© Copyright IBM Corp. 1982, 2001

Part 5 (Volume 2) of DB2 Administration
Guidd

29

30 Administration Guide

Chapter 4. Creating storage groups and managing DB2 data
sets

This chapter provides information on how to create storage groups and manage
your DB2 data sets:

LCLealmg_DBLsImag&ngLpsll

DB2 manages the auxiliary storage requirements of a DB2 database by using DB2
storage groups. Data sets in these DB2 storage groups are DB2-managed data
sets. These DB2 storage groups are not the same as storage groups defined by
DFSMS'’s storage management subsystem (DFSMS). A DB2 storage group is a
named set of disk volumes, in which DB2:

» Allocates storage for table spaces and indexes

» Defines the necessary VSAM data sets

+ Extends and deletes the VSAM data sets

+ Alters VSAM data sets

Creating DB2 storage groups

A name for DB2 storage groups and databases is an unqualified identifier of up to
eight characters. A DB2 storage group name must not be the same as the name of
any other storage group in the DB2 catalog, and a DB2 database name must not
be the same as the name of any other DB2 database. The following examples are
used in the sample application:

Object Name
DB2 storage group DSN8G710
Database DSN8D71A

See the DR2 SQI Reference for more information about naming conventions.

To create a DB2 storage group, use the SQL statement CREATE STOGROUP. For
detailed information on CREATE STOGROUP, see Chapter 5 of
Referencd.

When you create table spaces and indexes, you name the storage group from
which you want space to be allocated. Try to assign frequently accessed objects
(indexes, for example) to fast devices, and assign seldom-used tables to slower
devices. This approach to choosing storage groups improves performance.

Here are some of the things that DB2 does for you in managing your auxiliary
storage requirements:

* When a table space is created, DB2 defines the necessary VSAM data sets
using VSAM access method services. After the data sets are created, you can
process them with access method service commands that support VSAM
control-interval (Cl) processing (for example, IMPORT and EXPORT).

Exception: You can defer the allocation of data sets for table spaces and index
spaces by specifying the DEFINE NO clause on the associated statement
(CREATE TABLESPACE and CREATE INDEX), which also must specify the
USING STOGROUP clause. For more information about deferring data set

© Copyright IBM Corp. 1982, 2001 31

32 Administration Guide

allocation, see either ['Deferring allocation of data sets for table spaces” on
bhage 34 or Chapter 5 of DB2 SQL Referencd.

* When a table space is dropped, DB2 automatically deletes the associated data
sets.

* When a data set in a segmented or simple table space reaches its maximum
size of 2 GB, DB2 might automatically create a new data set. The primary data
set allocation is obtained for each new data set.

« When needed DB2 can extend individual data sets. For more information, see

* When creating or reorganizing a table space that has associated data sets, DB2
deletes and then redefines them. However, when you run REORG with the
REUSE parameter and SHRLEVEL NONE, REORG resets and reuses
DB2-managed data sets without deleting and redefining them.

* When you want to move data sets to a new volume, you can alter the volumes
list in your storage group. DB2 automatically relocates your data sets during
utility operations that build or rebuild a data set (LOAD REPLACE, REORG,
REBUILD, and RECOVER). To move your user-defined data sets, you must
delete and redefine your data sets.

After you define a storage group, DB2 stores information about it in the DB2
catalog. (This catalog is not the same as the integrated catalog facility catalog that
describes DB2 VSAM data sets). The catalog table SYSIBM.SYSSTOGROUP has a
row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can display the catalog information
about DB2 storage groups by using SQL statements. See Appendix D of

for more information about using SQL statements to display catalog
information about DB2 storage groups.

A default storage group, SYSDEFLT, is defined when DB2 is installed. If you are
authorized and do not take specific steps to manage your own storage, you can still
define tables, indexes, table spaces, and databases; DB2 uses SYSDEFLT to
allocate the necessary auxiliary storage. Information about SYSDEFLT, as with any
other storage group, is kept in the catalog tables SYSIBM.SYSSTOGROUP and
SYSIBM.SYSVOLUMES.

Use storage groups whenever you can, either specifically or by default. However, if
you want to maintain closer control over the physical storage of your tables and
indexes, you can define and manage your own VSAM data sets using VSAM

access method services. See 'Managing your own DB? data sets” on page 33 for

more information about managing VSAM data sets.. Yet another possibility is to let

SMS manage some or. aII of your DB2 data sets. See EManaging your DB2 data

for more information.

When defining DB2 storage groups, use the VOLUMES('*") attribute on the
CREATE STOGROUP statement to let SMS control the selection of volumes during
allocation. See IManaging your DB2 data sets with DESMShsm™” an _page 37 for
more information. Otherwise, if you use DB2 to allocate data to specific volumes,
you must assign an SMS Storage Class with Guaranteed Space, and you must
manage free space for each volume to prevent failures during the initial allocation
and extension. Using Guaranteed Space reduces the benefits of SMS allocation,
requires more time for space management, and can result in more space
shortages. You should only use Guaranteed Space when space needs are relatively
small and do not change.

For both user-managed and DB2-managed data sets, you need at least one
integrated catalog facility catalog, either user or master, created with the integrated
catalog facility. Recommendation: Let SMS manage your DB2 storage groups, you
can use asterisks (nonspecific volume IDs) in the VOLUMES clause. You must
identify the catalog of the integrated catalog facility (known as the integrated
catalog) when you create a storage group or when you create a table space that
does not use storage groups.

Defining index space storage

Generally, the CREATE INDEX statement creates an index space in the same DB2
database that contains the table on which the index is defined. This is true even if
you defer building the index.

Exceptions:

» If you specify the USING VCAT clause, you create and manage the data sets
yourself.

* If you specify the DEFINE NO clause on a CREATE INDEX statement that uses
the USING STOGROUP clause, DB2 defers the allocation of the data sets for the
index space.

When you use CREATE INDEX, always specify a USING clause. When you specify
USING, you declare whether you want DB2-managed or user-managed data sets.
For DB2-managed data sets, you specify the primary and secondary space
allocation parameters on the CREATE INDEX statement. If you do not specify
USING, DB2 assigns the index data sets to the default storage groups using default
space attributes. For information about how space allocation can affect the

performance of mass inserts, see 'Speed up preformatting hy allocating inl

You can specify the USING clause to allocate space for the entire index, or, if the
index is a partitioning index, you can allocate space for each partition. Information
about space allocation for the index is kept in the SYSIBM.SYSINDEXPART table of
the DB2 catalog. Other information about the index is in SYSIBM.SYSINDEXES.
For more information about determining the space required for an index, see

[Calculating the space required for an index” on page 88. For more information

about CREATE INDEX clauses, see Chapter 5 of

Managing your own DB2 data sets

You might choose to manage your own VSAM data sets for reasons such as these:

* You have a large linear table space on several data sets. If you manage your
own data sets, you can better control the placement of individual data sets on the
volumes. (Although you can keep a similar type of control by using single-volume
DB2 storage groups.)

* You want to prevent deleting a data set within a specified time period, by using
the TO and FOR options of the access method services DEFINE and ALTER
commands. You can create and manage the data set yourself, or you can create
the data set with DB2 and use the ALTER command of access method services
to change the TO and FOR options.

* You are concerned about recovering dropped table spaces. Your own data set is
not automatically deleted when a table space is dropped, making it easier to
reclaim the data if the table space is dropped.

Chapter 4. Creating storage groups and managing DB2 data sets 33

Managing your data sets using access method services

To manage DB2 auxiliary storage yourself, you use access method services. To
define the required data sets, use DEFINE CLUSTER,; to add secondary volumes to
expanding data sets, use ALTER ADDVOLUMES; and to delete data sets, use
DELETE CLUSTER.

You can define a data set for each of these items:
* A simple or segmented table space

» A partition of a partitioned table space

* A nonpartitioning index

* A partition of a partitioning index

Furthermore, as table spaces and index spaces expand, you might need to provide
additional data sets. To take advantage of parallel I/O streams when doing certain
read-only queries, consider spreading large table spaces over different disk
volumes that are attached on separate channel paths. For more information about

data set extension, see lExtending DB2-managed data sets” on page 39d.

Requirements for your own data sets

34 Administration Guide

DB2 checks whether you have defined your data sets correctly. If you plan to define
and manage VSAM data sets yourself, you must perform these steps:

1. Define the data sets before you issue the CREATE TABLESPACE or the
CREATE INDEX statement.

If you create a partitioned table space, you must create a separate data set for
each partition, or allocate space for each partition by using the PART option of
the NUMPARTS clause.

2. Give each data set a name with this format:
catname .DSNDBx .dbname .psname .y0001.Annn

catname
Integrated catalog name or alias (up to eight characters). Use the same
name or alias here as in the USING VCAT clause of the CREATE
TABLESPACE and CREATE INDEX statements.

X C (for VSAM clusters) or D (for VSAM data components).

dbname
DB2 database name. If the data set is for a table space, dbname must
be the name given in the CREATE TABLESPACE statement. If the data
set is for an index, dbname must be the name of the database
containing the base table. If you are using the default database,
dbname must be DSNDBO04.

psname
Table space name or index name. This hame must be unique within the
database.

You use this name on the CREATE TABLESPACE or CREATE INDEX
statement. (You can use a name longer than eight characters on the
CREATE INDEX statement, but the first eight characters of that name
must be the same as in the data set's psname.)

y0001 Instance qualifier for the data set.

Define one data set for the table space or index with a value of | for y if

one of the following conditions is true:

* You plan to run REORG with SHRLEVEL CHANGE or SHRLEVEL
REFERENCE without the FASTSWITCH YES option.

* You do not plan to run REORG with SHRLEVEL CHANGE or
SHRLEVEL REFERENCE.

Define two data sets if you plan to run REORG, using the
FASTSWITCH YES option, with SHRLEVEL CHANGE or SHRLEVEL
REFERENCE. Define one data set with a value of | for y, and one with
a value of J fory.

For more information on defining data sets for REORG, see Part 2 of

nnn Data set number. For partitioned table spaces, the number is 001 for
the first partition, 002 for the second, and so forth, up to the maximum
of 254 partitions.

For a nonpartitioning index on a partitioned table space that you define
using the LARGE option, the maximum data set number is 128.

For simple or segmented table spaces, the number is 001 for the first
data set. When little space is available, DB2 issues a warning message.
If the size of the data set for a simple or a segmented table space
approaches the maximum limit, define another data set. Give the new
data set the same name as the first data set and the number 002. The
next data set will be 003, and so on.

You can reach the extent limit for a data set before you reach the limit
for a partitioned or a nonpartitioned table space. If this happens, DB2
does not extend the data set.

For detailed information about limits in DB2 for OS/390 and z/OS, see
Appendix A of DR2 Utility Guide and Referencd.

3. Use the DEFINE CLUSTER command to define the size of the primary and
secondary extents of the VSAM cluster. If you specify zero for the secondary
extent size, data set extension does not occur.

4. Define the data sets as LINEAR. Do not use RECORDSIZE or
CONTROLINTERVALSIZE; these attributes are invalid.

5. Use the REUSE option. You must define the data set as REUSE before running
the DSN1COPY utility.

6. Use SHAREOPTIONS(3,3).

The DEFINE CLUSTER command has many optional parameters that do not apply
when DB2 uses the data set. If you use the parameters SPANNED,
EXCEPTIONEXIT, SPEED, BUFFERSPACE, or WRITECHECK, VSAM applies
them to your data set, but DB2 ignores them when it accesses the data set.

The value of the OWNER parameter for clusters that are defined for storage groups
is the first SYSADM authorization ID specified at installation.

When you drop indexes or table spaces for which you defined the data sets, you
must delete the data sets unless you want to reuse them. To reuse a data set, first
commit, and then create a new table space or index with the same name. When
DB2 uses the new object, it overwrites the old information with new information,
which destroys the old data.

Likewise, if you delete data sets, you must drop the corresponding table spaces
and indexes; DB2 does not do that automatically.

Chapter 4. Creating storage groups and managing DB2 data sets 35

DEFINE CLUSTER command

Eigure 3 shows the DEFINE CLUSTER command, which defines two data sets for
the SYSUSER data space. By defining both data sets for the same table space,
you can run REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
against the table space. For more information on defining data sets for REORG,

see Chapter 2 of DB2 Utility Guide and Referencel.

DEFINE CLUSTER-
(NAME (DSNCAT . DSNDBC.DSNDB06 . SYSUSER. 10001.A001) -
LINEAR -
REUSE -
VOLUMES (DSNVO1) -
RECORDS (100 160) -
SHAREOPTIONS(3 3)) -
DATA -
(NAME (DSNCAT . DSNDBD.DSNDB06 . SYSUSER. 10001 .A001) -
CATALOG (DSNCAT)
DEFINE CLUSTER-
(NAME (DSNCAT.DSNDBC.DSNDBO6.SYSUSER.J0001.A001) -
LINEAR -
REUSE -
VOLUMES (DSNVO1) -
RECORDS (240 120) -
SHAREOPTIONS(3 3)) -
DATA -
(NAME (DSNCAT.DSNDBD.DSNDBO6.SYSUSER.J0001.A001) -
CATALOG (DSNCAT)

Figure 3. Defining data sets for the SYSUSER table space

For more information about defining and managing VSAM data sets, see
DFSMS/MVS: Access Method Services for the Integrated Catalog.

Deferring allocation of data sets for table spaces

36 Administration Guide

When you execute a CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 generally defines the necessary VSAM data sets for the
table space. In some cases, however, you might want to define a table space
without immediately allocating the associated data sets.

For example, you might be installing a software program that requires that many
table spaces be created, but your company might not need to use some of those
table spaces; you might prefer not to allocate data sets for the table spaces you will
not be using.

To defer the physical allocation of DB2-managed data sets, you use the DEFINE
NO clause. When you specify the DEFINE NO clause, the table space is defined,
but DB2 does not allocate the associated data sets until a row is inserted or loaded
into a table in that table space. The DB2 catalog table SYSIBM.SYSTABLESPART
contains a record of the created table space and an indication that the data sets are
not yet allocated.

If you specify DEFINE NO for a table space that has a table that contains data,
DB2 ignores the DEFINE NO clause and immediately allocates the storage for the
table space. The DEFINE NO clause is not allowed for LOB table spaces, for table
spaces in a work file database or a TEMP database, or for user-managed data sets
(which are defined with the USING VCAT clause).

Using the DEFINE NO clause is recommended when:
» Performance of the CREATE TABLESPACE statement is important.
» Disk resource is constrained.

Do not use the DEFINE NO clause on a table space if you use a program outside
of DB2 to propagate data into a table in the table space. The DB2 catalog stores
information about whether the data sets for a table space have been allocated. If
you use DEFINE NO on a table space that includes a table into which data is
propagated from a program outside of DB2, the table space data sets will be
allocated, but the DB2 catalog won't reflect this fact. As a result, DB2 will act as if
the data sets for the table space have not yet been allocated. The resulting
inconsistency causes DB2 to deny application programs access to the data until the
inconsistency is resolved.

Managing your DB2 data sets with DFSMShsm™

The Hierarchical Storage Management functional component (DFSMShsm) of
DFSMS manages space and data availability among the storage devices in your
system. You can use DFSMShsm to move data sets that have not been recently
used to slower, less expensive storage devices; this helps to ensure that disk space
is managed efficiently.

Recalling archive logs

DFSMShsm can automatically migrate and recall archive log and image copy data
sets. If DB2 needs an archive log data set or an image copy data set that
DFSMShsm has migrated, a recall begins automatically and DB2 waits for the recall
to complete before continuing.

For processes that read more than one archive log data set, such as the
RECOVER utility, DB2 anticipates a DFSMShsm recall of migrated archive log data
sets. When a DB2 process finishes reading one data set, it can continue with the
next data set without delay, because the data set might already have been recalled
by DFSMShsm.

If you accepted the default value YES for the RECALL DATABASE parameter on
the Operator Functions panel (DSNTIPO), DB2 also recalls migrated table spaces
and index spaces. At data set open time, DB2 waits for DFSMShsm to perform the
recall. The amount of time DB2 waits while the recall is being performed is specified
on the RECALL DELAY parameter, which is also on panel DSNTIPO. If RECALL
DELAY is set to zero, DB2 does not wait, and the recall is performed
asynchronously.

DB2 subsystem data sets, including the DB2 catalog, DB2 directory, active logs,
and work file databases (DSNDBO7 in a non data-sharing environment), can be
archived by System Managed Storage (SMS) but should be recalled by using
DFSMShsm before starting DB2. An alternative is to avoid migrating by assigning a
management class to these data sets that prevents migration. Considerations for

using DFSMShsm for archive log data sets are discussed in tArchive log data sets]

If a volume has a STOGROUP specified, it must be recalled only to volumes of the
same device type as others in the STOGROUP.

Chapter 4. Creating storage groups and managing DB2 data sets 37

In addition, you must coordinate the DFSMShsm automatic purge period, the DB2
log retention period, and MODIFY utility usage. Otherwise, the image copies or logs
you might need during a recovery could already have been deleted.

Migrating to DFSMShsm

If you decide to use DFSMShsm for your DB2 data sets, you should develop a
migration plan with your system administrator. With user-managed data sets, you
can specify DFSMShsm classes on the access method services DEFINE statement.
With DB2 storage groups, you need to develop automatic class selection routines.

l_ General-use Programming Interface

To allow DFSMShsm to manage your DB2 storage groups, you can use one or
more asterisks as volume IDs in your CREATE STOGROUP or ALTER STOGROUP
statement, as shown here:

CREATE STOGROUP G202

VOLUMES ('=*")
VCAT DB2SMST;

I_ End of General-use Programming Interface

This example causes all database data set allocations and definitions to use
nonspecific selection through DFSMShsm filtering services.

When you use DFSMShsm and DB2 storage groups, you can use the system
parameters SMSDCFL and SMSDCIX to assign table spaces and indexes to
different DFSMShsm data classes.

* SMSDCFL specifies a DFSMShsm data class for table spaces. If you assign a
value to SMSDCFL, DB2 specifies that value when it uses Access Method
Services to define a data set for a table space.

* SMSDCIX specifies a DFSMShsm data class for indexes. If you assign a value
to SMSDCIX, DB2 specifies that value when it uses Access Method Services to
define a data set for an index.

Before you set the data class system parameters, you need to do two things:

» Define the data classes for your table space data sets and index data sets.

* Code the SMS automatic class selection (ACS) routines to assign indexes to one
SMS storage class and to assign table spaces to a different SMS storage class.

For more information about creating data classes, see DFSMS/MVS Storage
Management Library: Implementing System-Managed Storage.

Using DFSMShsm with the RECOVER utility

38 Administration Guide

The RECOVER utility can execute the DFDSS command RESTORE, which
generally uses extensions larger than the data set's primary and secondary values.
RECOVER executes this command if the recoverable point is a copy that was taken
with the CONCURRENT option. However, DFDSS RESTORE extends a data set
differently from DB2, so you must alter the page set to contain extents defined by
DB2. Use ALTER TABLESPACE to enlarge the primary and secondary values for
DB2-managed data sets, because DB2 can run out of extents when you use
REORG or LOAD REPLACE (unloading and reloading the same data).

After using ALTER TABLESPACE, the new values take effect only when you use
REORG or LOAD REPLACE. Using RECOVER again does not resolve the extent
definition.

For user-defined data sets, define the data sets with larger primary and secondary

values (see EManaging your own DB2 data sets” on page 33).

For more information about using DFSMShsm to manage DB2 data sets, see MVS
Storage Management Library: Storage Management Subsystem Migration Planning
Guide and DFSMS/MVS: DFSMShsm Managing Your Own Data.

Creating EA-enabled table spaces and index spaces

DFSMS has an extended-addressability function, which is necessary to create data
sets that are larger than 4 GB. Therefore, the term for page sets that are enabled
for extended addressability is EA-enabled. You must use EA-enabled table spaces
or index spaces if you specify a DSSIZE that is larger than 4 GB in the CREATE
TABLESPACE statement.

To create EA-enabled page sets, you must:
1. Use SMS to manage the data sets associated with the EA-enabled page sets.

2. Associate the data sets with a data class (an SMS construct) that specifies the
extended format and extended addressability options.

To make this association between data sets and the data class, use an
automatic class selection (ACS) routine to assign the DB2 data sets to the
relevant SMS data class. The ACS routine does the assignment based on the
data set name. No performance penalty occurs for having non-EA-enabled DB2
page sets assigned to this data class, too, if you would rather not have two
separate data classes for DB2.

For user-managed data sets, you can use ACS routines or specify the
appropriate data class on the DEFINE CLUSTER command when you create
the data set.

3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater.
The partitioning index for the partitioned table space takes on the EA-enabled
attribute from its associated table space. See DB2 SQI Referencd for more
information about the correct syntax.

After a page set is created, you cannot use the ALTER TABLESPACE statement
to change the DSSIZE. You must drop and re-create the table space.

Also, you cannot change the data sets of the page set to turn off the extended
addressability or extended format attributes. If someone modifies the data class
to turn off the extended addressability or extended format attributes, DB2 issues
an error message the next time it opens the page set.

Extending DB2-managed data sets

When the data set is created, DB2 always allocates a primary allocation space on a
volume that has space available and is specified in the DB2 storage group. Any
new extension always gets a secondary allocation space. When the extensions
reach the end of the volume, DB2 accesses all candidate volumes from the DB2
storage group and issues the access method services command ALTER
ADDVOLUMES to add all volumes in the integrated catalog as candidate volumes
for the data set. DB2 then makes a request to extend a secondary allocation space
on any one of the candidate volumes that has space available. After the extension

Chapter 4. Creating storage groups and managing DB2 data sets 39

is successful, DB2 issues the access method services command ALTER
REMOVEVOLUMES to remove all candidate volumes from the integrated catalog
for the data set.

DB2 extends data sets when:

* The requested space exceeds the remaining space

» 10 percent of the smaller allocation space (but not over 10 allocation units such
as tracks or cylinders) exceeds the remaining space

If DB2 fails to extend a data set with a secondary allocation space because there is
no secondary allocation space available on any single candidate volume of a DB2
storage group, DB2 tries again to extend with the requested space, if the requested
space is smaller than the secondary allocation space. Use IFCID 258 in statistics
class 3 to monitor data set extension activity.

Extending nonpartitioned spaces: For a nonpartitioned table space or an index
space, DB2 defines the first piece of the page set starting with a primary allocation
space, and extends that piece with secondary allocation spaces. When the end of
the first piece is reached, DB2 defines a new piece (which is a new data set) and
extends to that new piece starting with a primary allocation space.

Extending partitioned spaces: For a partitioned table space or an index space,
each partition is a data set; therefore, DB2 defines each partition with the primary
allocation space and extends each partition’s data set with secondary allocation
space, as needed.

When data extension fails: If a data set uses all possible extents, DB2 cannot
extend that data set. For a partitioned page set, the extension fails only for the
particular partition that DB2 is trying to extend. For nonpartitioned page sets, DB2
cannot extend to a new data set piece, which means the extension for the entire
page set fails.

To avoid extension failures, the value of (PRIQTY + max_extents x SECQTY) must
be at least as large as the data set size (as specified on the DSSIZE clause or the
implicit size for that type of page set). For nonpartitioning indexes, that value must

reach the value for PIECESIZE (explicitly or implicitly specified). If DB2 reaches the
maximum number of extents before reaching the limit, the extension fails.

Extending user-managed data sets

40 Administration Guide

User-managed data sets are extended using only volumes available in the
integrated catalog facility catalog. Before the current volume runs out of space, you
must issue the access method services commands ALTER ADDVOLUMES or
ALTER REMOVEVOLUMES for candidate volumes.

Chapter 5. Implementing your design

The information in this chapter is General-use Programming Interface and

Associated Guidance Information, as defined in [Natices” on page 1095,

This chapter provides information on advanced topics related to implementing a
database:

ffable 7 shows where you can find more information about topics related to
implementing a database design.

Table 7. More information about implementing a database design

For more information about... See...

Basic concepts in implementing a database An Introduction to DB2 for OS/390

design for DB2 Universal Database for

0S/390 and z/OS, including:

» Choosing names for DB2 objects

* Implementing your databases

* Implementing your table spaces, including
reorganizing your data

* Implementing your tables

* Implementing your indexes

» Implementing referential constraints

* Implementing your views

Details on SQL statements used to implement DB2 SQL Referencd

a database design (CREATE and DECLARE,
for example)

Loading tables with referential constraints DB2 Utility Guide and Referencd
Using the catalog in database design Appendix E of DB2_.SQL Reference

Implementing your databases

In DB2 for OS/390 and z/OS, a database is a logical collection of tables spaces and
index spaces. Consider the following factors when deciding whether to define a new
database for a new set of objects:

* An entire database can be started and stopped as a unit; the statuses of all its
objects can be displayed by a single command that names only the database.
Therefore, place a set of tables that are used together into the same database.
(The same database holds all indexes on those tables.)

* Some operations lock an entire database. For example, some phases of the
LOAD utility prevent some SQL statements from using the same database
concurrently. Therefore, placing many unrelated tables in a single database is
often inconvenient.

When one user is executing a CREATE, ALTER, or DROP statement for a table,
no other user can access the database that contains that table. QMF™ users,
especially, might do a great deal of data definition; the operations SAVE DATA
and ERASE data-object are accomplished by creating and dropping DB2 tables.
For maximum concurrency, create a separate database for each QMF user.

© Copyright IBM Corp. 1982, 2001 41

* The internal database descriptors (DBDs) might become inconveniently large;
Part 2 of DB2 Installation Guide contains some calculations showing how the
size depends on the number of columns in a table. DBDs grow as new objects
are defined, but they do not immediately shrink when objects are dropped—the
DBD space for a dropped object is not reclaimed until the MODIFY RECOVERY
utility is used to delete records of obsolete copies from SYSIBM.SYSCOPY.
DBDs occupy storage and are the objects of occasional input and output
operations. Therefore, limiting the size of DBDs is another reason to define new

databases. The MODIFY utility is described in Part 2 of DB2 Utility Guide and
Referencd.

If you are using declared temporary tables, you must define a database that is
defined AS TEMP (the TEMP database). DB2 stores all declared temporary tables
in the TEMP database. The majority of the factors described above do not apply to
the TEMP database. For details on declared temporary tables, see

Implementing your table spaces

Table spaces are the physical spaces that hold tables. A table space can have one
or more tables. Simple and segmented table spaces hold a maximum of 64 GB of
data and might use one or more VSAM data sets. Partitioned table spaces that are
created with the DSSIZE or LARGE option, and LOB table spaces can be larger.
Table spaces are divided into units called pages that are either 4 KB, 8 KB, 16 KB,
or 32 KB in size. As a general rule, have no more than 50 to 100 table spaces in
one DB2 database.

You need to create additional table spaces if your database contains LOB data. For
more information, see Chapter 5 of DB2 SQI Reference

Data in most table spaces can be compressed, which can allow you to store more

data on each data page. For more information, see 'Compressing your data” on

Creating a table space explicitly

Use the CREATE TABLESPACE statement to create a table space explicitly. The
statement allows you to specify the attributes of the table space.

Generally when you use the CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 allocates data sets for the table space. However, if you
also specify the DEFINE NO clause, you can defer the allocation of data sets until
data is inserted or loaded into a table in the table space. For more information

about deferring data set allocation, see LDefemag_a.Llacanan_aLdatasets_taLtahld

You can create simple, segmented, partitioned, and LOB table spaces. For detailed
information about CREATE TABLESPACE, see Chapter 5 of

Creating a table space implicitly

42 Administration Guide

As with DB2 storage groups and databases, you do not need to create a table
space before you create a table unless you are defining a declared temporary table
or managing all your own data sets. When you use CREATE TABLE, DB2
generates a table space for you. However, DB2 generates a table space only if you
use CREATE TABLE without specifying an existing table space name. If the table
contains a LOB column and SQLRULES are STD, DB2 also creates the LOB table

space, the auxiliary table, and auxiliary index. If you do not specify a database
name in the CREATE TABLE statement, DB2 uses the default database, DSNDBO04,
and the default DB2 storage group, SYSDEFLT. DB2 also uses defaults for space
allocation and other table space attributes.

If you create a table space implicitly, DB2 derives a table space name from the
name of your table according to these rules:

* The table space name is the same as the table name if these conditions apply:
— No other table space or index space in the database already has that name.
— The table name has no more than eight characters.
— The characters are all alphanumeric, and the first character is not a digit.

» If some other table space in the database already has the same name as the
table, DB2 assigns a name of the form xxxxnyyy, where xxxx is the first four
characters of the table name, and nyyy is a single digit and three letters that
guarantees uniqueness.

DB2 stores this name in the DB2 catalog in the SYSIBM.SYSTABLESPACE table
along with all your other table space names. The rules for LOB table spaces are in

Chapter 5 of DB2 SQL_Referencel,

Choosing a page size
DB2 provides many options for data page sizes. The size of the data page is
determined by the buffer pool in which you define the table space. For example, a
table space that is defined in a 4-KB buffer pool has 4-KB page sizes, and one that

is defined in an 8-KB buffer pool has 8-KB page sizes. (Indexes must be defined in
a 4-KB buffer pool.)

Data in table spaces is stored and allocated in 4-KB record segments. Thus, an
8-KB page size means two 4-KB records, and a 32-KB page size means eight 4-KB
records. A good starting point is to use the default of 4-KB page sizes when access
to the data is random and only a few rows per page are needed. If row sizes are
very small, using the 4-KB page size is recommended.

However, there are situations in which larger page sizes are needed or
recommended:

* When the size of individual rows is greater than 4 KB. In this case, you must
use a larger page size. When considering the size of work file table spaces,
remember that some SQL operations, such as joins, can create a result row that
does not fit in a 4-KB page. That is a good reason to have at least one work file
that has 32-KB pages. (Work files cannot use 8-KB or 16-KB pages.)

* When you can achieve higher density on disk by choosing a larger page
size. For example, only one 2100-byte record can be stored in a 4-KB page,
which wastes almost half of the space. However, storing the record in a 32-KB
page can significantly reduce this waste. The downside with this approach is the
potential of incurring higher buffer pool storage costs or higher I/O costs—if you
only touch a small number of rows, you are bringing a bigger chunk of data from
disk into the buffer pool.

Using 8-KB or 16-KB page sizes can let you store more data on your disk with
less impact on I/O and buffer pool storage costs. If you use a larger page size
and access is random, you might need to go back and increase the size of the
buffer pool to achieve the same read-hit ratio you do with the smaller page size.

* When a larger page size can reduce data sharing overhead. One way to
reduce the cost of data sharing is to reduce the number of times the coupling
facility must be accessed. Particularly for sequential processing, larger page

Chapter 5. Implementing your design 43

sizes can reduce this number. More data can be returned on each access of the
coupling facility, and fewer locks must be taken on the larger page size, further
reducing coupling facility interactions.

If data is returned from the coupling facility, each access that returns more data
is more costly than those that return smaller amounts of data, but, because the
total number of accesses is reduced, coupling facility overhead is reduced.

For random processing, using an 8-KB or 16-KB page size instead of a 32-KB
page size might improve the read-hit ratio to the buffer pool and reduce 1/0
resource consumption.

Choosing a page size for LOBs

44 Administration Guide

Choosing a page size for LOBs (in the LOB table space) is a tradeoff between
minimizing the number of getpages (maximizing performance) and not wasting
space. With LOB table spaces, no more than one LOB value is ever stored in a
given page in a LOB table space. Space that is not used by the LOB value in the
last page that is occupied by the LOB remains unused. DB2 also uses additional
space for control information. The smaller the LOB, the greater the proportion of
space for this “non-data” is used.

For example, if you have a 17-KB LOB, the 4-KB page size is the most efficient for
storage. A 17-KB LOB requires five 4-KB pages for a total of 20 KB of storage
space. Pages that are 8 KB, 16 KB, and 32 KB in size waste more space, because
they require 24 KB, 32 KB, and 32 KB, respectively, for the LOB.

ffanle g shows that the number of data pages is lower for larger page sizes, but
larger page sizes might have more unused space.

Table 8. Relationship between LOB size and data pages based on page size
% Non-LOB data or

LOB size Page size LOB data pages unused space
262 144 bytes 4 KB 64 1.6
8 KB 32 3.0
16 KB 16 5.6
32 KB 8 11.1
4 MB 4 KB 1029 0.78
8 KB 513 0.39
16 KB 256 0.39
32 KB 128 0.78
33 MB 4 KB 8234 0.76
8 KB 4106 0.39
16 KB 2050 0.19
32 KB 1024 0.10

Choosing a page size based on average LOB size: If you know all of your LOBs
are not the same size, you can still make an estimate of what page size to choose.
To estimate the average size of a LOB, you need to add a percentage to account
for unused space and control information. To estimate the average size of a LOB
value, use the following formula:

LOB size = (average LOB length) x 1.05

[Table d has some suggested page sizes for LOBs with the intent to reduce the
amount of I/O (getpages).

Table 9. Suggested page sizes based on average LOB length

Average LOB size (n) Suggested page size
n=4KB 4 KB

4 KB <n=8KB 8 KB

8 KB <n=16 KB 16 KB

16 KB <n 32 KB

The estimates in fable d mean that a LOB value of 17 KB can mean 15 KB of
unused space. Again, you must analyze your data to determine what is best.

General guidelines for LOBs of same size: If your LOBs are all the same size,
you can fairly easily choose a page size that uses space efficiently without
sacrificing performance. For LOBs that are all the same size, consider the
alternative in [fable 1d to maximize your space savings.

Table 10. Suggested page sizes when LOBs are same size

LOB size (y) Suggested page size
y =4 KB 4 KB
4KB<y=8KB 8 KB
8KB<y=12KB 4 KB
12 KB <y =16 KB 16 KB
16 KB <y =24 KB 8 KB
24 KB <y=32KB 32 KB
32 KB <y =48 KB 16 KB
48 KB <y 32 KB

Distinctions between DB2 base tables and temporary tables

[Tahle 11] summarizes important differences between base tables and the two types
of temporary tables. Additional examples of implementing temporary tables and
information about restrictions and extensions of temporary tables can be found in

Part 1 of DB2 Application Programming and SQI_Guidd and in Chapter 5 of DB
BQL Referencd,.

For information about temporary tables and their impact on DB2

resources, see \Waork file data sets” on page 599,

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables

Base tables Created temporary tables Declared temporary tables

Creation, persistence, and ability to share table descriptions

Chapter 5. Implementing your design 45

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Base tables

Created temporary tables

Declared temporary tables

CREATE TABLE statement puts a
description of the table in catalog
table SYSTABLES. The table
description is persistent and is
shareable across application
processes.

The name of the table in the CREATE
statement can be a two-part or
three-part name. If the table name is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements.

CREATE GLOBAL TEMPORARY
TABLE statement puts a description of
the table in catalog table
SYSTABLES. The table description is
persistent and is shareable across
application processes.

The name of the table in the CREATE
statement can be a two-part or
three-part name. If the table name is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements.

DECLARE GLOBAL TEMPORARY
TABLE statement does not put a
description of the table in catalog
table SYSTABLES. The table
description is not persistent beyond
the life of the application process that
issued the DECLARE statement and
the description is known only to that
application process. Thus, each
application process could have its own
possibly unique description of the
same table.

The name of the table in the
DECLARE statement can be a
two-part or three-part name. If the
table name is qualified, SESSION
must be used as the qualifier for the
owner (the second part in a three-part
name). If the table name in not
qualified, DB2 implicitly uses
SESSION as the qualifier.

Table instantiation and ability to share data

CREATE TABLE statement creates
one empty instance of the table, and
all application processes use that one
instance of the table. The table and
data are persistent.

CREATE GLOBAL TEMPORARY
TABLE statement does not create an
instance of the table. The first implicit
or explicit reference to the table in an
OPEN, SELECT, INSERT, or DELETE
operation executed by any program in
the application process creates an
empty instance of the given table.
Each application process has its own
unique instance of the table, and the
instance is not persistent beyond the
life of the application process.

DECLARE GLOBAL TEMPORARY
TABLE statement creates an empty
instance of the table for the
application process. Each application
process has its own unigue instance
of the table, and the instance is not
persistent beyond the life of the
application process.

References to the table in application processes

References to the table name in
multiple application processes refer to
the same single persistent table
description and same instance at the
current server.

If the table name being referenced is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements. The name can be a
two-part or three-part name.

References to the table name in
multiple application processes refer to
the same single persistent table
description but to a distinct instance of
the table for each application process
at the current server.

If the table name being referenced is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements. The name can be a
two-part or three-part name.

References to that table name in
multiple application processes refer to
a distinct description and instance of
the table for each application process
at the current server.

References to the table name in an
SQL statement (other than the
DECLARE GLOBAL TEMPORARY
TABLE statement) must include
SESSION as the qualifier (the first
part in a two-part table name or the
second part in a three-part name). If
the table name is not qualified with
SESSION, DB2 assumes the
reference is to a base table.

Table privileges and authorization

46 Administration Guide

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Base tables Created temporary tables

Declared temporary tables

The owner implicitly has all table
privileges on the table and the
authority to drop the table. The
owner's table privileges can be
granted and revoked, either
individually or with the ALL clause.

The owner implicitly has all table
privileges on the table and the
authority to drop the table. The
owner’s table privileges can be
granted and revoked, but only with the
ALL clause; individual table privileges

cannot be granted or revoked.
Another authorization ID can access

the table only if it has been granted
appropriate privileges for the table.

Another authorization ID can access
the table only if it has been granted
ALL privileges for the table.

PUBLIC implicitly has all table
privileges on the table without GRANT
authority and has the authority to drop
the table. These table privileges
cannot be granted or revoked.

Any authorization ID can access the
table without a grant of any privileges
for the table.

Indexes and other SQL statement support

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are supported.

Indexes, UPDATE (searched or
positioned), and DELETE (positioned
only) are not supported.

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are supported

Locking, logging, and recovery

Locking, logging, and recovery do
apply.

Locking, logging, and recovery do not
apply. Work files are used as the
space for the table.

Some locking, logging, and limited
recovery do apply. No row or table
locks are acquired. Share-level locks
on the table space and DBD are
acquired. A segmented table lock is
acquired when all the rows are
deleted from the table or the table is
dropped. Undo recovery (rolling back
changes to a savepoint or the most
recent commit point) is supported, but
redo recovery (forward log recovery)
is not supported.

Table space and database operations

Table space and database operations,
do apply.

Table space and database operations,
do not apply.

Table space and database operations,
do apply.

Table space requirements and table size limitations

The table can be stored in simple
table spaces in default database
DSNDBO4 or user-defined table
spaces (simple, segmented, or
partitioned) in user-defined databases.

The table is stored in table spaces in
the work file database.

The table can span work file table
spaces. Therefore, the size of the
table is limited by the number of
available work file table spaces, the
size of each table space, and the
number of data set extents that are
allowed for the table spaces. Unlike
the other types of tables, created
temporary tables do not reach size
limitations as easily.

Table cannot span table spaces.
Therefore, the size of the table is
limited by the table space size (as
determined by the primary and
secondary space allocation values
specified for the table space’s data
sets) and the shared usage of the
table space among multiple users.
When the table space is full, an error
occurs for the SQL operation.

The table is stored in segmented table
spaces in the TEMP database (a
database that is defined AS TEMP).

The table cannot span table spaces.
Therefore, the size of the table is
limited by the table space size (as
determined by the primary and
secondary space allocation values
specified for the table space’s data
sets) and the shared usage of the
table space among multiple users.
When the table space is full, an error
occurs for the SQL operation.

47

Chapter 5. Implementing your design

Using schemas

A schema is a collection of named objects. The objects that a schema can contain
include distinct types, functions, stored procedures, and triggers. An object is
assigned to a schema when it is created.

When a distinct type, function, stored procedure, or trigger is created, it is given a
qualified two-part name. The first part is the schema name (or the qualifier), which
is either implicitly or explicitly specified. The default schema is the authorization ID
of the owner of the plan or package. The second part is the name of the object.

Schemas extend the concept of qualifiers for tables, views, indexes, and aliases to
enable the qualifiers for distinct types, functions, stored procedures, and triggers to
be called schema names.

You can create a schema with the schema processor by using the CREATE
SCHEMA statement. CREATE SCHEMA cannot be embedded in a host program or
executed interactively. To process the CREATE SCHEMA statement, you must use
the schema processor, as described in [Pracessing schema definitions” on page 49.
The ability to process schema definitions is provided for conformance to ISO/ANSI
standards. The result of processing a schema definition is identical to the result of
executing the SQL statements without a schema definition.

Outside of the schema processor, the order of statements is important. They must
be arranged so that all referenced objects have been previously created. This
restriction is relaxed when the statements are processed by the schema processor
if the object table is created within the same CREATE SCHEMA. The requirement
that all referenced objects have been previously created is not checked until all of
the statements have been processed. For example, within the context of the
schema processor, you can define a constraint that references a table that does not
exist yet or GRANT an authorization on a table that does not exist yet. m is
an example of a valid schema definition.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF
(TESTNO CHAR(4),
RESULT CHAR(4),
TESTTYPE CHAR(3))

CREATE TABLE STAFF
(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE DECIMAL(4),
CITY CHAR(15))

CREATE VIEW STAFFV1
AS SELECT = FROM STAFF
WHERE GRADE >= 12
GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF
TO PUBLIC

Figure 4. Example of schema processor input

48 Administration Guide

Authorization to process schema definitions

The schema processor sets the current SQLID to the value of the schema
authorization ID before executing any of the statements in the schema definition.
Therefore, that ID must have SYSADM or SYSCTRL authority, or it must be the
primary or one of the secondary authorization IDs of the process that executes the
schema processor. The same ID must have all the privileges that are needed to
execute all the statements in the schema definition.

Processing schema definitions

Run the schema processor (DSNHSP) as a batch job; use the sample JCL provided
in member DSNTEJ1S of the SDSNSAMP library. The schema processor accepts
only one schema definition in a single job. No statements that are outside the
schema definition are accepted. Only SQL comments can precede the CREATE
SCHEMA statement; the end of input ends the schema definition. SQL comments
can also be used within and between SQL statements.

The processor takes the SQL from CREATE SCHEMA (the SYSIN data set),
dynamically executes it, and prints the results in the SYSPRINT data set.

If a statement in the schema definition has an error, the schema processor
processes the remaining statements but rolls back all the work at the end. In this
case, you need to fix the statement in error and resubmit the entire schema
definition.

Chapter 5. Implementing your design 49

50 Administration Guide

Chapter 6. Loading data into DB2 tables

This chapter provides an overview of how to load data into DB2 tables:

You can use several methods to fill DB2 tables, but you will probably load most of
your tables by using the LOAD utility.

Loading methods

You can load tables in DB2 by using:

« The LOAD utility. See FLoading tables with the | QAD utility] and Part 2 of b2
T . et |

. The utility loads data into DB2 persistent tables,
from either sequential data sets or SQL/DS™ unload data sets, using BSAM. The
LOAD utility cannot be used to load data into DB2 temporary tables.

When loading tables with indexes, referential constraints, or table check
constraints, LOAD can perform several checks on the validity of data. If errors
are found, the table space being loaded, its index spaces, and even other table
spaces might be left in a restricted status.

Plan to make necessary corrections and remove restrictions after any such
LOAD job. For instructions, see ‘Replacing data” on page 54.

+ An SQL INSERT statement in an application program. See tLoading data using
the SQI INSERT statement” on page 53 and DR2 SQL Referencd. This method

allows you to develop an application that loads data into DB2 tables that is
tailored to your own requirements.

* An SQL INSERT statement to copy all or selected rows of another table. You can

do that interactively, using SPUFI. See tLoading data using the SQI INSERTI
ktatement” on page 53 and DBR2 SQI Referencd

To reformat data from IMS DL/l databases and VSAM and SAM loading for the

LOAD utility, use DB2 DataPropagator. See [oading data from DL /I” an page 54.
For general guidance about running DB2 utility jobs, see DB2 Utility Guide and

. For information about DB2 DataPropagator, see DB2 UDB Replication
Guide and Reference.

Loading tables with the LOAD utility

Use LOAD to load one or more persistent tables of a table space, or one or more
partitions of a table space. LOAD operates on a table space, so you must have
authority for all tables in the table space when you run LOAD.

The LOAD utility loads records into the tables and builds or extends any indexes
defined on them. If the table space already contains data, you can choose whether
you want to add the new data to the existing data or replace the existing data.

You can load input data into ASCII, EBCDIC, or UNICODE tables. The ASCII,
EBCDIC, and UNICODE options on the LOAD utility statement let you specify
whether the data in the input file is ASCII, EBCDIC, or UNICODE. The CCSID
option of the LOAD utility statement lets you specify the CCSIDs of the data in the

© Copyright IBM Corp. 1982, 2001 51

input file. If the CCSID of the input data does not match the CCSID of the table
space, the input fields are converted to the CCSID of the table space before they
are loaded.

For nonpartitioned table spaces, or if nonpartitioning indexes are defined on a table
in a partitioned table space, data in the table space being loaded is unavailable to
other application programs during the load operation. Also, some SQL statements,
such as CREATE, DROP, and ALTER, might experience contention when they run
against another table space in the same DB2 database while the table is being
loaded.

Additionally, LOAD can be used to:

* Compress data and build a compression dictionary
« Convert data between compatible data types

» Load multiple tables in a single table space

When you load a table and do not supply a value for one or more of the columns,
the action DB2 takes depends on the circumstances.

* If the column is not a ROWID or identity column, DB2 loads the default value of
the column, which is specified by the DEFAULT clause of the CREATE or ALTER
TABLE statement.

* If the column is a ROWID or identity column that uses the GENERATED BY
DEFAULT option, DB2 provides a unique value.

For ROWID or identity columns that use the GENERATED ALWAY'S option, you
cannot supply a value, because this option means that DB2 always generates a
unigue value.

The LOAD utility treats LOB columns as varying-length data. The length value for a
LOB column must be 4 bytes. When the input record is greater than 32 KB, you
might have to load the LOB data separately. The auxiliary tables are loaded when
the base table is loaded. You cannot specify the name of the auxiliary table to load.

Replacing data

52 Administration Guide

You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the
REPLACE option), or you can load new records into a table space without
destroying the rows already there (using the RESUME option).

Making corrections after LOAD: LOAD can place a table space or index space
into one of several kinds of restricted status. Your use of a table space in restricted
status is severely limited. In general, you cannot access its data through SQL; you
can only drop the table space or one of its tables, or perform some operation that
resets the status.

To discover what spaces are in restricted status, use the command:
-DISPLAY DATABASE (*) SPACENAM (%) RESTRICT

LOAD places a table space in the copy-pending state if you load with LOG NO,
which you might do to save space in the log. Immediately after that operation, DB2
cannot recover the table space. However, the table space can be recovered by
loading it again. Prepare for recovery, and remove the restriction, by making a full
image copy using SHRLEVEL REFERENCE. (If you end the copy job before it is
finished, the table space is still in copy-pending status.)

When you use REORG or LOAD REPLACE with the COPYDDN keyword, a full
image copy data set (SHRLEVEL REF) is created during the execution of the
REORG or LOAD utility. This full image copy is known as an inline copy. The table
space is not left in copy-pending state regardless of which LOG option was
specified for the utility.

The inline copy is valid only if you replace the entire table space or partition. If you
request an inline copy by specifying the keyword COPYDDN in a LOAD utility
statement, but the load is RESUME YES, or is RESUME NO and REPLACE is not
specified, an error message is issued and the LOAD terminates.

LOAD places all the index spaces for a table space in the rebuild-pending status if
you end the job (using -TERM UTILITY) before it completes the INDEXVAL phase.
It places the table space itself in recovery-pending status if you end the job before it
completes the RELOAD phase.

LOAD places a table space in the check-pending status if its referential or check
integrity is in doubt. Because of this restriction, use of the CHECK DATA utility is
recommended. That utility locates and, optionally, removes invalid data. If the
CHECK DATA utility removes invalid data, the data remaining satisfies all referential
and table check constraints, and the check-pending restriction is lifted.

Loading data using the SQL INSERT statement
The information in this section, up to ELoading data from DI /I” on page 54 is

General-use Programming Interface and Associated Guidance Information, as

defined in [Natices” on page 1095,

Another way to load data into tables is with the SQL INSERT statement. You can
issue the statement interactively or embed it in an application program.

The simplest form of INSERT inserts a single row of data. In this form of the
statement, you specify the table name, the columns into which the data is to be
inserted, and the data itself.

Suppose you create a test table, TEMPDEPT, with the same characteristics as the
department table:
CREATE TABLE SMITH.TEMPDEPT

(DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,

MGRNO ~ CHAR(6) NOT NULL,

ADMRDEPT CHAR(3) NOT NULL)

IN DSN8D71A.DSN8S71D;

To add a row to table TEMPDEPT, you can enter:

INSERT INTO SMITH.TEMPDEPT
VALUES ('X05','EDUCATION','000631','A01");

If you write an application program to load data into tables, you use that form of
INSERT, probably with host variables instead of the actual values shown above.

You can also use a form of INSERT that copies rows from another table. You can
load TEMPDEPT with the following statement:
INSERT INTO SMITH.TEMPDEPT

SELECT DEPTNO,DEPTNAME,MGRNO,ADMRDEPT

FROM DSN8710.DEPT
WHERE ADMRDEPT='DO1';

Chapter 6. Loading data into DB2 tables 53

The statement loads TEMPDEPT with data from the department table about all
departments that report to Department DO1.

If you are inserting a large number of rows, then consider using one of the following

methods:

* Use the LOAD or UNLOAD utilities.

» Use multiple INSERT statements with predicates that isolate the data to be
loaded, and then commit after each insert operation.

When a table, whose indexes are already defined, is populated by using the
INSERT statement, both the FREEPAGE and the PCTFREE parameters are
ignored. FREEPAGE and PCTFREE are only in effect during a LOAD or REORG
operation.

Tables with ROWID columns: You can load a value for a ROWID column with an
INSERT and fullselect only if the ROWID column is defined as GENERATED BY
DEFAULT. If you have a table with a column defined as ROWID GENERATED
ALWAYS, you can propagate non-ROWID columns from a table with the same
definition.

For the complete syntax of the INSERT statement, see DB2 SQI_Referencd.

Loading data from DL/I

54 Administration Guide

To convert data in IMS DL/l databases from a hierarchical structure to a relational
structure so that it can be loaded into DB2 tables, you can use the DataRefresher™
licensed programs.

Chapter 7. Altering your database design

The information in this chapter is General-use Programming Interface and

Associated Guidance Information, as defined in [Natices” on page 1095,

After using a relational database for a while, you might want to change some
aspects of its design. This chapter tells how to change:

* The deflnltlons of DB2 objects; see:

‘ H H ”

+ Data set high-level qualifier; see lChanging the high-level qualifier for DB2 datal
sets” on page 71

+ The location of DB2 data; see Moving DB2 data” on page 7.

You can alter the definition of a DB2 object by using one of the following methods:
* Using an SQL ALTER statement
» Dropping the object and then re-creating it with different specifications

Using the ALTER statement

Use the SQL ALTER statement to change DB2 storage groups, databases, table
spaces, tables, and indexes. ALTER changes the way those objects are defined in
the DB2 catalog, but it does not accomplish every change. For example, you cannot
drop a column from a table using the ALTER statement. Application and object

registration tables can restrict the use of ALTER. See [Chapter 11_Caontralling
Access through a closed application” an page 157 for more information.

Dropping and re-creating DB2 objects

When you cannot make a change with ALTER, you must:

1. Use the DROP statement to remove the object.

2. Use the COMMIT statement to commit the changes to the database object.
3. Use the CREATE statement to re-create the object.

The DROP statement has a cascading effect; objects that are dependent on the
dropped object are also dropped. For example, all authorities for those objects
disappear. Plans or packages that reference deleted objects are marked invalid by
DB2. Before dropping an object, check the DB2 catalog to determine the impact of
the operation.

When a user with the EXECUTE authority tries to execute an invalidated plan or
package, DB2 first rebinds it automatically, using the same options that were used
during the most recent bind operation. (To see if a plan or package is invalidated,
check the VALID column in SYSIBM.SYSPLAN or SYSIBM.SYSPACKAGE.)

For more information about invalidated plans and packages and rebinding, see Part
4 of DB2 Application Programming and SQL Guidg. For more information about
dropping a table, see Limplications of dropping a table” on page 68. Information
about dropping other objects is in DB2 SQL Reference.

© Copyright IBM Corp. 1982, 2001 55

Altering DB2 storage groups

You can use the ALTER STOGROUP statement to specify whether you want SMS
to manage your DB2 storage groups, or to add or remove volumes from a storage
group. If you want to migrate to another device type or change the catalog name of

the integrated catalog facility, you need to move the data. See t !
mﬂ for more information.

Letting SMS manage your DB2 storage groups

To let SMS manage the storage needed for the objects that the storage group
supports, specify ADD VOLUMES (**') and REMOVE VOLUMES (current-vols) in
the ALTER STOGROUP statement, where current-vols is the list of the volumes
currently assigned to the storage group:

ALTER STOGROUP DSN8G710

REMOVE VOLUMES (VOL1)
ADD VOLUMES ('=*');

SMS manages every new data set that is created after the ALTER STOGROUP
statement is executed; SMS does not manage data sets that are created before the

execution of the statement. See EMigrating to DESMShsm” an page 28 for more

considerations for using SMS to manage data sets.

Adding or removing volumes from a DB2 storage group

56 Administration Guide

When you add or remove volumes from a storage group, all the volumes in a
storage group must be of the same type; and, when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
that were used when the data set was defined.

The changes you make to the volume list by ALTER STOGROUP have no effect on
existing storage. Changes take effect when new objects are defined or when the
REORG, RECOVER, or LOAD REPLACE utilities are used on those objects. For
example, if you use ALTER STOGROUP to remove volume 22222 from storage
group DSN8G710, the DB2 data on that volume remains intact. However, when a
new table space is defined using DSN8G710, volume 22222 is not available for
space allocation.

To force a volume off and add a new volume, follow these steps:

1. Use the SYSIBM.SYSTABLEPART catalog table to determine which table
spaces are associated with the storage group. The following query tells which
table spaces use storage group DSN8G710:

SELECT TSNAME, DBNAME
FROM SYSIBM.SYSTABLEPART
WHERE STORNAME ='DSN8G710' AND STORTYPE = 'I';

2. Make an image copy of each table space; for example, COPY TABLESPACE

dbname.tsname DEVT SYSDA.

3. Ensure that the table space is not being updated in such a way that the data set
might need to be extended. For example, you can stop the database.

4. Use the ALTER STOGROUP statement to remove the volume associated with
the old storage group and to add the new volume.

ALTER STOGROUP DSN8G710
REMOVE VOLUMES (VOL1)
ADD VOLUMES (VOL2);

Important: When a new volume is added, or when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
used when the data set was defined.

5. Start the database with utility-only processing, and use the RECOVER or
REORG utility to move the data in each table space; for example, RECOVER
dbname.tsname.

6. Start the database.

Altering DB2 databases

The ALTER DATABASE statement allows you to change the following clauses that
are used to create a database:

* STOGROUP. Lets you change the name of the default storage group to support
disk space requirements for table spaces and indexes within the database. The
new default DB2 storage group is used only for new table spaces and indexes;
existing definitions do not change.

» BUFFERPOOL. Lets you change the name of the default buffer pool for table
spaces and indexes within the database. Again, it applies only to new table
spaces and indexes; existing definitions do not change.

* INDEXBP. Lets you change the name of the default buffer pool for the indexes
within the database. The new default buffer pool is used only for new indexes;
existing definitions do not change.

Altering table spaces

Use the ALTER TABLESPACE statement to modify the description of a table space.
The statement can be embedded in an application program or issued interactively.
For details on the ALTER TABLESPACE statement, see Chapter 5 of

Changing the space allocation for user-managed data sets

If the table space is supported by user-managed data sets, use this method to
change the space allocation:

1. Run the REORG utility, and specify the UNLOAD PAUSE option.

2. When the utility has completed the unload and has stopped, delete and redefine
the data sets.

If the table space was created with the CLOSE NO parameter, the table space
must be stopped with the STOP DATABASE command and the SPACENAM
option before you delete and define the data sets.

3. Resubmit the utility job with the RESTART(PHASE) parameter specified on the
EXEC statement. The job now uses the new data sets when reloading.

Use of the REORG utility to extend data sets causes the newly acquired free space
to be distributed throughout the table space rather than to be clustered at the end.

Dropping, re-creating, or converting a table space

To make changes to a table space, such as changing SEGSIZE or the number of
partitions or to convert it to a large table space, you must first drop the table space
and then re-create it. You must commit the DROP TABLESPACE statement before
creating a table space or index with the same name. When you drop a table space,
all entries for that table space are dropped from SYSIBM.SYSCOPY. This makes
recovery for that table space impossible from previous image copies. You can
change or convert your table spaces with the following steps:

Chapter 7. Altering your database design 57

1. Locate the original CREATE TABLE statement and all authorization statements
for all tables in the table space. (For example, TA1, TA2, TA3, ... in TS1.) If
you cannot find these statements, query the DB2 catalog to determine the
table's description, the description of all indexes and views on it, and all users
with privileges on the table.

2. In another table space (TS2, for example), create tables TB1, TB2, TB3, ...
identical to TAL, TA2, TAS, For example, use statements like:
CREATE TABLE TB1 LIKE TA1 IN TSZ;
| 3. If necessary, unload the data using a statement such as:
[REORG TABLESPACE DSN8D71A.TS1 LOG NO SORTDATA UNLOAD EXTERNAL;

| Or, you can insert the data from your old tables into the new tables by
| executing an INSERT statement for each table. For example:

INSERT INTO TB1
SELECT = FROM TA1;

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

4. Drop the table space by executing the statement:
DROP TABLESPACE TS1;

The compression dictionary for the table space is dropped, if one exists. All
tables in TS1 are dropped automatically.

5. Commit the DROP statement.

6. Create the new table space, TS1, and grant the appropriate user privileges.
You can also create a partitioned table space. You could use the following
statements:

CREATE TABLESPACE TS1
IN DSN8D71A
USING STOGROUP DSN8G710
PRIQTY 4000
SECQTY 130
ERASE NO
NUMPARTS 95
(PART 45 USING STOGROUP DSN8G710
PRIQTY 4000
SECQTY 130
COMPRESS YES,
PART 62 USING STOGROUP DSN8G710
PRIQTY 4000
SECQTY 130
COMPRESS NO)
LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

7. Create new tables TA1, TA2, TA3,
8. Re create indexes on the tables, and re-grant user privileges on those tables.

LLm.mea.tLo.ns_nf_dmppmg_a_ta.hle_an_p.a.ge_ﬁd for more information.
| 9. Execute an INSERT statement for each table. For example:

| INSERT INTO TAl
| SELECT * FROM TBI;

58 Administration Guide

10.

11.

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

Drop table space TS2.

If a table in the table space has been created with RESTRICT ON DROP, you
must alter that table to remove the restriction before you can drop the table
space.

Notify users to re-create any synonyms they had on TAl, TA2, TAS,

Altering tables

When you alter a table, you do not change the data in the table; you merely change
the specifications you used in creating the table.

Using the ALTER TABLE statement

Wi

In

th ALTER TABLE you can:

Add a new column; see FAdding a new column/l.
Change the AUDIT clause, using the options ALL, CHANGES, or NONE. For the

effects of the AUDIT value, see EChapter 13_Pratecting data sets” on page 215,
Add or drop a parent key or a foreign key; see [‘Altering a table for referential
integrity” on page 61,

Change the VALIDPROC clause; see l‘Altering the assignment of a validation
Change the DATA CAPTURE clause; see ['Altering a table for capture of changed
Add or drop a table check constraint; see 'Adding or dropping tahle check

Add or drop the restriction on dropping the table and the database and table
space that contain the table; see

Redefine the attributes of an identity column; see LRedethmg_the_alme.umn_ad
identity column” on page 68.

Alter the length of a VARCHAR column using the SET DATA TYPE VARCHAR

clause; see DB2 SQI Referencd.

addltlon this sectlon includes technlques for making the following changes:

‘ H H H ”

For other changes, you must drop and re-create the table as described in m

Adding a new column
When you use ALTER TABLE to add a new column, the new column becomes the

rig
va
un
co

htmost column of the table. The physical records are not actually changed until
lues are inserted in the new column. Plans and packages are not invalidated
less the new column is a TIME, TIMESTAMP, or DATE. However, to use the new
lumn in a program, you need to modify and recompile the program and bind the

plan or package again. You might also need to modify any program containing a

Chapter 7. Altering your database design 59

60 Administration Guide

static SQL statement SELECT *, which will return the new column after the plan or
package is rebound. You must also modify any INSERT statement not containing a
column list.

Access time to the table is not affected immediately, unless the record was
previously fixed length. If the record was fixed length, the addition of a new column
causes DB2 to treat the record as variable length and then access time is affected
immediately. To change the records to fixed length, follow these steps:

1. Run REORG with COPY on the table space, using the inline copy.

2. Run the MODIFY utility with the DELETE option to delete records of all image
copies that were made before the REORG you ran in step 1.

3. Create a unique index if you add a column that specifies PRIMARY KEY.

Inserting values in the new column might also degrade performance by forcing rows
onto another physical page. You can avoid this situation by creating the table space
with enough free space to accommodate normal expansion. If you already have this
problem, run REORG on the table space to fix it.

You can define the new column as NOT NULL by using the DEFAULT clause
unless the column has a ROWID data type or is an identity column. If the column
has a ROWID data type or is an identity column, you must specify NOT NULL
without the DEFAULT clause.You can let DB2 choose the default value, or you can
specify a constant or the value of the CURRENT SQLID or USER special register
as the value to be used as the default. When you retrieve an existing row from the
table, a default value is provided for the new column. Except in the following cases,
the value for retrieval is the same as the value for insert:

* For columns of data type DATE, TIME, and TIMESTAMP, the retrieval defaults
are:

Data Type Default for Retrieval

DATE 0001-01-01

TIME 00.00.00

TIMESTAMP 0001-01-01-00.00.00.000000

* For DEFAULT USER and DEFAULT CURRENT SQLID, the value retrieved for
rows that existed before the column was added is the value of the special
register when the column was added.

If the new column is a ROWID column, DB2 returns the same, unique row ID value
for a row each time you access that row. Reorganizing a table space does not
affect the values on a ROWID column. You cannot use the DEFAULT clause for
ROWID columns.

If the new column is an identity column (a numeric column that is defined with the
AS IDENTITY clause), DB2 places the table space in REORG-pending (REORP)
status, and access to the table space is restricted until the table space is
reorganized. When the REORG utility is run, DB2

* Generates a unique value for the identity column of each existing row

* Physically stores these values in the database

* Removes the REORP status

You cannot use the DEFAULT clause for identity columns. For more information
about identity columns, see IDB2 SQL Referencd.

If the new column is a short string column, you can specify a field procedure for it;

ee LEield pracedures” an page 934. If you do specify a field procedure, you cannot

also specify NOT NULL.

The following example adds a new column to the table DSN8710.DEPT, which
contains a location code for the department. The column name is LOCNCODE, and
its data type is CHAR (4).

ALTER TABLE DSN8710.DEPT
ADD LOCNCODE CHAR (4);

Altering a table for referential integrity

You can alter a table to add, change, or remove referential constraints. If you Elan
to let DB2 enforce referential integrity in a set of tables, then see Part 2 of

Bpplication Pragramming and SQL_Guidel for a description of the requirements for

referential constraints. This section discusses these topics:

Adding referential constraints to existing tables

Assume that the tables in the sample application already exist, have the appropriate
column definitions, and are already populated. You want to define relationships
among them by adding primary and foreign keys with the ALTER TABLE statement.
The rules for these relationships are as follows:

* An existing table must have a unique index on its primary key columns before
you can add the primary key. The index becomes the primary index.

* The parent key of the parent table must be added before the corresponding
foreign key of the dependent table.

You can build the same referential structure several different ways. The following
sequence does not have the fewest number of possible operations, but it is perhaps
the simplest to explain.

1. Create a unique index on the primary key columns for any table that does not
already have one.

2. For each table, issue an ALTER TABLE statement to add its primary key.

In the next steps, you issue an ALTER TABLE statement to add foreign keys for
each table except the activity table. This leaves the table space in
check-pending status, which you reset by running CHECK DATA with the
DELETE(YES) option.

CHECK DATA deletes are not bound by delete rules; they cascade to all
descendents of a deleted row. This can be disastrous. For example, if you
delete the row for department AOO from the department table, the delete might
propagate through most of the referential structure. The following steps prevent
deletion from more than one table at a time.

3. Add the foreign keys for the department table and run CHECK DATA
DELETE(YES) on its table space. Correct any rows in the exception table, and
use INSERT to replace them in the department table. This table is now
consistent with existing data.

4. Drop the foreign key on MGRNO in the department table. This “disconnects” it
from the employee table, without changing its data.

5. Add the foreign key to the employee table, run CHECK DATA again, and correct
any errors. If errors are reported, be particularly careful not to make any row
inconsistent with the department table when you make corrections.

6. Again add the foreign key on MGRNO to the department table. This again
leaves the table space in check pending status, so run CHECK DATA. If you

Chapter 7. Altering your database design 61

62 Administration Guide

have not changed the data since the previous check, you can use
DELETE(YES) with no fear of cascading deletions.

7. For each of the following tables, in the order shown, add its foreign keys, run
CHECK DATA DELETE(YES), and correct any rows in error:
a. Project table
b. Project activity table
c. Employee to project activity table

Adding parent keys and foreign keys
You can add parent keys, both primary and unique, and foreign keys to an existing
table.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
ALTER TABLE statement. For example, if the department table and its index
XDEPT1 already exist, create its primary key by issuing:

ALTER TABLE DSN8710.DEPT
ADD PRIMARY KEY (DEPTNO);

To add a unique key to an existing table, use the UNIQUE clause of the ALTER
TABLE statement. For example, if the department table has a unique index defined
on column DEPTNAME, you can add a unique key constraint, KEY_DEPTNAME
consisting of column DEPTNAME by issuing:

ALTER TABLE DSN8710.DEPT
ADD CONSTRAINT KEY_DEPTNAME UNIQUE (DEPTNAME);

Adding a parent key or a foreign key to an existing table has the following
restrictions and implications:

» If you add a primary key, the table must already have a unique index on the key
columns. The index that was most recently created on the key columns becomes
the primary index. Because of the unigue index, no duplicate values of the key
exist in the table, therefore you do not need to check the validity of the data.

* If you add a unique key, the table must already have a unique index with a key
that is identical to the unigue key. DB2 arbitrarily chooses a unique index on the
key columns to enforce the unique key. Because of the unique index, no
duplicate values of the key exist in the table, therefore you do not need to check
the validity of the data.

* You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if
you want to add two foreign keys to a table, you must execute two ALTER
TABLE statements.

» If you add a foreign key, the parent key and unique index of the parent table
must already exist. Adding the foreign key requires the ALTER privilege on the
dependent table and either the ALTER or REFERENCES privilege on the parent
table.

» Adding a foreign key establishes a relationship, with the many implications
described in Part 2 of DB2 Application Programming and SQL Guide. DB2 does
not validate the data. Instead, if the table is populated (or, in the case of a
nonsegmented table space, if the table space has ever been populated), the
table space containing the table is placed in check-pending status, just as if it
had been loaded with ENFORCE NO. In this case, you need to execute CHECK
DATA to clear the check-pending status.

Dropping parent keys and foreign keys
You can drop parent keys, both primary and unique, and foreign keys from an

existing table. Before you drop a foreign key or a parent key, consider carefully the
effects on your application programs. The primary key of a table is intended to

serve as a permanent, unique identifier of the occurrences of the entities it
describes. Application programs often depend on that identifier. The foreign key
defines a referential relationship and a delete rule. Without the key, your application
programs must enforce the constraints.

When you drop a foreign key using the DROP FOREIGN KEY clause of the ALTER
TABLE statement, DB2 drops the corresponding referential relationships. You must
have the ALTER privilege on the dependent table and either the ALTER or
REFERENCES privilege on the parent table. If the referential constraint references
a unique key that has been created implicitly, and no other relationships are
dependent on that unique key, the implicit unique key is also dropped.

When you drop a unique key using the DROP UNIQUE clause of the ALTER
TABLE statement, DB2 drops all the referential relationships in which the unique
key is a parent key; you must have the ALTER privilege on any dependent tables.
As a result, the dependent tables no longer have foreign keys, and the table’s
unique index that enforced the unique key no longer indicates that it enforces a
unigue key although it is still a unique index.

When you drop a primary key using the DROP PRIMARY KEY clause of the ALTER
TABLE statement, DB2 drops all the referential relationships in which the primary
key is a parent key; you must have the ALTER privilege on any dependent tables.
The dependent tables no longer have foreign keys; the table’s primary index is no
longer primary, but it is still a unique index.

Adding or dropping table check constraints

You can define a check constraint on a table by using the ADD CHECK clause of
the ALTER TABLE statement. If the table is empty, the check constraint is added to
the description of the table.

If the table is not empty, what happens when you define the check constraint
depends on the value of the CURRENT RULES special register, which can be
either STD or DB2.

» If the value is STD, the check constraint is enforced immediately when it is
defined. If a row does not conform, the table check constraint is not added to the
table and an error occurs.

 If the value is DB2, the check constraint is added to the table description but its
enforcement is deferred. Because some rows in the table might violate the check
constraint, the table is placed in check-pending status.

The ALTER TABLE statement that is used to define a check constraint always fails
if the table space or partition that contains the table is in a check-pending status,
the CURRENT RULES special register value is STD, and the table is not empty.

To remove a check constraint from a table, use the DROP CONSTRAINT or DROP
CHECK clauses of the ALTER TABLE statement. You must not use DROP
CONSTRAINT on the same ALTER TABLE statement as DROP FOREIGN KEY,
DROP CHECK, DROP PRIMARY KEY, or DROP UNIQUE.

Altering the assignment of a validation routine

If you have a validation exit routine associated with a table, you can use the ALTER
TABLE statement to make the following changes:

» Disassociate the validation routine from the table using the VALIDPROC NULL
clause. The routine is no longer given control when DB2 accesses the table. For
example:

Chapter 7. Altering your database design 63

ALTER TABLE DSN8710.EMP
VALIDPROC NULL;

» Assign a new validation routine to the table using the VALIDPROC clause. (Only
one validation routine can be connected to a table at a time; so if a validation
routine already exists, DB2 disconnects the old one and connects the new
routine.) Rows that existed before the connection of a new validation routine are
not validated. In this example, the previous validation routine is disconnected and
a new routine is connected with the program name EMPLNEWE:

ALTER TABLE DSN8710.EMP
VALIDPROC EMPLNEWE;

Checking rows of a table with a new validation routine

To ensure that the rows of a table conform to a new validation routine, you must run
the validation routine against the old rows. One way to accomplish this is to use the
REORG and LOAD utilities as shown in the following steps:

1. Use REORG to reorganize the table space that contains the table with the new
validation routine. Specify UNLOAD ONLY, as in this example:

REORG TABLESPACE DSN8D71A.DSN8S71E
UNLOAD ONLY

This step creates a data set that is used as input to the LOAD utility.
2. Run LOAD with the REPLACE option, and specify a discard data set to hold
any invalid records. For example:

LOAD INTO TABLE DSN8710.EMP
REPLACE
FORMAT UNLOAD
DISCARDDN SYSDISC

The EMPLNEWE validation routine validates all rows after the LOAD step has
completed. DB2 copies any invalid rows into the SYSDISC data set.

Altering a table for capture of changed data

You can use DATA CAPTURE CHANGES on the ALTER TABLE statement to have
data changes to that table written to the log in an expanded format. You can then
retrieve the log by using a program such as the log apply feature of the Remote
Recovery Data Facility (RRDF) program offering, or DB2 DataPropagator.

LOB values are not available for DATA CAPTURE CHANGES. To return a table
back to normal logging, use DATA CAPTURE NONE.

Changing an edit procedure or a field procedure

64 Administration Guide

You cannot use ALTER TABLE to change the assignment of an edit procedure or a
field procedure. However, with the assistance of DB2 utilities, you can change an
existing edit procedure or field procedure.

To change an edit procedure or a field procedure for a table space in which the
maximum record length is less than 32 KB, use the following procedure:

1. Run the UNLOAD utility or run the REORG utility with the UNLOAD EXTERNAL
option to unload the data decoded by the existing edit procedure or field
procedure.

These utilities generate a LOAD statement in the data set (specified by the
PUNCHDDN option) that you can use to reload the data into the original table
space.

If you are using the same edit procedure or field procedure for many tables,
unload the data from all the table spaces that have tables that use the
procedure.

Modify the code for the edit procedure or the field procedure.

After the unload operation is completed, stop DB2.

Link-edit the new procedure, using the same name as the old procedure.
Start DB2.

Use the LOAD utility to reload the data. LOAD then uses the new edit
procedure or field procedure to encode the data.

L

To change an edit procedure or a field procedure for a table space in which the
maximum record length is greater than 32 KB, use the DSNTIAUL sample program
to unload the data.

Altering the subtype of a string column

If you add a column with a string data type, you can specify its subtype in the
ALTER TABLE statement. Subtypes are valid for string columns of data types
CHAR and VARCHAR. SBCS and MIXED are valid subtypes for CLOB data.

You can also change the subtype of an existing string column, but not by using
ALTER TABLE. The operation involves updating the FOREIGN KEY column of the
SYSIBM.SYSCOLUMNS catalog table and requires the SYSADM authority,
SYSCTRL authority, or DBADM authority for the catalog database. The
interpretation of the FOREIGNKEY column depends on whether the MIXED DATA
install option is YES or NO.

If the MIXED DATA install option on installation panel DSNTIPF is YES, use one of
the following values in the column:

B for bit data

S for SBCS data

Any other value for MIXED data

If the MIXED DATA install option is NO, use one of the following values in the
column:

B for bit data

Any other value for SBCS data

Entering an M in the column when the MIXED DATA install option is NO specifies
SBCS data, not MIXED data.

Altering data types and deleting columns

Some changes to a table cannot be made with an ALTER TABLE statement. For
example, an original specification of CHAR (20) must be lengthened to CHAR (25),
a column defined as SMALLINT must be redefined as INTEGER, a column defined
with NOT NULL must allow null values, or the attributes of an identity column must
be redefined..

To make such changes, you need to perform the following steps:
1. Unload the table.
2. Drop the table.

Chapter 7. Altering your database design 65

66 Administration Guide

Be very careful about dropping a table—in most cases, recovering a dropped
table is nearly impossible. If you decide to drop a table, remember that such
changes might invalidate a plan or a package, as described in

You must alter tables that have been created with RESTRICT ON DROP to
remove the restriction before you can drop them.
3. Commit the changes.
4. Re-create the table.
If the table has an identity column:
* Choose carefully the new value for the START WITH attribute of the CREATE
TABLE statement if you want the first generated column value to resume in

sequence after the last generated column value of the table that was saved
by the unload in step 1.

» Define the table as GENERATED BY DEFAULT so that the previously
generated identity values are reloaded.

5. Reload the table.

Implications of dropping a table
The DROP TABLE statement deletes a table. For example, to drop the project

table, execute:
DROP TABLE DSN8710.PR0OJ;

The statement deletes the row in the SYSIBM.SYSTABLES catalog table that
contains information about DSN8710.PRQOJ. It also drops any other objects that
depend on the project table. As a result:

* The column names of the table are dropped from SYSIBM.SYSCOLUMNS.

* If the dropped table has an identity column, all information regarding the identity
column is removed from SYSIBM.SYSSEQUENCES.

 If triggers are defined on the table, they are dropped, and the corresponding
rows are removed from SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.

* Any views based on the table are dropped.

» Application plans or packages that involve the use of the table are invalidated.
» Synonyms for the table are dropped from SYSIBM.SYSSYNONYMS.

* Indexes created on any columns of the table are dropped.

» Referential constraints that involve the table are dropped. In this case, the project
table is no longer a dependent of the department and employee tables, nor is it a
parent of the project activity table.

» Authorization information that is kept in the DB2 catalog authorization tables is
updated to reflect the dropping of the table. Users who were previously
authorized to use the table, or views on it, no longer have those privileges,
because catalog rows are deleted.

» Access path statistics and space statistics for the table are deleted from the
catalog.

» The storage space of the dropped table might be reclaimed.
If the table space containing the table is:

— Implicitly created (using CREATE TABLE without the TABLESPACE clause),
the table space is also dropped. If the data sets are in a storage group,
dropping the table space reclaims the space. For user-managed data sets,
you must reclaim the space yourself.

— Partitioned, or contains only the one table, you can drop the table space.
— Segmented, DB2 reclaims the space.

— Simple, and contains other tables, you must run the REORG utility to reclaim
the space.

» If the table contains a LOB column, the auxiliary table and the index on the
auxiliary table are dropped. The LOB table space is dropped if it was created
with SQLRULES(STD). See DB2 SQL Referencdfor details.

If a table has a partitioning index, you must drop the table space or use LOAD
REPLACE when loading the redefined table. If the CREATE TABLE creates a table
space implicitly, commit the DROP statement before re-creating a table by the same
name. You must also commit the DROP statement before you create any new
indexes with the same name as the original indexes.

Check objects that depend on the table
Before dropping a table, check to see what other objects are dependent on it. The
SYSIBM.SYSVIEWDEP, SYSIBM.SYSPLANDEP, and SYSIBM.SYSPACKDEP
tables tell what views, application plans, and packages are dependent on different
DB2 objects. This example lists the views, with their creators, that are affected if
you drop the project table.
SELECT DNAME, DCREATOR

FROM SYSIBM.SYSVIEWDEP

WHERE BNAME = 'PROJ'

AND BCREATOR = 'DSN8710'
AND BTYPE = 'T';

The next example lists the packages, identified by the package name, collection ID,
and consistency token (in hexadecimal representation), that are affected if you drop
the project table.
SELECT DNAME, DCOLLID, HEX(DCONTOKEN)

FROM SYSIBM.SYSPACKDEP

WHERE BNAME = 'PROJ'

AND BQUALIFIER = 'DSN8710'
AND BTYPE = 'T';

This example lists the plans, identified by plan name, that are affected if you drop
the project table.
SELECT DNAME

FROM SYSIBM.SYSPLANDEP

WHERE BNAME = 'PROJ'

AND BCREATOR = 'DSN8710'
AND BTYPE = 'T';

The SYSIBM.SYSINDEXES table tells you what indexes currently exist on a table.
From the SYSIBM.SYSTABAUTH table, you can determine which users are
authorized to use the table.

Re-creating a table
To re-create a DB2 table to increase the length attribute of a string column or the

precision of a numeric column, follow these steps:

1. If you do not have the original CREATE TABLE statement and all authorization
statements for the table (call it T1), query the catalog to determine its
description, the description of all indexes and views on it, and all users with
privileges on it.

2. Create a new table (call it T2) with the desired attributes.

3. Execute the following INSERT statement:

INSERT INTO T2
SELECT = FROM T1;

Chapter 7. Altering your database design 67

Redefining the

68 Administration Guide

This copies the contents of T1 into T2.

4. Execute the statement DROP TABLE T1. If T1 is the only table in an explicitly
created table space, and you do not mind losing the compression dictionary, if
one exists, drop the table space instead, so that the space is reclaimed.

Commit the DROP statement.
Use the statement RENAME TABLE to rename table T2 to T1.
Run the REORG utility on the table space that contains table T1.

Notify users to re-create any synonyms, indexes, views, and authorizations they
had on T1.

© N o »

If you want to change a data type from string to numeric or from numeric to string
(for example, INTEGER to CHAR or CHAR to INTEGER), use the CHAR and
DECIMAL scalar functions in the SELECT statement to do the conversion.Another
alternative is to:

1. Use UNLOAD or REORG UNLOAD EXTERNAL (if the data to unload in less
than 32 KB) to save the data in a sequential file, and then

2. Use the LOAD utility to repopulate the table after re-creating it. When you
reload the table, make sure you edit the LOAD statement to match the new
column definition.

This method is particularly appealing when you are trying to re-create a large table.

attributes on an identity column

At some point, you might need to change the attributes of an identity column. For
example, you might want to allow or disallow identity column values to wrap, or
change values of other attributes. Changing the attributes of an identity column, like
changing other data types, requires that you drop and then recreate the table (see

' i i ” for special considerations for

altering identity columns).

If you want identity column values to wrap, specify the CYCLE attribute on the SQL
statements CREATE TABLE, DECLARE GLOBAL TEMPORARY TABLE, or ALTER
TABLE. The CYCLE attribute lets an identity column continue to generate values
after it reaches the minimum or maximum value of the cycle sequence. When
wrapping is in effect, duplicate column values are implicitly allowed (even when the
column is GENERATED ALWAYS) unless a unique index is defined on the column.
To ensure unigue values for an identity column, you must define a unique index on
that column.

If you do not want identity column values to wrap, specify the NO CYCLE attribute
(the default if both CYCLE and NO CYCLE are not specified). If the NO CYCLE
attribute is in effect and you run out of values, then you must:

1. Unload the table.
2. Drop the table.
3. Re-create the table, specifying:

* New values for attributes (such as data type, MAXVALUE, and MINVALUE)
that allow a larger range, if possible

* GENERATED BY DEFAULT so that you can reload existing values

* An appropriate START WITH value that allows the sequence to continue from
where it ended in the unloaded table

4. Reload the table.

The attributes MINVALUE and MAXVALUE on the AS IDENTITY clause let you
specify the minimum and maximum values that are generated for an identity
column. See Chapter 5 of DB2 SQL Referencd for more information about identity
column attributes.

Moving a table to a table space of a different page size

You cannot alter a table to use a different page size. However, you can move a
table to a table space of a different page size:

1. Unload the table using UNLOAD FROM TABLE or REORG UNLOAD
EXTERNAL FROM TABLE.

2. Use CREATE TABLE LIKE on the table to re-create it in the table space of the
new page size.

3. Use DB2 Control Center, DB2 Administration Tool, or catalog queries to
determine the dependent objects: views, authorization, plans, packages,
synonyms, triggers, referential integrity, and indexes.

Drop the original table.

Rename the new table to the name of the old table using RENAME TABLE.
Re-create all dependent objects.

Rebind plans and packages.

Reload the table using data from the SYSREChn data set and the control
statements from the SYSPUNCH data set, which was created when the table
was unloaded.

© N o g s

Altering indexes

You can use the ALTER INDEX statement to change the description of an index or
to rebalance data among partitions in partitioned table spaces. The statement can
be embedded in an application program or issued interactively. For details on the
ALTER INDEX statement, see Chapter 5 of DB2 SQl Reference

Changing the description of an index

You can change most of the index clauses, including: BUFFERPOOL, CLOSE,
COPY, PIECESIZE, and those clauses that are associated with storage space, free
space, and group bufferpool caching. To change any other clause of the index
definition, you must drop the index, commit, and redefine it. Dropping an index does
not cause DB2 to drop any other objects. As described in [Dropping and re-creating
DB2 objects” on page 59, the consequence of dropping indexes is that DB2

invalidates application plans and packages that use the index and automatically
rebinds them when they are next used.

If you want to drop a unique index, you must take additional steps before running a
DROP INDEX statement. Any primary key, unique key, or referential constraints
associated with the unique index must be dropped before you drop the unique
index. However, you can drop a unique index for a unique key without dropping the
unigue constraint if the unique key was created before Version 7.

You must commit the DROP INDEX statement before you create any new table
spaces or indexes by the same name. If an index is dropped and then an
application program using that index is run (and thereby automatically rebound),
that application program does not use the old index. If, at a later time, the index is
re-created, and the application program is not rebound, the application program
cannot take advantage of the new index.

Chapter 7. Altering your database design 69

Rebalancing data in partitioned table spaces

When data becomes out of balance in partitioned table spaces, performance can
decrease. It is possible to improve performance by rebalancing the partitions to
redistribute the data. You can use the ALTER INDEX statement and a REORG job
to shift data among the affected partitions. The result is that data is is balanced
according to your specifications.

You can rebalance data by changing the limit key values of all or most of the
partitions. The limit key is the highest value of the index key for a partition. You roll
the changes through the partitions one or more at a time, making relatively small
parts of the data unavailable at any given time. For more information about
rebalancing data using the ALTER INDEX statement, see lAn Introduction to DB2 foi
bs/zad.

Altering views

In many cases, changing user requirements can be satisfied by modifying an
existing view. But no ALTER VIEW statement exists; the only way to change a view
is by dropping the view, committing the drop, and re-creating the view. When you
drop a view, DB2 also drops the dependent views.

When you drop a view, DB2 invalidates application plans and packages that are
dependent on the view and revokes the privileges of users who are authorized to
use it. DB2 attempts to rebind the package or plan the next time it is executed, and
you receive an error if you do not re-create the view.

To tell how much rebinding and reauthorizing is needed if you drop a view, check
these catalog tables:

Table 12. Catalog tables to check after dropping a view

Catalog table What to check

SYSIBM.SYSPLANDEP Application plans dependent on the view
SYSIBM.SYSPACKDEP Packages dependent on the view
SYSIBM.SYSVIEWDEP Views dependent on the view
SYSIBM.SYSTABAUTH Users authorized to use the view

For more information about defining and dropping views, see Chapter 5 of

Altering stored procedures and user-defined functions

You modify stored procedures and user-defined functions with the ALTER
PROCEDURE and ALTER FUNCTION statements. Details for these statements are
in DB2 Application Programming and SQL Guide.

Altering stored procedures

70 Administration Guide

The ALTER PROCEDURE statement updates the description of a stored procedure.
This example changes SYSPROC.MYPROC to run only in the WLM environment
PARTSEC:

ALTER PROCEDURE SYSPROC.MYPROC
WLM ENVIRONMENT PARTSEC;

If SYSPROC.MYPROC is defined with SECURITY DEFINER, the external security
environment for the stored procedure uses the authorization ID of the owner of the
stored procedure. This example changes the procedure to use the authorization ID
of the person running it:

ALTER PROCEDURE SYSPROC.MYPROC
SECURITY USER;

Altering user-defined functions

The ALTER FUNCTION statement updates the description of user-defined
functions. Changes take effect immediately.

In this example, two functions named CENTER exist in the PELLOW schema. The
first function has two input parameters with INTEGER and FLOAT data types,
respectively. The specific name for the first function is FOCUS1. The second
function has three parameters with CHAR(25), DEC(5,2), and INTEGER data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME?2:

ALTER SPECIFIC FUNCTION PELLOW.FOCUS1
WLM ENVIRONMENT WLMENVNAMEZ;

This example changes the second function when any arguments are null:

ALTER FUNCTION PELLOW.CENTER (CHAR(25), DEC(5,2), INTEGER)
RETURNS ON NULL CALL;

Changing the high-level qualifier for DB2 data sets

The high-level qualifier for DB2 data sets is the catalog name of the integrated
catalog facility, which is commonly called the “user catalog”. You cannot change this
qualifier for DB2 data sets using the DB2 installation or migration update process.
This section describes other ways to change this qualifier for both system data sets
and user data sets.

These procedures do not actually move or copy data. For information about moving

data, see [Moving DB? data” on page 74.

Changing the high-level qualifier for DB2 data sets is a complex task; so, you
should have both experience with DB2 and with managing user catalogs. The
following tasks are described:

« I'Change the qualifier for system data sets” on page 72, which includes the DB2
catalog, directory, active and archive logs, and the BSDS

, which
includes the work file database (DSNDBOQ7), the default database (DSNDBO04),
and other DB2 databases and user databases

To concentrate on DB2-related issues, this procedure assumes that the catalog
alias resides in the same user catalog as the one that is currently used. If the new
catalog alias resides in a different user catalog, refer to DFSMS/MVS: Access
Method Services for the Integrated Catalog for information about planning such a
move.

If the data sets are managed by the Storage Management Subsystem (SMS), make
sure that automatic class selection routines are in place for the new data set name.

Chapter 7. Altering your database design 71

Define a new integrated catalog alias

This step can be done at any time before changing the high-level qualifier for
system or user data sets.

Set up the new high-level qualifier as an alias to a current integrated catalog, using
the following command:

DEFINE ALIAS (NAME (newcat) RELATE (usercat) CATALOG (master-cat))

See DFSMS/MVS: Access Method Services for the Integrated Catalog for more
information.

Change the qualifier for system data sets

72 Administration Guide

In this task, you stop DB2, change the high-level qualifier in the system parameter
load module (possibly DSNZPARM), and establish a new xxxxMSTR cataloged
procedure before restarting DB2. These steps must be done in sequence.

Step 1: Change the load module to reflect the new qualifier

To change the system parameter load module to specify the new qualifier for new

archive data sets and the DB2 catalog and directory data sets, you must use the

installation process.

1. Run the installation CLIST, and specify INSTALL TYPE=INSTALL and DATA
SHARING FUNCTION=NONE.

2. Enter new values for the fields shown in [able 13.

Table 13. CLIST panels and fields to change to reflect new qualifier

Panel name Field name Comments
DSNTIPAL INSTALL TYPE Specify INSTALL. Do not specify a new
default prefix for the input data sets listed on
this panel.
DSNTIPA1 OUTPUT MEMBER
NAME
DSNTIPA2 CATALOG ALIAS
DSNTIPH COPY 1 NAME and These are the bootstrap data set names.
COPY 2 NAME
DSNTIPH COPY 1 PREFIX and These fields appear for both active and
COPY 2 PREFIX archive log prefixes.
DSNTIPT SAMPLE LIBRARY This field allows you to specify a field name

for edited output of the installation CLIST.
Avoid overlaying existing data sets by
changing the middle node, NEW, to
something else. The only members you use
in this procedure are xxxxMSTR and
DSNTIJUZ in the sample library.

DSNTIPO PARAMETER Change this value only if you want to
MODULE preserve the existing member through the
CLIST.

The output from the CLIST is a new set of tailored JCL with new cataloged
procedures and a DSNTIJUZ job, which produces a new member.

3. Run DSNTIJUZ.

Unless you have specified a new name for the load module, make sure the
output load module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem.

DSNTIJUZ also places any archive log data sets into the BSDS and creates a
new DSNHDECP member. You do not need to run these steps, because they
are unnecessary for changing the high-level qualifier.

Step 2: Stop DB2 with no outstanding activity

In this step, make sure the subsystem does not have any outstanding activity, such
as outstanding units of recovery or pending writes. This ensures that DB2 does not
need to access the data sets on restart through the log, which contains the old data
set qualifiers.

1. Enter the following command:
-STOP DB2 MODE (QUIESCE)

This command allows DB2 to complete processing currently executing
programs.

2. Enter the following command:
-START DB2 ACCESS(MAINT)
3. Use the following commands to make sure the subsystem is in a consistent

state. See Chapter 2 of DB2 Command Referencd and [Part 4 Qperation and
tecavery” an page 241 for more information about these commands.

-DISPLAY THREAD(*) TYPE(¥)

-DISPLAY UTILITY (*)

-TERM UTILITY(¥)

-DISPLAY DATABASE(*) RESTRICT

-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT

-RECOVER INDOUBT

Correct any problems before continuing.

4. Stop DB2, using the following command:
-STOP DB2 MODE (QUIESCE)

5. Run the print log map utility (DSNJU0O04) to identify the current active log data
set and the last checkpoint RBA. For information about the print log map utility,
see Part 3 of DB2 Utility Guide and Referencd.

6. Run DSN1LOGP with the SUMMARY (YES) option, using the last checkpoint
RBA from the output of the print log map utility you ran in the previous step. For

information about DSN1LOGP, see Part 3 of DB2 Utility Guide and Referencd.
The report headed DSN11571 RESTART SUMMARY identifies active units of
recovery or pending writes. If either situation exists, do not attempt to continue.
Start DB2 with ACCESS(MAINT), use the necessary commands to correct the
problem, and repeat steps U through B until all activity is complete.

Step 3: Rename system data sets with the new qualifier

All of the following steps assume that the new qualifier and the old qualifier reside
in the same user catalog. Access method services does not allow ALTER where the
new name does not match the existing catalog structure for an SMS-managed
VSAM data set. If the data set is not managed by SMS, the rename succeeds, but
DB2 cannot allocate it as described in DFSMS/MVS: Access Method Services for
the Integrated Catalog.

DB2 table spaces are defined as linear data sets with DSNDBC as the second
node of the name for the cluster and DSNDBD for the data component (as

described in ERequirements for your awn data sets” on page 34). The examples

Chapter 7. Altering your database design 73

74 Administration Guide

shown here assume the normal defaults for DB2 and VSAM data set names. Use
access method services statements with a generic name (*) to simplify the process.
Access method services allows only one generic name per data set name string.

1. Using IDCAMS, change the names of the catalog and directory table spaces.
Also, be sure to specify the instance qualifier of your data set, y, which can be
either | or J:

ALTER oldcat .DSNDBC.DSNDBO1.*.y0001.A001 -
NEWNAME (newcat .DSNDBC.DSNDBO1.*.y0001.A001)
ALTER oldcat .DSNDBD.DSNDBO1.*.y0001.A001 -
NEWNAME (newcat .DSNDBD.DSNDBO1.*.y0001.A001)
ALTER oldcat .DSNDBC.DSNDBO6.*.y0001.A001 -
NEWNAME (newcat .DSNDBC.DSNDBO6.*.y0001.A001)
ALTER oldcat .DSNDBD.DSNDBO6.*.y0001.A001 -
NEWNAME (newcat .DSNDBD.DSNDBO6.*.y0001.A001)

2. Using IDCAMS, change the active log names. Active log data sets are named
oldcat.LOGCOPY1.COPYO0L1 for the cluster component and
oldcat. LOGCOPY1.COPYO01.DATA for the data component.

ALTER oldcat.LOGCOPY1l.* -
NEWNAME (newcat.LOGCOPY1.*)
ALTER oldcat.LOGCOPY1.* .DATA -
NEWNAME (newcat.LOGCOPY1.*.DATA)
ALTER oldcat.LOGCOPY2.* -
NEWNAME (newcat.LOGCOPY2.*)
ALTER oldcat.LOGCOPY2.*.DATA -
NEWNAME (newcat.LOGCOPY2.*.DATA)

3. Using IDCAMS, change the BSDS names.

ALTER oldcat .BSDSO1 -
NEWNAME (newcat .BSDSO1)
ALTER oldcat.BSDSO1.* -
NEWNAME (newcat.BSDSO1.*)
ALTER oldcat .BSDS02 -
NEWNAME (newcat .BSDS02)
ALTER oldcat .BSDS02.* -
NEWNAME (newcat .BSDS02.*)

Step 4: Update the BSDS with the new qualifier

Update the first BSDS with the new alias and correct data set names for the active
logs. This procedure does not attempt to change the names of existing archive log
data sets. If these catalog entries or data sets will not be available in the future,
copy all the table spaces in the DB2 subsystem to establish a new recovery point.
You can optionally delete the entries from the BSDS. If you do not delete the
entries, they will gradually be replaced by newer entries.

1. Run the change log inventory utility (DSNJUOQO3).

Use the new qualifier for the BSDS, because it has now been renamed. The
following example illustrates the control statements required for three logs and
dual copy is specified for the logs. This is only an example; the number of logs
can vary and dual copy is an option. The starting and ending log RBAs are from
the print log map report.

NEWCAT VSAMCAT=newcat

DELETE DSNAME=o0ldcat.LOGCOPY1.DSO1

DELETE DSNAME=oldcat.LOGCOPY1.DS02

DELETE DSNAME=oldcat.LOGCOPY1.DS03

DELETE DSNAME=o0ldcat.LOGCOPY2.DSO1

DELETE DSNAME=oldcat.LOGCOPY2.DS02

DELETE DSNAME=oldcat.LOGCOPY2.DS0O3

NEWLOG DSNAME=newcat.LOGCOPY1.DS01,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY1.DS02,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY1.DS03,COPY1,STARTRBA=strtrba,ENDRBA=endrba

NEWLOG DSNAME=newcat.LOGCOPY2.DS01,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat .LOGCOPY2.DS02,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS03,COPY2,STARTRBA=strtrba,ENDRBA=endrba

During startup, DB2 compares the newcat value with the value in the system
parameter load module, and they must be the same.

2. Using the IDCAMS REPRO command, replace the contents of BSDS2 with the
contents of BSDSO01.

3. Run the print log map utility (DSNJU0O04) to verify your changes to the BSDS.

4. At a convenient time, change the DD statements for the BSDS in any of your
off-line utilities to use the new qualifier.

Step 5: Establish a new xxxxmstr cataloged procedure
Before you start DB2, follow these steps:

1. Update xxxxMSTR in SYS1.PROCLIB with the new BSDS data set names.

2. Copy the new system parameter load module to the active
SDSNEXIT/SDSNLOAD library.

Step 6: Start DB2 with the new xxxxmstr and load module
Use the START DB2 command with the new load module name as shown here:

-START DB2 PARM(new_name)

If you stopped DSNDBO1 or DSNDBO6 in LStep 2: Stop DR2 with no outstanding

, you must explicitly start them in this step.

Change qualifiers for other databases and user data sets

This step changes qualifiers for DB2 databases other than the catalog and
directory. DSNDBO7 is a system database but contains no permanent data, and can
be deleted and redefined with the new qualifier. If you are changing its qualifier, do
that before the rest of the user databases.

Change the databases in the following list that apply to your environment.
DSNDBO7 (work file database)
DSNDBO04 (default database)
DSNDDF (communications database)
DSNRLST (resource limit facility database)
DSNRGFDB (the database for data definition control)
Any other application databases that use the old high-level qualifier

At this point, the DB2 catalog tables SYSSTOGROUP, SYSTABLEPART, and
SYSINDEXPART contain information about the old integrated user catalog alias. To
update those tables with the new alias, you must follow the procedures below. Until
you do so, the underlying resources are not available. The following procedures are
described separately.

. [‘Changmg VOUL work database to use the new h'gh-leuel gua ifier” on page zd

Table spaces and indexes that span more than one data set require special
procedures. Partitioned table spaces can have different partitions allocated to
different DB2 storage groups. Nonpartitioned table spaces or indexes only have the
additional data sets to rename (those with the lowest level name of A002, A003,
and so on).

Chapter 7. Altering your database design 75

76 Administration Guide

Changing your work database to use the new high-level qualifier
You can use one of two methods to change the high-level qualifier for your work

database or possibly DSNDBO7. Which method you use depends on if you have a
new installation or a migrated installation.

New installation:

1.

Reallocate the database using the installation job DSNTIJTM from
prefix. SDSNSAMP

Modify your existing job. Change the job to remove the BIND step for DSNTIAD
and rename the data set names in the DSNTTMP step to your new names,
making sure you include your current allocations.

Migrated installations: Migrated installations do not have a usable DSNTIJTM,
because the IDCAMS allocation step is missing. For migrated installations, you
must:

1.

Stop the database, using the following command (for a database named
DSNDBO07):

-STOP DATABASE (DSNDBO7)
Drop the database, using the following SQL statement:

DROP DATABASE DSNDBO7;
Re-create the database, using the following SQL statement:

CREATE DATABASE DSNDBO7;

Define the clusters, using the following access method services commands.
Also, be sure to specify the instance qualifier of your data set, y, which can be
either | or J:

ALTER oldcat .DSNDBC.DSNDBO7.DSN4KO1.y0001.A001
NEWNAME newcat .DSNDBC.DSNDBO7.DSN4KO1.y0001.A001

ALTER oldcat .DSNDBC.DSNDBO7 .DSN32K01.y0001.A001
NEWNAME newcat .DSNDBC.DSNDBO7.DSN32K01.y0001.A001

Repeat the above statements (with the appropriate table space name) for as
many table spaces as you use.
Create the table spaces in DSNDBO7.

CREATE TABLESPACE DSN4K01
IN DSNDBO7
BUFFERPOOL BPO
CLOSE NO
USING VCAT DSNC710;

CREATE TABLESPACE DSN32K01
IN DSNDBO7
BUFFERPOOL BP32K
CLOSE NO
USING VCAT DSNC710;

Start the database, using the following command:
-START DATABASE (DSNDBO7)

Changing user-managed objects to use the new qualifier

1.

Stop the table spaces and index spaces, using the following command:
-STOP DATABASE (dbname) SPACENAM(x)

Use the following SQL ALTER TABLESPACE and ALTER INDEX statements
with the USING clause to specify the new qualifier:

ALTER TABLESPACE dbname. tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

Repeat for all the objects in the database.
3. Using IDCAMS, rename the data sets to the new qualifier. Also, be sure to
specify the instance qualifier of your data set, y, which can be either | or J:

ALTER oldcat .DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBC.dbname.*.y0001.A001

ALTER oldcat .DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBD.dbname.*.y0001.A001

4. Start the table spaces and index spaces, using the following command:
-START DATABASE (dbname) SPACENAM(*)

5. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE (dbname)

6. Using SQL, verify that you can access the data.

Renaming the data sets can be done while DB2 is down. They are included here
because the names must be generated for each database, table space, and index
space that is to change.

Changing DB2-managed objects to use the new qualifier
Use this procedure when you want to keep the existing DB2 storage group,
changing only the high-level qualifier. If you want to move the data to a new DB2
storage group, see page Bil.
1. Remove all table spaces and index spaces from the storage group by
converting the data sets temporarily to user-managed data sets.
a. Stop each database that has data sets you are going to convert, using the
following command:
-STOP DATABASE (dbname) SPACENAM(x)
b. Convert to user-managed data sets with the USING VCAT clause of the

SQL ALTER TABLESPACE and ALTER INDEX statements, as shown in the
following statements. Use the new catalog name for VCAT.

ALTER TABLESPACE dbname. tsname
USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;
2. Drop the storage group, using the following statement:

DROP STOGROUP stogroup-name;

The DROP succeeds only if all the objects that referenced this STOGROUP are
dropped or converted to user-managed (USING VCAT clause).

3. Re-create the storage group using the correct volumes and the new alias, using
the following statement:
CREATE STOGROUP stogroup-name

VOLUMES (vOL1,v0L2)
VCAT newcat;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier of
your data set, y, which can be either | or J:

ALTER oldcat .DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBC.dbname.*.y0001.A001

ALTER oldcat .DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBD.dbname.*.y0001.A001

If your table space or index space spans more than one data set, be sure to
rename those data sets also.

Chapter 7. Altering your database design 77

5. Convert the data sets back to DB2-managed data sets by using the new DB2
storage group. Use the following SQL ALTER TABLESPACE and ALTER INDEX
statements:

ALTER TABLESPACE dbname. tsname
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

If you specify USING STOGROUP without specifying the PRIQTY and SECQTY
clauses, DB2 uses the default values. For more information about USING
STOGROUP, see DR2 SQl Referencd.

6. Start each database, using the following command:
-START DATABASE (dbname) SPACENAM(x)

7. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE (dbname)

8. Using SQL, verify that you can access the data.

Moving DB2 data

This section discusses the following topics:

+ ['Tools for maving DR? data’l introduces some of the tools available to make

moving DB2 data easier.

+ EMaving a DR? data set” on page 80 describes moving a data set from one

volume to another.

+ I'Copying a relational datahase” on page 81 describes copying a user-managed

relational database, with its object definitions and its data, from one DB2
subsystem to another, on the same or different MVS system.

 ICopying an entire DB2 subhsystem” on page 81 describes copying a DB2

subsystem from one MVS system to another. Copying a subsystem includes
these items:
— All the user data and object definitions
— The DB2 system data sets:
- The log
- The bootstrap data set
- Image copy data sets
- The DB2 catalog
- The integrated catalog that records all the DB2 data sets

Tools for moving DB2 data

78 Administration Guide

Important: Before copying any DB2 data, resolve any data that is in an inconsistent
state. Use the DISPLAY DATABASE command to determine whether any
inconsistent state exists, and the RECOVER INDOUBT command or the RECOVER
utility to resolve the inconsistency. The copying process generally loses all traces of
an inconsistency except the problems that result.

Although DB2 data sets are created using VSAM access method services, they are
specially formatted for DB2 and cannot be processed by services that use VSAM

record processing. They can be processed by VSAM utilities that use
control-interval (CI) processing and, if they are linear data sets (LDSs), also by
utilities that recognize the LDS type.

Furthermore, copying the data might not be enough. Some operations require
copying DB2 object definitions. And when copying from one subsystem to another,
you must consider internal values that appear in the DB2 catalog and the log, for
example, the DB2 object identifiers (OBIDs) and log relative byte addresses
(RBAS).

Fortunately, several tools exist that simplify the operations:
* The REORG and LOAD utilities.

Those can be used to move data sets from one disk device type to another
within the same DB2 subsystem. For instructions on using LOAD and REORG,

see Part 2 of DB2 Lility Guide and Reference.

* The COPY and RECOVER utilities. Using those utilities, you can recover an
image copy of a DB2 table space or index space onto another disk device within
the same subsystem. For instructions on using COPY and RECOVER, see Part
2 of DR2 Utility Guide and Referencd.

* The UNLOAD or REORG UNLOAD EXTERNAL utility unloads a DB2 table into a
sequential file and generates statements to allow the LOAD utility to load it
elsewhere. For instructions on using UNLOAD or REORG UNLOAD EXTERNAL,
see DB2 Utility Guide and Referencsd.

* The DSN1COPY utility. The utility copies the data set for a table space or index
space to another data set. It can also translate the object identifiers and reset the

|0% RBAs in the target data set. For instructions, see Part 3 of [DR2 Utility Guide

The following tools are not parts of DB2 but are separate licensed programs or
program offerings:

» DB2 DataPropagator. This licensed program can extract data from DB2 tables,
DL/l databases, VSAM files, and sequential files. For instructions, see

+ DFSMS/MVS®, which contains the following functional components:
— Data Set Services (DFSMSdss™)

Use DFSMSdss to copy data between disk devices. For instructions, see Data
Facility Data Set Services: User's Guide and Reference. You can use online
panels to control this, through the Interactive Storage Management Facility
(ISMF) that is available with DFSMS/MVS; for instructions, refer to
DFSMS/MVS: Storage Administration Reference for DFSMSdfp.

— Data Facility Product (DFSMSdfp)

This is a prerequisite for DB2. You can use access method services EXPORT
and IMPORT commands with DB2 data sets when control interval processing
(CIMODE) is used. For instructions on EXPORT and IMPORT, see
DFSMS/MVS: Access Method Services for the Integrated Catalog.

— Hierarchical Storage Manager (DFSMShsm)

With the MIGRATE, HMIGRATE, or HRECALL commands, which can specify
specific data set names, you can move data sets from one disk device type to
another within the same DB2 subsystem. Do not migrate the DB2 directory,
DB2 catalog, and the work file database (DSNDBO07). Do not migrate any data
sets that are in use frequently, such as the bootstrap data set and the active
log. With the MIGRATE VOLUME command, you can move an entire disk
volume from one device type to another. The program can be controlled using

Chapter 7. Altering your database design 79

online panels, through the Interactive Storage Management Facility (ISMF).
For instructions, see DFSMS/MVS: DFSMShsm Managing Your Own Data.

The following table shows which tools are applicable to which operations:

Table 14. Tools applicable to data-moving operations

Tool Moving a data Copying a data Copying an
set base entire
subsystem
REORG and LOAD Yes Yes —
COPY and RECOVER Yes — —
DSNTIAUL Yes Yes —
DSN1COPY Yes Yes —
DataRefresher or DXT™ Yes Yes —
DFSMSdss Yes — Yes
DFSMSdfp Yes — Yes
DFSMShsm Yes — —

Some of the listed tools rebuild the table space and index space data sets, and
they therefore generally require longer to execute than the tools that merely copy
them. The tools that rebuild are REORG and LOAD, RECOVER and REBUILD,
DSNTIAUL, and DataRefresher. The tools that merely copy data sets are
DSN1COPY, DFSMSdss, DFSMSdfp EXPORT and IMPORT, and DFSMShsm.

DSN1COPY is fairly efficient in use, but somewhat complex to set up. It requires a
separate job step to allocate the target data sets, one job step for each data set to
copy the data, and a step to delete or rename the source data sets. DFSMSdss,
DFSMSdfp, and DFSMShsm all simplify the job setup significantly.

Although less efficient in execution, RECOVER is easy to set up if image copies
and recover jobs already exist. You might only need to redefine the data sets
involved and recover the objects as usual.

Moving a DB2 data set

The movement DB2 data is accomplished by RECOVER, REORG, or DSN1COPY,
or by the use of non-DB2 facilities, such as DFSMSdss. Both the DB2 utilities and
the non-DB2 tools can be used while DB2 is running, but the space to be moved
should be stopped to prevent users from accessing it.

The following procedures differ mainly in that the first one assumes you do not want
to reorganize or recover the data. Generally, this means that the first procedure is
faster. In all cases, make sure that there is enough space on the target volume to
accommodate the data set.

If you use storage groups, then you can change the storage group definition to
include the new volumes, as described in L i !

Moving data without REORG or RECOVER:
1. Stop the database.
2. Move the data, using DSN1COPY or a non-DB2 facility.

80 Administration Guide

3. Issue the ALTER INDEX or ALTER TABLESPACE statement to use the new
integrated catalog facility catalog name or DB2 storage group name.

4. Start the database.

Moving DB2-Managed data with REORG, RECOVER, or REBUILD: With this
procedure you create a storage group (possibly using a new catalog alias) and
move the data to that new storage group.

1. Create a new storage group using the correct volumes and the new alias, as
shown in the following statement:

CREATE STOGROUP stogroup-name
VOLUMES (vOL1,vO0L2)
VCAT (newcat);

2. Prevent access to the data sets you are going to move, by entering the
following command:

-STOP DATABASE (dbname) SPACENAM(x)

3. Enter the ALTER TABLESPACE and ALTER INDEX SQL statements to use the
new storage group name, as shown in the following statements:
ALTER TABLESPACE dbname. tsname

USING STOGROUP stogroup-name;
ALTER INDEX creator.index-name
USING STOGROUP stogroup-name;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier of
your data set, y, which can be either | or J. If you have run REORG with
SHRLEVEL CHANGE or SHRLEVEL REFERENCE on any table spaces or
index spaces, the fifth-level qualifier might be JOOO1.

ALTER oldcat .DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBC.dbname.*.y0001.A001

ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat .DSNDBD.dbname.*.y0001.A001

5. Start the database for utility processing only, using the following command:
-START DATABASE (dbname) SPACENAM(*) ACCESS(UT)

6. Use the REORG or the RECOVER utility on the table space or index space, or
use the REBUILD utility on the index space.

7. Start the database, using the following command:
-START DATABASE (dbname) SPACENAM(*)

Copying a relational database

This operation involves not only copying data, but finding or generating, and
executing, SQL statements to create storage groups, databases, table spaces,
tables, indexes, views, synonyms, and aliases.

As with the other operations, DSN1COPY is likely to execute faster than the other
applicable tools. It copies directly from one data set to another, while the other tools
extract input for LOAD, which then loads table spaces and builds indexes. But
again, DSN1COPY is more difficult to set up. In particular, you must know the
internal DB2 object identifiers, which other tools translate automatically.

Copying an entire DB2 subsystem

This operation involves copying an entire DB2 subsystem from one MVS system to
another. (Although you can have two DB2 subsystems on the same MVS system,
one cannot be a copy of the other.)

Chapter 7. Altering your database design 81

Only two of the tools listed are applicable: DFSMSdss DUMP and RESTORE, and
DFSMSdfp EXPORT and IMPORT. Refer to the documentation on those programs
for the most recent information about their use.

82 Administration Guide

Chapter 8. Estimating disk storage for user data

This chapter provides information on how to estimate the amount of disk storage
you need for your data, including:

Recommendation: Use DB2 Estimator to calculate space estimates for tables,
indexes, and factors discussed in this chapter.

Factors that affect storage

The amount of disk space you need for your data is not just the number of bytes of
data; the true number is some multiple of that. That is,

Space required = M x (bytes of data)

The multiplier M depends on your circumstances. It includes factors that are
common to all data sets on disk, as well as others that are peculiar to DB2. It can
vary significantly, from a low of about 1.25, to 4.0 or more. For a first approximation,

set M=2, and skip to LCalculaImg_the_spacP_taqumed_taLa_tahLLan_pagtLBAl

For more accuracy, calculate M as the product of the following factors:
* Record overhead

* Free space

* Unusable space

» Data set excess

* Indexes

Record overhead: Allows for eight bytes of record header and control data, plus
space wasted for records that do not fit exactly into a DB2 page. For the second
consideration, see I'Chaosing a page size” on page 43. The factor can range from
about 1.01 (for a careful space-saving design) to as great as 4.0. A typical value is
about 1.10.

Free space: Allows for space intentionally left empty to allow for inserts and

updates. You can specify this factor on the CREATE TABLESPACE statement; see
[Specifying free space on pages” an page 534 for more information. The factor can
range from 1.0 (for no free space) to 200 (99% of each page used left free, and a
free page following each used page). With default values, the factor is about 1.05.

Unusable space: Track lengths in excess of the nearest multiple of page lengths.
By default, DB2 uses 4 KB pages, which are blocked to fit as many pages as
possible on a track. [fahle 19shows the track size, number of pages per track, and
the value of the unusable-space factor for several different device types.

Table 15. Unusable space factor by device type

Device type 3380 3390 9340
Track size 47476 56664 46456
Pages per track 10 12 10
Factor value 1.16 1.15 1.03

© Copyright IBM Corp. 1982, 2001 83

Data set excess: Allows for unused space within allocated data sets, occurring as
unused tracks or part of a track at the end of any data set. The amount of unused
space depends upon the volatility of the data, the amount of space management
done, and the size of the data set. Generally, large data sets can be managed more
closely, and those that do not change in size are easier to manage. The factor can
range without limit above 1.02. A typical value is 1.10.

Indexes: Allows for Storage for indexes to data. For data with no indexes, the
factor is 1.0. For a single index on a short column, the factor is 1.01. If every
column is indexed, the factor can be greater than 2.0. A typical value is 1.20. For

further discussion of the factor, see ECalculating the space required for an index” an

[fable 16 shows calculations of the multiplier M for three different database designs:

* The tight design is carefully chosen to save space and allows only one index on
a single, short field.

* The loose design allows a large value for every factor, but still well short of the
maximum. Free space adds 30% to the estimate, and indexes add 40%.

* The medium design has values between the other two. You might want to use
these values in an early stage of database design.

In each design, the device type is assumed to be a 3390. Therefore, the
unusable-space factor is 1.15. M is always the product of the five factors.

Table 16. Calculations for three different database designs

Tight Medium Loose
Factor design design design
Record overhead x 1.02 1.10 1.30
Free space x 1.00 1.05 1.30
Unusable space x 1.15 1.15 1.15
Data set excess x 1.02 1.10 1.30
Indexes = 1.02 1.20 1.40
Multiplier M 1.22 1.75 3.54

In addition to the space for your data, external storage devices are required for:
* Image copies of data sets, which can be on tape

» System libraries, system databases, and the system log

» Temporary work files for utility and sort jobs

A rough estimate of the additional external storage needed is three times the
amount calculated above (space for your data) for disk storage.

Calculating the space required for a table

This section helps you calculate the space required for a table. Space allocation
parameters are specified in kilobytes (KB).

Calculating record lengths and pages

84 Administration Guide

An important consideration in the design of a table is the record size. In DB2, a
record is the storage representation of a row. Records are stored within pages that
are 4 KB, 8 KB, 16 KB, or 32 KB. Generally, you cannot create a table in which the
maximum record size is greater than the page size.

Also consider:

* Normalizing your entities

* Using larger page sizes

» Using LOB data types if a single column in a table is greater than 32 K

In addition to the bytes of actual data in the row (not including LOB data, which is
not stored in the base row or included in the total length of the row), each record
has:

* A six-byte prefix

* One additional byte for each column that can contain null values

* Two additional bytes for each varying-length column or ROWID column

» Six bytes of descriptive information in the base table for each LOB column

The sum of each column’s length is the record length, which is the length of data
that is physically stored in the table. The logical record length can be longer, for
example, if the table contains LOBs.

Every data page has:
* A 22-byte header
* A 2-byte directory entry for each record stored in the page

To simplify the calculation of record and page length, consider the directory entry as
part of the record. Then, every record has a fixed overhead of 8 bytes, and the
space available to store records in a 4 KB page is 4074 bytes. Achieving that
maximum in practice is not always simple. For example, if you are using the default
values, the LOAD utility leaves approximately 5 percent of a page as free space
when loading more than one record per page. Therefore, if two records are to fit in
a page, each record cannot be longer than 1934 bytes (approximately 0.95 x 4074
x 0.5). Furthermore, the page size of the table space in which the table is defined
limits the record length. If the table space is 4 KB, the record length of each record
cannot be greater than 4056 bytes. Because of the 8-byte overhead for each
record, the sum of column lengths cannot be greater than 4048 bytes (4056 minus
the 8-byte overhead for a record).

DB2 provides three larger page sizes to allow for longer records. You can improve
performance by using pages for record lengths that best suit your needs. For details

on selecting an appropriate page size, see [Chaosing a page size” on page 43.

As shown in [ahle 17, the maximum record size for each page size depends on the
size of the table space and on whether you specified the EDITPROC clause.

Table 17. Maximum record size (in bytes)

EDITPROC Page Size = 4 Page Size = 8 Page Size =16 Page Size = 32
KB KB KB KB

NO 4056 8138 16330 32714

YES 4046 8128 16320 32704

Creating a table using CREATE TABLE LIKE in a table space of a larger page size
changes the specification of LONG VARCHAR to VARCHAR and LONG
VARGRAPHIC to VARGRAPHIC. You can also use CREATE TABLE LIKE to create
a table with a smaller page size in a table space if the maximum record size is
within the allowable record size of the new table space.

Chapter 8. Estimating disk storage for user data 85

Saving space with data compression

You can reduce the space required for a table by using data compression if your
system meets the requirements. To find out how much space you can save by
compressing your data, run the DSN1COMP utility on your data sets. Message
DSN19401 of DSN1COMP reports an estimate of the percentage of kilobytes that

would be saved by using data compression. See Part 3 of DB2 Utility Guide and
Referencd

for more information on the DSN1COMP utility.

The disk saved by data compression is countered by the disk required for a

dlctlonary Every compressed table space or partltlon requires a dictionary. See
to figure the disk

requirements and the virtual storage requirements for a dictionary.

Estimating storage for LOBs

Tables with large object data types (LOBs) can store byte strings up to 2 GB. A
base table can be defined with one or more LOB columns. The LOB columns are
logically part of the base table but are physically stored in an auxiliary table. In
place of each LOB column, there is an indicator column, which is a column with
descriptive information about the LOB. When a base table has LOB columns, then
each row of the table has a row identifier, which is a varying-length 17-byte field.
You must consider the overhead of the indicator column and row identifiers when
estimating table size. If the LOB column is NULL or has a value of zero, no space
is allocated in the auxiliary table.

When estimating the storage required for LOB table spaces, begin with your
estimates from other table spaces, round up to the next page size, and then
multiply by 1.1. One page never contains more than one LOB. When a LOB value
is deleted, the space occupied by that value remains allocated as long as any
application might access that value.

An auxiliary table resides in a LOB table space. There can be only one auxiliary
table in a LOB table space. An auxiliary table can store only one LOB column of a
base table and there must be one and only one index on this column.

See DB2 Installation Guidd for information on storage options for LOB values.

Estimating storage when using the LOAD utility

For a table to be loaded by the LOAD utility, the value can be estimated as follows:

* Let FLOOR be the operation of discarding the decimal portion of a real number.

* Let CEILING be the operation of rounding a real number up to the next highest
integer.

» Let number of records be the total number of records to be loaded.

» Let average record size be the sum of the lengths of the fields in each record,
using an average value for varying-length fields, and including the following
amounts for overhead:

8 bytes for the total record
1 byte for each field that allows nulls
2 bytes for each varying-length field
If the average record size is less than 32, use 32. See the CREATE TABLE

statement in Chapter 5 of DB2 SQL Referencd for information on how many
bytes are required for different column types.

* Let percsave be the percentage of kilobytes saved by compression (as reported
by the DSN1COMP utility in message DSN1940I)

86 Administration Guide

» Let compression ratio be percsave/100

Then calculate as follows:

1. Usable page size is the page size minus a number of bytes of overhead (that is,
4 KB- 40 for 4 KB pages, 8 KB- 54 for 8 KB pages, 16 KB-54 for 16 KB
pages, or 32 KB-54 for 32 KB pages) multiplied by (100-p) / 100, where p is
the value of PCTFREE. If your average record size is less than 16, then usable
page size is 255 (maximum records per page) multiplied by average record size
multiplied by (100-p) / 100.

2. Records per page is MIN(MAXROWS, FLOOR(usable page size / average
record size)), but cannot exceed 255 and cannot exceed the value you specify
for MAXROWS.

3. Pages used is 2+CEILING(number of records / records per page).

4. Total pages is FLOOR(pages used x (1+fp) / fp), where fp is the (nonzero)
value of FREEPAGE. If FREEPAGE is 0, then total pages is equal to pages
used. (See LEree space” an page 83 for more information about FREEPAGE.) If
you are using data compression, you need additional pages to store the
dictionary. See ECalculating the space required for a dictionary! to figure how
many pages the dictionary requires.

5. Estimated number of kilobytes required for a table:

» If you do not use data compression, the estimated number of kilobytes is
total pages x page size (4 KB, 8 KB, 16 KB, or 32 KB).

* If you use data compression, the estimated number of kilobytes is (total
pages x page size (4 KB, 8 KB, 16 KB, or 32 KB) x (1 - compression ratio).

For example, consider a table space containing a single table with the following
characteristics:

Number of records = 100000

Average record size = 80 bytes

Page size = 4 KB

PCTFREE =5 (5% of space is left free on each page)

FREEPAGE = 20 (one page is left free for each 20 pages used)

MAXROWS = 255

If the data is not compressed, you get the following results:
Usable page size = 4074 x 0.95 = 3870 bytes
Records per page = MIN(MAXROWS, FLOOR(3870 / 80)) = 48
Pages used = 2 + CEILING(100000 / 48) = 2085
Total pages = FLOOR(2085 x21 / 20) = 2189
Estimated number of kilobytes = 2189 x 4 = 8756

If the data is compressed, multiply the estimated number of kilobytes for an
uncompressed table by (1 - compression ratio) for the estimated number of
kilobytes required for the compressed table.

Calculating the space required for a dictionary

This section helps you calculate the disk space required by a dictionary and the
virtual storage required in the DSN1DBM1 address space when a dictionary is read
into storage from a buffer pool. A dictionary contains the information used for
compressing and decompressing the data in a table space or partition, and it
resides in that table space or partition. You can skip this section if you are not going
to compress data. Space allocation parameters are specified in pages (either 4 KB,
8 KB, 16 KB, or 32 KB).

Chapter 8. Estimating disk storage for user data 87

Disk requirements

Virtual storage

This section helps you calculate the disk requirements for a dictionary associated
with a compressed nonsegmented table space and for a dictionary associated with
a compressed segmented table space.

For a nonsegmented table space, the dictionary contains 4096 entries in most
cases. This means you need to allocate an additional sixteen 4 KB pages, eight 8
KB pages, four 16 KB pages, or two 32 KB pages. Although it is possible that your
dictionary can contain fewer entries, allocate enough space to accommodate a
dictionary with 4096 entries. For 32 KB pages, 1 segment (minimum of 4 pages) is
sufficient to contain the dictionary. Refer to ffable 14 to see how many 4 KB pages,
8 KB pages, 16 KB pages, or 32 KB pages to allocate for the dictionary of a
compressed nonsegmented table space.

Table 18. Pages required for the dictionary of a compressed non-segmented table space

Table space Dictionary size (number of entries)

page size

(KB) 512 1024 2048 4096 8192
4 2 4 8 16 32

8 1 2 4 16
16 1 1 2

32 1 1 1 4

For a segmented table space, the size of the dictionary depends on the size of
your segments. Assuming 4096 entries is recommended. Use ffable 1d to see how
many 4-KB pages to allocate for the dictionary of a compressed segmented table
space.

Table 19. Pages required for the dictionary of a compressed segmented table space

Segment size Dictionary size (number of entries)

(4-KB pages) 512 1024 2048 4096 8192
4 4 4 8 16 32
8 8 8 8 16 32
12 12 12 12 24 36
=16 Segment size Segment size Segment size Segment size Segment size

requirements

You can calculate how much storage is needed in the DSN1DBM1 address space
for each dictionary with this formula:
dictionary size (number of entries) x16 bytes

When a dictionary is read into storage from a buffer pool, the whole dictionary is
read, and it remains there as long as the compressed table space is being
accessed.

Calculating the space required for an index

88 Administration Guide

This section describes the levels of index pages and helps you calculate the
storage required for an index.

Levels of index pages

Indexes can have more than one level of pages. Index pages that point directly to
the data in your tables are called leaf pages. If the index has more than one leaf
page, it must have at least one nonleaf page that contains entries that point to the
leaf pages. If the index has more than one nonleaf page, then the nonleaf pages
whose entries point directly to leaf pages are said to be on level 1; a second level
of nonleaf pages must point to level 1, and so on. The highest level contains a
single page (which DB2 creates when it first builds your index) called the root page.
The root page is a 4-KB index page. The index tree points directly to the data in
your tables, and gives the key and the RID. m shows, in schematic form, a

typical index.
Root Page
Page A Highest key of page A
Level 2 Page B Highest key of page B

1 Nonleaf Page A Nonleaf Page B il
] Page 1 H|ghest key of page 1 | b
Level 1 | b
Page X Highest key of page X Page Z Highest key of page Z
Leaf Page 1 Leaf Page X Leaf Page Z
Lovelo MLl B e
Key | Record-ID Key | Record-ID Key | Record-ID
A4
Table Row
» Row Row |«

Figure 5. Sample index structure and pointers (three-level index)

If you insert data with a constantly increasing key, DB2 adds the new highest key to
the top of a new page. Be aware, however, that DB2 treats nulls as the highest
value. When the existing high key contains a null value in the first column that
differentiates it from the new key that is inserted, the inserted nonnull index entries
cannot take advantage of the highest-value split.

For example, assume that the existing high key is:
SMITH ROBERT J

Next you insert:
SMITH ROBERT (null)

Finally you insert:
SMITH ROBERT Z

DB2 does not treat this final value as the new high key.

Chapter 8. Estimating disk storage for user data 89

Calculating the space required for an index

90 Administration Guide

Space allocation parameters are specified in kilobytes. For an index to be loaded by
the LOAD utility, you should estimate the future storage requirements of the index.

Estimating the space requirements for DB2 objects is easier if you collect and
maintain a statistical history of those objects. The accuracy of your estimates
depends on the currentness of the statistical data. To ensure that the statistics
history is current, use the MODIFY STATISTICS utility to delete outdated statistical
data from the catalog history tables.

The storage required for an index, newly built by the LOAD utility, depends on the
number of index pages at all levels. That, in turn, depends on whether the index is
unique or not. The numbers of leaf pages (index pages that point directly to the
data in your tables) and of nonleaf pages (index pages that contain the page
number and the highest key of each page in the next-level index) are calculated
separately.

An index key on an auxiliary table used for LOBs is 19 bytes and uses the same
formula as other indexes. The RID value stored within the index is 5 bytes, the
same as for large table spaces.

These index calculations are intended only to help you estimate the storage
required for an index. Because there is no way to predict the exact number of
duplicate keys that can occur in an index, the results of these calculations are not
absolute. It is possible, for example, that for a nonunique index, more index entries
than the calculations indicate might fit on an index page.

The calculations are divided into cases using a unique index and using a nonunique
index.

In the following calculations, let:
» k = the length of the index key. The length of the index key is the sum of the
lengths of all the columns of the key, plus the number of columns that allow nulls.
* n = the average number of data records per distinct key value of a nonunique
index. For example:
a = number of data records per index
b = number of distinct key values per index
s = the proportion of available space (equal to (100-f)/100, where p is the
value of PCTFREE)
n=alb
» f =the value of PCTFREE.
* p = the value of FREEPAGE.
* r = record identifier (RID) length. Let r = 4 for indexes on non-large table spaces
and r = 5 for indexes on large spaces and auxiliary tables.
* FLOOR = the operation of discarding the decimal portion of a real number.
* CEILING = the operation of rounding a real number up to the next highest
integer.
* MAX = the operation of selecting the highest integer value.

Calculate pages for a unique index: Use the following calculations to estimate the
number of leaf and nonleaf pages in a unique index.

Calculate the total leaf pages:

1. Space perkey=k+r+3

2. Usable space per page =FLOOR((100 - f) x 4038 / 100)

3. Entries per page =FLOOR(usable space per page / space per key)

4. Total leaf pages =CEILING(number of table rows / entries per page)

Calculate the total nonleaf pages:

Space per key =k + 7

Usable space per page =FLOOR (MAX(90, (100- f)) x 4046/100)

Entries per page =FLOOR((usable space per page / space per key)
Minimum child pages =MAX(2, (entries per page + 1))

Level 2 pages =CEILING(total leaf pages / minimum child pages)

Level 3 pages =CEILING(level 2 pages / minimum child pages)

Level x pages =CEILING(previous level pages / minimum child pages)
Total nonleaf pages =(level 2 pages + level 3 pages + ...+ level x pages
until the number of level x pages = 1)

ONoOr~wWNE

Calculate pages for a nonunique index: Use the following calculations to
estimate the number of leaf and nonleaf pages for a nonunique index.

Calculate the total leaf pages:

1. Space per key =4 + k + (n x (r+1))

2. Usable space per page =FLOOR((100 - f) x 4038 / 100)

3. Key entries per page = n x(usable space per page / space per key)
4

Remaining space per page = usable space per page - (key entries per page

/ n) x space per key

5. Data records per partial entry = FLOOR((remaining space per page - (k + 4))

/ 5)

6. Partial entries per page =(n / CEILING(n / data records per partial entry)) if
data records per partial entry >= 1, or O if data records per partial entry < 1

Total leaf pages =CEILING(number of table rows / entries per page)

alculate the total nonleaf pages:
Space per key =k +r+ 7
Usable space per page =FLOOR (MAX(90, (100- f)) x (4046/100)
Entries per page =FLOOR((usable space per page / space per key)
Minimum child pages =MAX(2, (entries per page + 1))
Level 2 pages =CEILING(total leaf pages / minimum child pages)
Level 3 pages =CEILING(level 2 pages / minimum child pages)
Level x pages =CEILING(previous level pages / minimum child pages)
Total nonleaf pages =(level 2 pages + level 3 pages + ...+ level x pages
until x = 1)

©ONoaA~MLONEQO ©ON

Entries per page =MAX(1, (key entries per page + partial entries per page))

Calculate the total space requirement: Finally, calculate the number of kilobytes

required for an index built by LOAD.

Free pages = FLOOR(total leaf pages / p), or 0 ifp=0

Space map pages =CEILING((tree pages + free pages) / 8131)
Tree pages = MAX(2, (total leaf pages + total nonleaf pages))

agrpwNE

Total space requirement =4 x (total index pages + 2)

In the following example of the entire calculation, assume that an index is defined

with these characteristics:

* It is unique.

* The table it indexes has 100000 rows.

* The key is a single column defined as CHAR(10) NOT NULL.
* The value of PCTFREE is 5.

* The value of FREEPAGE is 4.

The calculations are shown in Mahle 20 on page 92.

Chapter 8. Estimating disk storage for user data

Total index pages =MAX(4, (1 + tree pages + free pages + space map pages))

91

Table 20. The total space requirement for an index

Quantity Calculation Result
Length of key k 10
Average number of duplicate keys n 1
PCTFREE f 5
FREEPAGE p 4
Calculate total leaf pages

Space per key k +7 17
Usable space per page FLOOR((100 - f) x 4038/100) 3844
Entries per page FLOOR(usable space per page / space per key) 225
Total leaf pages CEILING(number of table rows / entries per page) 445
Calculate total nonleaf pages

Space per key k +7 17
Usable space per page FLOOR(MAX(90, (100 - f)) x (4046/100) 3836
Entries per page FLOOR(usable space per page / space per key) 226
Minimum child pages MAX(2, (entries per page + 1)) 227
Level 2 pages CEILING(total leaf pages / minimum child pages) 2
Level 3 pages CEILING(level 2 pages / minimum child pages) 1

Total nonleaf pages

(level 2 pages + level 3 pages + ... + level x pages until x = 1) 3

Calculate total space required
Free pages

Tree pages

Space map pages

Total index pages

TOTAL SPACE REQUIRED, in KB

92 Administration Guide

FLOOR(total leaf pages / p), or O if p =0 111
MAX(2, (total leaf pages + total nonleaf pages)) 448
CEILING((tree pages + free pages)/8131) 1
MAX(4, (1 + tree pages + free pages + space map pages)) 561
4 x (total index pages + 2) 2252

Part 3. Security and auditing

Chapter 9. Introduction to security and auditinginbB297
Security planning L o Lo L L L L. 097
If youarenewtoDB2 .97
If you have used DB2 before.97
Auditing . . . N T
Controlling dataaccess. .98
Access control within DB2. . . . e |
Controlling access to a DB2 subsystem T K0 0]
AccessatalocalDB2.100
Access from a remote applicaton101
Data set protection .. .11
Chapter 10. Controlling access to DB2 objects 103
Explicit privileges and authorities.104
Authorization identifiers .104
Explicit privileges .104
Administrative authorites.108
Field-level access control by views12
Authority over the catalog and directory113
Implicit privileges of ownership. . . I
Establishing ownership of objects Wlth unquaI|f|ed names. 114
Establishing ownership of objects with qualified names. 115
Privileges by type of object116
Granting implicit privileges116
Changing ownership1l16
Privileges exercised through a plan ora package T 4
Establishing ownership of a plan or a package.17
Qualifying unqualified names118
Checking authorization to execute . . . I
Checking authorization at a second DBZ server 119
Checking authorization to execute an RRSAF application wrthout a plan 120
Caching authorization IDs for best performance N 210
Controls in the program . . . T X !
A recommendation against use of controIs in the program .. 121
Restricting a plan or a package to particular systems 122
Privileges required for remote packageso 122
Special considerations for user-defined functions and stored procedures .. . 123
Additional authorization for stored procedures e .24
Controlling access to catalog tables for stored procedures 2
Example of routine roles and authorizations. 125
How to code the user-defined function program (|mplementor roIe) .. . 125
Defining the user-defined function (definerrole) 128
Using the user-defined function (invokerrole) 128
How DB2 determines authorizationIDs 129
Which IDs can exercise which privileges129
Authorization for dynamic SQL statements 132
Run behavior .133
Bind behavior .133
Define behavior .133
Invoke behavior133
Common attribute values for b|nd def|ne and |nvoke behavror Co 134
Example of determining authorization IDs for dynamic SQL statements in
routines13

© Copyright IBM Corp. 1982, 2001 93

94

Simplifying authorization .
Composite privileges
Multiple actions in one statement
Some role models . .
Examples of granting and revoklng pr|V|Ieges .

Examples using GRANT . .
System administrator's privileges .
Package administrator's privileges
Database administrator's privileges .
Database controller's privileges

Examples with secondary IDs .

Application programmers' privileges .
Privileges for binding the plan .

Moving PROGRAM1 into production
Spiffy’s approach to distributed data.

The REVOKE statement . .
Privileges granted from two or more IDs .
Revoking privileges granted by other IDs .
Restricting revocation of privileges . .
Other implications of the REVOKE statement .

Finding catalog information about privileges .

Retrieving information in the catalog

Retrieving all DB2 authorization IDs with granted pnwleges .

Retrieving multiple grants of the same authorization .

Retrieving all IDs with DBADM authority .

Retrieving IDs authorized to access a table .

Retrieving IDs authorized to access a routine .

Retrieving the tables an ID is authorized to access .

Retrieving the plans and packages that access a table.
Using views of the DB2 catalog tables.

Chapter 11. Controlling access through a closed application .

Controlling data definition
Required installation options
Controlling by application name
Controlling by application name with exceptlons
Registering sets of objects .

Controlling by object name . .
Controlling by object name with exceptlons .
Managing the registration tables and their indexes
An overview of the registration tables .

Columns of the ART

Columns of the ORT
Creating the tables and indexes .
Adding columns .
Updating the tables.
Columns for optional use.
Stopping data definition control

Chapter 12. Controlling access to a DB2 subsystem
Controlling local requests
Processing connections .
The steps in detail .
Supplying secondary IDs for connecuon requests
Required CICS specifications .
Processing sign-ons

Administration Guide

. 139
. 139
. 139
. 139
. 140
. 142
. 142
. 143
. 143
. 143
. 143
. 144
. 145
. 145
. 146
. 146
. 147
. 147
. 148
. 150
. 152
. 152
. 152
. 153
. 153
. 153
. 154
. 154
. 154
. 155

. 157
. 157
. 158
. 158
. 160
. 161
. 162
. 163
. 164
. 164
. 164
. 165
. 166
. 167
. 167
. 167
. 167

. 169
. 169
. 170
. 170
. 172
. 173
. 173

The steps in detail . .
Supplying secondary IDs for srgn on requests .
Controlling requests from remote applications .

Overview of security mechanisms for DRDA and SNA
Mechanisms used by DB2 for OS/390 and z/OS as a requester
Mechanisms accepted by DB2 for OS/390 and z/OS as a server .

The communications database for the server G
Columns used in SYSIBM.LUNAMES .

Columns used in SYSIBM.USERNAMES . .

Controlling inbound connections that use SNA protocols .
Controlling what LUs can attach to the network
Verifying a partner LU .

Accepting a remote attachment request .

Controlling inbound connections that use TCP/IP protocols .
Steps, tools, and decisions .

Planning to send remote requests .

The communications database for the requester .
Columns used in SYSIBM.LUNAMES .

Columns used in SYSIBM.IPNAMES
Columns used in SYSIBM.USERNAMES .
Columns used in SYSIBM.LOCATIONS

What IDs you send .

Translating outbound IDs.

Sending passwords. . .

Sending RACF encrypted passwords .

Sending RACF PassTickets.

Sending encrypted passwords from a workstatron
Establishing RACF protection for DB2 .

Defining DB2 resources to RACF.

Define the names of protected access proflles
Add entries to the RACF router table
Enable RACF checking for the DSNR and SERVER classes
Enable partner-LU verification .
Permitting RACF access .
Define RACF user IDs for DBZ started tasks
Add RACF groups . .
Permit access for users and groups
Establishing RACF protection for stored procedures

Step 1: Control access by using the attachment facilities (requwed) .

Step 2: Control access to WLM (optional)
Step 3: Control access to non-DB2 resources (optlonal)
Establishing RACF protection for TCP/IP . -
Establishing Kerberos authentication through RACF .
Other methods of controlling access

Chapter 13. Protecting data sets .
Controlling data sets through RACF.
Adding groups to control DB2 data sets .
Creating generic profiles for data sets .
Permitting DB2 authorization IDs to use the proflles
Allowing DB2 authorization IDs to create data sets .

Chapter 14. Auditing .
How can | tell who has accessed the data’?
Options of the audit trace
The role of authorization IDs

Part 3. Security and auditing

. 173
. 175
. 176
. 176
. 176
. 177
. 178
. 178
. 179
. 180
. 180
. 180
. 180
. 187
. 187
. 189
. 190
. 190
. 191
. 192
. 192
. 193
. 195
. 197
. 197
. 197
. 198
. 198
. 200
. 200
. 201
. 202
. 202
. 202
. 203
. 206
. 207
. 209
. 209
. 210
. 211
. 212
. 212
. 214

. 215
. 215
. 215
. 215
. 217
. 217

. 219
. 219
. 220
. 220

95

Auditing classes ofevents220

Audit class descriptions220
Auditing specific IDs . . . e e e e 222
Starting and stopping the audlt trace 22 |
Considerations for distributeddata222
Auditing a specifictable .222
Using auditrecords. .223
Reporting therecords .224
Suggestions forreports224
Other sources of audit information225
What security measures are in force? . . . e e e225
What helps ensure data accuracy and conS|stency'? e e 226
Is required data present? Is it of the required type? 226
Are data values unique where required? e 226
Has data a required pattern? Is it in a specific range’> e 226

Is new data in a specific set? Is it consistent with other tables? 227
What ensures that updates are tracked? . . . N
What ensures that concurrent users access conS|stent data’? 228
Have any transactions been lost or left incomplete?. 228
How can | tell that data is consistent?229
SQLqueries L L ..o 229
Data modifications .229
CHECK utility 2 0]
DISPLAY DATABASE command 2 (0]
REPORT utility .23
Operationlog .. .23
Internal integrity reports 2 10
How can DB2 recover data after fa|lures’) e
How can | protect the software? . . . A V4
How can | ensure efficient usage of resources'? e e o232
Chapter 15. A sample security plan for employeedata 233
Managers’ access . . G
To what ID is the SELECT pnwlege granted’? 240 7
Allowing distributed access . . . G 1)
Actions at the central server Iocatlon 2 15
Actions at remote locations.236
Auditing managers’'use .236
Payroll operations .236
Salaryupdates .237
Additional controls . . . 2 Y
To what ID are privileges granted’? oo238
Auditing use by payroll operations and payroll management.238
Others who have access. . . e o238
IDs with database admlnlstrat|ve authorlty e e e238
IDs with system administrative authority 239
The employee table owner23
Auditing for otherusers .240

96 Administration Guide

Chapter 9. Introduction to security and auditing in DB2

The two topics of security and auditing overlap a great deal, but not completely.

Security covers anything to do with the control of access, whether to the DB2
subsystem, its data, or its resources. A security plan sets objectives for a security
system, determining who shall have access to what, and in what circumstances.
The plan also describes how to meet the objectives, using functions of DB2,
functions of other programs, and administrative procedures.

Auditing is how you determine whether the security plan is working and who
actually has accessed data. It includes other questions also, such as: Have
attempts been made to gain unauthorized access? Is the data in the system
accurate and consistent? Are system resources used efficiently?

Because the two topics are not the same, this chapter suggests different ways to
approach the information that follows. For a brief overview of the range of objects

that DB2 protects, look at the left-hand columns of Mable 21 on page 108 through
Table 30 on page 108.

Security planning

If you have any sensitive data in your DB2 subsystem, you must plan carefully to
allow access to the data only as you desire. The plan sets objectives for the access
allowed and describes means of achieving the objectives. Clearly, the nature of the
plan depends entirely on the data to be protected, and thus, there is no single way
to approach the task. Consider the following suggestions:

If you are new to DB2
Follow these guidelines to learn about security and auditing:

1. Read carefully the introductory section on Cantrolling data access” an page 98.

2. Skim chapters EChapter 10 _Controlling access to DR2 ohjects” on page 103
through EChapter 14 Auditing” an page 219. Those chapters describe the tools

you use to implement your plan, but they probably contain more detail than you
want on a first reading.

3. Read the case study in EChapter 15 A sample security plan for employee datal
bn page 233

. The sample plan describes decisions of the kind you must make
about access to your own data.

4. List your security objectives and the means you will use to achieve them.

5. Reread the chapter parts that describe the functions you expect to use. Be sure
you can achieve the objectives you have set, or adjust your plan accordingly.

If you have used DB2 before
This section contains a summary of the changes in Version 7 for security and
auditing.

Kerberos Security Server: You can implement Kerberos authentication through

RACF as explamed in EEstablishing Kerberos authentication through RACE” on

© Copyright IBM Corp. 1982, 2001 97

Catalog tables for stored procedures: Guidelines are given for granting access to
catalog tables that programmers need to develop stored procedures in

Auditing

If you are auditing the activity of a DB2 subsystem, you might have turned directly
to this section of your book. If that plunges you into an ocean of unfamiliar

terminology, begin by reading [Part 1_Intraduction” an page 1, which provides a

brief and general view of what DB2 is all about.

We assume you are interested at least in the question of control of access to data.

First read [Controlling data access below, and then EChapter 10_Controlling accesd
ta DR2 ohjects” on page 103 [Chapter 14_Auditing” on page 219

Read also z

Controlling data access

98 Administration Guide

Access to data includes, but is not limited to, access by a person engaged in an
interactive terminal session. For example, access could be from a program running
in batch mode, or an IMS or CICS transaction. Hence, so as not to focus your
attention too narrowly, we choose the term process to represent all access to data.

As Eigure 6 on page 99 suggests, there are several routes from a process to DB2
data, with controls on every route.

One of the ways that DB2 controls access to data is through the use of identifiers.
Three types of identifiers are: primary authorization IDs, secondary authorization
IDs, and SQL IDs.

* Generally it is the primary authorization ID that identifies a process. For example,
statistics and performance trace records use a primary authorization ID to identify
a process.

* A secondary authorization ID, which is optional, can hold additional privileges
available to the process. For example, a secondary authorization ID could be a
Resource Access Control Facility (RACF) group ID.

* An SQL ID, which holds the privileges exercised when issuing certain dynamic
SQL statements, can be set equal to the primary or any of the secondary IDs. If
an authorization ID of a process has SYSADM authority, then the process can
set its SQL ID to any authorization ID.

Process

v Y
Control of access Data set
to DB2 subsystem protection
v
A A 4 A 4 A 4
Primary Secondary | ... | Secondary saQL ID
ID ID 1 IDn
I I I I
v
Access control Control of access
within DB2 to DB2 objects
A
DB2 data [«

Figure 6. DB2 data access control

Access control within DB2

Within the DB2 subsystem, a process could be represented by a primary
authorization identifier (ID), possibly one or more secondary IDs, and an SQL ID.
The use of IDs is affected by your security and network systems, and by the
choices you make for DB2 connections.

If two different accesses to DB2 are associated with the same set of IDs, DB2
cannot determine whether they involve the same process. You might know that
someone else is using your ID, but DB2 does not; nor does DB2 know that you are
using someone else's ID. DB2 recognizes only the IDs. Therefore, this book uses
phrases like “an ID owns an object” or “taking an action”.

Thus, IDs can hold privileges that allow them to take certain actions or be
prohibited from doing so. The list of DB2 privileges provides extremely fine control.
For example, you can grant to an ID all the privileges over a table. Or, you could,
separately and specifically, grant the privileges to retrieve data from the table, insert
rows, delete rows, or update specific columns. By granting or not granting those
privileges over views of the table, you can effectively determine exactly what an ID
can do to the table, down to the level of specific fields. Specific privileges are also
available over databases, plans, packages, and the entire DB2 subsystem.

DB2 also defines sets of related privileges, called administrative authorities. By
granting an administrative authority to an ID, you grant all the privileges associated
with it, in one statement.

Ownership of an object carries with it a set of related privileges over the object. An
ID can own an object it creates, or it can create an object to be owned by another
ID. There are separate controls for creation and ownership.

The privilege to execute an application plan or a package deserves special
attention. Executing a plan or package exercises implicitly all the privileges that the
owner needed when binding it. Hence, granting the privilege to execute can provide
a finely detailed set of privileges and can eliminate the need to grant other

Chapter 9. Introduction to security and auditing in DB2 99

privileges separately. For example, assume an application plan issues the INSERT
and SELECT statement on several tables. You need to grant INSERT and SELECT
privileges only to the plan owner. Any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements through the plan without explicitly being granted the privilege to do so.

Instead of granting privileges to many primary authorization IDs, consider
associating each of those primary IDs with the same secondary ID; then, grant the
privileges to the secondary ID. A primary ID can be associated with one or more
secondary IDs when it gains access to the DB2 subsystem; the association is made
within an exit routine. The assignment of privileges to the secondary ID is controlled
entirely within DB2.

Chapter 10_Cantralling access ta DB2 ohjects” an page 103 tells how to use the

system of privileges within DB2. Alternatively, the entire system of control within
DB2 can be disabled, by setting USE PROTECTION to NO when installing or
updating DB2. If protection in DB2 is disabled, then any user that gains access can
do anything, but no GRANT or REVOKE statements are allowed.

Using an exit routine to control authorization checking: DB2 provides an
installation-wide exit point that lets you determine how you want to handle
authorization checking. This exit point can give you a single point of control by
letting the Security Server of OS/390 Release 4 handle DB2 authorization checks.
You can also use this exit point to write your own authorization checking routine. If
your installation uses the access control authorization exit, that exit routine might be

controlling authorization rules rather then those documented in this publication. For
more information about this exit point, see lAccess control autharization exit” on

Controlling access to a DB2 subsystem

Whether or not a process can gain access to a specific DB2 subsystem can be
controlled outside of DB2. A common procedure is to grant access only through
RACF or some similar security system. Profiles for access to DB2 from various
environments, and DB2 address spaces, are defined as resources to RACF. Each
request to access DB2 is associated with an ID. RACF checks that the ID is
authorized for DB2 resources and permits, or does not permit, access to DB2.

The RACF system provides several advantages of its own. For example, it can:
» |dentify and verify the identifier associated with a process

» Connect those identifiers to RACF group names

* Log and report unauthorized attempts to access protected resources

Access at a local DB2

A local DB2 user is subject to several checks even before reaching DB2. For
example, if you are running DB2 under TSO and using the TSO logon ID as the
DB2 primary authorization 1D, then that ID was verified with a password when the
user logs on.

When the user gains access to DB2, a user-written or IBM-supplied exit routine
connected to DB2 can check the authorization ID further, change it, and associate it
with secondary IDs. In doing that, it can use the services of an external security

system again. LChapLeu.Z_Caanﬂmg_a.ccess_m_aJlBLsuhs;LsLem_an_pageJ_ﬁg

gives detailed instructions.

100 Administration Guide

Access from a remote application
A remote user is also subject to several checks before reaching your DB2. You can
use RACF or a similar security subsystem.

RACF can:
» Verify an identifier associated with a remote attachment request and check it with
a password.

» Generate PassTickets on the sending side. PassTickets can be used instead of
passwords. A PassTicket lets a user gain access to a host system without

sendlng the RACF password across the network. LSen.dmg_B.AC.F_EassILck.etsJ

contains information about RACF PassTickets.

The communications database: DB2’'s communications database (CDB) does
allow some control of authentication in that you can cause IDs to be translated
before sending them to the remote system. See [The communications datahase fol
the requester” on page 190 for more information. See [The communicationd
tatabase for the server” on page 178 for information about controls on the server

side.

Data set protection

The data in a DB2 subsystem is contained in data sets. As Eigure 6 on page 99
suggests, those data sets might be accessed without going through DB2 at all. If
the data is sensitive, you want to control that route.

If you are using RACF or a similar security system to control access to DB2, the
simplest means of controlling data set access outside of DB2 is to use RACF for
that purpose also. That means defining RACF profiles for data sets and permitting
access to them for certain DB2 IDs.

If your data is very sensitive, you may want to consider encrypting it, for protection
against unauthorized access to data sets and backup copies outside DB2. You can
use DB2 edit procedures or field procedures to encrypt data, and those routines
can use the Integrated Cryptographic Service Facility (ICSF) of MVS. For
information about this facility, see ICSF/MVS General Information.

Data compression is not a substitute for encryption. In some cases, the
compression method does not actually shorten the data, and then the data is left
uncompressed and readable. If you both encrypt and compress data, compress it
first to obtain the maximum compression, and then encrypt the result. When
retrieving, take the steps in reverse order: decrypt the data first, and then
decompress the result.

Chapter 9. Introduction to security and auditing in DB2 101

102 Administration Guide

Chapter 10. Controlling access to DB2 objects

The information in this chapter is General-use Programming Interface and

Associated Guidance Information, as defined in [Natices” on page 1095,

DB2 controls access to its objects by a set of privileges. Each privilege allows an
action on some object. shows the three primary ways within DB2 to give
an ID access to data.®

ID
I |
Privilege: Ownership: Plan and package
controlled by controlled by execution:
explicit granting privileges needed controlled by
and revoking to create objects privilege to
execute

Data

Figure 7. Access to data within DB2

The security planner must be aware of every way to allow access to data. To write
such a plan, first see:
13 H H H H T+ ”
MWWMP it pril E i |
[Privileges exercised through a plan or a package” on page 114 and [Special

DB2 has primary authorization IDs, secondary authorization IDs, and SQL IDs.
Some privileges can be exercised only by one type of ID, others by more than one.
To decide what IDs should hold specific privileges, see [Which IDs can exercisd

After you decide what IDs should hold specific privileges, you have the tools
needed to implement a security plan. Before you begin it, see what others have

done in [Some role models” on page 139 and Examples of granting and revoking
privileges” on page 144.

Granted privileges and the ownership of objects are recorded in the DB2 catalog.

To check the implementation of your security plan, see EEinding catalog information
tbout privileges” on page 152

The types of objects to which access is controlled are described in W

1. Certain authorities are assigned when DB2 is installed, and can be reassigned by changing the subsystem parameter
(DSNZPARM); you could consider changing the DSNZPARM value to be a fourth way of granting data access in DB2.

© Copyright IBM Corp. 1982, 2001 103

Explicit privileges and authorities

One way of controlling access within DB2 is by granting, not granting, or revoking
explicit privileges and authorities.
A privilege allows a specific operation, sometimes on a specific object.
An explicit privilege has a name and is held as the result of an SQL GRANT or
REVOKE statement.
An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted; for example, the ability to terminate any
utility job, which is included in the SYSOPR authority.

Privileges and authorities are held by authorization IDs.

Authorization identifiers

Every process that connects to or signs on to DB2 is represented by a set of one or
more DB2 short identifiers called authorization IDs. Authorization IDs can be
assigned to a process by default procedures or by user-written exit routines.
Methods of assigning those IDs are described in detail in lChapter 12_Caontrallind
Bccess to a DR2 subsystem” on page 169: see especially [Table 50 on page 171l and
ahle 51 on page 179.

As a result of assigning authorization IDs, every process has exactly one ID called
the primary authorization ID. All other IDs are secondary authorization IDs.

Furthermore, one ID (either primary or secondary) is designated as the current SQL
ID. You can change the value of the SQL ID during your session. If ALPHA is your
primary or one of your secondary authorization IDs, you can make it your current
SQL ID by issuing the SQL statement:

SET CURRENT SQLID = 'ALPHA';

If you issue that statement through the distributed data facility, then ALPHA must be
one of the IDs associated with your process at the location where the statement
runs. As explained in [Controlling requests from remate applications” on page 176,
your primary ID can be translated before being sent to a remote location, and
secondary IDs are associated with your process at the remote location. The current
SQL ID, however, is not translated.

An ID with SYSADM authority can set the current SQL ID to any string of up to 8
bytes, whether or not it is an authorization ID or associated with the process that is
running.

Explicit privileges
To provide finely detailed control, there are many explicit privileges. The
descriptions of the privileges are grouped into categories as follows:
¢ Tables in
* Plans in Table 22 on page 105
+ Packages in [Tahle 23 on page 105
« Collections in [Table 24 on page 105
+ Databases in [Table 25 on page 106
+ Systems in [[ahle 26 on page 108
+ Usage in fable 27 on page 107
* Schemas in

able 28 an page 107
+ Distinct types and Java classes in [fahle 29 on page 104
[Table 30 on page 108

¢ Routines in

104 Administration Guide

Table 21. Explicit DB2 table privileges

Table privileges

Allow these SQL statements for a named table or view

ALTER

ALTER TABLE, to change the table definition

DELETE

DELETE, to delete rows?

INDEX

CREATE INDEX, to create an index on the table

INSERT

INSERT, to insert rows

REFERENCES

ALTER or CREATE TABLE, to add or remove a referential
constraint referring to the named table or to a list of columns in
the table

SELECT

SELECT, to retrieve data from the table

TRIGGER

CREATE TRIGGER, to define a trigger on a table

UPDATE

UPDATE, to update all columns or a specific list of columns 2

GRANT ALL

SQL statements of all table privileges

fFable 23 shows plan privileges that DB2 allows.

Table 22. Explicit DB2 plan privileges

Plan privileges

Allow these subcommands for a named application plan

BIND

BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE

RUN, to use the plan when running the application

ffanle 23 shows package privileges that DB2 allows.

Table 23. Explicit DB2 package privileges

Package privileges

Allow these operations for a named package

BIND

The BIND, REBIND, and FREE PACKAGE subcommands,
and the DROP PACKAGE statement, to bind or free the
package, and, depending on the installation option BIND
NEW PACKAGE, to bind a new version of a package

COPY

The COPY option of BIND PACKAGE, to copy a package

EXECUTE

Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL

All package privileges

[able 24 shows DB2 collection privileges.

Table 24. Explicit DB2 collection privileges

Collection privileges

Allow these operations for a named package
collection

CREATE IN

Naming the collection in the BIND PACKAGE
subcommand

2. If you use SQLRULES(STD), or if the CURRENT RULES special register is set to 'STD', you must have the SELECT privilege for

searched updates and deletes.

Chapter 10. Controlling access to DB2 objects 105

[able 29 shows DB2 database privileges.

Table 25. Explicit DB2 database privileges

Database privileges

Allow these operations on a named database

CREATETAB The CREATE TABLE statement, to create tables in the
database

CREATETS The CREATE TABLESPACE statement, to create table
spaces in the database

DISPLAYDB The DISPLAY DATABASE command, to display the database
status

DROP The DROP and ALTER DATABASE statements, to drop or
alter the database

IMAGCOPY The QUIESCE, COPY, and MERGECORPY utilities, to prepare
for, make, and merge copies of table spaces in the database;
the MODIFY utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to
recover objects in the database and report their recovery
status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD
and DIAGNOSE WAIT) to generate diagnostic information
about, and repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS and CHECK utilities, to gather statistics and
check indexes and referential constraints for objects in the
database

STOPDB The STOP DATABASE command, to stop the database

[able 26 shows DB2 subsystem privileges.

Table 26. Explicit DB2 subsystem privileges

System privileges

Allow these operations

ARCHIVE

The ARCHIVE LOG command, to archive the current active
log, the DISPLAY ARCHIVE command, to give information
about input archive logs, the SET LOG command, to modify
the checkpoint frequency specified during installation, and the
SET ARCHIVE command, to control allocation and
deallocation of tape units for archive processing.

BINDADD

The BIND subcommand with the ADD option, to create new
plans and packages

BINDAGENT

The BIND, REBIND, and FREE subcommands, and the
DROP PACKAGE statement, to bind, rebind, or free a plan or
package, or copy a package, on behalf of the grantor. The
BINDAGENT privilege is intended for separation of function,
not for added security. A bind agent with the EXECUTE
privilege might be able to gain all the authority of the grantor
of BINDAGENT.

BSDS

106 Administration Guide

The RECOVER BSDS command, to recover the bootstrap
data set

Table 26. Explicit DB2 subsystem privileges (continued)

System privileges

Allow these operations

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table
or view name

CREATEDBA The CREATE DATABASE statement, to create a database
and have DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database
and have DBCTRL authority over it

CREATEESG The CREATE STOGROUP statement, to create a storage
group

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to
define a created temporary table

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY LOG, DISPLAY
THREAD, and DISPLAY TRACE commands, to display
system information

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE

commands, to control tracing

[Tahle 27 shows DB2 use privileges.

Table 27. Explicit DB2 use privileges

Use privileges

Allow use of these objects

USE OF BUFFERPOOL

A buffer pool

USE OF STOGROUP

A storage group

USE OF TABLESPACE

A table space

[able 28 shows DB2 schema privileges.

Table 28. Explicit DB2 schema privileges

Schema privileges

Allow use of these operations

CREATEIN Create distinct types, user-defined functions, triggers, and
stored procedures in the designated schemas

ALTERIN Alter user-defined functions or stored procedures, or specify
a comment for distinct types, user-defined functions,
triggers, and stored procedures in the designated schemas

DROPIN Drop distinct types, user-defined functions, triggers, and

stored procedures in the designated schemas

Chapter 10. Controlling access to DB2 objects 107

[able 29 shows DB2 distinct type and Java class privileges.

Table 29. Explicit DB2 distinct type and Java class privileges

Distinct type and Java class privileges Allow use of these objects

USAGE ON DISTINCT TYPE A distinct type

USAGE ON JAR (Java class for a routine) A Java class

frable 3d shows DB2 routine privileges.
Table 30. Explicit DB2 routine privileges

Routine privileges Allow use of these objects
EXECUTE ON FUNCTION A user-defined function
EXECUTE ON PROCEDURE A stored procedure

Privileges needed for statements, commands, and utility jobs: For lists of all
privileges and authorities that let you:

* Execute a particular SQL statement, see the description of the statement in
Chapter 5 of DB2 SQL Referencd.

* Issue a particular DB2 command, see the description of the command in Chapter
2 of DB2 Command Referencd.

* Run a particular type of utility job, see the description of the utility in
Command Reference.

Administrative authorities

Eigure 8 on page 109 shows how privileges are grouped into authorities and how

the authorities form a branched hierarchy. Table 31 on page 110 supplements the
figure and includes capabilities of each authority that are not represented by explicit

privileges described in [ahle 21 on page 1085.

108 Administration Guide

Authority: Installation SYSADM

No additional named privileges

Authority: SYSADM

EXECUTE privilege on all plans;

. All privileges on all packages;
Authority: SYSCTRL EXECUTE privilege on all routines;

USAGE privilege on distinct types

Authority: DBADM

System privileges: Privileges on tables and views

BINDADD CREATEDBC | in one database:
BINDAGENT CREATESG - ALTER INSERT
BSDS CREATETMTAB Authority: PACKADM DELETE SELECT
CREATEALIAS MONITOR1 -) INDEX UPDATE
CREATEDBA MONITOR2 Privileges on a collection: REFERENCES TRIGGER
STOSPACE CREATE IN
Privileges on all tables: Privileges on all packages in the
ALTER INDEX collection:
BIND COPY
REFERENCES TRIGGER EXECUTE
Privileges on catalog tables*:
SELECT UPDATE
INSERT DELETE
Privileges on all plans:
BIND
Privileges on all packages:
BIND COPY
Privileges on all collections:
CREATE IN
Privileges on all schemas:
CREATE IN DROPIN Authority: DBCTRL
ALTERIN
Privileges on one database:
Use privileges on: DROP LOAD
BUFFERPOOL TABLESPACE RECOVERDB REORG
STOGROUP REPAIR
Authority: Installation SYSOPR Authority: DBMAINT
Privileges: Privileges on one database:
ARCHIVE STARTDB (CREATETAB STARTDB
Cannot change CREATETS STATS
access mode) DISPLAYDB STOPDB
IMAGCOPY

Authority: SYSOPR

Privileges:
DISPLAY STOPALL
RECOVER TRACE

Privileges on routines: * For the applicable catalog tables and the operations that can be
START DISPLAY performed on them by SYSCTRL, see the DB2 catalog appendix
STOP in DB2 SQL Reference.

Figure 8. Individual privileges of administrative authorities. Each authority includes the privileges in its box plus all the
privileges of all authorities beneath it. Installation SYSOPR authority is an exception; it can do some things that
SYSADM and SYSCTRL cannot.

Chapter 10. Controlling access to DB2 objects 109

[Table 31 shows DB2 authorities and the actions that they are allowed.

Table 31. DB2 authorities

Authority

Description

SYSOPR

System operator:

* Can issue most DB2 commands

» Cannot issue ARCHIVE LOG, START DATABASE, STOP DATABASE,
and RECOVER BSDS

« Can terminate any utility job

e Can run the DSN1SDMP utility

Installation
SYSOPR

One or two IDs are assigned this authority when DB2 is installed. They
have all the privileges of SYSOPR, plus:

« Authority is not recorded in the DB2 catalog. The catalog need not be
available to check installation SYSOPR authority.

* No ID can revoke the authority; it can be removed only by changing
the module that contains the subsystem initialization parameters
(typically DSNZPARM).

Those IDs can also:
» Access DB2 when the subsystem is started with ACCESS(MAINT).

* Run all allowable utilities on the directory and catalog databases
(DSNDBO1 and DSNDBO0S6).

* Run the REPAIR utility with the DBD statement.

» Start and stop the database containing the application registration
table (ART) and object registration table (ORT). |:C.hapI.TLriL’l.|

describes these tables.

» Issue dynamic SQL statements that are not controlled by the DB2
governor.

* Issue a START DATABASE command to recover objects that have
LPL entries or group buffer pool recovery-pending status. These IDs
cannot change the access mode.

PACKADM

Package administrator, which has all package privileges on all packages
in specific collections, or on all collections, plus the CREATE IN privilege
on those collections. If held with the GRANT option, PACKADM can grant
those privileges to others. If the installation option BIND NEW PACKAGE
is BIND, PACKADM also has the privilege to add new packages or new
versions of existing packages.

DBMAINT

Database maintenance, the holder of which, in a specific database, can
create certain objects, run certain utilities, and issue certain commands. If
held with the GRANT option, DBMAINT can grant those privileges to
others. The holder can use the TERM UTILITY command to terminate all
utilities except DIAGNOSE, REPORT, and STOSPACE on the database.

DBCTRL

110 Administration Guide

Database control, which includes DBMAINT over a specific database,
plus the database privileges to run utilities that can change the data. The
user ID with DBCTRL authority can create an alias for another user ID on
any table in the database. If held with the GRANT option, DBCTRL can
grant those privileges to others.

— T T T H®##

Table 31. DB2 authorities (continued)

Authority

Description

DBADM

Database administration, which includes DBCTRL over a specific
database, plus privileges to access any of its tables through SQL
statements. If held with the GRANT option, DBADM can grant those
privileges to others.

Can also drop and alter any table space, table, or index in the database,
issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any
table, and issue a COMMENT ON statement for any index. If the value of
field DBADM CREATE VIEW on installation panel DSNTIPP was set to
YES during DB2 installation, a user with DBADM authority can:

* Create a view for another user ID. The view must be based on at least
one table and that table must be in the database where the user ID
that issued the CREATE VIEW statement has DBADM authority. See

the descriEtion of the CREATE VIEW statement in Chapter 5 of bed

» Create an alias for another user ID on any table in the database.

However, a user with DBADM authority on one database can create a
view on tables and views in that database and other databases if the
authorization ID for which the view is created has all other privileges that
are required to create the view. A user with DBADM authority cannot
create a view on a view that is owned by another user ID.

SYSCTRL

System control, which has nearly complete control of the DB2 subsystem

but cannot access user data directly, unless granted the privilege to do

so. Designed for administering a system containing sensitive data,

SYSCTRL can:

* Act as installation SYSOPR (when the catalog is available) or
DBCTRL over any database

* Run any allowable utility on any database

¢ |ssue a COMMENT ON, LABEL ON, or LOCK TABLE statement for
any table

» Create a view for itself or others on any catalog table

» Create tables and aliases for itself or others

* Bind a new plan or package, naming any ID as the owner

Without additional privileges, it cannot:

» Execute DML statements on user tables or views

* Run plans or packages

» Set the current SQL ID to a value that is not one of its primary or
secondary IDs

» Start or stop the database containing the ART and ORT

» Act fully as SYSADM or as DBADM over any database

* Access DB2 when the subsystem is started with ACCESS(MAINT)

SYSCTRL authority is intended for separation of function, not for added
security. If any plans have their EXECUTE privilege granted to PUBLIC,
an ID with SYSCTRL authority can grant itself SYSADM authority. The
only control over such actions is to audit the activity of IDs with high
levels of authority.

Chapter 10. Controlling access to DB2 objects 111

Table 31. DB2 authorities (continued)

Authority Description
SYSADM System administrator, which includes SYSCTRL, plus access to all data.
SYSADM can:

* Use all the privileges of DBADM over any database

» Use EXECUTE and BIND on any plan or package, COPY on any
package

» Use privileges over views that are owned by others

» Set the current SQL ID to any valid value, whether it is currently a
primary or secondary authorization ID

» Create and drop synonyms and views for others on any table

» Use any valid value for OWNER in BIND or REBIND

» Drop database DSNDBO7

* Grant any of the privileges listed above to others

Holders of SYSADM authority can also drop or alter any DB2 object,
except system databases, issue a COMMENT ON or LABEL ON
statement for any table or view, and terminate any utility job, but
SYSADM cannot specifically grant those privileges.

Installation One or two IDs are assigned this authority when DB2 is installed. They
SYSADM have all the privileges of SYSADM, plus:

« Authority is not recorded in the DB2 catalog. The catalog need not be
available to check installation SYSADM authority. (The authority
outside the catalog is crucial: If the catalog table space SYSDBAUT is
stopped, for example, DB2 cannot check the authority to start it again.
Only an installation SYSADM can start it.)

* No ID can revoke this authority; it can be removed only by changing
the module that contains the subsystem initialization parameters
(typically DSNZPARM).

Those IDs can also:
* Run the CATMAINT utility
* Access DB2 when the subsystem is started with ACCESS(MAINT)

» Start databases DSNDBO01 and DSNDBO06 when those are stopped or
in restricted status

* Run the DIAGNOSE utility with the WAIT statement
« Start and stop the database containing the ART and ORT

Field-level access control by views

Any of the table privileges, except ALTER, REFERENCES, TRIGGER, and INDEX
can also be granted on a view. By creating a view and granting privileges on it, you
can give an ID access to only a specific combination of data. The capability is
sometimes called “field-level access control” or “field-level sensitivity”.

For example, suppose you want a particular ID, say MATH110, to be able to extract

certain data from the sample employee table for statistical investigation. To be

exact, suppose you want to allow access to data:

* From columns HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, and COMM
(but not an employee's name or identification number)

* Only for employees hired after 1975

* Only for employees with an education level of 13 or higher

» Only for employees whose job is not MANAGER or PRES

To do that, create and name a view that shows exactly that combination of data:

112 Administration Guide

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM
FROM DSN8710.EMP
WHERE HIREDATE > '1975-12-31' AND EDLEVEL >= 13
AND JOB <> 'MANAGER' AND JOB <> 'PRES';

Then grant the SELECT privilege on the view SALARIES to MATH110:
GRANT SELECT ON SALARIES TO MATH110;

Then MATH110 can execute SELECT statements on the restricted set of data only.

Authority over the catalog and directory

The DB2 catalog is in database DSNDBO06. An ID with SYSCTRL or SYSADM
authority can control access to the catalog by granting privileges or authorities on
that database or on its tables or views, or by binding plans or packages that access
the catalog. Unlike SYSADM, however, SYSCTRL cannot act as DBADM over
database DSNDBO6.

Authorities that are granted on DSNDBO06 also cover database DSNDBO1, which
contains the DB2 directory. An ID with SYSADM authority can control access to the
directory by granting privileges to run utilities (that are listed in M) on
DSNDBO06, but cannot grant privileges on DSNDBO1 directly.

Every authority except SYSOPR carries the Erivilege to run some utilities on
databases DSNDBO1 and DSNDBO6. shows what utilities the other
authorities can run on those databases.

Table 32. Utility privileges on the DB2 catalog and directory

Utilities Authorities
Installation SYSOPR, DBCTRL, DBMAINT on
SYSCTRL, SYSADM, DBADM on DSNDBO06
Installation SYSADM DSNDBO06

LOAD 1%,

REPAIR DBD None (cannot be run on DSNDBO1 and DSNDBO06)

CHECK DATA,

CHECK LOB,

REORG Yes No No

TABLESPACE,

STOSPACE

REBUILD INDEX,

RECOVER,

REORG INDEX, Yes Yes No

REPAIR, REPORT

CHECK INDEX, COPY,
MERGECOPY, MODIFY, Yes Yes Yes
QUIESCE, RUNSTATS

Notes:
1. LOAD can be used to add lines to SYSIBM.SYSSTRINGS.

Chapter 10. Controlling access to DB2 objects 113

Implicit privileges of ownership

You create DB2 objects, except for plans and packages, by issuing SQL CREATE
statements in which you name the object. When you create an object, you establish
its ownership, and the owner implicitly holds certain privileges over it. (Plans and
packages have unique features of their own, described in LPrivi i

through a plan or a package” on page 117 and ESpecial considerations fod
User-defined functions and stared procedures” on page 123.)

Establishing ownership of objects with unqualified names

If an object name is unqualified, how ownership of the object is established
depends on the type of object. Ownership of tables, views, indexes, aliases, and
synonyms with unqualified names is established differently than ownership of
user-defined functions, stored procedures, distinct types, and triggers with
unqualified names. This section describes how ownership is established for each
group of objects.

If the name of a table, view, index, alias, or synonym is unqualified, you establish
the object's ownership in these ways:

» If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF, or
some similar program, the owner of the created object is your current SQL ID.
That ID must have the privileges that are needed to create the object.

* If you issue the CREATE statement statically, by running a plan or package that
contains it, the ownership of the created object depends on the option used for
the bind operation. You can bind the plan or package with either the QUALIFIER
option, the OWNER option, or both.

If the plan or package is bound with the QUALIFIER option only, the

QUALIFIER is the owner of the object. The QUALIFIER option allows the

binder to name a qualifier to use for all unqualified names of tables, views,

indexes, aliases, or synonyms that appear in the plan or package.

— If the plan or package is bound with the OWNER option only, the OWNER is
the owner of the object.

— If the plan or package is bound with both the QUALIFIER option and the
OWNER option, the QUALIFIER is the owner of the object.

— If neither option is specified, the binder of the plan or package is implicitly the
object owner.

In addition, the plan or package owner must have all required privileges on the
objects designated by the qualified names.

If the name of a user-defined function, stored procedure, distinct type, or trigger is
unqualified, the implicit qualifier is determined as described in @\fm

ifi z . However, you establish the ownership of one of
these objects in these ways:

» If you issue the CREATE statement dynamically, the owner of the created object
is your current SQL ID. That ID must have the privileges that are needed to
create the object.

* If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use the
OWNER bind option, the binder of the package or plan is implicitly the object
owner.

114 Administration Guide

The owner of a JAR (Java class for a routine) that is used by a stored procedure or
a user-defined function is the current SQL ID of the process that performs the
INSTALL_JAR function. For information on installing a JAR, see

Programming Guide and Reference for Javd.

Establishing ownership of objects with qualified names

If an object name is qualified, how ownership of the object is established depends,
again, on the type of object. This section describes how ownership is established
for each group of objects.

If you create a table, view, index, or alias with a qualified name, the qualifier
becomes the owner of the object, subject to these restrictions for specifying the
qualifier:

* If you issue the CREATE statement dynamically, and have no administrative
authority, the qualifier must be your primary ID or one of your secondary IDs.
However, if your current SQL ID has at least DBCTRL authority, you can use any
qualifier for a table or index. If your current SQL ID has at least DBADM
authority, it can also use any qualifier for a view.

If the current SQL ID has at least DBCTRL authority, the qualifier ID does not
need any privileges. Otherwise, the SQL ID must have any additional privileges
that are needed to create the object; those are CREATETS or USE OF
TABLESPACE for a table, and USE OF BUFFERPOOL and USE OF
STOGROUP for an index. If the current SQL ID does not have at least DBCTRL
authority, all the necessary privileges must be held by the qualifier ID.

» If you issue the CREATE statement statically, and the owner of the plan or
package that contains the statement has no administrative authority, the qualifier
can be only the owner. However, if the owner has at least DBCTRL authority, the
plan or package can use any qualifier for a table or an index. If the owner of the
plan or package has at least DBADM authority, it can also use any qualifier for a
view.

If you create a distinct type, user-defined function, stored procedure, or trigger with
a qualified name, the qualifier is the schema name. It identifies the schema to which
the object belongs. You can think of all objects that are qualified by the same
schema name as a group of related objects. Unlike other objects, however, the
qualifier does not identify the owner of the object. You establish ownership of a
distinct type, user-defined function, stored procedure, or trigger in these ways:

* If you issue the CREATE statement dynamically, the owner of the created object
is your current SQL ID. That ID must have the privileges that are needed to
create the object.

* If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use the
OWNER bind option, the binder of the package or plan is the implicit object
owner.

The owner of a JAR (Java class for a routine) that is used by a stored procedure or

a user-defined function is the current SQL ID of the process that performs the
INSTALL JAR function. For information on installing a JAR, see m

Programming Guide and Reference for Java

Chapter 10. Controlling access to DB2 objects 115

Privileges by type of object

The following table lists implicit privileges of ownership for each type of object.

Table 33. Implicit privileges of ownership by object type

Object type

Implicit privileges of ownership

Storage group

To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Database

DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) that is used to create it.
DBCTRL authority does not include the privilege to access data in tables
in the database.

Table space

To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

Table

» To alter or drop the table or any indexes on it

» To lock the table, comment on it, or label it

» To create an index or view for the table

» To select or update any row or column

» To insert or delete any row

* To use the LOAD utility for the table

» To define referential constraints on any table or set of columns
» To create a trigger on the table

Index

To alter, comment on, or drop the index

View

* To drop, comment on, or label the view, or to select any row or column
» To update any row or column, insert or delete any row (if the view is
not read-only)

Synonym

To use or drop the synonym

Package

To bind, rebind, free, copy, execute, or drop the package

Plan

To bind, rebind, free, or execute the plan

Alias

To drop the alias

Distinct type

To use or drop a distinct type

User-defined
functions

To execute, alter, drop, start, stop, or display a user-defined function

Stored procedure

To execute, alter, drop, start, stop, or display a stored procedure

JAR (Java class
for a routine)

Granting implicit privileges

To replace, use, or drop the JAR

Some implicit privileges of ownership correspond to privileges that can be granted
by a GRANT statement, and some do not. For those that do correspond, the owner
of the object can grant the privilege to another user. For example, the owner of a
table can grant the SELECT privilege on the table to any other user.

Changing ownership

The privileges that are implicit in ownership cannot be revoked. Except for a plan or
package, as long as an object exists, its owner cannot be changed. All that can be
done is to drop the object, which usually deletes all privileges on it, and then
re-create it with a new owner.?

3. Dropping a package does not delete all privileges on it if another version of the package still remains in the catalog.

116 Administration Guide

In practice, however, sharing the privileges of ownership is sometimes appropriate.
To do this, make the owning ID a secondary ID to which several primary
authorization IDs are connected. You can change the list of primary IDs connected
to the secondary ID without dropping and re-creating the object.

Privileges exercised through a plan or a package

This section describes the privileges that are required for executing plans and
packages. User-defined function and stored procedure packages, also known as
routine packages, have additional, unique requirements that are described in

An application plan or a package can take many actions on many tables, all of them
requiring one or more privileges. The owner of the plan or package must hold every
required privilege. Another ID can execute the plan or package if it has only the
EXECUTE privilege. In that way, another ID can exercise all the privileges that are
used in validating the plan or package, but only within the restrictions that are
imposed by the SQL statements in the original program.

For example, the program might contain:

EXEC SQL
SELECT * INTO :EMPREC FROM DSN8710.EMP
WHERE EMPNO='000010";

The example puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN8710.EMP. However, the ID that has
EXECUTE privilege for this plan can only access rows in the DSN8710.EMP table
that have EMPNO = '000010'.

The executing ID can use some of the owner's privileges, within limits. If the
privileges are revoked from the owner, the plan or the package is invalidated. It
must be rebound, and the new owner must have the required privileges.

Establishing ownership of a plan or a package

The BIND and REBIND subcommands create or change an application plan or a

package. On either subcommand, use the OWNER option to hame the owner of the

resulting plan or package. Keep these points in mind when naming an owner:

* Any user can name the primary or any secondary ID.

* An ID with the BINDAGENT privilege can name the grantor of that privilege.

* An ID with SYSCTRL or SYSADM authority can name any authorization ID on a
BIND command, but not on a REBIND command.

If you omit the OWNER option:
* On BIND, your primary ID becomes the owner.
* On REBIND, the previous owner retains ownership.

Some systems that can bind a package at a DB2 system do not support the
OWNER option. When the option is not supported, the primary authorization ID is
always the owner of the package, and a secondary ID cannot be named as the
owner.

Chapter 10. Controlling access to DB2 objects 117

Qualifying unqualified names

A plan or package can contain SQL statements that use unqualified table and view
names. For static SQL, the default qualifier for those names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND
command to specify a different qualifier.

For plans or packages that contain static SQL, using the BINDAGENT privilege and
the OWNER and QUALIFIER options gives you considerable flexibility in performing
bind operations. For example, if ALPHA has the BINDAGENT privilege from BETA,
and BETA has privileges over tables that are owned by GAMMA, ALPHA can bind a
plan using OWNER (BETA) and QUALIFIER (GAMMA). ALPHA, as merely a
binding agent, does not need to have privileges over the tables and does not have
the privilege to execute the plan.

For plans or packages that contain dynamic SQL, DYNAMICRULES behavior
determines how DB2 qualifies unqualified object names. See FAutharization fad

tynamic SQI statements” on page 133 for more information.

For unqualified distinct types, user-defined functions, stored procedures, and trigger
names in dynamic SQL statements, DB2 finds the schema name to use as the
qualifier by searching schema names in the CURRENT PATH special register. For
static statements, the PATH bind option determines the path that DB2 searches to
resolve unqualified distinct types, user-defined functions, stored procedures, and
trigger names.

However, an exception exists for ALTER, CREATE, DROP, COMMENT ON,
GRANT, and REVOKE statements. For static SQL, specify the qualifier for these
statements in the QUALIFIER bind option. For dynamic SQL, the qualifier for these
statements is the authorization ID of the CURRENT SQLID special register. See
Chapter 2 of DBR2_ SQI Referencd for more information about unqualified names.

Checking authorization to execute

The plan or package owner must have authorization to execute all static SQL
statements that are embedded in the plan or package. However, you do not need to
have the authorizations in place when the plan or package is bound; in fact, the
SQL objects that are referred to do not need to exist at that time.

A bind operation always checks whether a local object exists and whether the
owner has the required privileges on it. Any failure results in a message. To choose
whether the failure prevents the bind operation from completing, use the VALIDATE
option of BIND PLAN and BIND PACKAGE, and also the SQLERROR option of
BIND PACKAGE. See Part 5 of DB2 Application Programming and SQL Guidd for
instructions. If you let the operation complete, the checks are made again at run
time. The corresponding checks for remote objects are always made at run time.

Authorization to execute dynamic SQL statements is also checked at run time.
shows which IDs can supply the authorizations that are
required for different types of statements.

Applications that use the Recoverable Resource Manager Services attachment
facility (RRSAF) to connect to DB2 do not require a plan. If the requestin
appllcauon is an RRSAF application, DBZ follows the rules described in m

to
check authorizations.

118 Administration Guide

Checking authorization at a second DB2 server
Authorization for execution at a second DB2 server (also known as a “double-hop”

situation) is a special case of DB2 private protocol access when bind option
DBPROTOCOL (PRIVATE) is in effect. See

Requester

i Runs a package

DB2 server
(Process runner)

Uses DB2 private protocol to
execute an SQL statement
remotely

v
Second DB2 server

Figure 9. Execution at a second DB2 server

In the figure, a remote requester, either a DB2 for OS/390 and z/OS or some other
requesting system, runs a package at the DB2 server. A statement in the package
uses an alias or a three-part name to request services from a second DB2 for
0S/390 and z/OS server. The ID that is checked for the privileges that are needed
to run at the second server can be:

* The owner of the plan that is running at the requester (if the requester is DB2 for
MVS/ESA or DB2 for OS/390 and z/OS)

* The owner of the package that is running at the DB2 server

* The authorization ID of the process that runs the package at the first DB2 server
(the “process runner”)

In addition, if a remote alias is used in the SQL, the alias must be defined at the
requester site. The ID that is used depends on these four factors:

* Whether the requester is DB2 for OS/390 and z/OS or DB2 for MVS/ESA, or a
different system.

« The value of the bind option DYNAMICRULES. See lAuthorization for dynamid
[SQL statements” on page 132 for detailed information about the

DYNAMICRULES options.

* Whether the parameter HOPAUTH at the DB2 server site was set to BOTH or
RUNNER when the installation job DSNTIJUZ was run. The default value is
BOTH.

* Whether the statement that is executed at the second server is static or dynamic
SQL.

Hop situation with non-DB2 for OS/390 and z/OS or DB2 for MVS/ESA server:
Using DBPROTOCOL(DRDA), a three-part name statement can hop to a server
other than DB2 for OS/390 and z/OS or DB2 for MVS/ESA. In this hop situation,
only package authorization information is passed to the second server.

A hop is not allowed on a connection that matches the LUWID of another existing
DRDA thread. For example, in a hop situation from site A to site B to site C to site
A, a hop is not allowed to site A again.

ahle 34 on page 120 shows how these factors determine the ID that must hold the
required privileges when bind option DBPROTOCOL (PRIVATE) is in effect.

Chapter 10. Controlling access to DB2 objects 119

Table 34. The authorization ID that must hold required privileges for the double-hop situation

Requester DYNAMICRULES HOPAUTH Statement Authorization ID
Static Plan owner

DB2 for MVS/ESA or Run behavior (default)” n/a .
DB2 for OS/390 and Dynamic Process runner
ZI0S Bind behavior* n/a Either Plan owner

) Run behavior (default)” Static Package owner
Different system YES (default) -
or Dynamic Process runner
RRSAF application NO Either Process runner

without a plan - — -
Bind behavior n/a Either Package owner

Note: “If DYNAMICRULES define behavior is in effect, DB2 converts to
DYNAMICRULES bind behavior. If DYNAMICRULES invoke behavior is in effect,
DB2 converts to DYNAMICRULES run behavior.

Checking authorization to execute an RRSAF application without
a plan

RRSAF provides the capability for an application to connect to DB2 and run without
a DB2 plan. If an RRSAF application does not have a plan, the following
authorization rules are true:

» For the following types of packages, the primary or secondary authorization ID of
the process is used for checking authorization to execute the package:

— Alocal package

— Aremote package that is on a DB2 for OS/390 and z/OS or DB2 for
MVS/ESA system and is accessed using DRDA

* At a DB2 for OS/390 and z/OS or DB2 for MVS/ESA server, the authorization to
execute the DESCRIBE TABLE statement includes checking the primary and
secondary authorization IDs.

» For a double hop situation, the authorization ID that must hold the required
privileges to execute SQL statements at the second server is determined as if the
gﬁr is not a DB2 for OS/390 and z/OS or DB2 for MVS/ESA system.

lists the specific privileges.

Caching authorization IDs for best performance
You can specify that DB2 cache authorization IDs for plans, packages, or routines

(user-defined functions and stored procedures). Caching IDs can greatly improve
performance, especially when user IDs are reused frequently. One cache exists for
each plan, one global cache exists for packages, and a global cache exists for
routines. The global cache for packages and routines are allocated at DB2 startup.
For a data sharing group, each member does its own authorization caching.

Caching IDs for plans: Authorization checking is fastest when the EXECUTE
privilege is granted to PUBLIC and, after that, when the plan is reused by an ID that
already appears in the cache.

You set the size of the plan authorization cache in the BIND PLAN subcommand.
For suggestions on setting this cache size, see Part 5 of

i idd. The default cache size is specified by an installation
option, with an initial default setting of 1024 bytes.

Caching IDs for packages: This performance enhancement provides a run-time
benefit for:

» Stored procedures.

120 Administration Guide

* Remotely bound packages.

* Local packages in a package list in which the plan owner does not have execute
authority on the package at bind time, but does at run time.

» Local packages that are not explicitly listed in a package list, but are implicitly
listed by collection-id.*, *.*, or *.package-id.

Set the size of the package authorization cache using the PACKAGE AUTH CACHE
field on installation panel DSNTIPP. The default value, 32 KB, is enough storage to
support about 370 collection-id.package-id entries or collection-id.* entries.

You can cache more package authorization information by granting package
execute authority to collection.*, by granting package execute authority to PUBLIC
for some packages or collections, or by increasing the size of the cache.

Field QTPACAUT in the package accounting trace indicates how often DB2 was
successful at reading package authorization information from the cache.

Caching IDs for routines: The routine authorization cache stores authorization
IDs with the EXECUTE privilege on a specific routine. A routine is identified as
schema.routine-name.type, where the routine name is the specific function name for
user-defined functions, the procedure name for stored procedures, or ™ for all
routines in the schema.

Set the size of the routine authorization cache using the ROUTINE AUTH CACHE
field on installation panel DSNTIPP. The initial default setting of 32 KB is enough
storage to support about 370 schema.routine.type or schema.*.type entries.

You can cache more routine authorization information by granting EXECUTE on
schema.*, by granting routine execute authority to PUBLIC for some or all routines
in the schema, or by increasing the size of the cache.

Controls in the program

Because an ID executes a package or an application plan by running a program,
implementing control measures in the program can be useful. For example,
consider the SQL statement on page 17, which permits access to the row of the
employee table WHERE EMPNO="'000010". If you replace the value 10 with a host
variable, the program could supply the value of the variable and permit access to
various employee numbers. Routines in the program could limit that access to
certain IDs, or to certain times of the day, on certain days of the week, or in other
special circumstances.

Stored procedures provide an alternative to controls in the program. By
encapsulating several SQL statements into a single message to the DB2 server,
sensitive portions of the application program can be protected. Also, stored
procedures can include access to non-DB2 resources, as well as DB2.

A recommendation against use of controls in the program

Do not use programs to extend security. Whenever possible, use other techniques,
such as stored procedures or views, as a security mechanism. Program controls
are separate from other access controls, can be difficult to implement properly, are
difficult to audit, and relatively simple to bypass. Almost any debugging facility can
be used to bypass security checks. Other programs might use the plan without
doing the needed checking. Errors in the program checks might allow unauthorized
access.

Chapter 10. Controlling access to DB2 objects 121

Because the routines that check security might be quite separate from the SQL
statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

Also, a BIND REPLACE operation for an existing plan does not necessarily revoke
the existing EXECUTE privileges on the plan. (To revoke those privileges is the
default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted
only to a carefully planned list of IDs.

Restricting a plan or a package to particular systems

If you do use controls in the program, limit the use of a plan or package to the
particular systems for which it was designed. DB2 does not ensure that only
specific programs are used with a plan, but program-to-plan control can be enforced
in IMS and CICS. DB2 does provide a consistency check to avoid accidental
mismatches between program and plan, but that is not a security check.

The ENABLE and DISABLE options: The ENABLE and DISABLE options on the
BIND and REBIND subcommands for plans and packages can limit their use. For
example, ENABLE IMS allows running the plan or package from any IMS
connection and, unless other systems are named also, prevents running it from any
other type of connection. DISABLE BATCH prevents running the plan or package
through a batch job but allows running it from all other types of connection. You can
exercise even finer control, enabling or disabling particular IMS connection names,
CICS application IDs, requesting locations, and so on. For details, see the syntax of

the BIND and REBIND subcommands in DB2 Command Referencsd.

Privileges required for remote packages

Generally, the privileges that are required for a remote bind (BIND PACKAGE

location.collection) must be granted at the server location. That is, the ID that owns

the package must have all the privileges that are required to run the package at the

server, and BINDADD# and CREATE IN privileges at the server. The exceptions

are:

* For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2, where the package being copied resides.

 If the creator of the package is not the owner, the creator must have SYSCTRL

authority or higher, or must have been granted the BINDAGENT privilege by the
owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,

and bind privileges must be held there. Authorization to execute a package at a

remote location is checked at execution time, as follows:

» For DB2 private protocol, the owner of the plan at the requesting DB2 must have
EXECUTE privilege for the package at the DB2 server.

* For DRDA, if the server is a DB2 for OS/390 and z/OS subsystem, the

authorization ID of the process (primary ID or any secondary ID) must have
EXECUTE privilege for the package at the DB2 server.

» If the server is not DB2 for OS/390 and z/OS, the primary authorization ID must
have whatever privileges are needed. Check that product's documentation.

4. Or BIND, depending on the installation option BIND NEW PACKAGE.

122 Administration Guide

Special considerations for user-defined functions and stored

procedures

A number of steps are involved in implementing, defining, and invoking user-defined
functions and stored procedures, which are also called routines. This section
exEIains those steps and the authorizations they require. They are summarized in

Table 35. Common tasks and required privileges for routines

Role Tasks Required privileges

Implementor If SQL is in the routine: codes, precompiles, If binding a package, BINDADD system
compiles, and link-edits the program to use privilege and CREATE IN on the
as the routine. Binds the program as the collection.
routine package.
If no SQL is in the routine: codes, compiles,
and link-edits the program.

Definer Issues a CREATE FUNCTION statement to CREATEIN privilege on the schema.
define a user-defined function or CREATE = EXECUTE authority on the routine
PROCEDURE statement to define a stored package when invoked.
procedure.

Invoker Invokes a routine from an SQL application. EXECUTE authority on the routine.

The routine implementor typically codes the routine in a program, precompiles the
program, and binds the DBRM, if the program contains SQL statements. In general,
the authorization ID that binds the DBRM into a package is the package owner. The
implementor is the routine package owner. As package owner, the implementor has
EXECUTE authority (implicitly) on the package and has the authority to grant
EXECUTE privileges to other users to execute the code within the package.

The implementor grants EXECUTE authority on the routine package to the definer.
EXECUTE authority is only necessary if the package contains SQL. For
user-defined functions, the definer requires EXECUTE authority on the package.
For stored procedures, EXECUTE authority on the package is not limited to the
definer.

The definer is the routine owner. The definer issues a CREATE FUNCTION
statement to define a user-defined function or a CREATE PROCEDURE statement
to define a stored procedure. If the SQL statement is:

» Embedded in an application program, the definer is the authorization ID of the
owner of the plan or package.

* Dynamically prepared, the definer is the SQL authorization ID that is contained in
the CURRENT SQLID special register.

The definer grants EXECUTE authority on the routine to the invoker, that is, any
user ID that needs to invoke the routine.

The invoker invokes the routine from an SQL statement in the invoking plan or
package. The invoker:

* For a static statement, is the authorization ID of the plan or package owner.
* For a dynamic statement, depends on DYNAMICRULES behavior. See

LAuLhauza.uan_taLdyna.mJLSQJ_sLaIemems_an_page_m for a description of the

options.

Chapter 10. Controlling access to DB2 objects 123

See Chapter 5 of DB2 SQI Referencd for more information about the CREATE
FUNCTION and CREATE PROCEDURE statements.

Additional authorization for stored procedures

Prior to Version 7, stored procedures were defined to DB2 by inserting rows into
catalog table SYSIBM.SYSPROCEDURES. Starting in Version 7, a stored
procedure is defined using the CREATE PROCEDURE statement.

The CALL statement invokes a stored procedure. The privileges that are required to
execute a stored procedure invoked by the CALL statement are described in
Chapter 5 of

This section also describes additional privileges that are required on each package
that the stored procedure uses during its execution. The database server
determines the privileges that are required and the authorization ID that must have
the privileges.

Controlling access to catalog tables for stored procedures

I

| The catalog tables SYSROUTINES_SRC and SYSROUTINES_ OPTS contain

| source code and build options for generated routines that are created by coding

[tools like the DB2 Stored Procedure Builder. Because a variety of users can use

| these coding tools, you need to control access to these catalog tables by

| performing the following steps:

| » Determine criteria for limiting each application programmer’s access to a subset
| of the SYSROUTINES_SRC and SYSROUTINES_OPTS rows.

I
I
I

» Create a view for each programmer by using these criteria.

* Grant the SELECT, INSERT, UPDATE, and DELETE privileges on each view to
the appropriate programmer.

| For example, programmer Al is working on a set of stored procedures for project
| B1. You decide that programmer A1 must use schema names for the stored

| procedures that begin with the characters A1B1. Then you can create views that
| limit Al's SYSROUTINES_SRC and SYSROUTINES_OPTS accesses to rows

[where the SCHEMA value begins with A1B1. The following CREATE statement

| creates a view on SYSROUTINES_SRC:

CREATE VIEW A1.B1GRSRC AS
SELECT SCHEMA, ROUTINENAME, VERSION,
SEQNO, IBMREQD, CREATESTMT
FROM SYSIBM.SYSROUTINE_SRC
WHERE SCHEMA LIKE 'Al1B1%'
WITH CHECK OPTION;

The following CREATE statement creates a view on SYSROUTINES_OPTS:

CREATE VIEW A1.B1GROPTS AS
SELECT SCHEMA, ROUTINENAME, VERSION,
BUILDSCHEMA, BUILDNAME, BUILDOWNER, IBMREQD,
PRECOMPILE_OPTS, COMPILE_OPTS, PRELINK OPTS,
LINK_OPTS, BIND_OPTS, SOURCEDSN
FROM SYSIBM.SYSROUTINE_OPTS
WHERE SCHEMA LIKE 'A1B1%'

WITH CHECK OPTION;

| Finally, use the following statement to let A1 view or update the appropriate
[SYSROUTINE_SRC and SYSROUTINE_OPTS rows:

124 Administration Guide

GRANT SELECT, INSERT, DELETE, UPDATE
ON (A1.B1GRSRC,A1.B1GROPTS)
TO Al;

After a set of generated routines goes into production, you can decide to regain
control over the routine definitions in SYSROUTINES_SRC and
SYSROUTINES_OPTS by revoking the INSERT, DELETE, and UPDATE privileges
on the appropriate views. It is convenient for programmers to keep the SELECT
privilege on their views so that they can use the old rows for reference when they
define new generated routines.

Example of routine roles and authorizations

This example describes how to get a routine up and running, and how to use and
assign the required privileges and authorizations. In the example, the routine is an
external user-defined function.

How to code the user-defined function program (implementor

role)

1. The implementor codes a user-defined function program that implements the
user-defined function. Assume the implementor codes the following external
user-defined function, C_SALARY, written in C:

Chapter 10. Controlling access to DB2 objects 125

/**
* This routine accepts an employee serial number and a percent raise. *
* If the employee is a manager, the raise is not applied. Otherwise, =
* the new salary is computed, truncated if it exceeds the employee's =

* manager's salary, and then applied to the database. *
**/

126 Administration Guide

void C_SALARY /* main routine */
(char xemployeeSerial /* in: employee serial no. */
decimal *percentRaise /* in: percentage raise */
decimal *newSalary, /* out: employee's new salary =*/
short int *niEmployeeSerial /* in: indic var, empl ser */
short int *niPercentRaise /* in: indic var, % raise %/
short int *niNewSalary, /* out: indic var, new salary x/
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of functionx*/
char *specificName, /* in: specific name of func =*/
char *message /* out: diagnostic message x/

EXEC SQL BEGIN DECLARE SECTION;

char hvEMPNO-7-; /* host var for empl serial */
decimal hvSALARY; /* host var for empl salary =/
char hvWORKDEPT-3-; /* host var for empl dept no. */
decimal hvManagerSalary; /* host var, emp's mgr's salry=*/

EXEC SQL END DECLARE SECTION;

sqlstate = 0;
memset (message,0,70);
/***

* Copy the employee's serial into a host variable *
***/

strcpy(hvEMPNO,employeeSerial);

/***

* Get the employee's work department and current salary *
***/
EXEC SQL SELECT WORKDEPT, SALARY
INTO :hvWORKDEPT, :hvSALARY
FROM EMP
WHERE EMPNO = :hvEMPNO;

/***

* See if the employee is a manager *
***/
EXEC SQL SELECT DEPTNO
INTO :hvWORKDEPT
FROM DEPT
WHERE MGRNO = :hvEMPNO;

/***

* If the employee is a manager, do not apply the raise *
***/

if(SQLCODE == 0)
{

}

newSalary = hvSALARY;

/***

* Otherwise, compute and apply the raise such that it does not *
* exceed the employee's manager's salary *
"""""""" R R R e e 2 R T e s 2 2T
else

/***

* Get the employee's manager's salary *
***/
EXEC SQL SELECT SALARY

INTO :hvManagerSalary

FROM EMP

WHERE EMPNO = (SELECT MGRNO
FROM DSN8610.DEPT
WHERE DEPTNO = :hvWORKDEPT);

/***

* Compute proposed raise for the employee *
*khkkkkkkk *khkkkkhkkk ***/

newSalary = hvSALARY * (1 + percentRaise/100);
/***
* Don't let the proposed raise exceed the manager's salary *
***/
if(newSalary > hvManagerSalary
newSalary = hvManagerSalary;
/***
* Apply the raise *
***/
hvSALARY = newSalary;
EXEC SQL UPDATE EMP
SET SALARY = :hvSALARY
WHERE EMPNO = :hvEMPNO;

}

return;
} /* end C_SALARY x/

The implementor requires the UPDATE privilege on table EMP. Users with the
EXECUTE privilege on function C_SALARY do not need the UPDATE privilege
on the table.

2. Because this function program contains SQL, the implementor performs the
following steps:
* Precompiles the user-defined function program

» Link-edits the user-defined function program with DSNRLI (RRS attachment
facility) and names the user-defined function program’s load module
C_SALARY

* Binds the DBRM into package MYCOLLID.C_SALARY.

The implementor is now the function package owner.
3. The implementor then grants the EXECUTE privilege on the user-defined
function package to the definer.

GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY
TO definer

As package owner, the implementor can grant execute privileges to other users,
which allows those users to execute code within the package. For example:

GRANT EXECUTE ON PACKAGE MYCOLID.C_SALARY
TO other_user

Chapter 10. Controlling access to DB2 objects 127

Defining the user-defined function (definer role)

1. The definer executes the CREATE FUNCTION statement to define the
user-defined function, salary_change, to DB2.

CREATE FUNCTION
SALARY_CHANGE (
VARCHAR(6)
DECIMAL(5,2))
RETURNS
DECIMAL(9,2)
SPECIFIC schema.SALCHANGE
LANGUAGE C
DETERMINISTIC
MODIFIES SQL DATA
EXTERNAL NAME C_SALARY
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 1
STAY RESIDENT NO
PROGRAM TYPE SUB
WLM ENVIRONMENT WLMENV
SECURITY DB2
NO DBINFO;

The definer now owns the user-defined function. The definer can execute the
user-defined function package, because the user-defined function package
owner, in this case the implementor, granted the EXECUTE privilege to the
definer (see @) on the package that contains the user-defined function.

2. The definer then grants the EXECUTE privilege on SALARY_CHANGE to all
function invokers.

GRANT EXECUTE ON FUNCTION SALARY_CHANGE
TO invokerl, invoker2, invoker3, invoker4d

Using the user-defined function (invoker role)

1. The invoker codes an application program, named SALARY_ADJ. The
application program contains a static SQL statement that invokes the
user-defined function, SALARY_CHANGE, to give the employee a 10 percent
raise if the employee is not a manager, such as in the following statement:

EXEC SQL SELECT FIRSTNME,

LASTNAME
SALARY_CHANGE (:hvEMPNO, 10.0)

INTO :hvFIRSTNME,
:hvLASTNAME,
:hvSALARY

FROM EMP

WHERE EMPNO = :hvEMPNO;

2. The invoker then precompiles, compile, link-edits, and binds the invoking
application's DBRM into the invoking package or plan (the package or plan that
contains the SQL that invokes the user-defined function). The invoker is now the
owner of the invoking plan or package.

The invoker must hold the SELECT privilege on the table EMP in addition to the
EXECUTE privilege on the function SALARY_CHANGE.

128 Administration Guide

How DB2 determines authorization IDs

DB2 determines the authorization ID (invoker) that executes a user-defined function
package based on whether the SQL statement that invokes the user-defined
function is static or dynamic. In this example, the invoking package SALARY_ADJ
contains a static SQL SELECT statement that invokes the user-defined function
SALARY_CHANGE. Therefore, DB2 uses the rules for static SQL to determine the
authorization ID (invoker) that executes the user-defined function package
C_SALARY.

* While execution occurs in invoking package SALARY_ADJ, DB2 uses the
authorization ID of the invoker, the package owner.

The invoker requires the EXECUTE privilege on the user-defined function,
SALARY_CHANGE, which the package SALARY_ADJ invokes. The user-defined
function definer has the EXECUTE privilege on the user-defined function
package C_SALARY, therefore, the invoker does not require the EXECUTE
privilege.

* When execution changes to the user-defined function package C_SALARY, DB2
uses the authorization ID of the implementor, the package owner. The package
owner is the authorization ID with authority to execute all static SQL in the
user-defined function package C_SALARY.

For an example of determining authorization IDs for dynamic SQL, see m

Which IDs can

exercise which privileges

When a process gains access to DB2, it has a primary authorization ID, an SQL ID,
and perhaps one or more secondary authorization IDs. A plan or package also has
an owner ID. A specific one of those IDs must hold the required privileges for some
actions; for other actions, any one or several of the IDs must hold the required
privileges. lahle 38 summarizes, for different actions, which IDs can provide the

necessary privileges. For more specific details on any statement or command, see
or DR2 Command Referencsd.

Performance hints: A process can have up to 245 secondary IDs. For some
actions, DB2 searches a catalog table for each ID until it finds a required privilege.
Therefore, the more secondary IDs that must be checked, the longer the check
takes. For dynamic SQL, the current SQL ID is checked first; the operation is
fastest if that ID has all the necessary privileges.

Table 36. Required privileges for basic operations

Operation | ID Required privileges

Dynamic SQL statements

GRANT Current SQL ID Any of these:

» The applicable privilege with the grant
option

« An authority that includes the privilege,
with the grant option (not needed for
SYSADM or SYSCTRL)

* Ownership that implicitly includes the
privilege

REVOKE Current SQL ID Must either have granted the privilege that is
being revoked, or hold SYSCTRL or
SYSADM authority

Chapter 10. Controlling access to DB2 objects 129

Table 36. Required privileges for basic operations (continued)

Operation

ID

Required privileges

CREATE, for
ungualified object
name

Current SQL ID

Applicable table, database, or schema
privilege.

Qualify name of object
created

ID named as owner

Applicable table or database privilege. If the
current SQL ID has SYSADM authority, the

qualifier can be any ID at all, and need not

have any privilege.

Other dynamic SQL if
DYNAMICRULES
uses run behavior

All primary and
secondary IDs and
the current SQL ID
together

As required by the statement; see

q ”

Unqualified object names are qualified by the
value of the special register CURRENT
SOQLID. See & izati i

Other dynamic SQL if
DYNAMICRULES
uses bind behavior

Plan or package
owner

As required by the statement; see

”

DYNAMICRULES behavior determines how
ungualified object names are qualified; see

‘m.

Other dynamic SQL if
DYNAMICRULES
uses define behavior

Function or procedure
owner

As required by the statement; see

”

DYNAMICRULES behavior determines how
unqualified object names are qualified; see

bn page 133,

Other dynamic SQL if
DYNAMICRULES
uses invoke behavior

ID of the SQL
statement that
invoked the function
or procedure

As required by the statement; see

(”

DYNAMICRULES behavior determines how
unqualified object names are qualified; see

bn page 137,

Operations on plans and packages

Execute a plan

Primary or any
secondary 1D

Any of these:

* Ownership of the plan

« EXECUTE privilege for the plan
« SYSADM authority

Bind embedded SQL
statements, for any
bind operation

Plan or package
owner

Any of these:

« Applicable privileges required by the
statements

» Authorities that include the privileges

* Ownership that implicitly includes the
privileges

Object names include the value of
QUALIFIER, where it applies.

Include package in
PKLIST?

130 Administration Guide

Plan owner

Any of these:

« Ownership of the package

« EXECUTE privilege for the package

*« PACKADM authority over the package
collection

* SYSADM authority

Table 36. Required privileges for basic operations (continued)

Operation ID

Required privileges

BIND a new plan
using the default
owner or primary
authorization 1D

Primary 1D

BINDADD privilege, or SYSCTRL or
SYSADM authority

BIND a new package Primary ID
using the default

owner or primary

authorization 1D

If the value of the field BIND NEW

PACKAGE on installation panel DSNTIPP is

BIND, any of these:

* BINDADD privilege and CREATE IN
privilege for the collection

*« PACKADM authority for the collection

* SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of

these:

* BINDADD privilege and either the
CREATE IN or PACKADM privilege for the
collection

* SYSADM or SYSCTRL authority

BIND REPLACE or Primary or any
REBIND for a plan or secondary ID
package using the

default owner or

primary authorization

ID

Any of these:

« Ownership of the plan or package

* BIND privilege for the plan or package

« BINDAGENT from the plan or package
owner

« PACKADM authority for the collection (for
a package only)

e SYSADM or SYSCTRL authority

See also Multiple actions in one statement!
bn_page 13d.

BIND a new version Primary 1D
of a package, with
default owner

If BIND NEW PACKAGE is BIND, any of

these:

« BIND privilege on the package or
collection

* BINDADD privilege and CREATE IN
privilege for the collection

* PACKADM authority for the collection

* SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of

these:

* BINDADD privilege and either the
CREATE IN or PACKADM privilege for the
collection

* SYSADM or SYSCTRL authority

FREE or DROP a Primary or any
package? secondary ID

Any of these:

« Ownership of the package

* BINDAGENT from the package owner
* PACKADM authority for the collection
* SYSADM or SYSCTRL authority

COPY a package Primary or any

secondary ID

Any of these:

« Ownership of the package

* COPY privilege for the package

« BINDAGENT from the package owner
* PACKADM authority for the collection
* SYSADM or SYSCTRL authority

Chapter 10. Controlling access to DB2 objects 131

Table 36. Required privileges for basic operations (continued)

Operation ID Required privileges
FREE a plan Primary or any Any of these:
secondary ID * Ownership of the plan

« BIND privilege for the plan
* BINDAGENT from the plan owner
« SYSADM or SYSCTRL authority

Name a new OWNER Primary or any Any of these:

other than the primary secondary ID * New owner is the primary or any
authorization 1D for secondary ID

any bind operation « BINDAGENT from the new owner

* SYSADM or SYSCTRL authority

Notes:

1. A user-defined function, stored procedure, or trigger package does not need to
be included in a package list.

2. Atrigger package cannot be deleted by FREE PACKAGE or DROP PACKAGE.
The DROP TRIGGER statement must be used to delete the trigger package.

Authorization for dynamic SQL statements

This section explains authorization behavior for dynamic SQL statements. The two
key factors that influence authorization behavior are the DYNAMICRULES value
and the run time environment of a package.

The BIND or REBIND option DYNAMICRULES determines what values apply at run

time for the following dynamic SQL attributes:

* The authorization ID that is used to check authorization

» The qualifier that is used for unqualified objects

» The source for application programming options that DB2 uses to parse and
semantically verify dynamic SQL statements

* Whether dynamic SQL statements can include GRANT, REVOKE, ALTER,
CREATE, DROP, and RENAME statements

In addition to the DYNAMICRULES value, the run-time environment of a package
controls how dynamic SQL statements behave at run time. The two possible
run-time environments are:

* The package runs as part of a stand-alone program.

* The package runs as a stored procedure or user-defined function package, or
runs under a stored procedure or user-defined function.

A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:

— The program is called by a stored procedure or user-defined function.

— The program is in a series of nested calls that start with a stored procedure or
user-defined function.

The combination of the DYNAMICRULES value and the run-time environment
determine the values for the dynamic SQL attributes. That set of attribute values is
called the dynamic SQL statement behavior. The four behaviors are:

* Run behavior

* Bind behavior

» Define behavior

* Invoke behavior

132 Administration Guide

This section explains each behavior. The behaviors are summarized in [ahle 38 od
. The DYNAMICRULES options associated with each behavior are

summarized in Mable 37 on page 134

Run behavior
DB2 processes dynamic SQL statements using the standard attribute values for

dynamic SQL statements, which are collectively called run behavior:

» DB2 uses the authorization ID of the application process and the SQL
authorization ID (the value of the CURRENT SQLID special register):
— For authorization checking of dynamic SQL statements
— As the implicit qualifier of table, view, index, and alias names

» Dynamic SQL statements use the values of application programming options that
were specified during installation. The installation option USE FOR
DYNAMICRULES has no effect.

* GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements can be
executed dynamically.

Bind behavior
DB2 processes dynamic SQL statements using the following attribute values, which

are collectively called bind behavior:

» DB2 uses the authorization ID of the plan or package for authorization checking
of dynamic SQL statements.

» Unqualified table, view, index, and alias names in dynamic SQL statements are
implicitly qualified with value of the bind option QUALIFIER; if you do not specify
QUALIFIER, DB2 uses the authorization ID of the plan or package owner as the
implicit qualifier.

* The attribute values that are described in tCommon atiribute values for hind)

The values of the authorization ID and the qualifier for unqualified objects are the

same as those that are used for embedded or static SQL statements.

Define behavior
When the package is run as or under a stored procedure or user-defined function

package or runs under a stored procedure or user-defined function, DB2 processes

dynamic SQL statements using define behavior, which consists of the following

attribute values:

» DB2 uses the authorization ID of the user-defined function or stored procedure
owner for authorization checking of dynamic SQL statements in the application
package.

* The default qualifier for unqualified objects is the user-defined function or stored
procedure owner.

 The attribute values that are described in [Comman attribute values for bind)
bed ¥ behavior]

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the
DYNAMICRULES value specified.

Invoke behavior
When the package is run as or under a stored procedure or user-defined function

package or runs under a stored procedure or user-defined function, DB2 processes
dynamic SQL statements using invoke behavior, which consists of the following
attribute values:

Chapter 10. Controlling access to DB2 objects 133

* DB2 uses the authorization ID of the user-defined function or stored procedure
invoker for authorization checking of dynamic SQL statements in the application
package.

If the invoker is the primary authorization ID of the process or the CURRENT
SQLID value, secondary authorization IDs will also be checked if they are
needed for the required authorization. Otherwise, only one ID, the ID of the
invoker, is checked for the required authorization.

* The default qualifier for unqualified objects is the user-defined function or stored
procedure invoker.

 The attribute values that are described in lComman attribute values for hind)
Hef ol hoior]

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the
DYNAMICRULES value specified.

Common attribute values for bind, define, and invoke behavior
The following attribute values apply to dynamic SQL statements in plans or
packages that have bind, define, or invoke behavior:

* You can execute the statement SET CURRENT SQLID in a package or plan that
is bound with any DYNAMICRULES value. However, DB2 does not use the value
of CURRENT SQLID as the authorization ID for dynamic SQL statements.

DB2 always uses the value of CURRENT SQLID as the qualifier for the
EXPLAIN output PLAN_TABLE.

« If the value of installation option USE FOR DYNAMICRULES is YES, DB2 uses
the application programming default values that were specified during installation
to parse and semantically verify dynamic SQL statements. If the value of USE for
DYNAMICRULES is NO, DB2 uses the precompiler options to parse and
semantically verify dynamic SQL statements. For a list of the application
programming defaults that USE FOR DYNAMICRULES affects, see Part 5 of

* GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements cannot
be executed dynamically.

able 37 shows the combination of DYNAMICRULES value and run-time

environment that yield each dynamic SQL behavior. [ahle 38 on page 135 shows
the dynamic SQL attribute values for each type of dynamic SQL behavior.

Table 37. How DYNAMICRULES and the run-time environment determine dynamic SQL statement behavior

Behavior of dynamic SQL statements

User-defined function or stored

DYNAMICRULES value Stand-alone program environment procedure environment
BIND Bind behavior Bind behavior

RUN Run behavior Run behavior
DEFINEBIND Bind behavior Define behavior
DEFINERUN Run behavior Define behavior
INVOKEBIND Bind behavior Invoke behavior
INVOKERUN Run behavior Invoke behavior

Notes:

134 Administration Guide

1. The BIND and RUN values can be specified for packages and plans. The other
values can be specified only for packages.

Table 38. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior

Define behavior

Invoke behavior

Authorization ID

Plan or package
owner

Current SQLID

User-defined
function or stored
procedure owner

Authorization ID of
invoker *

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

Current SQLID

User-defined
function or stored
procedure owner

Authorization ID of
invoker

CURRENT SQLID 2 Not applicable Applies Not applicable Not applicable
Source for application Determined by Install panel Determined by Determined by
programming options DSNHDECP DSNTIPF DSNHDECP DSNHDECP
parameter parameter parameter
DYNRULS 3 DYNRULS 3 DYNRULS 3
Can execute GRANT, No Yes No No
REVOKE, CREATE,
ALTER, DROP, RENAME?
Notes:

1. If the invoker is the primary authorization ID of the process or the CURRENT

SQLID value, secondary authorization IDs will also be checked if they are
needed for the required authorization. Otherwise, only one ID, the ID of the
invoker, is checked for the required authorization.

DB2 uses the value of CURRENT SQLID as the authorization ID for dynamic
SQL statements only for plans and packages that have DYNAMICRULES run
behavior. For the other dynamic SQL behaviors, DB2 uses the authorization 1D
that is associated with each dynamic SQL behavior, as shown in this table.

The value to which CURRENT SQLID is initialized is independent of the
dynamic SQL behavior. For stand-alone programs, CURRENT SQLID is

initialized to the primary authorization ID. See DB2 Application Programming
Bnd SQI Guidd for information on initialization of CURRENT SQLID for

user-defined functions and stored procedures.

You can execute the SET CURRENT SQLID statement to change the value of
CURRENT SQLID for packages with any dynamic SQL behavior, but DB2 uses
the CURRENT SQLID value only for plans and packages with run behavior.

The value of DSNHDECP parameter DYNRULS, which you specify in field USE
FOR DYNAMICRULES in installation panel DSNTIPF, determines whether DB2

uses the precompiler options or the application programming defaults for

dynamic SQL statements. See Part 5 of
for more information.

Example of determining authorization IDs for dynamic SQL
statements in routines

Suppose that A is a stored procedure and C is a program that is neither a
user-defined function nor a stored procedure. Also suppose that subroutine B is

called by both stored procedure A and program C. Subroutine B, which is invoked
by a language call, is neither a user-defined function nor a stored procedure. AP is
the package that is associated with stored procedure A, and BP is the package that

Chapter 10. Controlling access to DB2 objects

135

is associated with subroutine B. A, B, and C execute as shown in Eigure 10 .

Program D

EXEC SQL CALL A(...)
(Authorization ID IDD) Plan owner: IDD

Plan DP

Definer (owner): IDASP

Stored procedure A Program C

Call B(...) Package owner: IDA Call B(...)
DYNAMICRULES(...)

Package AP

Subroutine B
Package owner: 1DB
DYNAMICRULES(...)

Package BP

Figure 10. Authorization for dynamic SQL statements in programs and routines

Stored procedure A was defined by IDASP and is therefore owned by IDASP. The
stored procedure package AP was bound by IDA and is therefore owned by IDA.
Package BP was bound by IDB and is therefore owned by IDB. The authorization
ID under which EXEC SQL CALL A runs is IDD, the owner of plan DP.

The authorization ID under which dynamic SQL statements in package AP run is
determined in the following way:

If package AP uses DYNAMICRULES bind behavior, the authorization 1D for
dynamic SQL statements in package AP is IDA, the owner of package AP.

If package AP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package AP is the value of CURRENT SQLID when
the statements execute.

If package AP uses DYNAMICRULES define behavior, the authorization 1D for
dynamic SQL statements in package AP is IDASP, the definer (owner) of stored
procedure A.

If package AP uses DYNAMICRULES invoke behavior, the authorization ID for
dynamic SQL statements in package AP is IDD, the invoker of stored procedure
A.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:

136 Administration Guide

» If package BP uses DYNAMICRULES bind behavior, the authorization ID for
dynamic SQL statements in package BP is IDB, the owner of package BP.

» If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

» If package BP uses DYNAMICRULES define behavior:

— When subroutine B is called by stored procedure A, the authorization ID for
dynamic SQL statements in package BP is IDASP, the definer of stored
procedure A.

— When subroutine B is called by program C:

- If package BP uses the DYNAMICRULES option DEFINERUN, DB2
executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option DEFINEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

» If package BP uses DYNAMICRULES invoke behavior:

— When subroutine B is called by stored procedure A, the authorization ID for
dynamic SQL statements in package BP is IDD, the authorization ID under
which EXEC SQL CALL A executed.

— When subroutine B is called by program C:

- If package BP uses the DYNAMICRULES option INVOKERUN, DB2
executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option INVOKEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

Now suppose that B is a user-defined function, as shown in Eigure 11 on page 134.

Chapter 10. Controlling access to DB2 objects 137

Program D

EXEC SQL CALL A(...)
(Authorization ID IDD)

Plan owner: IDD

Plan DP
Program C
Definer (owner): IDASP EXEC SQL
SELECT B(...)... Packa
ge

Stored Procedure A (Authorization ID IDC) owner: IDC

EXEC SQL

SELI.ECT. B...)... Package owner: IDA Package CP
(Authorization ID IDA) DYNAMICRULES(...)

Package AP

UDF owner: IDBUDF,

User-defined

function B

Package owner: IDB
DYNAMICRULES(...)

Package BP

Figure 11. Authorization for dynamic SQL statements in programs and nested routines

User-defined function B was defined by IDBUDF and is therefore owned by ID
IDBUDF. Stored procedure A invokes user-defined function B under authorization ID
IDA. Program C invokes user-defined function B under authorization ID IDC. In both
cases, the invoking SQL statement (EXEC SQL SELECT B) is static.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:
If package BP uses DYNAMICRULES bind behavior, the authorization ID for
dynamic SQL statements in package BP is IDB, the owner of package BP.

If package BP uses DYNAMICRULES run behavior, the authorization 1D for
dynamic SQL statements in package BP is the value of CURRENT SQLID when

138 Administration Guide

the statements execute.

If package BP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package BP is IDBUDF, the definer of user-defined

function B.

If package BP uses DYNAMICRULES invoke behavior:

— When user-defined function B is invoked by stored procedure A, the
authorization ID for dynamic SQL statements in package BP is IDA, the
authorization ID under which B is invoked in stored procedure A.

— When user-defined function B is invoked by program C, the authorization ID

for dynamic SQL statements in package BP is IDC, the owner of package CP,
and is the authorization ID under which B is invoked in program C.

Simplifying authorization

You can simplify authorization in several ways. Make sure you do not violate any of

the authorization standards at your installation:

* Have the implementor bind the user-defined function package using
DYNAMICRULES define behavior. With this behavior in effect, DB2 only needs to
check one ID to execute dynamic SQL statements in the routine, the definer's,
rather than check the many different IDs that invoke the user-defined function.

» If you have many different routines, group those routines into schemas. Then,
grant EXECUTE on the routines in the schema to the appropriate users. Users
have execute authority on any functions you add to that schema. For example:

GRANT EXECUTE ON FUNCTION schemaname.* TO PUBLIC;

Composite privileges

An SQL statement can name more than one object; for example, a SELECT
operation can join two or more tables, or an INSERT can use a subquery. Those
operations require privileges on all the tables. You might be able to issue such a
statement dynamically even though one of your IDs alone does not have all the
required privileges.

If DYNAMICRULES run behavior is in effect when the dynamic statement is
prepared, it is validated if the set of your primary and all your secondary IDs has all
the needed privileges among them. If you embed the same statement in a host
program and try to bind it into a plan or package, the validation fails. The validation
also fails for the dynamic statement if DYNAMICRULES bind, define, or invoke
behavior is in effect when you issue the dynamic statement. In each case, all the
required privileges must be held by the single authorization ID, determined by
DYNAMICRULES behavior.

Multiple actions in one statement

A REBIND or FREE command can name more than one plan or package. If no
owner is named, the set of privileges associated with the primary and secondary
IDs must include the BIND privilege for each object. For example, suppose that
FREDDY has the BIND privilege on plan P1 and that REUBEN has the BIND
privilege on plan P2. Assume someone with FREDDY and REUBEN as secondary
authorization IDs issues the following command:

REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither FREDDY nor REUBEN
has the BIND privilege for both plans.

Some role models

The names of some authorities suggest job titles. For example, you might expect a
system administrator to have SYSADM authority. But not all organizations divide job
responsibilities in the same way. The table below lists some other common job
titles, the tasks that usually go with them, and the DB2 authorities or privileges that
are needed to carry out those tasks.

Table 39. Some common jobs, tasks, and required privileges

Job title

Tasks Required privileges

System Operator

Issues commands to start and stop DB2; SYSOPR authority.
control traces; display databases and

threads; recover indoubt threads; start,

stop, and display routines.

Chapter 10. Controlling access to DB2 objects 139

Table 39. Some common jobs, tasks, and required privileges (continued)

Job title

Tasks

Required privileges

System Administrator

Performs emergency backup, with access
to all data.

SYSADM authority.

Security Administrator

Authorizes other users, for some or all
levels below.

SYSCTRL authority.

Database Administrator

Designs, creates, loads, reorganizes, and
monitors databases, tables, and other
objects.

DBADM authority over a database; use of
storage groups and buffer pools.

System Programmer

Installs a DB2 subsystem; recovers the
DB2 catalog; repairs data.

Installation SYSADM, which is assigned
when DB?2 is installed. (Consider securing
the password for an ID with this authority
so that the authority is available only when
needed.)

Application Programmer

Develops and tests DB2 application
programs; can create tables of test data.

BIND on existing plans or packages, or
BINDADD; CREATE IN on some
collections; privileges on some objects;
CREATETAB on some database, with a
default table space provided.

Production Binder

Binds, rebinds, and frees application plans.

BINDAGENT, granted by users with
BINDADD and CREATE IN privileges.

Package Administrator

Manages collections and the packages in
them, and delegates the responsibilities.

PACKADM authority.

User Analyst

Defines the data requirements for an
application program, by examining the DB2
catalog.

SELECT on the SYSTABLES,
SYSCOLUMNS, and SYSVIEWS catalog
tables. CREATETMTAB system privilege
to create created temporary tables.

Program End User

Executes an application program.

EXECUTE for the application plan.

Information Center

Defines the data requirements for a query

DBADM authority over some database;

Consultant user; provides the data by creating tables SELECT on the SYSTABLES,
and views, loading tables, and granting SYSCOLUMNS, and SYSVIEWS catalog
access. tables.

Query User Issues SQL statements to retrieve, add, or SELECT, INSERT, UPDATE, DELETE on

change data. Can save results as tables or
in global temporary tables.

some tables and views; CREATETAB, to
create tables in other than the default
database; CREATETMTAB system
privilege to create temporary tables;
SELECT on SYSTABLES,
SYSCOLUMNS, or views thereof. QMF
provides the views.

Examples of granting and revoking privileges

The SQL GRANT statement lets you grant privileges explicitly. The REVOKE
statement lets you take them away. Only a privilege that has been specifically
granted can be revoked. (You can use either statement only if authorization
checking was enabled when DB2 was installed.)

You can grant and revoke privileges to and from a single ID, or you can name
several IDs on one statement. You can grant privileges to the ID PUBLIC, making
them available to all IDs at the local DB2, including the owner IDs of packages that
are bound from a remote location.

140 Administration Guide

H*H H

HHHHH

When you grant any privilege to PUBLIC, DB2 catalog tables record the grantee of
the privilege as PUBLIC. Implicit table privileges are also granted to PUBLIC for
declared temporary tables. PUBLIC is a special identifier used by DB2 internally; do
not use PUBLIC as a primary or secondary authorization ID. When a privilege is
revoked from PUBLIC, authorization IDs to which the privilege was specifically
granted still retain the privilege.

The holding of other privileges can depend on privileges granted to PUBLIC. Then,
GRANTOR is listed as PUBLIC, as in the following examples:

* USERI1 creates a table and grants ALL PRIVILEGES on it to PUBLIC. USER2
then creates a view on the table. In the catalog table SYSIBM.SYSTABAUTH,
GRANTOR is PUBLIC and GRANTEE is USERZ2. Creating the view requires the
SELECT privilege, which is held by PUBLIC. If PUBLIC loses the privilege, the
view is dropped.

* Another user binds a plan, PLAN1, whose program refers to the table that was
created in the previous example. In SYSTABAUTH, GRANTOR is PUBLIC,
GRANTEE is PLAN1, and GRANTEETYPE is P. Again, if PUBLIC loses its
privilege, the plan can be invalidated.

You can grant a specific privilege on one object in a single statement, you can grant
a list of privileges, and you can grant privileges over a list of objects. You can also
grant ALL, for all the privileges of accessing a single table, or for all privileges that
are associated with a specific package. If the same grantor grants access to the
same grantee more than once, without revoking it, DB2 ignores the duplicate grants
and keeps only one record in the catalog for the authorization. That suppression of
duplicate records applies not only to explicit grants, but also to the implicit grants of
privileges that are made when a package is created.

Granting privileges to remote users: A query that arrives at your local DB2
through the distributed data facility is accompanied by an authorization ID. That ID
can go through connection or sign-on processing when it arrives, can be translated
to another value, and can be associated with secondary authorization IDs. (For the
details of all those processes, see 'Cantralling requests from remaote applications’]
bn page 176

The end result is that the query is associated with a set of IDs that is known to your
local DB2. How you assign privileges to those IDs is no different from how you
assign them to IDs that are associated with local queries.

You can grant a table privilege to any ID anywhere that uses DB2 private protocol
access to your data, by issuing:

GRANT privilege TO PUBLIC AT ALL LOCATIONS;

The privilege can be any table privilege except ALTER, INDEX, REFERENCES, or
TRIGGER.

If you grant to PUBLIC AT ALL LOCATIONS, the grantee is PUBLIC*. PUBLIC is a
special identifier used by DB2 internally; do not use PUBLIC* as a primary or
secondary authorization ID. When a privilege is revoked from PUBLIC AT ALL
LOCATIONS, authorization IDs to which the privilege was specifically granted still
retain the privilege.

There are, however, some differences in the privileges that a query using DB2
private protocol access can use:

Chapter 10. Controlling access to DB2 objects 141

* It cannot use privileges granted TO PUBLIC; it can use privileges granted TO
PUBLIC AT ALL LOCATIONS.

» It can exercise only the SELECT, INSERT, UPDATE, and DELETE privileges at
the remote location.

Those restrictions do not apply to queries run by a package bound at your local
DB2. Those queries can use any privilege granted to their associated IDs or any
privilege granted to PUBLIC.

Examples using GRANT

The scenario in this section illustrates the different types of grant statements. The
data in this scenario is not highly critical, because the focus is on GRANT rather
than on the broader topic of security.

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards—things like notices of
upcoming holidays and bowling scores. The president of the Spiffy Computer
Company, Truly Spiffy, is a wonderful bowler with a great ego, and wants everyone
in the company to have access to her scores.

To create and maintain the tables and programs that are needed for this application,
the security plan provides for the roles shown in

System administrator
ID: ADMIN

Package administrator

ID: PKAO1

Database administrator

Production binder
ID: BINDER

ID: PKAO1

Database controllers
IDs: DBUTIL1, DBUTIL2

I
Application programmers
IDs: PGMRO1, PGMRO02
PGMRO03

Figure 12. Security plan for the Spiffy Computer Company. Lines connect the grantor of a
privilege or authority to the grantee.

Spiffy's system of privileges and authorities associates each role with an
authorization ID.

System administrator's privileges

User ID: ADMIN
Authority: SYSADM
Privileges: Ownership of SG1

The system administrator uses the ADMIN authorization 1D, which has SYSADM
authority, to create a storage group (SG1) and issue the following statements:

1. GRANT PACKADM ON COLLECTION BOWLS TO PKAG1 WITH GRANT OPTION;

This grants package privileges on all packages in the collection BOWLS, plus
the CREATE IN privilege on that collection to PKAO1, who can also grant those
privileges to others.

2. GRANT CREATEDBA TO DBAO1;

142 Administration Guide

Examples with

This grants the privilege to create a database and have DBADM authority over it
to DBAOL.

3. GRANT USE OF STOGROUP SG1 TO DBAO1 WITH GRANT OPTION;

This allows DBAOL1 to use storage group SG1 and to grant that privilege to
others.

4. GRANT USE OF BUFFERPOOL BPO, BP1 TO DBAG1 WITH GRANT OPTION;

This allows DBAOL1 to use buffer pools BPO and BP1 and to grant that privilege
to others.

Package administrator's privileges

User ID: PKAO1
Authority: PACKADM over the collection BOWLS

The package administrator, PKAO1, controls the binding of packages into collections
and can grant the CREATE IN privilege and the package privileges to others.

Database administrator's privileges

User ID: DBAO1
Authority: DBADM over DB1
Privileges: CREATEDBA
Use of SG1 with GRANT
Use of BPO and BP1 with GRANT
Ownership of DB1

The database administrator, DBAO1, using the CREATEDBA privilege, creates the
database DB1. Then DBAOL automatically has DBADM authority over the database.

Database controller's privileges

User ID: DBUTIL1, DBUTIL2
Authority: DBCTRL over DB1

The database administrator at Spiffy wants help running the COPY and RECOVER
utilities and therefore grants DBCTRL authority over database DB1 to DBUTIL1 and
DBUTILZ2.

To do that, the database administrator issues the following statement:
GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

secondary IDs
The examples that follow illustrate the use of secondary authorization IDs.

That means using RACF (or a similar external security system) to define user
groups and connect primary authorization IDs to them. The primary DB2
authorization ID is the user's RACF user ID, and the associated secondary
authorization IDs are the names of the groups to which the primary ID is connected.
DB2 privileges are then granted to the secondary IDs but might not be explicitly
granted to any primary ID.

This approach reduces the number of grants that are needed and associates

privileges with a functional ID, rather than an individual one. The functional ID can
remain in place until Spiffy redesigns its procedures. Individual IDs, which come

Chapter 10. Controlling access to DB2 objects 143

and go, can be connected to or disconnected from the group that exercises the
functional ID's privileges, without requiring new grants or revokes.

Application programmers’ privileges

The database administrator at Spiffy wants several employees in the Software
Support department to create tables in the DB1 database and creates DEVGROUP
as a RACF group ID for this purpose. To make things simpler, the database
administrator decides that each CREATE TABLE statement should implicitly create
a unique table space for the table. Hence, DEVGROUP needs the CREATETAB
and CREATETS privileges, and the privileges to use the SG1 storage group and
one of the buffer pools, BPO, for the implicitly created table spaces. The following
figure shows this group and their privileges:

RACF Group ID: DEVGROUP
Privileges: (All without GRANT)
CREATETAB on DB1
CREATETS on DB1
Use of SG1
Use of BPO

The database administrator, DBAO1, owns database DB1 and has the privileges to
use storage group SG1 and buffer pool BPO (both with the GRANT option). The
database administrator issues the following statements:

1. GRANT CREATETAB, CREATETS ON DATABASE DBl TO DEVGROUP;

2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;

3. GRANT USE OF BUFFERPOOL BPO TO DEVGROUP;

The system and database administrators at Spiffy still need to control the use of
those resources, so the statements above are issued without the GRANT option.

Three programmers in the Software Support department write and test a new
program, PROGRAML1. Their IDs are PGMR01, PGMR02, and PGMRO03. Each one
needs to create test tables, use the SG1 storage group, and use one of the buffer
pools. However, all of those resources are controlled by DEVGROUP, which is a
RACF group ID.

Therefore, granting privileges over those resources specifically to PGMRO1,
PGMRO02, and PGMRO3 is unnecessary. All that is needed is to connect each ID to
the RACF group DEVGROUP. (Assuming that the installed connection and sign-on
procedures allow secondary authorization IDs. For examples of RACF commands
that connect IDs to RACF groups, and for a description of the connection and

sign-on procedures, see 'Chapter 12. Controlling access to a DB2 subsystem” on
hage 16d.)

The following figure shows this group and its members:

RACF group ID: DEVGROUP
Group members: PGMRO01, PGMR02, PGMRO03

The security administrator connects as many members as desired to the group
DEVGROUP. Each member can exercise all the privileges that are granted to the
group ID.

144 Administration Guide

Privileges for binding the plan
Three programmers can now share the tasks done by the ID DEVGROUP.

Someone creates a test table, DEVGROUP.T1, in database DB1 and loads it with
test data. Someone writes a program, PROGRAML, to display bowling scores that
are contained in T1. Someone must bind the plan and packages that accompany
the program, and that requires an additional privilege. The following figure shows
the BINDADD privilege granted to the group:

RACF group ID: DEVGROUP
Privilege: BINDADD

ADMIN, who has SYSADM authority, grants the required privilege by issuing the
following statement:

GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages that are to be owned by DEVGROUP. Any member of the group can
rebind a plan or package that is owned by DEVGROUP.

The Software Support department proceeds to create and test the program.

Moving PROGRAML1 into production

Spiffy has a different set of tables, containing actual data that is owned by another

group ID, PRODCTN. The program was written with unqualified table names; the

new packages and plan must refer to table PRODCTN.T1. To move the completed

program into production, someone must:

* Rebind the application plan with the owner PRODCTN.

* Rebind the packages into the collection BOWLS, again with the owner
PRODCTN.

Spiffy gives that job to a production binder, with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or
package with OWNER (PRODCTN), and to add a package to the collection
BOWLS. The following figure shows the privileges for BINDER:

User ID: BINDER
Privileges: BINDAGENT for DEVGROUP
BINDAGENT for PRODCTN
CREATE on BOWLS

Any member of the group DEVGROUP can grant the BINDAGENT privilege, by
using the statements below. Any member of PRODCTN can also grant the
BINDAGENT privilege, by using a similar set of statements.

1. SET CURRENT SQLID='DEVGROUP';

2. GRANT BINDAGENT TO BINDER;

The package administrator for BOWLS, PACKADM, can grant the CREATE privilege
with this statement:

GRANT CREATE ON COLLECTION BOWLS TO BINDER;

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAML1 plan available to all employees by issuing the statement:

GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

Chapter 10. Controlling access to DB2 objects 145

More than one ID has the authority or privileges necessary to issue this statement.
ADMIN has SYSADM authority and can grant the EXECUTE privilege. Or, PGMR01
can set CURRENT SQLID to PRODCTN, which owns PROGRAM1, and issue the
statement. When EXECUTE is granted to public, other IDs do not need any explicit
authority on T1; having the privilege of executing the plan is sufficient.

Finally, the plan to display bowling scores at Spiffy Computer Company is complete.
The production plan, PROGRAML, is created, and all IDs have the authority to
execute the plan.

Spiffy’s approach to distributed data
Some time after the system and database administrators at Spiffy install their

security plan, Truly Spiffy tells them that other applications on other systems must
connect to the local DB2. She wants people at every location to be able to access
bowling scores through PROGRAML1 on the local system.

The solution is to:

1. Add a CONNECT statement to the program, naming the location at which table
PRODCTN.T1 resides. (In this case, the table and the package reside at only
the central location.)

2. Issue the statement: GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP; (PKAO1,
who has PACKADM authority, grants the required privileges to DEVGROUP by
issuing this statement.)

3. Bind the SQL statements in PROGRAML1 as a package.

After that is done, the package owner can issue the statement:
GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Any system that is connected to the original DB2 location can then run PROGRAM1
and execute the package, using DRDA access. (If the remote system is another
DB2, a plan must be bound there that includes the package in its package list.)

That solution, of course, is vastly simplified. Here the focus is on granting

appropriate privileges and authorities. In practice, you would also need to consider

questions like these:

* Is the performance of a remote query acceptable for this application?

» If other DBMSs are not DB2 subsystems, will the non-SQL portions of
PROGRAML run in their environments?

The REVOKE statement

An ID that has granted a privilege can revoke it by issuing the REVOKE statement:
REVOKE authorization-specification FROM auth-id

An ID with SYSADM or SYSCTRL authority can revoke a privilege that has been
granted by another ID with:

REVOKE authorization-specification FROM auth-id BY auth-id

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single REVOKE
statement does not remove the privilege. To remove it, each grant of the privilege
must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass

the granted privilege to others. If the privilege is removed from the ID, its deletion
can cascade to others, with side effects that are not immediately evident. When a

146 Administration Guide

privilege is removed from authorization ID X, it is also removed from any ID to
which X granted it, unless that ID also has the privilege from some other source.®

For example, suppose that DBAO1 has granted DBCTRL authority with the GRANT
option on database DB1 to DBUTIL1, and DBUTIL1 has granted the CREATETAB
privilege on DB1 to PGMROL1. If DBAO1 revokes DBCTRL from DBUTIL1, PGMRO1
loses the CREATETAB privilege. If PGMRO1 also granted that to OPER1 and
OPERZ2, they also lose it. However, table T1, which PGMRO1 created while enjoying
the CREATETAB privilege, is not dropped, and the privileges that PGMRO01 has or
granted as its owner are not deleted. If PGMRO1 granted SELECT on T1 to
OPERL1, the validity of that grant rests on PGMRO01's ownership of the table. Even
when the privilege of creating the table is revoked, the table remains, the privilege
remains, and OPER1 can still access T1.

Privileges granted from two or more IDs

In addition to the CREATETAB privilege that is granted by DBUTIL1, suppose
DBUTIL2 also granted the CREATETAB privilege to PGMROL1. The action is
recorded in the catalog, with its date and time, but it has no other effect until the
grant from DBUTIL1 to PGMRO1 is revoked. Then it is necessary to determine b
what authority PGMRO1 granted CREATETAB to OPER1 and the others. m
diagrams the situation; arrows represent the granting of the CREATETAB privilege.

DBUTIL2

lTime 2
Ti

Time 1 ime 3
DBUTIL1———» PGMRO1——— » OPER1
Figure 13. Authorization granted by two or more IDs

As in the diagram, suppose that DBUTIL1 and DBUTIL2 at Time 1 and Time 2,
respectively, each issue this statement:

GRANT CREATETAB ON DATABASE DB1 TO PGMRO1 WITH GRANT OPTION;

At Time 3, PGMROL1 grants the privilege to OPERL1. Later, DBUTIL1's authority is
revoked, or perhaps DBUTIL1 explicitly revokes the CREATETAB privilege from
PGMRO01. PGMRO1 has the privilege also from DBUTIL2, and does not lose it.
Does OPERL1 lose the privilege?

» If Time 3 is later than Time 2, OPER1 does not lose the privilege. The recorded
dates and times show that, at Time 3, PGMRO1 could have granted the privilege
entirely on the basis of the privilege that was granted by DBUTIL2. That privilege
was not revoked.

» If Time 3 is earlier than Time 2, OPER1 does lose the privilege. The recorded
dates and times show that, at Time 3, PGMRO01 could only have granted the
privilege on the basis of the privilege that was granted by DBUTIL1. That
privilege was revoked, so the privileges dependent on it are also revoked.

Revoking privileges granted by other IDs

An ID with SYSADM or SYSCTRL authority can revoke privileges that are granted
by other IDs.

To revoke the CREATETAB privilege on database DB1 from PGMROL1 entirely, use:

5. DB2 does not cascade a revoke of SYSADM authority from the installation SYSADM authorization IDs.

Chapter 10. Controlling access to DB2 objects 147

REVOKE CREATETAB ON DATABASE DB1 FROM PGMRO1 BY ALL;

To revoke privileges that are granted by DBUTIL1 and to leave intact the same
privileges if they were granted by any other ID, use:

REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMRO1 BY DBUTILI;

Restricting revocation of privileges

The RESTRICT clause of the REVOKE statement applies to user-defined functions,
JARS (Java classes for a routine), stored procedures, and distinct types.
RESTRICT must be specified to either:

* Revoke the EXECUTE privilege on a user-defined function, JAR, or stored
procedure

* Revoke the USAGE privilege on a distinct type

When an attempt is made to revoke one of these privileges, DB2 determines
whether the revokee owns an object that is dependent on the privilege. If such a
dependency exists, the revoke proceeds only if the revokee also holds this privilege
from another source (grantor) or holds this privilege indirectly (such as if PUBLIC
has this privilege, or if the revokee has SYSADM authority).

For example, consider this scenario.

* UserA creates a user-defined function, UserA.UDFA.

» UserA grants EXECUTE on UserA.UDFA to UserB.

» User B then creates a user-defined function UserB.UDFB that is sourced on
UserA.UDFA.

At this point, if UserA attempts to revoke EXECUTE on UserA.UDFA from UserB,
the revoke fails with an accompanying message indicating that a dependency exists
on this privilege. If, however, UserB had the EXECUTE privilege on UserA.UDFA
from another source, directly or indirectly, the EXECUTE privilege that was granted
by UserA is revoked successfully.

The objects that are owned by the revokee that can have dependencies on distinct
type, JARS (Java classes for a routine), user-defined function, or stored procedure
privileges are as follows.

For distinct types:

» Atable that has a column that is defined as a distinct type

» A user-defined function that has a parameter that is defined as a distinct type
» A stored procedure that has a parameter that is defined as a distinct type

For user-defined functions:

* Another user-defined function that is sourced on the user-defined function

* Aview that uses the user-defined function

* Atable that uses the user-defined function in a check constraint or user-defined
default clause

» Atrigger package that uses the user-defined function

For JAR (Java classes for a routine):
* A Java user-defined function that uses a JAR
* A Java stored procedure that uses a JAR

For stored procedures, a trigger package that refers to the stored procedure in a
CALL statement

148 Administration Guide

Another way for the revoke to succeed is to drop the object that has a dependency

on the privilege. To determine which objects are dependent on which privileges

before attempting the revoke, use the following SELECT statements.

For a distinct type:

+ List all tables owned by the revokee USRTO002 that contain columns that use the

distinct type USRT001.UDT1.:
SELECT * FROM SYSIBM.SYSCOLUMNS WHERE

TBCREATOR = 'USRT002' AND
TYPESCHEMA = 'USRTOO1' AND
TYPENAME = 'UDT1' AND

COLTYPE = 'DISTINCT';

List the user-defined functions owned by the revokee USRTO002 that contain a
parameter defined as distinct type USRT001.UDT1:

SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND

ROUTINETYPE = 'F';

List the stored procedures that are owned by the revokee USRT002 that contain
a parameter defined as distinct type USRT001.UDT1.:

SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND

ROUTINETYPE = 'P';

For a user-defined function:
» List the user-defined functions that are owned by the revokee USRTO002 that are

sourced on user-defined function USRT001.SPECUDF1:

SELECT *~ FROM SYSIBM.SYSROUTINES WHERE
OWNER = 'USRT002' AND
SOURCESCHEMA = 'USRTO01' AND
SOURCESPECIFIC = 'SPECUDF1' AND
ROUTINETYPE = 'F';

List the views that are owned by the revokee USRT002 that use user-defined
function USRT001.SPECUDF1:

SELECT * FROM SYSIBM.SYSVIEWDEP WHERE

DCREATOR = 'USRT002' AND
BSCHEMA = 'USRT0O1' AND
BNAME = 'SPECUDF1' AND
BTYPE = 'F';

List the tables that are owned by the revokee USRT002 that use user-defined
function USRTO0L1.A_INTEGER in a check constraint or user-defined default
clause:

SELECT = FROM SYSIBM.SYSCONSTDEP WHERE

DTBCREATOR = 'USRT002' AND
BSCHEMA = 'USRT0O1' AND
BNAME = 'A_INTEGER' AND
BTYPE = 'F';

List the trigger packages that are owned by the revokee USRTO002 that use
user-defined function USRT001.UDF4:

SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = 'USRT002' AND
BQUALIFIER = 'USRTOO1' AND
BNAME = 'UDF4' AND
BTYPE = 'F';

Chapter 10. Controlling access to DB2 objects 149

For a JAR (Java class for a routine):

List the routines owned by the revokee USRT002 that use a JAR named
USRTO001.SPJAR:

SELECT * FROM SYSIBM.SYSROUTINES WHERE
OWNER = 'USRT002' AND
JARCHEMA = 'USRTO0O1' AND
JAR_ID = 'SPJAR';

For a stored procedure that is used in a trigger package:

List the trigger packages that refer to the stored procedure USRT001.WLMOCN2
that is owned by the revokee USRT002:

SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = 'USRT002' AND
BQUALIFIER = 'USRTOO1' AND
BNAME = 'WLMLOCN2' AND
BTYPE = '0';

Other implications of the REVOKE statement

View deletion: If a table privilege is revoked from the owner of a view on the table,
the corresponding privilege on the view is revoked. The privilege is revoked not only
from the owner of the view, but also from all other IDs to which the privilege was
granted. If the SELECT privilege on the base table is revoked from the owner of the
view, the view is dropped. However, if another grantor granted the SELECT
privilege to the view owner before the view was created, the view is not dropped.
For example, suppose OPER2 has the SELECT and INSERT privileges on table T1
and creates a view of the table. If the INSERT privilege on T1 is revoked from
OPER?2, all insert privileges on the view are revoked.If the SELECT privilege on T1
is revoked from OPERZ2, and if OPER2 did not have the SELECT privilege from
another grantor before the view was created, the view is dropped.

If a view uses a user-defined function, the view owner must have the EXECUTE
privilege on the function. If the EXECUTE privilege is revoked, the revoke fails,
because the view is using the privilege, and the RESTRICT clause prevents the
attempt to revoke the privilege.

Views created by SYSADM: An authorization ID with SYSADM authority to create
a view for another authorization ID. In this case, the view could have both a creator
and an owner. The owner is automatically given the SELECT privilege on the view.
However, the privilege on the base table determines whether the view is dropped.
For example, suppose that IDADM, with SYSADM authority, creates a view on
TABLX with OPER as the owner. OPER now has the SELECT privilege on the view,
but not necessarily any privileges on the base table. If SYSADM is revoked from
IDADM so that the SELECT privilege on TABLX is gone, the view is dropped.

If one ID creates a view for another, the catalog table SYSIBM.SYSTABAUTH might
need two rows to record the fact, as follows:

» If IDADM creates a view for OPER when OPER has enough privileges to create
the view by itself, only one row is inserted in SYSTABAUTH. The row shows only
that OPER granted the required privileges.

» If IDADM creates a view for OPER when OPER does not have enough privileges
to create the view by itself, two rows are inserted in SYSTABAUTH. One row
shows IDADM as GRANTOR and OPER as GRANTEE of the SELECT privilege.
The other row shows any other privileges that OPER might have on the view
because of privileges that are held on the base table.

150 Administration Guide

Invalidated and inoperative application plans and packages: If the owner of an
application plan or package loses a privilege that is required by the plan or
package, and the owner does not have that privilege from another source, DB2
invalidates the plan or package. For example, suppose OPER2 has the SELECT
and INSERT privileges on table T1 and creates a plan that uses SELECT, but not
INSERT. If the SELECT privilege is revoked, DB2 invalidates the plan. If the
INSERT privilege is revoked, the plan is unaffected. If the revoked privilege was
EXECUTE on a user-defined function, DB2 marks the plan or package inoperative
instead of invalid.

Implications for caching: If authorization data is cached for packages, a revoke of
EXECUTE authority on the package from an ID causes that ID to be removed from
the cache.

Similarly, if authorization data is cached for routines, a revoke or cascaded revoke
of EXECUTE authority on a routine, or on all routines in a schema (schema.*), from
any ID causes the ID to be removed from the cache.

If authorization data is cached for plans, a revoke of EXECUTE authority on the
plan from any ID causes the authorization cache to be invalidated.

If an application is caching dynamic SQL statements, and a privilege is revoked that
was needed when the statement was originally prepared and cached, that
statement is removed from the cache. Subsequent PREPARE requests for that
statement do not find it in the cache and therefore execute a full PREPARE. If the
plan or package is bound with KEEPDYNAMIC(YES), which means the application
does not need to explicitly re-prepare the statement after a commit operation, you
might get an error on an OPEN, DESCRIBE, or EXECUTE of that statement
following the next commit operation. The error can occur because a prepare
operation is performed implicitly by DB2. If you no longer have sufficient authority
for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking SYSADM from install SYSADM: If you REVOKE SYSADM from the
install SYSADM user ID, DB2 does not cascade the revoke. You can therefore
change the install SYSADM user ID or delete extraneous SYSADM user IDs. To
change the Install SYSADM user ID:

1. Select the new Install SYSADM user ID.

2. GRANT it SYSADM authority.

3. REVOKE SYSADM authority from the old Install SYSADM user ID.

4. Update the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

To delete an extraneous SYSADM user ID:
1. Write down the current Install SYSADM.

2. Make the SYSADM user ID you want to delete an Install SYSADM ID, by
updating the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

3. REVOKE SYSADM authority from the user ID using another SYSADM user ID.
4. Change the Install SYSADM user ID back to its original value.

Chapter 10. Controlling access to DB2 objects 151

Finding catalog information about privileges

The following catalog tables contain information about the privileges that IDs can
hold:

Table 40. Privileges information in DB2 catalog tables

Table name Records privileges held for

SYSIBM.SYSCOLAUTH Updating columns

SYSIBM.SYSDBAUTH Databases

SYSIBM.SYSPLANAUTH Plans

SYSIBM.SYSPACKAUTH Packages

SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections,
table spaces, JARS, and distinct types

SYSIBM.SYSROUTINEAUTH User-defined functions and stored procedures

SYSIBM.SYSSCHEMAAUTH Schemas

SYSIBM.SYSTABAUTH Tables and views

SYSIBM.SYSUSERAUTH System authorities

For descrir)tions of the columns of each table, see Appendix D of w

Retrieving information in the catalog

You can query the DB2 catalog tables by using SQL SELECT statements.
Executing those statements requires appropriate privileges and authorities, and you
can control access to the catalog by granting and revoking those privileges and

authorities. For suggestlons about securing the catalog, see [Using views of thef

The following examples suggest some of the information you can get from the DB2
catalog.

Retrieving all DB2 authorization IDs with granted privileges
Some of the catalog tables listed above include columns named GRANTEE and

GRANTEETYPE. If GRANTEETYPE is blank, the value of GRANTEE is an ID that
has been granted a privilege. No single catalog table contains information about all
privileges. However, to retrieve all IDs with privileges, you can issue the following
SQL statements:

SELECT GRANTEE, 'PACKAGE ' FROM SYSIBM.SYSPACKAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'TABLE ' FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'COLUMN ' FROM SYSIBM.SYSCOLAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'ROUTINE ' FROM SYSIBM.SYSROUTINEAUTH

WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'PLAN " FROM SYSIBM.SYSPLANAUTH
UNION

SELECT GRANTEE, 'SYSTEM ' FROM SYSIBM.SYSUSERAUTH
UNION

SELECT GRANTEE, 'DATABASE' FROM SYSIBM.SYSDBAUTH
UNION

SELECT GRANTEE, 'SCHEMA ' FROM SYSIBM.SYSSCHEMAAUTH
UNION

SELECT GRANTEE, 'USE ' FROM SYSIBM.SYSRESAUTH;

152 Administration Guide

Periodically, you should compare the list of IDs that is retrieved by these statements
with lists of users from subsystems that connect to DB2—such as IMS, CICS, and
TSO—and with lists of RACF groups and lists of users from other DBMSs that
access your DB2. If DB2 lists IDs that do not exist elsewhere, you should revoke
their privileges.

Retrieving multiple grants of the same authorization

If several grantors grant the same privilege to the same grantee, the catalog can
become cluttered with similar data. This might cause poor performance. (DB2 does
not keep duplicate records of the same privilege granted to the same grantee by
the same grantor.) However, you might want authority granted from several different
IDs. For example, you might want an ID to retain a privilege that is revoked by just
one of the sources that granted it.

The following SQL statement retrieves duplicate grants on plans. If multiple grants
clutter your catalog, examine the output from a query like this one, starting at the
top with the most frequent grants.

SELECT GRANTEE, NAME, COUNT(*)
FROM SYSIBM.SYSPLANAUTH
GROUP BY GRANTEE, NAME
HAVING COUNT(*) > 2
ORDER BY 3 DESC;

Similar statements for other catalog tables can retrieve information about multiple
grants on other types of objects.

Retrieving all IDs with DBADM authority
To retrieve all IDs that have DBADM authority, issue:

SELECT DISTINCT GRANTEE
FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <>' ' AND GRANTEETYPE = ' ';

Retrieving IDs authorized to access a table
To retrieve all IDs that are explicitly authorized to access the employee table
(DSN8710.EMP in database DSN8D71A), issue the following statement:

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH
WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN8710'
AND GRANTEETYPE = ' ';

To find out who can change the employee table, issue the following statement. It
retrieves IDs with administrative authorities, as well as IDs to which authority is
explicitly granted.

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH
WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN8710' AND
GRANTEETYPE = ' ' AND
(ALTERAUTH <> ' ' OR
DELETEAUTH <> ' ' OR
INSERTAUTH <> ' ' OR
UPDATEAUTH <> ' ')
UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH
WHERE SYSADMAUTH <> ' !
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <> ' ' AND NAME = 'DSN8D71A';

To retrieve the columns of DSN8710.EMP for which update privileges have been
granted on a specific set of columns, issue the following statement:

Chapter 10. Controlling access to DB2 objects 153

SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH
WHERE CREATOR='DSN8710' AND TNAME='EMP'
ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to an authorization ID (blank) or are used by an application plan or
package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN8710.EMP, issue the following statement:
SELECT DISTINCT GRANTEE

FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR='DSN8710' AND GRANTEETYPE=' '
AND UPDATEAUTH <> ' ';

The query returns only the IDs to which update privileges have been specifically
granted. It does not return those who have the privilege because of SYSADM or
DBADM authority. You could include them by forming the union with another query.

Retrieving IDs authorized to access a routine
To retrieve the IDs that are authorized to access stored procedure PROCA in

schema SCHEMAL, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME='PROCA' AND SCHEMA='SCHEMA1' AND GRANTEETYPE=' '
AND ROUTINETYPE ='P';

You can write a similar statement to retrieve the IDs that are authorized to access a
user-defined function. In this case, the value for ROUTINETYPE is 'F'".

Retrieving the tables an ID is authorized to access
To retrieve the list of tables and views that PGMRO0O01 can access, issue the

following statement:

SELECT DISTINCT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH
WHERE GRANTEE = 'PGMROO1' AND GRANTEETYPE =' ';

To retrieve the tables, views, and aliases that PGMRO001 owns, issue the following
statement:

SELECT NAME FROM SYSIBM.SYSTABLES
WHERE CREATOR = 'PGMROO1';

Retrieving the plans and packages that access a table
To retrieve the names of application plans and packages that refer to table
DSN8710.EMP directly, issue the following statement:

SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = 'P' AND
TCREATOR = 'DSN8710' AND
TTNAME = 'EMP';

A plan or package can refer to the table indirectly, through a view. To find all views
that refer to the table, query SYSIBM.SYSVIEWDEP. Then find all plans and
packages that refer to those views by issuing statements like the one above.

The query above does not distinguish between plans and packages. To identify a

package, use the COLLECTION column of table SYSTABAUTH, which names the
collection a package resides in and is blank for a plan.

154 Administration Guide

Using views of the DB2 catalog tables

Only an ID with SYSADM or SYSCTRL authority automatically has the privilege of
retrieving data from catalog tables. If you do not want to grant the SELECT privilege
on all catalog tables to PUBLIC, consider using views to let each ID retrieve
information about its own privileges.

For example, the following view includes the owner and the name of every table on
which a user's primary authorization ID has the SELECT privilege:
CREATE VIEW MYSELECTS AS

SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE SELECTAUTH <> ' ' AND GRANTEETYPE = ' ' AND
GRANTEE IN (USER, 'PUBLIC', 'PUBLIC*', CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue:
GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This one shows privileges over columns:

CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)
AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL
FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH
WHERE TCREATOR = TBCREATOR AND TTNAME = TBNAME AND GRANTEETYPE = ' '
AND GRANTEE IN (USER,'PUBLIC',CURRENT SQLID,'PUBLICx');

Chapter 10. Controlling access to DB2 objects 155

156 Administration Guide

Chapter 11. Controlling access through a closed application

A closed application is an application that requires DB2 objects to be managed
solely through external interfaces. As an example, consider an application process
that uses DB2 as a repository for changing data. The process does not merely write
to and read from a fixed set of tables; it must also create, alter, and drop tables,
and perhaps other objects, to deal with new data formats. Normally, a database
administrator would have the privileges needed to do those operations at any time,
but now the operations must be done only through a specific application. The
application is “closed” because it requires exclusive control over data definition
statements for some set of objects.

If you install data definition control support on installation panel DSNTIPZ, you can
control how specific plans or package collections can use those statements.

lists the specific statements that are controlled. In this chapter, those
statements are referred to as “data definition language”, or “DDL”".

The control does not avoid existing authorization checks; it does impose additional
constraints. You register plans and package collections in a special table, and you
register the objects that the plans and collections that are associated with another
table. DB2 then consults those two registration tables before accepting a given DDL
statement from a process. If the registration tables indicate that the particular
process is not allowed to create, alter, or drop that particular object, DB2 does not
allow it.

This chapter tells how to impose several degrees of control over applications and

objects; see 'Contralling data definition’.

If you choose to impose those controls, you have two tables to manage: the
application reglstratlon table (ART) and the object reglstratlon table (ORT) For
instructions, see

CREATE ALIAS DROP ALIAS COMMENT ON
CREATE DATABASE ALTER DATABASE DROP DATABASE LABEL ON
CREATE INDEX ALTER INDEX DROP INDEX

CREATE STOGROUP ALTER STOGROUP DROP STOGROUP

CREATE SYNONYM DROP SYNONYM

CREATE TABLE ALTER TABLE DROP TABLE

CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE

CREATE VIEW DROP VIEW

Figure 14. Statements controlled by data definition control support

Controlling data definition

You can control the use of data definition language through several installation
options and entries in two special tables, the ART and the ORT. In those tables, you
register the names of plans and package collections that make up an application
and the names of the objects whose data definition they control. First, you choose
installation options to make any use of data definition control; see m

[nstallation options” on page 158. The next sections illustrate the use of installation

options and the registration tables for the following situations:
» Control by application name
— Registered applications have total control over all DDL in the DB2 subsystem.

See ['Cantrolling hy application name” on page 154.

© Copyright IBM Corp. 1982, 2001 157

— Registered applications have total control with some exceptions. See

» Control by object name
— All objects in the system are registered and controlled by name. See

— Some specific objects are registered and controlled. DDL is accepted for

objects that are not registered. See ECantralling by object name with

The names in some columns in the ART and ORT can be represented by patterns
that use the percent sign (%) and the underscore (_) characters. m
2 tells you how to do this.

Required installation options

To use the ART and ORT, you must install data definition control support by
entering YES for the first option as follows:

1 INSTALL DD CONTROL SUPT. ===> YES

Also on panel DSNTIPZ, choose the names for the registration tables in your DB2
subsystem, their owners, and the databases they reside in. You can accept the
default names or assign names of your own. The default names are as follows:

6 REGISTRATION OWNER DSNRGCOL

7 REGISTRATION DATABASE DSNRGFDB

8 APPL REGISTRATION TABL > DSN_REGISTER_APPL
9 0BJT REGISTRATION TABL DSN_REGISTER_OBJT

\

| IR | I |

m mn nn

nm n nn
\"

\%

mm

This chapter uses these default names. If you specify different table names, each
name can have a maximum of 17 characters.

Four other options on installation panel DSNTIPZ, which are described later in this
chapter, determine how DDL statements are controlled:

2 CONTROL ALL APPLICATIONS
3 REQUIRE FULL NAMES

4 UNREGISTERED DDL DEFAULT
5 ART/ORT ESCAPE CHARACTER

>

vV Vv

\%

Controlling by application name

The simplest use of data definition control is to give one or more applications total
control over the use of DDL in the system. To do that:

1. When installing DB2, choose to control all applications. On panel DSNTIPZ,
specify:
CONTROL ALL APPLICATIONS ===> YES

That choice allows only package collections or plans that are registered in the
ART to use DDL statements. (This case, then, does not require any use of the
ORT.)

2. Register, in the ART, all package collections that you allow to issue DDL
statements, using the value Y in column DEFAULTAPPL. If a plan is to issue
DDL statements that are not bound to a package, register the plan name. You
must supply values for at least the following columns:

Column name Description

APPLIDENT Collection-ID of the package that is executing the DDL or, if no
package exists, the name of the plan that is executing the DDL

158 Administration Guide

APPLIDENTTYPE
Type of item named by APPLIDENT:
P Application plan
C Package collection

DEFAULTAPPL
Indicates whether the plan or package collection named by
APPLIDENT can use DDL. Enter Y (Yes); the default is N (No).

(You can enter information in other columns for your own use. For a complete

description of the table, see [Columns of the ART” on page 164.)

Example: Suppose you want all DDL in your system to be issued only through
certain applications. The applications are identified by:

1. PLANA, the name of an application plan

2. PACKB, a package collection-ID

3. TRULY%, a pattern for any plan name beginning with TRULY

4. TR%, a pattern for any plan name beginning with TR

[fable 41 shows the entries you need in your ART.
Table 41. Table DSN_REGISTER_APPL for total system control

APPLIDENT APPLIDENTTYPE DEFAULTAPPL
PLANA P Y
PACKB C Y
TRULY% P Y
TR% P N

Using name patterns: DB2 accepts two pattern characters:
* The percent sign (%), to represent zero or more characters
* The underscore character (), to represent a single character

Patterns are used here much as they are in the SQL LIKE predicate described in
Chapter 2 of DB2 SQI Reference. However, the one difference is that blanks
following a pattern character are not significant. DB2 treats 'A% ' the same as 'A%’

The escape character: If you want the percent or underscore character to be
treated as a character, specify an escape character for option 5 on installation panel
DSNTIPZ. The escape character can be any special character, except underscore
(1) or percent (%). For example, to use the pound sign (#), specify:

5 ART/ORT ESCAPE CHARACTER ===> #

With that specification, the pound sign can be used in names in the same way as
an escape character is used in an SQL LIKE predicate.

An inactive table entry: If the row with TR% for APPLIDENT in fable 41 originally
contains the value Y for DEFAULTAPPL, any plan with a name beginning with TR
can execute DDL. Then if DEFAULTAPPL is changed to N to disallow that use, the
changed row does not prevent plans beginning with TR from using DDL,; the row
merely fails to allow that use. (When the table is checked, that row is ignored.)
Hence, the plan TRULYXYZ is allowed to use DDL, by the row with APPLIDENT
TRULY%.

Chapter 11. Controlling access through a closed application 159

Controlling by application name with exceptions

In this situation, you want to give one or more applications almost total control over
DDL. You reserve only a few objects that are to be created, altered, or dropped by
other applications. To do that:
1. When installing DB2, choose not to control all applications. On panel DSNTIPZ,
specify:
CONTROL ALL APPLICATIONS ===> NO

That choice allows unregistered applications to use DDL statements. The ORT
determines restrictions that apply to that use.

2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> APPL

That choice restricts the use of DDL statements for objects that are not
registered in the ORT: only registered applications can use DDL for unregistered
objects. Hence, the registered applications retain almost total control; only
registered objects are possible exceptions.

3. In the ORT, register all objects that are exceptions to the system DDL control.
You must supply values for at least the following columns:

Column name Description

QUALIFIER Qualifier for the object name

NAME Simple name of the object
TYPE Type of named object:
C Table, view, index, synonym, or alias
D Database
T Table space
S Storage group
APPLMATCHREQ

Indicates whether only the application named in APPLIDENT
can use DDL for this object: Y (Yes) or N (No)

APPLIDENT Collection-ID of the package that can have exclusive control
over DDL for this object or, if no package exists, the name of
the plan that can have exclusive control

APPLIDENTTYPE
Type of item named by APPLIDENT:
P Application plan
C Package collection

(You can enter information in_other columns for your own use. For a complete

description of the table, see [Columns of the QRT” on page 165)

Example: Suppose that you want almost all DDL in your system to be issued only
through certain applications, known by an application plan (PLANA), a package
collection (PACKB), and a pattern for plan names (TRULY%). However, you also
want these specific exceptions:

The ART remains as in Tahle 41 an page 153: PLANA and PACKB have total
system control (but with exceptions). Tahle 42 on page 161 shows the entries that

are needed to register those exceptions in the ORT.

160 Administration Guide

Table 42. Table DSN_REGISTER_OBJT for system control with exceptions
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

Kim * VIEW1 C Y PLANC P
BOB 2 ALIAS Cc Y PACKD C
FENG 3 TABLE2 C N

SPIFFY “ MSTR_ C Y TRULY% P

Notes:

1. Requires an application match for the object KIM.VIEW1: the view can be
created, altered, or dropped only by the application plan PLANC.

2. Specifies that BOB.ALIAS can be created, altered, or dropped only by the
package collection PACKD.

3. Requires no application match for FENG.TABLEZ2: the object can be created,
altered, or dropped by any plan or package collection.

4. The fourth entry requires only a pattern match; the object SPIFFY.MSTRA, for
example, can be created, altered, or dropped by plan TRULYJKL.

Registering sets of objects

Complete two-part names are not required for every object that is registered in the
ORT. To use incomplete names, on installation panel DSNTIPZ specify:

3 REQUIRE FULL NAMES ===> N0

The default value, YES, requires you to use both parts of the name of each
registered object. With the value NO, an incomplete name in the ORT represents a
set of objects that all share the same value for one part of a two-part name. Objects
that are represented by incomplete names in the ORT need an authorizing entry in
the ART.

The entries shown in [[ahle 43 can be added to [able 43 when NO is specified:

Table 43. Table DSN_REGISTER_OBJT for objects with incomplete names
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P
TABB C Y PACKY C
SYSADM C N
DBSYSADM T N
USER1 TABLEX C N

The first two entries record two sets of objects, *. TABA and *. TABB, which are
controlled by PLANX and PACKY, respectively. That is, only PLANX can create,
alter, or drop any object whose name is qual. TABA, where qual is any appropriate
qualifier. Only PACKY can create, alter, or drop any object whose name is

qual. TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in Table 44 on page 163. That allows the
applications to use sets of objects that are registered in the ORT with an incomplete
name.

The next two new entries in the ORT record:

1. Tables, views, indexes, or aliases with names like SYSADM.*

2. Table spaces with names like DBSYSADM.*; that is, table spaces in database
DBSYSADM

Chapter 11. Controlling access through a closed application 161

The last entry in the ORT allows two kinds of incomplete names: table names like
USER1.* and table names like *. TABLEX.

ART entries for objects with incomplete names in the ORT: Objects having
names like those patterns can be created, altered, or dropped by any package
collection or application plan, because APPLMATCHREQ = N. However, the
collection or plan that creates, alters, or drops such an object must be registered in
the ART with QUALIFIEROK=Y, to allow it to use incomplete object names.

[Fable 44 shows PLANA and PACKB registered in the ART to use sets of objects
that are registered in the ORT with incomplete names.

Table 44. Table DSN_REGISTER_APPL for plans that use sets of objects

APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK
PLANA P N Y
PACKB C N Y

Controlling by object name

In this situation, you want each of several applications to control a specific set of
objects, and you want no unregistered objects in the system. You do allow some
registered objects that are not controlled by specific applications. To accomplish
that:

1. When installing DB2, choose not to control all applications, as in m
bpphcallon_nam.ﬂ_\mh_excepnmslan_pageiﬁd On panel DSNTIPZ, specify:

CONTROL ALL APPLICATIONS ===> NO
2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> REJECT

That option totally restricts the use of DDL statements for objects that are not
registered in the ORT: no application can create, or use any DDL, for any
unregistered object. (This case, then, might not require any use of the ART.)

3. Register all objects in the system in the ORT by QUALIFIER, NAME, and TYPE.
You can use name patterns for QUALIFIER and NAME. (If you used REQUIRE
FULL NAMES = NO, register sets of objects by NAME and TYPE or by
QUALIFIER and TYPE.) For each controlled object, use APPLMATCHREQ = V.
Give the name of the plan or package collection that controls the object in the
APPLIDENT column. (Again, you can use a name pattern.) You can have only
one row in the ORT for each combination of QUALIFIER.NAME.TYPE.

4. Register in the ART, with QUALIFIEROK =Y, any plan or package collection
that can use a set of objects that you register in the ORT with an incomplete
name, regardless of whether that set has APPLMATCHREQ = V.

Example: Table 45 on page 163 shows entries in the ORT for a DB2 subsystem
containing the following objects:

» Two storage groups and a database that are not controlled by a specific
application. Those could be created, altered, or dropped by a user with the
appropriate authority using any application, such as SPUFI or QMF.

* Two table spaces that are not controlled by a specific application. Their names
are qualified by the name of the database they reside in.

» Three objects whose names are qualified by the authorization IDs of their
owners. Those objects could be tables, views, indexes, synonyms, or aliases.
DDL statements for those objects can be issued only through the application plan
named PLANX or the package collection named PACKX.

162 Administration Guide

* Objects with names like EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, that
can be created, altered, or deleted by application plan SPUFI. Entry E%D in the
QUALIFIER column represents all three objects.

* Objects with names beginning TRULY.MY _, where the underscore character is
actually part of the name. Assuming that you specified # as the escape character,
all of those objects can be created, altered, or dropped only by plans with names
that begin with TRULY.

Assume the following installation option:
REQUIRE FULL NAMES ===> YES

Entries in [Table 43 do not specify incomplete nhames. Hence, objects that are not
represented in the table cannot be created in the system, except by an ID with
installation SYSADM authority.

Table 45. Table DSN_REGISTER_OBJT for total control by object
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N

STOG2 S N

DATB1 D N
DATB1 TBSP1 T N
DATB1 TBSP2 T N
KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
E%D OBJ4 C Y SPUFI P
TRULY MY#_% C Y TRULY% P

Controlling by object name with exceptions

In this situation, you want each of several applications to control a specific set of
registered objects. You also allow other applications to use DDL statements for
unregistered objects.

1. When installing DB2, choose not to control all applications, as in [Contralling byl
application name with exceptions” on page 16d. On panel DSNTIPZ, specify:

CONTROL ALL APPLICATIONS ===> NO
2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> ACCEPT

That option does not restrict the use of DDL statements for objects that are not
registered in the ORT: any application can use DDL for any unregistered object.

3. Register all controlled objects in the ORT. Use a name and qualifier to identify a
single object. Use only one part of a two-part name to identify a set of objects
that share just that part of the name. For each controlled object, use
APPLMATCHREQ =Y. Give the name of the plan or package collection that
controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the ORT),
register the controlling application in the ART. Supply values for the APPLIDENT
and APPLIDENTTYPE columns as in [ahle 44 an page 163. You must also
supply values for one additional column:

Column name
Description

Chapter 11. Controlling access through a closed application 163

QUALIFIEROK
Specify Y (Yes) to show that the application can supply the remaining
part of the name in DDL statements for objects that are registered in the
ORT by an incomplete name.

Example: The two tables below assume that the |nstallat|on option, REQUIRE
FULL NAMES, is set to NO, as described in
page 161. [rable 48 shows entries in the ORT for the following controlled objects:

* The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all
of which are controlled by PLANX or PACKX, as described under

ohject name” an page 162. DB2 cannot interpret the object names as incomplete

names, because the objects that control them, PLANX and PACKX, are
registered in Table 47 with QUALIFIEROK=N.

* Two sets of objects, *. TABA and *.TABB, which are controlled by PLANA and
PACKB, respectively.

Table 46. Table DSN_REGISTER_OBJT for object control with exceptions
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
EDWARD OoBJ4 C Y PACKX C
TABA C Y PLANA P
TABB C Y PACKB C
[fahle 47 shows entries in the corresponding ART:
Table 47. Table DSN_REGISTER_APPL for object control with exceptions
APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK
PLANX P N N
PACKX Cc N N
PLANA P N Y
PACKB C N Y

In this situation, with the combination of installation options shown above, any
application can use DDL for objects that are not covered by entries in the ORT. For
example, if user HOWARD has the CREATETAB privilege, he can create the table
HOWARD.TABLE10 through any application.

Managing the registration tables and their indexes
EColumns of the ART and EColumns of the ORT” on page 163 describe the columns

of the two registration tables.

An overview of the registration tables

Columns of the ART
Table 48. Columns of the ART
Column Column name Description

1 APPLIDENT Collection-ID of the package
executing the DDL or, if no
package exists, the name of
the plan that executes the
DDL

164 Administration Guide

Table 48. Columns of the ART (continued)

2

APPLIDENTTYPE

Type of application identifier

3

APPLICATIONDESC

Optional data. See FCalumnd

DEFAULTAPPL

Indicates whether all DDL
should be accepted from this
application

QUALIFIEROK

Indicates whether the
application can supply a
missing name part for objects
that are named in the ORT, if
REQUIRE FULL NAMES =
NO

CREATOR

Optional data. See EColumnd

CREATETIMESTAMP

Optional data. See EColumnd
bmew—use—m—pageJﬁj‘ i .

CHANGER

Optional data. See EColumnd

Columns of the ORT

Table 49. Columns of the ORT
Column

CHANGETIMESTAMP

Column name

Optional data. See FColumnd

Description

1 QUALIFIER Object name qualifier

2 NAME Unqualified object name

3 TYPE Type of object

4 APPLMATCHREQ Indicates whether an
application that names this
object must match the one
named in the APPLIDENT
column

5 APPLIDENT Collection-ID of the plan or
package that executes the
DDL

6 APPLIDENTTYPE Type of application identifier

7 APPLICATIONDESC Optional data. See FCalumnd
mpmmw " .

8 CREATOR Optional data. See FColumnd

9 CREATETIMESTAMP Optional data. See FCalumnd

10 CHANGER Optional data. See EColumnd

11 CHANGETIMESTAMP Optional data. See ECalumnd

for optional use” on page 167.

Chapter 11. Controlling access through a closed application 165

Creating the tables and indexes

The ART, the ORT, and the required unigue indexes on them are created when you
install data definition control support. If you drop any of those objects, you can
re-create them using the CREATE statements shown here:

CREATE statements for the ART and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL

(APPLIDENT CHAR(18) NOT
APPLIDENTTYPE CHAR(1) NOT
APPLICATIONDESC ~ VARCHAR(30) NOT
DEFAULTAPPL CHAR(1) NOT
QUALIFIEROK CHAR(1) NOT
CREATOR CHAR(26) NOT
CREATETIMESTAMP TIMESTAMP NOT
CHANGER CHAR(26) NOT

CHANGETIMESTAMP TIMESTAMP NOT
IN DSNRGFDB.DSNRGFTS;

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI

ON DSNRGCOL.DSN_REGISTER_APPL

DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT)

(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)

CLUSTER;

CREATE statements for the ORT and its index:

CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT

(QUALIFIER CHAR(8) NOT
NAME CHAR(18) NOT
TYPE CHAR(1) NOT
APPLMATCHREQ CHAR(1) NOT
APPLIDENT CHAR(18) NOT
APPLIDENTTYPE CHAR(1) NOT
APPLICATIONDESC VARCHAR(30) NOT
CREATOR CHAR(26) NOT
CREATETIMESTAMP TIMESTAMP NOT
CHANGER CHAR(26) NOT

CHANGETIMESTAMP TIMESTAMP NOT
IN DSNRGFDB.DSNRGFTS;

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI

ON DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER, NAME, TYPE) CLUSTER;

DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT,
DEFAULT)

You can alter these statements to add columns to the ends of the tables, assign an
auditing status, or choose buffer pool or storage options for indexes. You can create
these tables with table check constraints to limit the types of entries that are
allowed. If you change either of the table names, their owner, or their database, you
must reinstall DB2 in update mode and make the corresponding changes on panel
DSNTIPZ. Name the required index by adding the letter | to the corresponding

table.

Every member of a data sharing group must have the same names for the ART and

ORT tables

If you drop any of the registration tables or indexes, most data definition statements
are rejected until the dropped objects are re-created. The only DDL statements that
are allowed in such circumstances are those that create the registration tables that
are defined during installation, their indexes, and the table spaces and database

that contain them.

The installation job DSNTIJSG creates a segmented table space to hold the ART

and the ORT, using this statement:

166 Administration Guide

CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify job DSNTIJSG before installing DB2 or else drop the table space and
re-create it, the two tables, and their indexes.

Adding columns

You can add columns to either registration table for your own use, using the ALTER
TABLE statement. If IBM adds columns to either table in future releases, the
column names will contain only letters and numbers; consider using some special
character, such as the plus sign (+), in your column names to avoid possible
conflict.

Updating the tables

You can load either table with the LOAD utility or update it with SQL INSERT,
UPDATE, or DELETE statements. Security provisions are important. Allow only a
restricted set of authorization IDs, or perhaps only those with SYSADM authority, to
update the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column. A registration table cannot be updated until all jobs whose
DDL statements are controlled by the table have completed.

Columns for optional use

The ART and ORT contain columns that are not used by DB2. Recommendation:
Use these columns to audit and manage the tables as follows:

* In APPLICATIONDESC, put a more readable description of each application than
the eight-character APPLIDENT column can contain.

* In CREATOR or CHANGER, put the authorization ID that created or last changed
the row. The columns are large enough for a three-part name, with the parts
separated by periods in columns 9 and 18. If you enter only the primary
authorization ID (from the SQL value USER), consider entering it right-justified in
the field—that is, preceded by 18 blanks.

* When updating CREATETIMESTAMP and CHANGETIMESTAMP, enter
CURRENT TIMESTAMP. When you load or insert a row, DB2 can automatically
enter the value of CURRENT TIMESTAMP.

Stopping data definition control

When data definition control is active, only the users with installation SYSADM or
installation SYSOPR authority are able to stop the database, a table space, or an
index space containing a registration table or index. When the object is stopped,
only an ID with one of those authorities can start it again.

Bypassing data definition control: An ID with install SYSADM authority can
execute DDL statements regardless of whether data definition control is active, and
of whether the ART or ORT is available, through the following means:

* Through a static SQL statement, if the ID is owner of the plan or package that
contains the statement

* Through a dynamic CREATE statement, if the ID is the current SQLID

* Through a dynamic ALTER or DROP statement, if the ID is the current SQLID,
the primary ID, or any secondary ID of the executing process

Chapter 11. Controlling access through a closed application 167

168 Administration Guide

Chapter 12. Controlling access to a DB2 subsystem

This chapter tells how to control access to the DB2 subsystem from different
environments and how to associate a process with an intended set of authorization
IDs.

Recommendation for external security system: Control access through an
external security system, for which Resource Access Control Facility (RACF) is the

model. LEstahlishing RACFE protection for DB2” an page 194 tells how to make DB2

and its IDs known to RACF.

Control by RACF is not strictly necessary, and some alternatives are described

under EQther methods of controlling access” on page 214. However, most of the

description assumes that RACF, or an equivalent product, is already in place.

Local requests only: If you are not accepting requests from or sending requests to
remote locations, begin this chapter with lContralling local requests!. When you

come to LCanLLalung_tequesIs_tLom_Lemole_apphcaUmls_an_pageJld you can skip
everything up to tEstablishing RACE protection for DB2” an page 198.

Remote requests: If you are accepting requests from remote appl|cat|ons you

might first want to read L

m, which describes the security checks that a remote request is subject to
before it can access your DB2 subsystem. The level of security differs depending
on whether the requesting application is using SNA or Transmission Control
Protocol/Internet Protocol (TCP/IP) protocols to access DB2. After the incoming ID
has been authenticated by the local system, the ID is treated like a local connection
request or a local sign-on request: You can process it with your connection or
sign-on exit routine and associate secondary authorization IDs with it. For more

information, see tCantralling local requests’.

If you are sending requests to a remote DB2 subsystem, that subsystem can
subject your requests to various security checks. For suggestions on how to plan
for those checks, see Planning to send remote requests” on page 189. If you send
requests to a remote DBMS that is not DB2 for OS/390 and z/OS, use the
documentation for that DRDA database server.

Topics covered in this chapter:

Controlling local requests

Different local processes enter the access control procedure at different points,
depending on the environment where they orlgmate (Quite different criteria apply to
remote requests; they are described in

bpplications” on page 176.)

* The following processes go through connection processing only:

© Copyright IBM Corp. 1982, 2001 169

— Requests originating in TSO foreground and background (including online
utilities and requests through the call attachment facility)

— JES-initiated batch jobs

— Requests through started task control address spaces (from the MVS START
command)

» The following processes go through connection processing and can later go
through the sign-on exit also.
— The IMS control region.
— The CICS recovery coordination task.
— DL/l batch.
— Applications that connect using the Recoverable Resource Manager Services

attachment facility (RRSAF). (See Part 6 of DB2 Application Pragramming and

for more information.)
* The following processes go through sign-on processing:
— Requests from IMS dependent regions (including MPP, BMP, and Fast Path)
— CICS transaction subtasks

For instructions on controlling the IDs that are associated with connection requests,

see LProcessing connections’l. For instructions on controlling the IDs that are
associated with sign-on requests, see I'Processing sign-ons” an page 173.

IMS, CICS, RRSAF, or DDF-to-DDF connections can send a sign-on request,
typically in order to execute an application plan. That request must provide a
primary ID; optionally, it can provide secondary IDs also. After a plan is allocated, it
need not be deallocated until a new plan is needed. A different transaction can use
the same plan by issuing a new sign-on request with a new primary ID.

Processing connections

A connection request makes a new connection to DB2; it does not reuse an
application plan that is already allocated. Therefore, an essential step in processing
the reguest is to check that the ID is authorized to use DB2 resources, as shown in

Step 1: Obtain primary ID

A

Step 2: Verify by RACF that the Not authorized,;
ID can access DB2 reject request

A

Step 3: Run the connection exit
routine

Figure 15. Connection processing

The steps in detail
The steps in processing connections are:

1. DB2 obtains the initial primary ID. Mahle 50 on page 171 shows how the source
of the ID depends on the type of address space from which the connection was

made.

170 Administration Guide

Table 50. Sources of initial primary authorization identifiers

Source Initial primary authorization ID

TSO TSO logon ID.

BATCH USER parameter on JOB statement.

IMS control region or CICS USER parameter on JOB statement.

IMS or CICS started task Entries in the started task control table.

Remote access requests Depends on the security mechanism used. See FQverview of
kecurity mechanisms for DRDA and SNA” on page 176 for
more details.

2. RACEF is called through the MVS system authorization facility (SAF) to check
whether the ID that is associated with the address space is authorized to use:
The DB2 resource class (CLASS=DSNR)
The DB2 subsystem (SUBSYS=ssnm)
The connection type requested

For instructions on authorizing those uses, see Permitting RACE access” orl

. The SAF return code (RC) from the invocation determines the next
step, as follows:
If RC > 4, RACF determined that the RACF user ID is not valid or does not
have the necessary authorization to access the resource name; DB2 rejects
the request for a connection.

If RC = 4, the RACF return code is checked. If that value is:

= 4, the resource name is not defined to RACF and DB2 rejects the
request (with reason code X'00F30013"). For mstructlons on defining the
resource name, see i .
Not = 4, RACF is not active. DB2 continues with the next step, but the
connection request and the user are not verified.
If RC = 0, RACF is active and has verified the RACF user ID; DB2 continues
with the next step.

3. DB2 runs the connection exit routine. To use DB2 secondary IDs, you must

replace the exit routine. See ['Supplying secondary IDs for connection requests’

If you do not want to use secondary IDs, do nothing. The IBM-supplied default

connection exit routine continues the connection processing. The processing

has the following effects:

 If a value for the initial primary authorization ID exists, the value becomes the
DB2 primary ID.

* If no value exists (the value is blank), the primary ID is set by default, as
shown in

* The SQL ID is set equal to the primary ID.
* No secondary IDs exist.

If you want to use secondary IDs, see the description in LSupplying secandanyj
le_toLcaanecmn_Lequesrslan_pa.ge_'lld Of course, you can also replace the

exit routine with one that provides different default values for the DB2 primary
ID. If you have written such a routine for an earlier release of DB2, it will
probably work for this release with no change.

Chapter 12. Controlling access to a DB2 subsystem 171

Table 51. Sources of default authorization identifiers

Source Default primary authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job with Default authorization ID set when DB2 was installed

no USER parameter (UNKNOWN AUTHID on installation panel DSNTIPP)

Remote request None. The user ID is required and is provided by the DRDA
requester.

Supplying secondary IDs for connection requests

If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary

IDs, as illustrated in LExamples of granting and revoking privileges” an page 140,

the easiest method is to use the IBM-supplied sample routine.

Distinguish those two routines carefully.

The default connection exit routine is supplied as object code, is installed as part
of the normal procedure for installing DB2, and provides values only for the DB2
primary and SQL IDs—not for secondary IDs.

The sample connection exit routine is supplied as source code (you can change
it), must be compiled and placed in a DB2 library, and provides for secondary
IDs, primary IDs, and SQL IDs. Installation job DSNTIJEX replaces the default
connection exit routine with the sample connection exit routine; see Part 2 of

DR2 Installation Guidd for more information.

The sample connection exit routine has the following effects:

172 Administration Guide

The sample connection exit routine sets the DB2 primary ID the same way as it
is set by the default routine. If the initial primary ID is not blank, it becomes the
DB2 primary ID. If the initial primary ID is blank, the sample routine provides the
same default value as does the default routine. If the sample routine cannot find
a nonblank primary 1D, DB2 uses the default ID (UNKNOWN AUTHID) from
installation panel DSNTIPP. In that case, no secondary IDs are supplied.

If the connection request is from a TSO-managed address space, the routine
sets the SQL ID to the TSO data set name prefix in the TSO user profile table,
but only if the TSO data set name prefix is also equal to the primary ID or one of
the secondary IDs. Those requests include requests through the call attachment
facility, and requests from TSO foreground and background. In all other cases,
the routine sets the SQL ID equal to the primary ID.

The secondary authorization IDs depend on RACF options:

— If RACF is not active, no secondary IDs exist.

— If RACF is active but its “list of groups” option is not active, one secondary 1D
exists (the default connected group name) if that was supplied by the
attachment facility.

— If RACF is active and you selected the “list of groups” option, the routine sets
the list of DB2 secondary IDs to the list of group names to which the RACF
user ID is connected (but not in REVOKE status). The maximum number of
groups is 245. The list of group names is obtained from RACF and includes
the default connected group name.

If you need something that is not provided by either the default or the sample
connection exit routine, you can write your own routine. For instructions, see

Required CICS specifications

In order for a CICS transaction to use the sample connection or sign-on exit
routines, the external security system, such as RACF, must be defined to CICS with
these specifications:

» The CICS system initialization table must specify external security. For CICS
Version 4, specify SEC=YES; for earlier releases of CICS, specify
EXTSEC=YES. If you are using the CICS multiple region option (MRO), you must
specify SEC=YES or EXTSEC=YES for every CICS system that is connected by
interregion communication (IRC).

» If your version of CICS uses a sign-on table (SNT), the CICS sign-on table must
specify EXTSEC=YES for each signed on user that uses the sign-on exit.

* When the user signs on to a CICS terminal-owning region, the terminal-owning
region must propagate the authorization ID to the CICS application-owning
region. For more information on that propagation, see the description of
ATTACHSEC in the applicable version of the CICS Intercommunication Guide.

You must change the sample sign-on exit routine (DSN3SSGN) before usmg it if the
followm% conditions are all true. For instructions, see

* You attach to DB2 with an AUTH parameter in the RCT other than
AUTH=GROUP.

* You have the RACF list-of-groups option active.

* You have transactions whose initial primary authorization ID is not defined to
RACF.

Processing sign-ons

For requests from IMS dependent regions, CICS transaction subtasks, or OS/390
RRS connections, the initial primary ID is not obtained until just before allocating a
plan for a transaction. A new sign-on request can run the same plan without
deallocating the plan and reallocating it. Nevertheless, the new sign-on request can
change the primary ID.

Unlike connection processing, sign-on processing does not check the RACF user ID
of the address space. The steps are shown in

Step 1: Obtain the primary ID

A

Step 2: Run the sign-on exit
routine

Figure 16. Sign-on processing

The steps in detail
DB2 takes the following steps in processing sign-ons:
1. Determine the initial primary ID as follows:

Chapter 12. Controlling access to a DB2 subsystem 173

174 Administration Guide

For IMS sign-ons from message-driven regions, if the user has signed on, the
initial primary authorization ID is the user's sign-on ID.

IMS passes to DB2 the IMS sign-on ID and the associated RACF connected
group name, if one exists.

If the user has not signed on, the primary ID is the LTERM name, or if that is
not available, the PSB name.

For a batch-oriented region, the primary ID is the value of the USER parameter
on the job statement, if that is available. If that is not available, the primary ID is
the program’'s PSB name.

For CICS sign-ons, the initial primary authorization ID is specified by
authorization directives in the CICS resource control table (RCT). For
instructions on setting up the RCT to indicate the appropriate ID, see the
description of the AUTH option in the macro DSNCRCT TYPE=ENTRY in Part 2
of DB2 Installation Guidd , and also the information there about coordinating
CICS and DB2 security.

You can use the following values for authorization IDs:
* The VTAM application name for the CICS system; use AUTH=SIGNID.

* A character string up to eight characters long, which is supplied in the RCT;
use AUTH=(string).

* The CICS group ID (eight characters); use AUTH=GROUP. That option
passes to DB2 the CICS user ID and the associated RACF connected group
name. AUTH=GROUP is not a valid authorization type for transactions that
do not have RACF user IDs that are associated with them (for example,
non-terminal-driven transactions in releases of CICS before CICS Version 4).

* The CICS user ID (eight characters); use AUTH=USERID. AUTH=USERID is
not a valid authorization type for transactions that do not have signed-on user
IDs that are associated with them (for example, non-terminal-driven
transactions in releases of CICS before CICS Version 4).

» The operator ID (three characters padded on the right with five blanks); use
AUTH=USER. AUTH=USER is valid only for transactions that are associated
with a signed-on USERID or a terminal.

* The terminal ID (four characters padded with four blanks); use AUTH=TERM.
AUTH=TERM is valid only for transactions associated with a terminal.

* The transaction ID (four characters padded with four blanks); use
AUTH=TXID.

For remote requests, the source of the initial primary ID is determined by

entries in the SYSIBM.USERNAMES table. [‘Accepting a remote attachment
tequest” on page 180 explains how to control the ID.

For connections using Recoverable Resource Manager Services
attachment facility, the processing depends on the type of signon request:
* SIGNON

* AUTH SIGNON

e CONTEXT SIGNON

For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if an
ACEE is associated with the TCB (TCBSENV). This is the normal case.
However, if an ACEE is not associated with the TCB, SIGNON uses the primary
authorization ID that is associated with the address space, that is, from the
ASXB. If the new primary authorization ID was retrieved from the ACEE that is
associated with the TCB and ACEEGRPN is not null, DB2 uses ACEEGRPN to
establish secondary authorization IDs.

With AUTH SIGNON, an APF-authorized program can pass a primary
authorization ID for the connection. If a primary authorization ID is passed,
AUTH SIGNON also uses the value that is passed in the secondary
authorization ID parameter to establish secondary authorization IDs. If the
primary authorization ID is not passed, but a valid ACEE is passed, AUTH
SIGNON uses the value in ACEEUSRI for the primary authorization ID if
ACEEUSRL is not 0. If ACEEUSRI is used for the primary authorization ID,
AUTH SIGNON uses the value in ACEEGRPN as the secondary authorization
ID if ACEEGRPL is not 0.

For CONTEXT SIGNON, the primary authorization ID is retrieved from data that
is associated with the current RRS context using the context_key, which is
supplied as input. CONTEXT SIGNON uses the CTXSDTA and CTXRDTA
functions of RRS context services. An authorized function must use CTXSDTA
to store a primary authorization ID prior to invoking CONTEXT SIGNON.
Optionally, CTXSDTA can be used to store the address of an ACEE in the
context data that has a context_key that was supplied as input to CONTEXT
SIGNON. DB2 uses CTXRDTA to retrieve context data. If an ACEE address is
passed, CONTEXT SIGNON uses the value in ACEEGRPN as the secondary
authorization ID if ACEEGRPL is not O.

For more information, see Part 6 of DB2 Application Programming and SQI/
Guidd

2. DB2 runs the sign-on exit routine. User action: To use DB2 secondary IDs, you
must replace the exit routine.

If you do not want to use secondary IDs, do nothing. Sign-on processing is then
continued by the IBM-supplied default sign-on exit routine, which has the
following effects:

* The initial primary authorization ID remains the primary ID.

* The SQL ID is set equal to the primary ID.

* No secondary IDs exist.

You can replace the exit routine with one of your own, even if it has nothing to
do with secondary IDs. If you do, remember that IMS and CICS recovery
coordinators, their dependent regions, and RRSAF take the exit routine only if
they have provided a user ID in the sign-on parameter list.

If you do want to use secondary IDs, see the description that follows.

Supplying secondary IDs for sign-on requests

If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine. The procedure
is like that for connection processing: If you want to use RACF group names as
DB2 secondary IDs, the easiest method is to use the IBM-supplied sample routine.
An installation job can automatically replace the default routine with the sample
routine; to run it, see “Installation Step 6: Deflne User Authorization Exit Routines:
DSNTIJEX” in Part 2 of

Distinguish carefully between the two routines. The default sign-on routine provides
no secondary IDs and has the effects described in step 2 of lPracessing sign-ons’|
m The sample sign-on routine supports DB2 secondary IDs, and is like

the sample connection routine.

The sample sign-on routine has the following effects:
* The initial primary authorization ID is left unchanged as the DB2 primary ID.

Chapter 12. Controlling access to a DB2 subsystem 175

* The SQL ID is made equal to the DB2 primary ID.
* The secondary authorization IDs depend on RACF options:
— If RACF is not active, no secondary IDs exist.

— If RACF is active but its “list of groups” option is not active, one secondary 1D
exists; it is the name passed by CICS or by IMS.

— If RACF is active and you have selected the option for a list of groups, the
routine sets the list of DB2 secondary IDs to the list of group names to which
the RACF user ID is connected, up to a limit of 245 groups. The list of group
names includes the default connected group name.

Controlling requests from remote applications

If you are controlling requests from remote applications, your DB2 subsystem might
be accepting requests from applications that use SNA network protocols, TCP/IP
network protocols, or both. This section describes the methods that the DB2 server
can use to control access from those applications. To understand what is described
here, you must be familiar with the communications database, which is part of the
DB2 catalog. The following topics are described in this section:

Overview of security mechanisms for DRDA and SNA

SNA and DRDA have different security mechanisms. DRDA lets a user be
authenticated using SNA security mechanisms or DRDA mechanisms, which are
independent of the underlying network protocol. For an SNA network connection, a
DRDA requester can send security tokens using a SNA attach or using DRDA
commands. DB2 for OS/390 and z/OS as a requester uses SNA security
mechanisms if it uses a SNA network connection (except for Kerberos) and DRDA
security mechanisms for TCP/IP network connections (or when Kerberos
authentication is chosen, regardless of the network type).

Mechanisms used by DB2 for OS/390 and z/OS as a requester
DB2 for OS/390 and z/OS as a requester chooses SNA or DRDA security
mechanisms based on the network protocol and the authentication mechanisms you
use. If you use SNA protocols, the following SNA authentication mechanisms are
supported:

* User ID only (already verified)

« User ID and password, described in ESending passwords” on page 197
+ User ID and PassTicket, described in LSending RACE PassTickets” on page 197

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, the following DRDA authentication mechanisms are
supported:

» User ID only (already verified)

+ User ID and password, described in ESending passwards” an page 1917
+ User ID and PassTicket, described in LSending RACE PassTickets” an page 197

Authentication is performed based on DRDA protocols, which means that the
authentication tokens are sent in DRDA security flows.

176 Administration Guide

If you use a requester other than DB2 for OS/390 and z/OS, refer to that product's
documentation.

Mechanisms accepted by DB2 for OS/390 and z/OS as a server
DB2 for OS/390 and z/OS as a server can accept either SNA or DRDA
authentication mechanisms. This means that DB2 can authenticate remote users
from either the security tokens obtained from the SNA ATTACH (FMH-5) or from the
DRDA security commands described by each of the protocols. The following
authentication methods are supported by DB2 for OS/390 and z/OS as a server:

» User ID only (already verified at the requester)

+ User ID and password, described in ESending passwords” on page 197

+ User ID and PassTicket, described in LSending RACE PassTickets” on page 197

+ Kerberos tickets, described in EEstablishing Kerberos authentication thraugh
RACE” on page 212

+ Unencrypted user ID and encrypted password, described in lSending encrypted

+ Encrypted user ID and encrypted password, described in LSending encrypted

« User ID, password, and new password, described in EAllowing users to changd
expired passwords!|

Allowing users to change expired passwords: DB2 can return to the DRDA
requester information about errors and expired passwords. To allow this, specify
YES in the EXTENDED SECURITY field of installation panel DSNTIPR.

When the DRDA requester is notified that the RACF password has expired, and the
requester has implemented function to allow passwords to be changed, the
requester can prompt the end user for the old password and a new password. The
requester sends the old and new passwords to the DB2 server. This function is
supported through DB2 Connect.

With the extended security option, DB2 passes the old and new passwords to
RACEF. If the old password is correct, and the new password meets the installation's
password requirements, the end user's password is changed and the DRDA
connection request is honored.

When a user changes a password, the user ID, the old password, and the new
password are sent to DB2. You can now encrypt these three tokens before they are
sent from the client.

Detecting authorization failures (EXTENDED SECURITY): If the DB2 server is
installed with YES for the EXTENDED SECURITY field of installation panel
DSNTIPR, detailed reason codes are returned to a DRDA client when a DDF
connection request fails because of security errors. When using SNA protocols, the
requester must have included support for extended security sense codes. One such
product is DB2 Connect.

If the proper requester support is present, the requester generates SQLCODE

-30082 (SQLSTATE '08001") with a specific indication for the failure. Otherwise, a
generic security failure code is returned.

Chapter 12. Controlling access to a DB2 subsystem 177

The communications database for the server

The information in this section, up to [‘Controlling inbound connections that use SNA
protocols” on page 18d, is General-use Programming Interface and Associated
Guidance Information, as defined in LNotices” on page 1095,

The communications database (CDB) is a set of DB2 catalog tables that let you
control aspects of how requests leave this DB2 and how requests come in. This
section concentrates on the columns of the communications database that pertain
to security on the inbound side (the server).

The SYSIBM.IPNAMES table is not described in this section, because that table is
not used to control inbound TCP/IP requests.

Columns used in SYSIBM.LUNAMES
This table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_IN CHAR(1)
The acceptance option for a remote request from the corresponding
LUNAME:

V The option is “verify.” An incoming request must include one of the
following authentication entities:
» User ID and password
* User ID and RACF PassTicket, described in W

¢ User ID and RACF encrypted password (not recommended)

+ Kerberos security tickets, described in [Establishing Kerberas
authentication through RACE” an page 219

« User ID and DRDA encrypted password, described in ESendind

« User ID, password, and new password, described in EAllowing

* User ID and encrypted password, or encrypted user ID and

encrypted password, described in [Allowing users to changs
expired passwords” on page 177

A The option is “already verified.” This is the default. With A, a
request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:

e User ID only

« All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains | or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

ENCRYPTPSWDS CHAR(1)
This column only applies to DB2 for OS/390 and z/OS or DB2 for MVS/ESA
partners when passwords are used as authentication tokens. It indicates
whether passwords received from and sent to the corresponding LUNAME
are encrypted:

178 Administration Guide

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as if it is encrypted.

N No, passwords are not encrypted. This is the default; any character
other than Y is treated as N. Specify N for CONNECT statements
that contain a USER parameter.

Recommendation: When you connect to a DB2 for OS/390 and z/OS
partner that is at Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R") instead of using passwords.

USERNAMES CHAR(1)
This column indicates whether an ID accompanying a remote request, sent
from or to the corresponding LUNAME, is subject to translation and “come
from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.
I An inbound ID is subject to translation.

@) An outbound ID, sent to the corresponding LUNAME, is subject to
translation.
B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

Columns used in SYSIBM.USERNAMES
This table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:
I The row applies to inbound IDs (not applicable for TCP/IP
connections).
0] The row applies to outbound IDs.

The field should contain only | or O. Any other character, including blank,
causes the row to be ignored.

AUTHID CHAR(8)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization 1D is permitted with the corresponding LINKNAME; all
authorization IDs are translated in the same way. Outbound translation is
not performed on CONNECT statements that contain an authorization ID for
the value of the USER parameter.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following
situations must be true:

* Arow exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

* Arow exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

NEWAUTHID CHAR(8)
The translated authorization ID. If blank, no translation occurs.

Chapter 12. Controlling access to a DB2 subsystem 179

Controlling inbound connections that use SNA protocols

Requests from a remote LU are subject to two security checks before they come
into contact with DB2. Those checks control what LUs can attach to the network
and verify the identity of a partner LU.

Finally, DB2 itself imposes several checks before accepting an attachment request.

If using private protocols, the LOCATIONS table controls the locations that can
access DB2. To allow a remote location to access DB2, the remote location hame
must be specified in the SYSIBM.LOCATIONS table. This check is only supported
for connections using private protocols.

Controlling what LUs can attach to the network

This check is carried out by VTAM, to prevent an unauthorized LU from attaching to
the network and presenting itself to other LUs as an acceptable partner in
communication. It requires each LU that attaches to the network to identify itself by
a password. If that requirement is in effect for your network, your DB2 subsystem,
like every other LU on the network, must:

1. Choose a VTAM password.

2. Code the password with the PRTCT parameter of the VTAM APPL statement,
when you define your DB2 to VTAM. The APPL statement is described in detalil
in Part 3 of [DR2 Installation Guidel.

Verifying a partner LU

This check is carried out by RACF and VTAM, to check the identity of an LU
sending a request to your DB2. Recommendation: Specify partner-LU verification,
which requires the following steps:

1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define
your DB2 to VTAM. The APPL statement is described in detail in Part 3 of
2. Establish a RACF profile for each LU from which you permit a request. For the

steps required, see [Enable partner-| 1) verification” on page 202.

Accepting a remote attachment request

When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2.
(Do not confuse the remote request with a local attachment request that comes
through one of the DB2 attachment facilities—IMS, CICS, TSO, and so on. A
remote attachment request is defined by Systems Network Architecture and LU 6.2
protocols; specifically, it is an SNA Function Management Header 5.)

This section tells what security checks you can impose on remote attachment
requests.

Conversation-level security: This section assumes that you have defined your
DB2 to VTAM with the conversation-level security set to “already verified”. (To do
that, you coded SECACPT=ALREADYV on the VTAM APPL statement, as
described in Part 3 of [DB2 Installation Guidel. That value provides more options
than does “conversation” (SECACPT=CONV), which we do not recommend.

Steps, tools, and decisions: The steps an attachment request goes through
before acceptance allow much flexibility in choosing security checks. Scan

Eigure 17 an page 183 to see what is possible.

180 Administration Guide

The primary tools for controlling remote attachment requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attachment
requests, a dummy row that allows any system to send attachment requests, or
both. You might need rows in SYSIBM.USERNAMES to permit requests from
specific IDs or specific LUNAMES, or to provide translations for permitted IDs.

When planning to control remote requests, answer the questions posed by the
followmg topics for each remote LU that can send a request.
t)l
] H 71

" N . . m

ok wnNE
N

Do you permit access?: To permit attachment requests from a particular LU, you
need a row in your SYSIBM.LUNAMES table. The row must either give the specific
LUNAME or it must be a dummy row with the LUNAME blank. (The table can have
only one dummy row, which is used by all LUs for which no specific row exists,
when making requests.) Without one of those rows, the attachment request is
rejected.

Do you manage inbound IDs through DB2 or RACF?: If you manage incoming
IDs through RACF, you must register every acceptable ID with RACF, and DB2
must call RACF to process every request. If you manage incoming IDs through
RACF, either RACF or Kerberos can be used to authenticate the user. Kerberos
cannot be used if you do not have RACF on the system.

If you manage incoming IDs through DB2, you can avoid calls to RACF and can
specify acceptance of many IDs by a single row in the SYSIBM.USERNAMES
table.

To manage incoming IDs through DB2, put an | in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. (Or, if an O is there already because you
are also sending requests to that LU, change O to B.) Attachment requests from
that LU now go through sign-on processing, and its IDs are subject to translation.

(For more information about translating IDs, see 'Da you translate inbound IDS?” onl
hage 185)

To manage incoming IDs through RACF, leave USERNAMES blank for that LU (or
leave the O unchanged). Requests from that LU go through connection processing,
and its IDs are not subject to translation.

Do you trust the partner LU?: Presumably, RACF has already validated the
identity of the other LU (described in E\erifying a partner L U” on page 180). If you
trust incoming IDs from that LU, you do not need to validate them by an
authentication token. Put an A in the SECURITY_IN column of the row in
SYSIBM.LUNAMES that corresponds to the other LU; your acceptance level for
requests from that LU is now “already verified”. Requests from that LU are accepted
without an authentication token. (In order to use this option, you must have defined
DB2 to VTAM with SECACPT=ALREADYYV, as described in) If an
authentication token does accompany a request, DB2 calls RACF to check the
authorization ID against it. To require an authentication token from a particular LU,

Chapter 12. Controlling access to a DB2 subsystem 181

put a V in the SECURITY_IN column in SYSIBM.LUNAMES; your acceptance level
for requests from that LU is now “verify”. You must also register every acceptable
incoming ID and its password with RACF.

Performance considerations: Each request to RACF to validate authentication
tokens results in an 1/O operation, which has a high performance cost.

Recommendation: To eliminate the 1/O, allow RACF to cache security information
in VLF. To activate this option, add the IRRACEE class to the end of MVS VLF
member COFVLFxx in SYS1.PARMLIB, as follows:

CLASS NAME (IRRACEE)
EMAJ (ACEE)

If you use passwords, are they encrypted?: Passwords can be encrypted
through:

+ RACEF using PassTickets, described in lSending RACE PassTickets” ord

» DRDA password encryption support. DB2 for OS/390 and z/OS as a server
supports DRDA encrypted passwords and encrypted user IDs with encrypted

passwords. See LSending encrypted passwards from a workstation” an page 194

for more information.

If you use Kerberos, are users authenticated?: If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for OS/390
and z/OS can use Kerberos security services to authenticate remote users. See

182 Administration Guide

Activity at the DB2 server

Remote attach request using SNA protocols

ID and authentication check

Token
Step 1: Isan Step 2: Test | L
authentication No the value of md re_quntred,
token present? SECURITY_IN. rejec
request.
Yes =A
Check SYSIBM.LUNAMES Check ID for sign-ons
Step 3: Is Yes Step7: Isa | yeq . .
USERNAMES » password » |SDtet§) 8hA\/g'r:|fy
| or B? present? v ’
No No
< Not authorized;
reject request.
Check ID for connections
v Check USERNAMES table
Step 4: Verify Not authorized;
‘ , Step 9: Seek a .
ID by RACF. reject request. translation row i e,
in USERNAMES. reject request.
Found
v
Connection processing Step 10: Obtain
Y — the primary ID.
Step 5: Verify by

RACF that the ID el et
can access DB2. reject request.

Request accepted: continue
Request accepted: continue

Sign-on processing

Step 6: Runthe
connection exit Step 11: Run the sign-on

routine (DSN3 @ATH). exit routine (DSN3@SGN).

A 4
Step 12: Local privilege
check at the server.

Figure 17. Steps in accepting a remote attachment request from requester that is using SNA

Details of remote attachment request processing:

1. If the remote request has no authentication token, DB2 checks the security
acceptance option in the SECURITY_IN column of table SYSIBM.LUNAMES.
No password is sent or checked for the plan or package owner that is sent
from a DB2 subsystem.

2. If the acceptance option is “verify” (SECURITY_IN = V), a security token is
required to authenticate the user. DB2 rejects the request if the token missing.

3. If the USERNAMES column of SYSIBM.LUNAMES contains | or B, the
authorization 1D, and the plan or package owner that is sent by a DB2

Chapter 12. Controlling access to a DB2 subsystem 183

10.

11.

12.

184 Administration Guide

subsystem, are subject to translation under control of the
SYSIBM.USERNAMES table. If the request is allowed, it eventually goes
through sign-on processing.

If USERNAMES does not contain | or B, the authorization ID is not translated.

DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to check
the ID. DB2 uses the PASSCHK=NO option if no password is specified and
ENCRYPT=YES if the ENCRYPTPSWDS column of SYSIBM.LUNAMES
contains V. If the ID, password, or PassTicket cannot be verified, DB2 rejects
the request.

In addition, depending on your RACF environment, the following RACF checks
may also be performed:

+ If the RACF APPL class is active, RACF verifies that the ID has been given
access to the DB2 APPL. The APPL resource that is checked is the LU
name that the requester used when the attachment request was issued.
This is either the local DB2 LU name or the generic LU name.

+ If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access MVS from the port of entry (POE). The POE that is
use in the verify call is the requesting LU name.

The remote request is now treated like a local connection request with a DIST
environment for the DSNR resource class; for details, see Iﬁrm
tannections” on page 170. DB2 calls RACF by the RACROUTE macro with
REQUEST=AUTH, to check whether the authorization ID is allowed to use
DB2 resources that are defined to RACF.

The RACROUTE macro call also verifies that the user is authorized to use
DB2 resources from the requesting system, known as the port of entry (POE);
for details, see L i ! .

DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where a remote request originated.

If no password exists, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

If a password exists, DB2 calls RACF through the RACROUTE macro with
REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If DB2 cannot verify the ID or password, the
request is rejected.

DB2 searches SYSIBM.USERNAMES for a row that indicates how to translate

the ID. The need for a row that applies to a particular ID and sending location

imposes a “come-from” check on the ID: If no such row exists, DB2 rejects the

request.

If an appropriate row is found, DB2 translates the ID as follows:

+ If a nonblank value of NEWAUTHID exists in the row, that value becomes
the primary authorization ID.

* If NEWAUTHID is blank, the primary authorization ID remains unchanged.

The remote request is now treated like a local sign-on request; for details, see

EPracessing sign-ons” on page 173. DB2 invokes the sign-on exit routine. The

parameter list that is passed to the routine describes where a remote request
originated. For details, see Cannection and sign-on routines” an page 901

The remote request now has a primary authorization 1D, possibly one or more
secondary IDs, and an SQL ID. A request from a remote DB2 is also known by
a plan or package owner. Privileges and authorities that are granted to those
IDs at the DB2 server govern the actions that the request can take.

Do you translate inbound IDs?: Ideally, each of your authorization IDs has the
same meaning throughout your entire network. In practice, that might not be so,
and the duplication of IDs on different LUs is a security exposure. For example,
suppose that the ID DBADM1 is known to the local DB2 and has DBADM authority
over certain databases there; suppose also that the same ID exists in some remote
LU. If an attachment request comes in from DBADM1, and if nothing is done to
alter the ID, the wrong user can exercise privileges of DBADML1 in the local DB2.
The way to protect against that exposure is to translate the remote ID into a
different ID before the attachment request is accepted.

You must be prepared to translate the IDs of plan owners, package owners, and the
primary IDs of processes that make remote requests. For the IDs that are sent to
you by other DB2 LUs, see What IDs you send” on page 193. (Do not plan to
translate all IDs in the connection exit routine—the routine does not receive plan
and package owner IDs.)

If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities
only to the translated value. As Eigure 17 on page 183 shows, that “translation” is
not affected by anything you do in your connection or sign-on exit routine. The
output of the translation becomes the input to your sign-on exit routine.
Recommendation: Do not translate inbound IDs in an exit routine; translate them
only through the SYSIBM.USERNAMES table.

The examples in [fahle 59 shows the possibilities for translation and how to control
translation by SYSIBM.USERNAMES. You can use entries to allow requests only
from particular LUs or particular IDs, or from combinations of an ID and an LU. You

can also translate any incoming ID to another value. [able 53 an page 186 shows
the search order of the SYSIBM.USERNAMES table.

Performance considerations: In the process of accepting remote attachment
requests, any step that calls RACF is likely to have a relatively high performance
cost. To trade some of that cost for a somewhat greater security exposure, have
RACF check the identity of the other LU just once, as described under
partner | U” on page 180. Then trust the partner LU, translating the inbound IDs and
not requiring or using passwords. In this case, no calls are made to RACF from
within DB2; the penalty is only that you make the partner LU responsible for
verifying IDs.

Update considerations: If you update tables in the CDB while the distributed data

facility is running, the changes might not take effect immediately. For details, see
Part 3 of DB2 Installation Guidd.

Example: [fable 53 shows how USERNAMES translates inbound IDs.
Table 52. Your SYSIBM.USERNAMES table. (Row numbers are added for reference.)

Row TYPE AUTHID LINKNAME NEWAUTHID
1 | blank LUSNFRAN blank

2 I BETTY LUSNFRAN ELIZA

3 I CHARLES blank CHUCK

4 I ALBERT LUDALLAS blank

5 I BETTY blank blank

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
following requests:

Chapter 12. Controlling access to a DB2 subsystem 185

ALBERT requests from
LUDALLAS

BETTY requests from
LUDALLAS

CHARLES requests
from LUDALLAS

ALBERT requests from
LUSNFRAN

BETTY requests from
LUSNFRAN
CHARLES requests
from LUSNFRAN
WILBUR requests from
LUSNFRAN

WILBUR requests from
LUDALLAS

DB2 searches for an entry for AUTHID=ALBERT and LINKNAME=LUDALLAS. DB2 finds one
in row 4, so the request is accepted. The value of NEWAUTHID in that row is blank, so
ALBERT is left unchanged.

DB2 searches for an entry for AUTHID=BETTY and LINKNAME=LUDALLAS; none exists.
DB2 then searches for AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5, so
the request is accepted. The value of NEWAUTHID in that row is blank, so BETTY is left
unchanged.

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS; no such entry exists.
DB2 then searches for AUTHID=CHARLES and LINKNAME=blank. The search ends at row
3; the request is accepted. The value of NEWAUTHID in that row is CHUCK, so CHARLES is
translated to CHUCK.

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; no such entry exists. DB2
then searches for AUTHID=ALBERT and LINKNAME=blank; again no entry exists. Finally,
DB2 searches for AUTHID=blank and LINKNAME=LUSNFRAN, finds that entry in row 1, and
the request is accepted. The value of NEWAUTHID in that row is blank, so ALBERT is left
unchanged.

DB2 finds row 2, and BETTY is translated to ELIZA.

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

No provision is made for WILBUR, but row 1 of the SYSIBM.USERNAMES table allows any
ID to make a request from LUSNFRAN and to pass without translation. The acceptance level
for LUSNFRAN is “already verified”, so WILBUR can pass without a password check by
RACF. After accessing DB2, WILBUR can use only the privileges that are granted to WILBUR
and to PUBLIC (for DRDA access) or to PUBLIC AT ALL LOCATIONS (for DB2
private-protocol access).

Because the acceptance level for LUDALLAS is “verify” as recorded in the
SYSIBM.LUNAMES table, WILBUR must be known to the local RACF. DB2 searches in
succession for one of the combinations WILBUR/LUDALLAS, WILBUR/blank, or
blank/LUDALLAS. None of those is in the table, so the request is rejected. The absence of a
row permitting WILBUR to request from LUDALLAS imposes a “come-from” check: WILBUR
can attach from some locations (LUSNFRAN), and some IDs (ALBERT, BETTY, and
CHARLES) can attach from LUDALLAS, but WILBUR cannot attach if coming from
LUDALLAS.

fable 53 shows the search order for the SYSIBM.USERNAMES table:

Table 53. Precedence search order for SYSIBM.USERNAMES table
AUTHID LINKNAME Result

Name Name If NEWAUTHID is specified,
AUTHID is translated to
NEWAUTHID for the specified
LINKNAME.

Name Blank If NEWAUTHID is specified,
AUTHID is translated to
NEWAUTHID for all
LINKNAMEs.

Blank Name If NEWAUTHID is specified, it
is substituted for AUTHID for
the specified LINKNAME.

Blank Blank Unavailable resource
message (SQLCODE -904) is
returned.

How do you associate inbound IDs with secondary IDs?: Your decisions on
the previous questions determine what value is used for the primary authorization

186 Administration Guide

ID on an attachment request. They also determine whether those requests are next
treated as connection requests or as sign-on requests. That means that the remote
request next goes through the same processing as a local request, and that you
have the opportunity to associate the primary ID with a list of secondary IDs in the
same way you do for local requests. For more information about processing

connections and sign-ons, see EPracessing connections” on page 17d and

Controlling inbound connections that use TCP/IP protocols

DRDA connections that use TCP/IP have fewer security controls than do
connections that use SNA protocols. When planning to control inbound TCP/IP
connections, consider the following issues:

Do you permit access by TCP/IP? If the serving DB2 for OS/390 and z/OS
subsystem has a DRDA port and resynchronization port specified in the BSDS, DB2
is enabled for TCP/IP connections.

Do you manage inbound IDs through DB2 or RACF? All IDs must be passed to
RACF or Kerberos for processing. No option exists to handle incoming IDs through
DB2.

Do you trust the partner? TCP/IP does not verify partner LUs as SNA does. If
your requesters support mutual authentication, use Kerberos to handle this on the
requester side.

If you use passwords, are they encrypted? Passwords can be encrypted
through:

+ RACF using PassTickets, described in Sending RACE PassTickets” arl

» DRDA password encryption support. DB2 for OS/390 and z/OS as a server
supports DRDA encrypted passwords and encrypted user IDs with encrypted

passwords. See LSending encrypted passwords from a workstation” on page 198

for more information.

If you use Kerberos, are users authenticated? If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for OS/390
and z/OS can use Kerberos security services to authenticate remote users. See

Do you translate inbound IDs? Inbound IDs are not translated when you use
TCPI/IP.

How do you associate inbound IDs with secondary IDs? To associate an
inbound ID with secondary IDs, modify the default connection exit routine
(DSN3@ATH). TCP/IP requests do not use the sign-on exit routine.

S S A e an
See for an overview of how incoming requests are handled.
| - hori il : |

See i for
information about security diagnostics.
1. You must first decide whether you want incoming requests to have

authentication information, such as RACF passwords, RACF PassTickets, and
Kerberos tickets, passed along with the authorization ID.

To indicate that you require this authentication information, specify NO on the
TCP/IP ALREADY VERIFIED field of installation panel DSNTIP5, which is the

Chapter 12. Controlling access to a DB2 subsystem 187

188

default option. If you do not specify NO, all incoming TCP/IP requests can
connect to DB2 without any authentication.

2. If you require authentication, ensure that the security subsystem at your server
is properly configured to handle the authentication information that is passed to

It.

* For requests that use RACF passwords or PassTickets, enter the following
RACF command to indicate which user IDs that use TCP/IP are authorized to
access DDF (the distributed data facility address space):

PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)
WHEN (APPCPORT (TCPIP))

Activity at the DB2 server

TCP/IP request from remote user

Verify remote connections

Step 1:
Is authentication

Step 2:
No | Does the serving

»
L

information present? subsystem accept

remote requests

Yes

without verification?

TCPALVER=NO _ Reject

Check ID for connections

Step 3:
Verify identity by

RACF or Kerberos.

Connection processing

Step 4:

Verify by RACF that the ID can access DB2.

Step 5:

Run the connection exit routine (DSN3@ ATH).

Step 6:

Check local privilege at the server.

Figure 18. Steps in accepting a request from TCP/IP.

" request.

| TCPALVER=YES

Not authorized;
reject request.

Not authorized;
reject request.

Details of steps: These notes explain the steps shown in Eigure 14.

1. DB2 checks to see if an authentication token (RACF encrypted password,
RACF PassTicket, DRDA encrypted password, or Kerberos ticket) accompanies
the remote request.

Administration Guide

2. If no authentication token is supplied, DB2 checks the TCPALVER subsystem
parameter to see if DB2 accepts IDs without authentication information. If
TCPALVER=NO, authentication information must accompany all requests, and
DB2 rejects the request. If TCPALVER=YES, DB2 accepts the request without
authentication.

3. The identity is a RACF ID that is authenticated by RACF if a password or
PassTicket is provided, or the identity is a Kerberos principal that is validated by
Kerberos Security Server, if a Kerberos ticket is provided. Ensure that the ID is
defined to RACF in all cases. When Kerberos tickets are used, the RACF ID is
derived from the Kerberos principal identity. To use Kerberos tickets, ensure that
you map Kerberos principal names with RACF IDs, as described in

In addition, depending on your RACF environment, the following RACF checks
may also be performed:

a. If the RACF APPL class is active, RACF verifies that the ID has access to
the DB2 APPL. The APPL resource that is checked is the LU name that the
requester used when the attachment request was issued. This is either the
local DB2 LU name or the generic LU name.

b. If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized access to MVS from the port of entry (POE). The POE that is
used in the verify call is the string 'TCPIP".

If this is a request to change a password, the password is changed.

4. The remote request is now treated like a local connection request (using the
DIST environment for the DSNR resource class). DB2 calls RACF to check the
ID’s authorization against the ssnm.DIST resource.

5. DB2 invokes the connection exit routine. The parameter list that is passed to the
routine describes where the remote request originated.

6. The remote request has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The plan or
package owner ID also accompanies the request. Privileges and authorities that
are granted to those IDs at the DB2 server govern the actions that the request
can take.

Planning to send remote requests

If you are planning to send requests to another DB2 subsystem, consider that the
security administrator of that subsystem might have chosen any of the options
described in ['‘Controlling requests from remaote applications” on page 176. You need
to know what those choices are and make entries in your CDB to correspond to
them. You can also choose some things independently of what the other subsystem
requires.

If you are planning to send remote requests to a DBMS that is not DB2 for OS/390
and z/OS, you need to satisfy the requirements of that system. You probably need
documentation for the particular type of system; some of the choices that are
described in this section might not apply.

Network protocols and authentication tokens: DB2 chooses how to send
authentication tokens based on the network protocols that are used (SNA or
TCPI/IP). If the request is sent using SNA, the authentication tokens are sent in the
SNA attachment request (FMH5), unless you are using Kerberos. If you use
Kerberos, authentication tokens are sent with DRDA security commands.

Chapter 12. Controlling access to a DB2 subsystem 189

If the request uses TCP/IP, the authentication tokens are always sent using DRDA
security commands.

The communications database for the requester
The information in this section, up to EWhat IDs you send” on page 193, is

General-use Programming Interface and Associated Guidance Information, as

defined in tNotices” on page 1005

The communications database (CDB) is a set of DB2 catalog tables that let you
control aspects of remote requests. This section concentrates on the columns of the
communications database that pertain to security issues related to the requesting
system.

Columns used in SYSIBM.LUNAMES
This table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_OUT (CHAR 1)
Indicates the security option that is used when local DB2 SQL applications
connect to any remote server that is associated with the corresponding
LUNAME.

A The option is “already verified”, the default. With A, outbound
connection requests contain an authorization ID and no
authentication token. The value that is used for an outbound
request is either the DB2 user's authorization ID or a translated ID,
depending on the value in the USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection requests
contain a user ID and a RACF PassTicket. The LUNAME column is
used as the RACF PassTicket application name.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value in
the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The option is “password”. Outbound connection requests contain an
authorization ID and a password. The password is obtained from
RACF if ENCRYPTPSWDS=Y, or from SYSIBM.USERNAMES if
ENCRYPTPSWDS=N. If you get the password from
SYSIBM.USERNAMES, the USERNAMES column of
SYSIBM.LUNAMES must contain B or O. The value that is used for
an outbound request is the translated ID.

ENCRYPTPSWDS CHAR(1)

Indicates whether passwords received from and sent to the corresponding

LUNAME are encrypted. This column only applies to DB2 for OS/390 and

z/OS and DB2 for MVS/ESA partners when passwords are used as

authentication tokens.

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as encrypted.

190 Administration Guide

N No, passwords are not encrypted. This is the default; any character
but Y is treated as N.

Recommendation: When you connect to a DB2 for OS/390 and z/OS
partner that is at Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R’) instead of encrypting passwords.

USERNAMES CHAR(1)
Indicates whether an ID accompanying a remote attachment request, which
is received from or sent to the corresponding LUNAME, is subject to
translation and “come from” checking. When you specify |, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.
I An inbound ID is subject to translation.

0] An outbound ID, sent to the corresponding LUNAME, is subject to
translation.
B Both inbound and outbound IDs are subject to translation.

blank No IDs are translated.

Columns used in SYSIBM.IPNAMES
This table is used only for requests that use TCP/IP protocols.

LINKNAME CHAR(8)
The name used in the LINKNAME column of SYSIBM.LOCATIONS to
identify the remote system.

SECURITY_OUT
Indicates the DRDA security option that is used when local DB2 SQL
applications connect to any remote server that is associated with this
TCP/IP host.

A The option is “already verified”, the default. Outbound connection
requests contain an authorization ID and no password. The value
that is used for an outbound request is either the DB2 user's
authorization ID or a translated ID, depending on the value in the
USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection requests
contain a user ID and a RACF PassTicket. The LINKNAME column
must contain the server's LU name, which is used as the RACF
PassTicket application name to generate the PassTicket.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value in
the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The option is “password”. Outbound connection requests contain an
authorization ID and a password. The password is obtained from
the SYSIBM.USERNAMES table.

If you specify P, the USERNAMES column must contain O.

USERNAMES CHAR(1)
This column indicates whether an outbound request translates the
authorization ID. When you specify O, use the SYSIBM.USERNAMES table
to perform the translation.
0] An outbound ID, sent to the corresponding LUNAME, is subject to
translation.
blank No translation is done.

Chapter 12. Controlling access to a DB2 subsystem 191

Columns used in SYSIBM.USERNAMES
This table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:
I The row applies to inbound IDs.
0] The row applies to outbound IDs.

The field should contain only | or O. Any other character, including blank,
causes the row to be ignored.

AUTHID CHAR(8)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization 1D is permitted with the corresponding LINKNAME, and all
authorization IDs are translated in the same way.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following

situations must be true:

* Arow exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

* Arow exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

NEWAUTHID CHAR(8)
The translated authorization ID. If blank, no translation occurs.

PASSWORD CHAR(8)
A password that is sent with outbound requests. This password is not
provided by RACF and cannot be encrypted.

Columns used in SYSIBM.LOCATIONS
This table controls which locations can access DB2. If you use DB2 private protocol
access, the remote location name must be specified in this table. This check is only
supported for connections using private protocols.

LOCATION CHAR(16)

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following
situations must be true:

* Arow exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

* Arow exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

PORT CHAR(32)
TCP/IP is used for outbound DRDA connections when the following
statement is true:

* Arow exists in SYSIBM.IPNAMES, where the LINKNAME column
matches the value specified in the SYSIBM.LOCATIONS LINKNAME
column.

192 Administration Guide

If the above-mentioned row is found, the value of the PORT column is
interpreted as follows:

* If PORT is blank, the default DRDA port (446)is used.

» If PORT is nonblank, the value specified for PORT can take one of two
forms:

— If the value in PORT is left justified with 1-5 numeric characters, the
value is assumed to be the TCP/IP port number of the remote
database server.

— Any other value is assumed to be a TCP/IP service hame, which can
be converted to a TCP/IP port number using the TCP/IP
getservbyname socket all. TCP/IP service names are not
case-sensitive.

TPN VARCHAR(64)
Used only when the local DB2 begins an SNA conversation with another
server. When used, TPN indicates the SNA LU 6.2 transaction program
name (TPN) that will allocate the conversation. A length of zero for the
column indicates the default TPN. For DRDA conversations, this is the
DRDA default, which is X'07F6C4C?2'.

For DB2 private protocol conversations, this column is not used. For an
SQL/DS server, TPN should contain the resource ID of the SQL/DS
machine.

What IDs you send

At least one authorization ID is always sent to the server to be used for
authentication. That ID is one of the following values:

* The primary authorization ID of the process.

» If you connect to the server using a CONNECT statement with the USER
keyword, the ID that you specify as the USER ID.

However, other IDs can accompany some