
DB2 Universal Database for OS/390 and z/OS

Administration Guide
Version 7

SC26-9931-01

���

DB2 Universal Database for OS/390 and z/OS

Administration Guide
Version 7

SC26-9931-01

���

Second Edition, Softcopy Only (August 2001)

This edition applies to Version 7 of IBM DATABASE 2 Universal Database Server for OS/390 and z/OS (DB2 for
OS/390 and z/OS), 5675-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure
you are using the correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 for OS/390 and z/OS library are periodically updated with technical changes. These
updates are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/os390/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright International Business Machines Corporation 1982, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page 1095.

Contents

About this book . xxiii
Who should read this book . xxiii
Product terminology and citations xxiii
How to send your comments xxiv

Summary of changes to this book xxv

Part 1. Introduction . 1

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7. . . 3
Enhancements for managing data 3
Enhancements for reliability, scalability, and availability. 3
Easier development and integration of e-business applications 4
Improved connectivity . 5
Features of DB2 for OS/390 and z/OS. 6
Migration considerations . 6

Chapter 2. System planning concepts 7
The structure of DB2 . 7

Data structures . 7
System structures . 11
More information about data structures 14

Control and maintenance of DB2 15
Commands . 16
Utilities . 16
High availability. 16
More information about control and maintenance of DB2 17

The DB2 environment . 18
Address spaces . 18
DB2’s lock manager . 18
DB2’s attachment facilities. 19
DB2 and distributed data . 22
DB2 and OS/390 and z/OS 23
DB2 and the Parallel Sysplex 24
DB2 and the SecureWay Security Server for OS/390 24
DB2 and DFSMS . 24
More information about the OS/390 environment 25

Part 2. Designing a database: advanced topics 27

Chapter 3. Introduction to designing a database: advanced topics 29

Chapter 4. Creating storage groups and managing DB2 data sets 31
Creating DB2 storage groups 31
Defining index space storage. 33
Managing your own DB2 data sets 33

Managing your data sets using access method services. 34
Requirements for your own data sets. 34
DEFINE CLUSTER command 36

Deferring allocation of data sets for table spaces 36
Managing your DB2 data sets with DFSMShsm™ 37

Recalling archive logs . 37

© Copyright IBM Corp. 1982, 2001 iii

||

||

||

Migrating to DFSMShsm . 38
Using DFSMShsm with the RECOVER utility 38

Creating EA-enabled table spaces and index spaces 39
Extending DB2-managed data sets 39
Extending user-managed data sets 40

Chapter 5. Implementing your design. 41
Implementing your databases 41
Implementing your table spaces 42

Creating a table space explicitly 42
Creating a table space implicitly 42
Choosing a page size . 43
Choosing a page size for LOBs 44

Distinctions between DB2 base tables and temporary tables 45
Using schemas . 48

Authorization to process schema definitions 49
Processing schema definitions 49

Chapter 6. Loading data into DB2 tables 51
Loading methods . 51
Loading tables with the LOAD utility 51
Replacing data . 52
Loading data using the SQL INSERT statement 53
Loading data from DL/I . 54

Chapter 7. Altering your database design 55
Using the ALTER statement . 55
Dropping and re-creating DB2 objects 55
Altering DB2 storage groups . 56

Letting SMS manage your DB2 storage groups 56
Adding or removing volumes from a DB2 storage group 56

Altering DB2 databases. 57
Altering table spaces. 57

Changing the space allocation for user-managed data sets 57
Dropping, re-creating, or converting a table space 57

Altering tables . 59
Using the ALTER TABLE statement 59
Adding a new column . 59
Altering a table for referential integrity 61
Altering the assignment of a validation routine 63
Altering a table for capture of changed data 64
Changing an edit procedure or a field procedure 64
Altering the subtype of a string column 65
Altering data types and deleting columns 65
Redefining the attributes on an identity column 68
Moving a table to a table space of a different page size 69

Altering indexes . 69
Changing the description of an index 69
Rebalancing data in partitioned table spaces 70

Altering views . 70
Altering stored procedures and user-defined functions 70

Altering stored procedures. 70
Altering user-defined functions 71

Changing the high-level qualifier for DB2 data sets 71
Define a new integrated catalog alias 72
Change the qualifier for system data sets 72

iv Administration Guide

||

||

||

Change qualifiers for other databases and user data sets 75
Moving DB2 data . 78

Tools for moving DB2 data 78
Moving a DB2 data set . 80
Copying a relational database 81
Copying an entire DB2 subsystem. 81

Chapter 8. Estimating disk storage for user data 83
Factors that affect storage. 83
Calculating the space required for a table 84

Calculating record lengths and pages 84
Saving space with data compression 86
Estimating storage for LOBs 86
Estimating storage when using the LOAD utility 86

Calculating the space required for a dictionary 87
Disk requirements . 88
Virtual storage requirements 88

Calculating the space required for an index 88
Levels of index pages . 89
Calculating the space required for an index 90

Part 3. Security and auditing . 93

Chapter 9. Introduction to security and auditing in DB2 97
Security planning . 97

If you are new to DB2 . 97
If you have used DB2 before. 97

Auditing . 98
Controlling data access . 98

Access control within DB2 . 99
Controlling access to a DB2 subsystem 100
Data set protection . 101

Chapter 10. Controlling access to DB2 objects 103
Explicit privileges and authorities 104

Authorization identifiers . 104
Explicit privileges . 104
Administrative authorities. 108
Field-level access control by views 112
Authority over the catalog and directory 113

Implicit privileges of ownership. 114
Establishing ownership of objects with unqualified names 114
Establishing ownership of objects with qualified names 115
Privileges by type of object 116
Granting implicit privileges 116
Changing ownership . 116

Privileges exercised through a plan or a package 117
Establishing ownership of a plan or a package 117
Qualifying unqualified names 118
Checking authorization to execute 118
Controls in the program . 121
Privileges required for remote packages 122

Special considerations for user-defined functions and stored procedures . . . 123
Additional authorization for stored procedures 124
Controlling access to catalog tables for stored procedures 124
Example of routine roles and authorizations 125

Contents v

||

Which IDs can exercise which privileges 129
Authorization for dynamic SQL statements 132
Composite privileges . 139
Multiple actions in one statement 139

Some role models . 139
Examples of granting and revoking privileges 140

Examples using GRANT . 142
Examples with secondary IDs 143
The REVOKE statement . 146

Finding catalog information about privileges 152
Retrieving information in the catalog 152
Using views of the DB2 catalog tables 155

Chapter 11. Controlling access through a closed application 157
Controlling data definition . 157

Required installation options 158
Controlling by application name 158
Controlling by application name with exceptions 160
Registering sets of objects 161
Controlling by object name 162
Controlling by object name with exceptions 163

Managing the registration tables and their indexes 164
An overview of the registration tables 164
Creating the tables and indexes 166
Adding columns . 167
Updating the tables . 167
Columns for optional use. 167
Stopping data definition control 167

Chapter 12. Controlling access to a DB2 subsystem 169
Controlling local requests . 169
Processing connections . 170

The steps in detail . 170
Supplying secondary IDs for connection requests. 172
Required CICS specifications 173

Processing sign-ons . 173
The steps in detail . 173
Supplying secondary IDs for sign-on requests 175

Controlling requests from remote applications 176
Overview of security mechanisms for DRDA and SNA 176
The communications database for the server 178
Controlling inbound connections that use SNA protocols 180
Controlling inbound connections that use TCP/IP protocols 187

Planning to send remote requests 189
The communications database for the requester 190
What IDs you send . 193
Translating outbound IDs. 195
Sending passwords . 197

Establishing RACF protection for DB2 198
Defining DB2 resources to RACF. 200
Permitting RACF access . 202
Establishing RACF protection for stored procedures 209
Establishing RACF protection for TCP/IP 212

Establishing Kerberos authentication through RACF 212
Other methods of controlling access 214

vi Administration Guide

||

Chapter 13. Protecting data sets 215
Controlling data sets through RACF. 215

Adding groups to control DB2 data sets 215
Creating generic profiles for data sets 215
Permitting DB2 authorization IDs to use the profiles 217
Allowing DB2 authorization IDs to create data sets 217

Chapter 14. Auditing . 219
How can I tell who has accessed the data? 219

Options of the audit trace 220
Auditing a specific table . 222
Using audit records . 223

Other sources of audit information 225
What security measures are in force? 225
What helps ensure data accuracy and consistency? 226

Is required data present? Is it of the required type? 226
Are data values unique where required? 226
Has data a required pattern? Is it in a specific range? 226
Is new data in a specific set? Is it consistent with other tables? 227
What ensures that updates are tracked? 227
What ensures that concurrent users access consistent data? 228
Have any transactions been lost or left incomplete? 228

How can I tell that data is consistent? 229
SQL queries . 229
Data modifications . 229
CHECK utility . 230
DISPLAY DATABASE command 230
REPORT utility . 230
Operation log . 230
Internal integrity reports . 230

How can DB2 recover data after failures? 231
How can I protect the software? 232
How can I ensure efficient usage of resources? 232

Chapter 15. A sample security plan for employee data 233
Managers’ access . 233

To what ID is the SELECT privilege granted? 234
Allowing distributed access 235
Auditing managers’ use . 236

Payroll operations . 236
Salary updates . 237
Additional controls . 237
To what ID are privileges granted? 238
Auditing use by payroll operations and payroll management 238

Others who have access . 238
IDs with database administrative authority 238
IDs with system administrative authority 239
The employee table owner 239
Auditing for other users . 240

Part 4. Operation and recovery . 241

Chapter 16. Basic operation 249
Entering commands . 249

DB2 operator commands. 250
Authorities for DB2 commands 255

Contents vii

Starting and stopping DB2 . 256
Starting DB2 . 256
Stopping DB2 . 258

Submitting work to be processed 259
Using DB2I (DB2 Interactive) 259
Running TSO application programs 259
Running IMS application programs 260
Running CICS application programs 261
Running batch application programs 261
Running application programs using CAF. 262
Running application programs using RRSAF 263

Receiving messages . 263
Receiving unsolicited DB2 messages 264
Determining operational control 264

Chapter 17. Monitoring and controlling DB2 and its connections 267
Controlling DB2 databases and buffer pools 267

Starting databases . 268
Monitoring databases . 269
Stopping databases. 274
Altering buffer pools . 276
Monitoring buffer pools . 276

Controlling user-defined functions 277
Starting user-defined functions. 277
Monitoring user-defined functions. 277
Stopping user-defined functions 278

Controlling DB2 utilities . 278
Starting online utilities . 278
Monitoring online utilities . 278
Stand-alone utilities . 279

Controlling the IRLM . 280
Starting the IRLM . 281
Modifying the IRLM . 281
Monitoring the IRLM connection 281
Stopping the IRLM . 282

Monitoring threads . 283
Display thread output . 283

Controlling TSO connections 284
Connecting to DB2 from TSO 284
Monitoring TSO and CAF connections 285
Disconnecting from DB2 while under TSO 286

Controlling CICS connections 287
Connecting from CICS . 288
Controlling CICS application connections 289
Disconnecting from CICS 294

Controlling IMS connections 295
Connecting to the IMS control region 295
Controlling IMS dependent region connections 300
Disconnecting from IMS . 303

Controlling OS/390 RRS connections 304
Connecting to OS/390 RRS using RRSAF 305
Monitoring RRSAF connections 306

Controlling connections to remote systems 307
Starting DDF . 308
Suspending and resuming DDF server activity 308
Monitoring connections to other systems 309

viii Administration Guide

##

Monitoring and controlling stored procedures 320
Using NetView® to monitor errors in the network 323
Stopping DDF . 325

Controlling traces . 326
Controlling the DB2 trace 326
Diagnostic traces for the attachment facilities 327
Diagnostic trace for the IRLM 328

Controlling the resource limit facility (governor). 328
Changing subsystem parameter values 329

Chapter 18. Managing the log and the bootstrap data set 331
How database changes are made 331

Units of recovery. 331
Rolling back work . 332

Establishing the logging environment 333
Creation of log records . 333
Retrieval of log records . 333
Writing the active log . 333
Writing the archive log (offloading) 334

Controlling the log . 337
Archiving the log . 337
Changing the checkpoint frequency dynamically 340
Setting limits for archive log tape units 340
Displaying log information 340

Managing the bootstrap data set (BSDS) 341
BSDS copies with archive log data sets 342
Changing the BSDS log inventory 342

Discarding archive log records. 343
Deleting archive log data sets or tapes automatically 343
Locating archive log data sets to delete 343

Chapter 19. Restarting DB2 after termination 347
Termination . 347

Normal termination . 347
Abends . 348

Normal restart and recovery 348
Phase 1: Log initialization 349
Phase 2: Current status rebuild 350
Phase 3: Forward log recovery 351
Phase 4: Backward log recovery 352
Restarting automatically . 353

Deferring restart processing. 354
Restarting with conditions . 355

Resolving postponed units of recovery 355
Recovery operations you can choose for conditional restart 357
Records associated with conditional restart 357

Chapter 20. Maintaining consistency across multiple systems 359
Consistency with other systems 359

The two-phase commit process: coordinator and participant 359
Illustration of two-phase commit 360
Maintaining consistency after termination or failure 361
Termination . 362
Normal restart and recovery 362
Restarting with conditions 363

Resolving indoubt units of recovery 363

Contents ix

||

Resolution of indoubt units of recovery from IMS 364
Resolution of indoubt units of recovery from CICS 364
Resolution of indoubt units of recovery between DB2 and a remote system 365
Resolution of indoubt units of recovery from OS/390 RRS 367

Consistency across more than two systems 368
Commit coordinator and multiple participants 368
Illustration of multi-site update 370

Chapter 21. Backing up and recovering databases 373
Planning for backup and recovery 373

Considerations for recovering distributed data 374
Extended recovery facility (XRF) toleration 374
Considerations for recovering indexes 375
Preparing for recovery. 375
What happens during recovery 376
Making backup and recovery plans that maximize availability 379
How to find recovery information 382
Preparing to recover to a prior point of consistency 383
Preparing to recover the entire DB2 subsystem to a prior point in time 384
Preparing for disaster recovery 385
Ensuring more effective recovery from inconsistency problems 388
Running RECOVER in parallel. 390
Using fast log apply during RECOVER. 390
Reading the log without RECOVER 391

Copying page sets and data sets. 391
Recovering page sets and data sets 393

Recovering the work file database 394
Recovering the catalog and directory 395
Recovering data to a prior point of consistency 396

Restoring data by using DSN1COPY 399
Backing up and restoring data with non-DB2 dump and restore 400
Using RECOVER to restore data to a previous point in time 400

Recovery of dropped objects 403
Avoiding the problem . 403
Procedures for recovery . 403
Recovery of an accidentally dropped table 403
Recovery of an accidentally dropped table space 405

Discarding SYSCOPY and SYSLGRNX records 407

Chapter 22. Recovery scenarios 409
IRLM failure . 409
MVS or power failure . 410
Disk failure . 410
Application program error . 412
IMS-related failures . 413

IMS control region (CTL) failure 414
Resolution of indoubt units of recovery. 414
IMS application failure . 416

CICS-related failures . 417
CICS application failure . 417
CICS is not operational . 417
CICS cannot connect to DB2 418
Manually recovering CICS indoubt units of recovery 419
CICS attachment facility failure 422

Subsystem termination . 422
DB2 system resource failures 423

x Administration Guide

Active log failure . 423
Archive log failure . 427
Temporary resource failure 429
BSDS failure . 429
Recovering the BSDS from a backup copy 431

DB2 database failures . 434
Recovery from down-level page sets 435
Procedure for recovering invalid LOBs 436
Table space input/output errors 437
DB2 catalog or directory input/output errors 438
Integrated catalog facility catalog VSAM volume data set failures 439

VSAM volume data set (VVDS) destroyed 439
Out of disk space or extent limit reached 440

Violations of referential constraints 443
Failures related to the distributed data facility 444

Conversation failure . 444
Communications database failure 445
Failure of a database access thread 446
VTAM failure . 447
TCP/IP failure . 447
Failure of a remote logical unit. 447
Indefinite wait conditions for distributed threads 448
Security failures for database access threads 448

Remote site recovery from disaster at a local site. 449
Using a tracker site for disaster recovery 459

Characteristics of a tracker site 460
Setting up a tracker site . 460
Establishing a recovery cycle at the tracker site 461
Maintaining the tracker site 464
The disaster happens: making the tracker site the takeover site 464

Resolving indoubt threads . 465
Description of the environment 466
Communication failure between two systems 467
Making a heuristic decision 468
IMS outage that results in an IMS cold start 469
DB2 outage at a requester results in a DB2 cold start 469
DB2 outage at a server results in a DB2 cold start 472
Correcting a heuristic decision 473

Chapter 23. Recovery from BSDS or log failure during restart 475
Failure during log initialization or current status rebuild 477

Description of failure during log initialization 478
Description of failure during current status rebuild 479
Restart by truncating the log 479

Failure during forward log recovery 486
Starting DB2 by limiting restart processing 487

Failure during backward log recovery 491
Bypassing backout before restarting 492

Failure during a log RBA read request 493
Unresolvable BSDS or log data set problem during restart 494

Preparing for recovery of restart 495
Performing the fall back to a prior shutdown point 495

Failure resulting from total or excessive loss of log data 496
Total loss of log . 497
Excessive loss of data in the active log 498

Resolving inconsistencies resulting from conditional restart 500

Contents xi

Inconsistencies in a distributed environment. 500
Procedures for resolving inconsistencies 500
Method 1. Recover to a prior point of consistency 501
Method 2. Re-create the table space 501
Method 3. Use the REPAIR utility on the data 502

Part 5. Performance monitoring and tuning 505

Chapter 24. Planning your performance strategy 517
Further topics in monitoring and tuning 517
Managing performance in general 518
Establishing performance objectives 518

Defining the workload . 519
Initial planning. 519
Post-development review. 521

Planning for monitoring . 522
Continuous monitoring. 523
Periodic monitoring . 523
Detailed monitoring . 523
Exception monitoring . 524
A monitoring strategy . 524

Reviewing performance data 524
Typical review questions . 525
Are your performance objectives reasonable? 526

Tuning DB2. 526

Chapter 25. Analyzing performance data 527
Investigating the problem overall 527

Looking at the entire system 527
Beginning to look at DB2. 527

Reading accounting reports from DB2 PM 528
The accounting report—short 528
The accounting report—long 529

A general approach to problem analysis in DB2 533

Chapter 26. Improving response time and throughput 537
Reducing I/O operations . 537

Use RUNSTATS to keep access path statistics current 537
Reserve free space in table spaces and indexes 538
Make buffer pools large enough for the workload 540
Speed up preformatting by allocating in cylinders 540

Reducing the time needed to perform I/O operations 541
Create additional work file table spaces 541
Distribute data sets efficiently 542
Ensure sufficient primary allocation quantity 544

Reducing the amount of processor resources consumed 544
Reuse threads for your high-volume transactions 545
Minimize the use of DB2 traces 545
Use fixed-length records . 546

Understanding response time reporting 546

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 549
Tuning database buffer pools 549

Choose backing storage: primary or data space 550
Terminology: Types of buffer pool pages 553
Read operations . 554

xii Administration Guide

Write operations . 554
Assigning a table space or index to a virtual buffer pool 555
Buffer pool thresholds . 555
Determining size and number of buffer pools 560
Choosing a page-stealing algorithm 562
Monitoring and tuning buffer pools using online commands 563
Using DB2 PM to monitor buffer pool statistics 567

Tuning the EDM pool . 570
EDM pool space handling 570
Tips for managing EDM pool storage 573

Increasing RID pool size . 574
Controlling sort pool size and sort processing 574

Estimating the maximum size of the sort pool 575
Understanding how sort work files are allocated 575
Improving the performance of sort processing 576

Chapter 28. Improving resource utilization 579
Controlling resource usage . 579

Prioritize resources . 580
Limit resources for each job. 580
Limit resources for TSO sessions 581
Limit resources for IMS and CICS 581
Limit resources for a stored procedure 581

Resource limit facility (governor) 581
Using resource limit tables (RLSTs) 582
Governing dynamic queries 587
Restricting bind operations 592
Restricting parallelism modes 592

Managing the opening and closing of data sets 593
Determining the maximum number of open data sets 593
Understanding the CLOSE YES and CLOSE NO options 595
Switching to read-only for infrequently updated page sets. 596

Planning the placement of DB2 data sets. 597
Estimating concurrent I/O requests 597
Crucial DB2 data sets . 597
Changing catalog and directory size and location 598
Monitoring I/O activity of data sets 598
Work file data sets . 599

DB2 logging . 599
Logging performance issues and recommendations 599
Log capacity . 602
Controlling the amount of log data 604

Improving disk utilization: space and device utilization 606
Allocating and extending data sets 606
Compressing your data . 606

Improving main storage utilization 609
Performance and the storage hierarchy 611

Real storage . 611
Expanded storage . 612
Storage controller cache . 612

MVS performance options for DB2 614
Using SRM (compatibility mode) 614
Determining MVS workload management velocity goals 616

Chapter 29. Managing DB2 threads 619
Setting thread limits. 619

Contents xiii

Allied thread allocation . 620
Step 1: Thread creation . 620
Step 2: Resource allocation. 621
Step 3: SQL statement execution. 621
Step 4: Commit and thread termination 622
Variations on thread management 623
Providing for thread reuse 623

Database access threads . 624
Understanding allied threads and database access threads 625
Setting thread limits for database access threads 625
Using inactive threads . 626
Establishing a remote connection. 628
Reusing threads for remote connections 629
Using Workload Manager to set performance objectives 629

CICS design options . 633
Overview of RCT options. 634
Plans for CICS applications 634
Thread creation, reuse, and termination 634
Recommendations for RCT definitions 637
Recommendations for CICS system definitions. 639
Recommendations for accounting information for CICS threads 639

IMS design options . 639
TSO design options. 640
QMF design options . 641

Chapter 30. Improving concurrency 643
Definitions of concurrency and locks 643
Effects of DB2 locks . 644

Suspension. 644
Timeout . 645
Deadlock . 645

Basic recommendations to promote concurrency 646
Recommendations for system options 646
Recommendations for database design 647
Recommendations for application design 648

Aspects of transaction locks 650
The size of a lock . 650
The duration of a lock . 654
The mode of a lock . 654
The object of a lock. 656
DB2’s choice of lock types 659

Lock tuning . 664
Startup procedure options 665
Installation options for wait times 665
Other options that affect locking 670
Bind options . 675
Isolation overriding with SQL statements 689
The statement LOCK TABLE 690

LOB locks . 691
Relationship between transaction locks and LOB locks. 691
Hierarchy of LOB locks . 693
LOB and LOB table space lock modes. 693
Duration of locks . 693
Instances when locks on LOB table space are not taken 694
Control of the number of locks. 694
The LOCK TABLE statement 695

xiv Administration Guide

The LOCKSIZE clause for LOB table spaces 695
Claims and drains for concurrency control 695

Objects subject to takeover 695
Definition of claims and drains 696
Usage of drain locks . 697
Utility locks on the catalog and directory 697
Compatibility of utilities . 698
Concurrency during REORG 699
Utility operations with nonpartitioning indexes 700

Monitoring of DB2 locking . 700
Using EXPLAIN to tell which locks DB2 chooses 700
Using the statistics and accounting traces to monitor locking 701
Analyzing a concurrency scenario 702

Deadlock detection scenarios 707
Scenario 1: Two-way deadlock, two resources 707
Scenario 2: Three-way deadlock, three resources. 709

Chapter 31. Tuning your queries 711
General tips and questions . 711

Is the query coded as simply as possible? 711
Are all predicates coded correctly? 711
Are there subqueries in your query? 712
Does your query involve column functions? 713
Do you have an input variable in the predicate of a static SQL query? 713
Do you have a problem with column correlation? 713
Can your query be written to use a noncolumn expression? 714

Writing efficient predicates . 714
Properties of predicates . 714
Predicates in the ON clause 717

General rules about predicate evaluation 717
Order of evaluating predicates 718
Summary of predicate processing 718
Examples of predicate properties 722
Predicate filter factors . 723
DB2 predicate manipulation. 728
Column correlation . 731

Using host variables efficiently 734
Using REOPT(VARS) to change the access path at run time 734
Rewriting queries to influence access path selection. 735

Writing efficient subqueries . 738
Correlated subqueries . 739
Noncorrelated subqueries 740
Subquery transformation into join. 741
Subquery tuning . 743

Using scrollable cursors efficiently 744
Writing efficient queries on views with UNION operators 745
Special techniques to influence access path selection 746

Obtaining information about access paths 747
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS 747
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY 749
Reducing the number of matching columns 750
Adding extra local predicates 751
Creating indexes for efficient star schemas 752
Rearranging the order of tables in a FROM clause 754
Updating catalog statistics 754
Using a subsystem parameter 756

Contents xv

||

||

Giving optimization hints to DB2 757

Chapter 32. Maintaining statistics in the catalog 765
Understanding statistics used for access path selection 765

Filter factors and catalog statistics 771
Statistics for partitioned table spaces 772

Setting default statistics for created temporary tables 772
History statistics . 773
Gathering monitor and update statistics 775
Updating the catalog . 777

Correlations in the catalog 777
Recommendation for COLCARDF and FIRSTKEYCARDF 779
Recommendation for HIGH2KEY and LOW2KEY 779
Statistics for distributions . 779
Recommendation for using the TIMESTAMP column 779

Querying the catalog for statistics 779
Improving index and table space access 780

How clustering affects access path selection 781
What other statistics provide index costs 783
When to reorganize indexes and table spaces 784
Whether to rebind after gathering statistics 786

Modeling your production system. 786

Chapter 33. Using EXPLAIN to improve SQL performance 789
Obtaining PLAN_TABLE information from EXPLAIN 790

Creating PLAN_TABLE . 790
Populating and maintaining a plan table 796
Reordering rows from a plan table 797

Asking questions about data access 798
Is access through an index? (ACCESSTYPE is I, I1, N or MX) 799
Is access through more than one index? (ACCESSTYPE=M) 799
How many columns of the index are used in matching? (MATCHCOLS=n) 800
Is the query satisfied using only the index? (INDEXONLY=Y) 800
Is direct row access possible? (PRIMARY_ACCESSTYPE = D) 801
Is a view or nested table expression materialized? 803
Was a scan limited to certain partitions? (PAGE_RANGE=Y) 803
What kind of prefetching is done? (PREFETCH = L, S, or blank) 803
Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C,

or X) . 804
Are sorts performed? . 804
Is a subquery transformed into a join? 805
When are column functions evaluated? (COLUMN_FN_EVAL) 805

Interpreting access to a single table. 805
Table space scans (ACCESSTYPE=R PREFETCH=S) 805
Overview of index access 806
Index access paths . 807
UPDATE using an index . 812

Interpreting access to two or more tables (join) 812
Definitions and examples. 813
Nested loop join (METHOD=1) 815
Merge scan join (METHOD=2). 816
Hybrid join (METHOD=4). 818
Star schema (star join) . 820

Interpreting data prefetch. 824
Sequential prefetch (PREFETCH=S) 824
List prefetch (PREFETCH=L) 825

xvi Administration Guide

||

Sequential detection at execution time 826
Determining sort activity . 828

Sorts of data . 828
Sorts of RIDs . 829
The effect of sorts on OPEN CURSOR 829

Processing for views and nested table expressions 829
Merge. 830
Materialization. 830
Using EXPLAIN to determine when materialization occurs 832
Using EXPLAIN to determine UNION activity and query rewrite 834
Performance of merge versus materialization 835

Estimating a statement’s cost 836
Creating a statement table 836
Populating and maintaining a statement table 838
Retrieving rows from a statement table 838
Understanding the implications of cost categories. 839

Chapter 34. Parallel operations and query performance 841
Comparing the methods of parallelism 842
Partitioning for optimal parallel performance 844

Determining if a query is I/O- or processor-intensive. 845
Determining the number of partitions 845
Working with a table space that is already partitioned? 846
Making the partitions the same size 846

Enabling parallel processing 847
When parallelism is not used 848
Interpreting EXPLAIN output 848

A method for examining PLAN_TABLE columns for parallelism 848
PLAN_TABLE examples showing parallelism 849

Monitoring parallel operations 850
Using DISPLAY BUFFERPOOL 851
Using DISPLAY THREAD 851
Using DB2 trace . 851

Tuning parallel processing . 853
Disabling query parallelism . 854

Chapter 35. Tuning and monitoring in a distributed environment 857
Understanding remote access types 857

Characteristics of DRDA . 857
Characteristics of DB2 private protocol. 857

Tuning distributed applications 858
The application and the requesting system 858
The serving system. 865

Monitoring DB2 in a distributed environment 866
Using the DISPLAY command 866
Tracing distributed events 866
Reporting server-elapsed time 870

Using RMF to monitor distributed processing 870
Duration of an enclave . 870
RMF records for enclaves 871

Chapter 36. Monitoring and tuning stored procedures and user-defined
functions . 873

Controlling address space storage 874
Assigning procedures and functions to WLM application environments 875
Providing DB2 cost information for accessing user-defined table functions 876

Contents xvii

||

||

Accounting trace . 877
Accounting for nested activities 879

Part 6. Appendixes . 881

Appendix A. DB2 sample tables 883
Activity table (DSN8710.ACT) 883

Content . 883
Relationship to other tables 884

Department table (DSN8710.DEPT). 884
Content . 884
Relationship to other tables 885

Employee table (DSN8710.EMP) 885
Content . 886
Relationship to other tables 886

Employee photo and resume table (DSN8710.EMP_PHOTO_RESUME) . . . 888
Content . 889
Relationship to other tables 889

Project table (DSN8710.PROJ) 890
Content . 890
Relationship to other tables 891

Project activity table (DSN8710.PROJACT) 891
Content . 891
Relationship to other tables 891

Employee to project activity table (DSN8710.EMPPROJACT) 892
Content . 892
Relationship to other tables 892

Relationships among the tables 893
Views on the sample tables . 893
Storage of sample application tables 896

Storage group. 897
Databases . 897
Table spaces . 897

Appendix B. Writing exit routines 901
Connection and sign-on routines 901

General considerations . 901
Specifying the routines . 901
Sample exit routines . 902
When exits are taken . 902
EXPL for connection and sign-on routines 903
Exit parameter list . 903
Authorization ID parameter list. 904
Input values . 905
Expected output . 906
Processing in the sample routines 907
Performance considerations. 908
Debugging your exit routine. 908

Access control authorization exit 909
General considerations . 910
Specifying the routine . 910
The default routine . 910
When the exit is taken. 910
Other considerations for using the access control authorization exit 911
Parameter list for the access control authorization routine. 912
Expected output . 919

xviii Administration Guide

Debugging your exit routine. 921
Determining if the exit routine is active. 921

Edit routines . 921
General considerations . 922
Specifying the routine . 922
When exits are taken . 922
Parameter lists on entry . 923
Processing requirements . 923
Incomplete rows . 923
Expected output . 924

Validation routines . 925
General considerations . 925
Specifying the routine . 925
When exits are taken . 925
Parameter lists on entry . 925
Processing requirements . 926
Incomplete rows . 926
Expected output . 926

Date and time routines . 927
General considerations . 928
Specifying the routine . 928
When exits are taken . 928
Parameter lists on entry . 929
Expected output . 930

Conversion procedures . 931
General considerations . 931
Specifying the routine . 931
When exits are taken . 932
Parameter lists on entry . 932
Expected output . 932

Field procedures . 934
Field definition. 935
General considerations . 935
Specifying the procedure . 935
When exits are taken . 935
Control blocks for execution. 936
Field-definition (function code 8) 939
Field-encoding (function code 0) 941
Field-decoding (function code 4) 943

Log capture routines . 944
General considerations . 944
Specifying the routine . 944
When exits are taken . 944
Parameter lists on entry . 945

Routines for dynamic plan selection in CICS 946
What the exit routine does 947
General considerations . 947
Execution environment . 947
Specifying the routine . 947
Sample exit routine . 948
When exits are taken . 948
Dynamic plan switching . 948
Coding the exit routine . 949
Parameter list on entry . 949

General considerations for writing exit routines. 950
Coding rules . 950

Contents xix

||

Modifying exit routines. 950
Execution environment . 950
Registers at invocation . 951
Parameter lists . 951

Row formats for edit and validation routines 952
Column boundaries . 952
Null values . 952
Fixed-length rows . 952
Varying-length rows. 953
Varying-length rows with nulls 953
Internal formats for dates, times, and timestamps. 954
Parameter list for row format descriptions. 954
DB2 codes for numeric data 955

Routine for CICS transaction invocation stored procedure. 955

Appendix C. Reading log records 957
What the log contains . 957

Unit of recovery log records. 958
Checkpoint log records . 961
Database page set control records 962
Other exception information. 962

The physical structure of the log 962
Physical and logical log records 962
The log record header. 963
The log control interval definition (LCID) 964
Log record type codes. 966
Log record subtype codes 966
Interpreting data change log records 967

Reading log records with IFI 968
Reading log records into a buffer 968
Reading specific log records (IFCID 0129) 968
Reading complete log data (IFCID 0306) 969

Reading log records with OPEN, GET, and CLOSE 971
Data sharing users: Which members participate in the read? 974
Registers and return codes 974
Stand-alone log OPEN request 975
Stand-alone log GET request 976
Stand-alone log CLOSE request 978
Sample application program using stand-alone log services 979

Reading log records with the log capture exit 980

Appendix D. Interpreting DB2 trace output 981
Processing trace records . 981

SMF writer header section 982
GTF writer header section 984
Self-defining section . 988
Product section . 990

Trace field descriptions . 995

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 997
Submitting DB2 commands through IFI 997
Obtaining trace data . 998
Passing data to DB2 through IFI 998
IFI functions . 998
Invoking IFI from your program 999
Using IFI from stored procedures 1000

xx Administration Guide

##

COMMAND: Syntax and usage 1000
Authorization. 1000
Syntax . 1000
Example . 1002

READS: Syntax and usage 1002
Authorization. 1003
Syntax . 1003
Which qualifications are used? 1010
Usage notes . 1011
Synchronous data . 1012
Using READS calls to monitor the dynamic statement cache 1013
Controlling collection of dynamic statement cache statistics with IFCID

0318 . 1015
READA: Syntax and usage 1015

Authorization. 1015
Syntax . 1015
Usage notes . 1016
Asynchronous data . 1017
Example . 1017

WRITE: Syntax and usage 1017
Authorization. 1018
Syntax . 1018
Usage notes . 1018

Common communication areas 1019
IFCA. 1019
Return area . 1022
IFCID area . 1023
Output area . 1023

Using IFI in a data sharing group 1023
Interpreting records returned by IFI 1025
Trace data record format . 1025
Command record format . 1026
Data integrity. 1027
Auditing data. 1027
Locking considerations . 1028
Recovery considerations . 1028
Errors . 1028

Appendix F. Using tools to monitor performance 1029
Using MVS, CICS, and IMS tools 1030

Monitoring system resources 1031
Monitoring transaction manager throughput 1033

DB2 trace . 1033
Types of traces . 1034
Effect on DB2 performance 1037

Recording SMF trace data. 1037
Activating SMF . 1038
Allocating additional SMF buffers 1038
Reporting data in SMF . 1038

Recording GTF trace data . 1039
DB2 Performance Monitor (DB2 PM) 1039
Performance Reporter for MVS 1040
Monitoring application plans and packages. 1040

Appendix G. Real-time statistics tables 1043
Setting up your system for real-time statistics 1043

Contents xxi

##
##

Creating and altering the real-time statistics objects 1043
Setting the interval for writing real-time statistics. 1044
Starting the real-time statistics database 1045

Contents of the real-time statistics tables 1045
Operating with real-time statistics 1057

When DB2 externalizes real-time statistics 1057
How DB2 utilities affect the real-time statistics 1058
How non-DB2 utilities affect real-time statistics 1064
Real-time statistics on objects in work file databases and the TEMP

database . 1065
Real-time statistics on read-only objects. 1065
How dropping objects affects real-time statistics 1065
How SQL operations affect real-time statistics counters 1065
Real-time statistics in data sharing. 1066
Improving concurrency with real-time statistics 1066
Recovering the real-time statistics tables 1066
Statistics accuracy. 1066

Appendix H. Stored procedures shipped with DB2. 1069
The DB2 real-time statistics stored procedure. 1069

Environment . 1070
Authorization required . 1070
DSNACCOR syntax diagram 1070
DSNACCOR option descriptions 1071
Formulas for recommending actions 1077
Using an exception table 1079
Example of DSNACCOR invocation 1080
DSNACCOR output . 1084

The CICS transaction invocation stored procedure (DSNACICS) 1087
Environment . 1087
Authorization required . 1088
DSNACICS syntax diagram 1088
DSNACICS option descriptions 1088
DSNACICX user exit . 1090
Example of DSNACICS invocation 1092
DSNACICS output. 1094
DSNACICS restrictions . 1094
DSNACICS debugging . 1094

Notices . 1095
Programming Interface Information 1096
Trademarks . 1098

Glossary . 1099

Bibliography . 1121

Index .X-1

xxii Administration Guide

##
##
##
##
##
##
##
##
#
##
##
##
##
##
##
##
##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

About this book

This two-volume book provides guidance information that you can use to perform a
variety of administrative tasks with DB2 Universal Database™ for OS/390® and
z/OS (DB2®).

Important
In this version of DB2 for OS/390 and z/OS, some utility functions are
available as optional products. You must separately order and purchase a
license to such utilities, and discussion of those utility functions in this
publication is not intended to otherwise imply that you have a license to them.

Who should read this book
This book is primarily intended for system and database administrators. It assumes
that the user is familiar with:

v The basic concepts and facilities of DB2

v The MVS Time Sharing Option (TSO) and the MVS Interactive System
Productivity Facility (ISPF)

v The basic concepts of Structured Query Language (SQL)

v The basic concepts of Customer Information Control System (CICS®)

v The basic concepts of Information Management System (IMS™)

v How to define and allocate MVS data sets using MVS job control language
(JCL).

Certain tasks require additional skills, such as knowledge of Virtual
Telecommunications Access Method (VTAM®) to set up communication between
DB2 subsystems, or knowledge of the IBM System Modification Program (SMP/E)
to install IBM licensed programs.

Product terminology and citations
In this book, DB2 Universal Database Server for OS/390 and z/OS is referred to as
"DB2 for OS/390 and z/OS." In cases where the context makes the meaning clear,
DB2 for OS/390 and z/OS is referred to as "DB2." When this book refers to other
books in this library, a short title is used. (For example, "See DB2 SQL Reference"
is a citation to IBM® DATABASE 2™ Universal Database Server for OS/390 and
z/OS SQL Reference.)

When referring to a DB2 product other than DB2 for OS/390 and z/OS, this book
uses the product’s full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2
subsystem.

C and C language
Represent the C programming language.

CICS Represents CICS/ESA® and CICS Transaction Server for OS/390.

IMS Represents IMS or IMS/ESA®.

© Copyright IBM Corp. 1982, 2001 xxiii

|
|
|
|

MVS Represents the MVS element of OS/390.

OS/390
Represents the OS/390 or z/OS operating system.

RACF®

Represents the functions that are provided by the RACF component of the
SecureWay® Security Server for OS/390 or by the RACF component of the
OS/390 Security Server.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any comments
that you have about this book or other DB2 for OS/390 and z/OS documentation.
You can use any of the following methods to provide comments:

v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name
of the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

v Send your comments from the Web. Visit the Web site at:

http://www.ibm.com/software/db2os390

The Web site has a feedback page that you can use to send comments.

v Complete the readers’ comment form at the back of the book and return it by
mail, by fax (800-426-7773 for the United States and Canada), or by giving it to
an IBM representative.

xxiv Administration Guide

Summary of changes to this book

This section summarizes the major changes to this book for Version 7. See
“Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7” on page 3
for an overview of the changes in Version 7 of DB2 for OS/390 and z/OS.

Part 1. Introduction has changed as follows: “Chapter 2. System planning concepts”
on page 7 provides a summary of system planning concepts for DB2 for OS/390
and z/OS and provides pointers to other information sources for more detailed
information. This chapter contains higher-level information than it did in previous
releases, because An Introduction to DB2 for OS/390, new in Version 7, has
extensive conceptual information about DB2 for OS/390 and z/OS.

Part 2. Designing a database: advanced topics, formerly entitled, ″Designing a
database,″ has undergone a change in scope for Version 7. In prior versions,
″Designing a database″ provided a range of information, from basic to advanced,
about designing a database. “Part 2. Designing a database: advanced topics” on
page 27 now presents only the advanced topics. The newest member of the DB2
for OS/390 and z/OS library, An Introduction to DB2 for OS/390, covers basic
information about designing and implementing a database. Table 6 on page 29 and
Table 7 on page 41 provide roadmaps to information that was formerly part of
″Designing a database.″

Part 3. Security and auditing has changed as follows:

v “Explicit privileges and authorities” on page 104 describes the explicit Java class
privileges and also the updated DBADM authority.

v “Implicit privileges of ownership” on page 114 describes the implicit Java class
privileges and also the updated DBADM authority.

v “Controlling access to catalog tables for stored procedures” on page 124 has
guidelines for granting access to catalog tables that programmers need to
develop stored procedures.

v “The REVOKE statement” on page 146 describes how the RESTRICT clause of
the REVOKE statment applies to Jars (Java classes for a routine).

v “Controlling requests from remote applications” on page 176 explains Kerberos
security tickets, encrypted user IDs and encrypted passwords, and encrypted
changed passwords.

v “Establishing Kerberos authentication through RACF” on page 212 explains how
to implement Kerberos authentication through RACF.

v “Chapter 14. Auditing” on page 219 describes how an authorization ID can be
mapped to a RACF ID from a Kerberos security ticket.

Part 4. Operation and recovery has changed as follows:

v “Chapter 16. Basic operation” on page 249 adds new commands DISPLAY DDF
and SET SYSPARM, and highlights new options for the commands DISPLAY
LOG, SET LOG, and RECOVER POSTPONED in “DB2 operator commands” on
page 250.

v “Chapter 17. Monitoring and controlling DB2 and its connections” on page 267
describes:

– How to reset restrictions so that DB2 can execute START DATABASE
ACCESS(FORCE), as described in “Starting a table space or index space that
has restrictions” on page 268.

© Copyright IBM Corp. 1982, 2001 xxv

– The sample output in “The command DISPLAY DDF” on page 309; the
DETAIL report includes the number of connections that are waiting to be
associated with database access threads.

– How to modify subsystem parameter values dynamically while DB2 is running
by using the SET SYSPARM command as described in “Changing subsystem
parameter values” on page 329.

v “Chapter 18. Managing the log and the bootstrap data set” on page 331
describes:

– How to cancel long running threads without backing out data changes, by
using the NOBACKOUT option of the CANCEL THREAD command (see
“Rolling back work” on page 332)

– How to use either the LOGLOAD option or the CHKTIME option of the SET
LOG command to dynamically change the checkpoint frequency (see
“Changing the checkpoint frequency dynamically” on page 340)

v “Chapter 19. Restarting DB2 after termination” on page 347 describes:

– How to use the UR log threshold option to inform you about long running URs
(see “Normal restart and recovery” on page 348)

– Why you might want to use the CANCEL option of the RECOVER
POSTPONED command (see “Resolving postponed units of recovery” on
page 355)

v “Chapter 21. Backing up and recovering databases” on page 373 describes why
you might want to use the LIGHT(YES) option of the START DB2 command for
some members of a data sharing environment (see “Preparing for disaster
recovery” on page 385).

v “Chapter 22. Recovery scenarios” on page 409 describes a procedure for
enlarging a data set for the work file database (see “Out of disk space or extent
limit reached” on page 440).

Part 5. Performance monitoring and tuning has changed as follows:

v “Chapter 28. Improving resource utilization” on page 579 contains revised
recommendations on setting address space priorities.

v “Chapter 30. Improving concurrency” on page 643 describes optimistic
concurrency control for scrollable cursors, which can shorten the amount of time
that locks might be held. For queries with isolation level RS or CS, the chapter
also explains why you might want to use an installation option that indicates if
predicate evaluation can occur on the uncommitted data of other transactions,
which can reduce the number of locks that are acquired.

v “Chapter 31. Tuning your queries” on page 711 contains recommendations on
using scrollable cursors efficiently.

v “Chapter 32. Maintaining statistics in the catalog” on page 765 has information
about the new DB2 catalog tables for history statistics. The chapter also explains
how to use the new catalog columns LEAFNEAR and LEAFFAR to determine
when an index should be reorganized.

v “Chapter 33. Using EXPLAIN to improve SQL performance” on page 789 contains
information about views and table expressions that are defined with UNION and
UNION ALL operators.

v “Chapter 35. Tuning and monitoring in a distributed environment” on page 857
explains how block fetch works for scrollable cursors. The chapter also describes
how to use the FETCH FIRST n ROWS ONLY clause of the SELECT statement
to limit the number of rows that DB2 prefetches to a specific number for a
distributed query that uses DRDA access.

xxvi Administration Guide

Appendix B. Writing exit routines has changed as follows:

v “Connection and sign-on routines” on page 901 has information on using the
USER and USING keywords on the CONNECT statement.

v “Access control authorization exit” on page 909 has information on function
resolution during an AUTOBIND. Also, the parameter list for the access control
authorization routine has been updated for Jars (Java classes for a routine).

v “Exception processing” on page 920 explains how the EXPLRC1 value affects
DB2 processing.

v “Determining if the exit routine is active” on page 921 explains how to determine
whether the exit routine or DB2 is performing authorization checks.

Summary of changes to this book xxvii

xxviii Administration Guide

Part 1. Introduction

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7. . . 3
Enhancements for managing data 3
Enhancements for reliability, scalability, and availability. 3
Easier development and integration of e-business applications 4
Improved connectivity . 5
Features of DB2 for OS/390 and z/OS. 6
Migration considerations . 6

Chapter 2. System planning concepts 7
The structure of DB2 . 7

Data structures . 7
Databases . 9
Storage groups . 9
Table spaces . 9
Tables . 10
Indexes . 10
Views . 11

System structures . 11
DB2 catalog . 11
DB2 directory . 12
Active and archive logs . 12
Bootstrap data set (BSDS) 13
Buffer pools . 13
Data definition control support database 14
Resource limit facility database 14
Work file database . 14
TEMP database . 14

More information about data structures 14
Control and maintenance of DB2 15

Commands . 16
Utilities . 16
High availability. 16

Daily operations and tuning 16
Backup and recovery . 16
Restart . 17

More information about control and maintenance of DB2 17
The DB2 environment . 18

Address spaces . 18
DB2’s lock manager . 18

What IRLM does . 18
Administering IRLM . 19

DB2’s attachment facilities. 19
CICS . 20
IMS . 21
TSO . 21
CAF . 22
RRS . 22

DB2 and distributed data . 22
DB2 and OS/390 and z/OS 23
DB2 and the Parallel Sysplex 24
DB2 and the SecureWay Security Server for OS/390 24
DB2 and DFSMS . 24
More information about the OS/390 environment 25

© Copyright IBM Corp. 1982, 2001 1

||
||

||

||

2 Administration Guide

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS
Version 7

DB2 for OS/390 and z/OS Version 7 delivers an enhanced relational database
server solution for OS/390. This release focuses on greater ease and flexibility in
managing your data, better reliability, scalability, and availability, and better
integration with the DB2 family.

In Version 7, some utility functions are available as optional products; you must
separately order and purchase a license to such utilities. Discussion of utility
functions in this publication is not intended to otherwise imply that you have a
license to them. See DB2 Utility Guide and Reference for more information about
utilities products.

Enhancements for managing data
Version 7 delivers the following enhancements for managing data:

v DB2 now collects a comprehensive statistics history that:
– Lets you track changes to the physical design of DB2 objects
– Lets DB2 predict future space requirements for table spaces and indexes

more accurately and run utilities to improve performance

v Database administrators can now manage DB2 objects more easily and no
longer must maintain their utility jobs (even when new objects are added) by
using enhancements that let them:
– Dynamically create object lists from a pattern-matching expression
– Dynamically allocate the data sets that are required to process those objects

v More flexible DBADM authority lets database administrators create views for
other users.

v Enhancements to management of constraints let you specify a constraint at the
time you create primary or unique keys. A new restriction on the DROP INDEX
statement requires that you drop the primary key, unique key, or referential
constraint before you drop the index that enforces a constraint.

Enhancements for reliability, scalability, and availability
Version 7 delivers the following enhancements for the reliability, scalability, and
availability of your e-business:

v The DB2 Utilities Suite provides utilities for all of your data management tasks
that are associated with the DB2 catalog.

v The new UNLOAD utility lets you unload data from a table space or an image
copy data set. In most cases, the UNLOAD utility is faster than the DSNTIAUL
sample program, especially when you activate partition parallelism for a large
partitioned table space. UNLOAD is also easier to use than REORG UNLOAD
EXTERNAL.

v The new COPYTOCOPY utility lets you make additional image copies from a
primary image copy and registers those copies in the DB2 catalog.
COPYTOCOPY leaves the target object in read/write access mode (UTRW),
which allows Structured Query Language (SQL) statements and some utilities to
run concurrently with the same target objects.

© Copyright IBM Corp. 1982, 2001 3

v Parallel LOAD with multiple inputs lets you easily load large amounts of data into
partitioned table spaces for use in data warehouse applications or business
intelligence applications. Parallel LOAD with multiple inputs runs in a single step,
rather than in different jobs.

v A faster online REORG is achieved through the following enhancements:

– Online REORG no longer renames data sets, which greatly reduces the time
that data is unavailable during the SWITCH phase.

– Additional parallel processing improves the elapsed time of the BUILD2 phase
of REORG SHRLEVEL(CHANGE) or SHRLEVEL(REFERENCE).

v More concurrency with online LOAD RESUME is achieved by letting you give
users read and write access to the data during LOAD processing so that you can
load data concurrently with user transactions.

v More efficient processing for SQL queries:

– More transformations of subqueries into a join for some UPDATE and
DELETE statements

– Fewer sort operations for queries that have an ORDER BY clause and
WHERE clauses with predicates of the form COL=constant

– More parallelism for IN-list index access, which can improve performance for
queries involving IN-list index access

v The ability to change system parameters without stopping DB2 supports online
transaction processing and e-business without interruption.

v Improved availability of user objects that are associated with failed or canceled
transactions:
– You can cancel a thread without performing rollback processing.
– Some restrictions imposed by the restart function have been removed.
– A NOBACKOUT option has been added to the CANCEL THREAD command.

v Improved availability of the DB2 subsystem when a log-read failure occurs: DB2
now provides a timely warning about failed log-read requests and the ability to
retry the log read so that you can take corrective action and avoid a DB2 outage.

v Improved availability in the data sharing environment:

– Group attachment enhancements let DB2 applications generically attach to a
DB2 data sharing group.

– A new LIGHT option of the START DB2 command lets you restart a DB2 data
sharing member with a minimal storage footprint, and then terminate normally
after DB2 frees the retained locks that it can.

– You can let changes in structure size persist when you rebuild or reallocate a
structure.

v Additional data sharing enhancements include:
– Notification of incomplete units of recovery
– Use of a new OS/390 and z/OS function to improve failure recovery of group

buffer pools

v An additional enhancement for e-business provides improved performance with
preformatting for INSERT operations.

Easier development and integration of e-business applications
Version 7 provides the following enhancements, which let you more easily develop
and integrate applications that access data from various DB2 operating systems
and distributed environments:

v DB2 XML Extender for OS/390 and z/OS, a new member of the DB2 Extender
family, lets you store, retrieve, and search XML documents in a DB2 database.

4 Administration Guide

v Improved support for UNION and UNION ALL operators in a view definition, a
nested table expression, or a subquery predicate, improves DB2 family
compatibility and is consistent with SQL99 standards.

v More flexibility with SQL gives you greater compatibility with DB2 on other
operating systems:

– Scrollable cursors let you move forward, backward, or randomly through a
result table or a result set. You can use scrollable cursors in any DB2
applications that do not use DB2 private protocol access.

– A search condition in the WHERE clause can include a subquery in which the
base object of both the subquery and the searched UPDATE or DELETE
statement are the same.

– A new SQL clause, FETCH FIRST n ROWS, improves performance of
applications in a distributed environment.

– Fast implicit close in which the DB2 server, during a distributed query,
automatically closes the cursor when the application attempts to fetch beyond
the last row.

– Support for options USER and USING in a new authorization clause for
CONNECT statements lets you easily port applications that are developed on
the workstation to DB2 for OS/390 and z/OS. These options also let
applications that run under WebSphere to reuse DB2 connections for different
users and to enable DB2 for OS/390 and z/OS to check passwords.

– For positioned updates, you can specify the FOR UPDATE clause of the
cursor SELECT statement without a list of columns. As a result, all updatable
columns of the table or view that is identified in the first FROM clause of the
fullselect are included.

– A new option of the SELECT statement, ORDER BY expression, lets you
specify operators as the sort key for the result table of the SELECT
statement.

– New datetime ISO functions return the day of the week with Monday as day 1
and every week with seven days.

v Enhancements to Open Database Connectivity (ODBC) provide partial ODBC 3.0
support, including many new application programming interfaces (APIs), which
increase application portability and alignment with industry standards.

v Enhancements to the LOAD utility let you load the output of an SQL SELECT
statement directly into a table.

v A new component called Precompiler Services lets compiler writers modify their
compilers to invoke Precompiler Services and produce an SQL statement
coprocessor. An SQL statement coprocessor performs the same functions as the
DB2 precompiler, but it performs those functions at compile time. If your compiler
has an SQL statement coprocessor, you can eliminate the precompile step in
your batch program preparation jobs for COBOL and PL/I programs.

v Support for Unicode-encoded data lets you easily store multilingual data within
the same table or on the same DB2 subsystem. The Unicode encoding scheme
represents the code points of many different geographies and languages.

Improved connectivity
Version 7 offers improved connectivity:

v Support for COMMIT and ROLLBACK in stored procedures lets you commit or
roll back an entire unit of work, including uncommitted changes that are made
from the calling application before the stored procedure call is made.

Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7 5

#
#
#
#
#
#

v Support for Windows Kerberos security lets you more easily manage workstation
clients who seek access to data and services from heterogeneous environments.

v Global transaction support for distributed applications lets independent DB2
agents participate in a global transaction that is coordinated by an XA-compliant
transaction manager on a workstation or a gateway server (Microsoft Transaction
Server or Encina, for example).

v Support for a DB2 Connect Version 7 enhancement lets remote workstation
clients quickly determine the amount of time that DB2 takes to process a request
(the server elapsed time).

v Additional enhancements include:
– Support for connection pooling and transaction pooling for IBM DB2 Connect
– Support for DB2 Call Level Interface (DB2 CLI) bookmarks on DB2 UDB for

UNIX, Windows, OS/2

Features of DB2 for OS/390 and z/OS
Version 7 of DB2 UDB Server for OS/390 and z/OS offers several features that help
you integrate, analyze, summarize, and share data across your enterprise:

v DB2 Warehouse Manager feature. The DB2 Warehouse Manager feature brings
together the tools to build, manage, govern, and access DB2 for OS/390 and
z/OS-based data warehouses. The DB2 Warehouse Manager feature uses
proven technologies with new enhancements that are not available in previous
releases, including:

– DB2 Warehouse Center, which includes:
- DB2 Universal Database Version 7 Release 1 Enterprise Edition
- Warehouse agents for UNIX, Windows, and OS/390
- Information Catalog

– QMF Version 7

– QMF High Performance Option

– QMF for Windows

v DB2 Management Clients Package. The elements of the DB2 Management
Clients Package are:
– DB2 Control Center
– DB2 Stored Procedure Builder
– DB2 Installer
– DB2 Visual Explain
– DB2 Estimator

v Net Search Extender for in-memory text search for e-business applications

v Net.Data for secure Web applications

Migration considerations
Migration with full fallback protection is available when you have either DB2 for
OS/390 Version 5 or Version 6 installed. You should ensure that you are fully
operational on DB2 for OS/390 Version 5, or later, before migrating to DB2 for
OS/390 and z/OS Version 7.

To learn about all of the migration considerations from Version 5 to Version 7, read
the DB2 Release Planning Guide for Version 6 and Version 7; to learn about
content information, also read appendixes A through F in both books.

6 Administration Guide

#
#
#

#
#
#
#

Chapter 2. System planning concepts

This chapter introduces the DB2 for OS/390 and z/OS system and explains the
concepts that relate to system and database administration. It consists of the
following sections:

v “The structure of DB2” describes the elements you deal with when using DB2.

v “Control and maintenance of DB2” on page 15 briefly describes commands and
utility jobs.

v “The DB2 environment” on page 18 describes the main DB2 components and
explains how DB2 operates with certain related IBM products.

Each section concludes with a list of citations to more detailed information about the
topics that the section introduces.

If you are new DB2 for OS/390 and z/OS, begin with An Introduction to DB2 for
OS/390 for extensive conceptual information.

General information about DB2 for OS/390 and z/OS is available from the DB2 for
OS/390 and z/OS World Wide Web page:
http://www.software.ibm.com/data/db2/os390/

The structure of DB2
The elements that DB2 manages can be divided into two broad categories:

v Data structures, which are accessed under the user’s direction and by which the
user’s data (and some system data) is organized.

v System structures, which are controlled and accessed by DB2.

Data structures
DB2 data structures described in this section include:

“Databases” on page 9
“Storage groups” on page 9
“Table spaces” on page 9
“Tables” on page 10
“Indexes” on page 10
“Views” on page 11

The brief descriptions here show how the structures fit into an overall view of DB2.

Figure 1 on page 8 shows how some DB2 structures contain others. To some
extent, the notion of “containment” provides a hierarchy of structures. This section
introduces those structures from the most to the least inclusive.

© Copyright IBM Corp. 1982, 2001 7

|
|
|

|

|
|

|
|

|
|

|
|

The DB2 objects that Figure 1 introduces are:

Databases
A set of DB2 structures that include a collection of tables, their associated
indexes, and the table spaces in which they reside.

Storage groups
A set of volumes on disks that hold the data sets in which tables and
indexes are actually stored.

Table spaces
A set of volumes on disks that hold the data sets in which tables and
indexes are actually stored.

Tables
All data in a DB2 database is presented in tables—collections of rows all
having the same columns. A table that holds persistent user data is a base
table. A table that stores data temporarily is a global temporary table.

Indexes
An index is an ordered set of pointers to the data in a DB2 table. The index
is stored separately from the table.

Figure 1. A hierarchy of DB2 structures

8 Administration Guide

Views A view is an alternate way of representing data that exists in one or more
tables. A view can include all or some of the columns from one or more
base tables.

Databases
A single database can contain all the data associated with one application or with a
group of related applications. Collecting that data into one database allows you to
start or stop access to all the data in one operation and grant authorization for
access to all the data as a single unit. Assuming that you are authorized to do so,
you can access data stored in different databases.

If you create a table space or a table and do not specify a database, the table or
table space is created in the default database, DSNDB04. DSNDB04 is defined for
you at installation time. All users have the authority to create table spaces or tables
in database DSNDB04. The system administrator can revoke those privileges and
grant them only to particular users as necessary.

When you migrate to Version 7, DB2 adopts the default database and default
storage group you used in Version 6. You have the same authority for Version 7 as
you did in Version 6.

Storage groups
The description of a storage group names the group and identifies its volumes and
the VSAM (virtual storage access method) catalog that records the data sets. The
default storage group, SYSDEFLT, is created when you install DB2.

All volumes of a given storage group must have the same device type. But, as
Figure 1 on page 8 suggests, parts of a single database can be stored in different
storage groups.

Table spaces
A table space can consist of a number of VSAM data sets. Data sets are VSAM
linear data sets (LDSs). Table spaces are divided into equal-sized units, called
pages, which are written to or read from disk in one operation. You can specify
page sizes for the data; the default page size is 4 KB.

When you create a table space, you can specify the database to which the table
space belongs and the storage group it uses. If you do not specify the database
and storage group, DB2 assigns the table space to the default database and the
default storage group.

You also determine what kind of table spaces is created.

Partitioned
Divides the available space into separate units of storage called partitions.
Each partition contains one data set of one table. You assign the number of
partitions (from 1 to 254) and you can assign partitions independently to
different storage groups.

Segmented
Divides the available space into groups of pages called segments. Each
segment is the same size. A segment contains rows from only one table.

Large object (LOB)
Holds large object data such as graphics, video, or very large text strings. A
LOB table space is always associated with the table space that contains the
logical LOB column values. The table space that contains the table with the
LOB columns is called, in this context, the base table space.

Chapter 2. System planning concepts 9

Simple
Can contain more than one table. The rows of different tables are not kept
separate (unlike segmented table spaces).

Tables
When you create a table in DB2, you define an ordered set of columns.

Sample tables: The examples in this book are based on the set of tables described
in Appendix A (Volume 2) of DB2 Administration Guide. The sample tables are part
of the DB2 licensed program and represent data related to the activities of an
imaginary computer services company, the Spiffy Computer Services Company.
Table 1 shows an example of a DB2 sample table.

Table 1. Example of a DB2 sample table (Department table)
DEPTNO DEPTNAME MGRNO ADMRDEPT
A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
B01 PLANNING 000020 A00
C01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER A00
E01 SUPPORT SERVICES 000050 A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
E11 OPERATIONS 000090 E01
E21 SOFTWARE SUPPORT 000100 E01

The department table contains:

v Columns: The ordered set of columns are DEPTNO, DEPTNAME, MGRNO, and
ADMRDEPT. All the data in a given column must be of the same data type.

v Row: Each row contains data for a single department.

v Value: At the intersection of a column and row is a value. For example,
PLANNING is the value of the DEPTNAME column in the row for department
B01.

v Referential constraints: You can assign a primary key and foreign keys to
tables. DB2 can automatically enforce the integrity of references from a foreign
key to a primary key by guarding against insertions, updates, or deletions that
violate the integrity.

– Primary key: A column or set of columns whose values uniquely identify each
row, for example, DEPTNO.

– Foreign key: Columns of other tables, whose values must be equal to values
of the primary key of the first table (in this case, the department table). In the
sample employee table, the column that shows what department an employee
works in is a foreign key; its values must be values of the department number
column in the department table.

Indexes
Each index is based on the values of data in one or more columns of a table. After
you create an index, DB2 maintains the index, but you can perform necessary
maintenance such as reorganizing it or recovering the index.

Indexes take up physical storage in index spaces. Each index occupies its own
index space.

The main purposes of indexes are:

10 Administration Guide

|

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

v To improve performance. Access to data is often faster with an index than
without.

v To ensure that a row is unique. For example, a unique index on the employee
table ensures that no two employees have the same employee number.

Except for changes in performance, users of the table are unaware that an index is
in use. DB2 decides whether to use the index to access the table. There are ways
to influence how indexes affect performance when you calculate the storage size of
an index and determine what type of index to use. An index can be partitioning,
nonpartitioning, or clustered. For example, you can apportion data by last names,
maybe using one partition for each letter of the alphabet. Your choice of a
partitioning scheme is based on how an application accesses data, how much data
you have, and how large you expect the total amount of data to grow.

Views
Views allow you to shield some table data from end users. A view can be based on
other views or on a combination of views and tables.

When you define a view, DB2 stores the definition of the view in the DB2 catalog.
However, DB2 does not store any data for the view itself, because the data already
exists in the base table or tables.

System structures
DB2 system structures described in this section include:

“DB2 catalog”
“DB2 directory” on page 12
“Active and archive logs” on page 12
“Bootstrap data set (BSDS)” on page 13
“Buffer pools” on page 13
“Data definition control support database” on page 14
“Resource limit facility database” on page 14
“Work file database” on page 14
“TEMP database” on page 14

In addition, Parallel Sysplex® data sharing uses shared system structures.

DB2 catalog
The DB2 catalog consists of tables of data about everything defined to the DB2
system, including table spaces, indexes, tables, copies of table spaces and indexes,
storage groups, and so forth. The system database DSNDB06 contains the DB2
catalog.

When you create, alter, or drop any structure, DB2 inserts, updates, or deletes rows
of the catalog that describe the structure and tell how the structure relates to other
structures. For example, SYSIBM.SYSTABLES is one catalog table that records
information when a table is created. DB2 inserts a row into SYSIBM.SYSTABLES
that includes the table name, its owner, its creator, and the name of its table space
and its database.

Because the catalog consists of DB2 tables in a DB2 database, authorized users
can use SQL statements to retrieve information from it.

The communications database (CDB) is part of the DB2 catalog. The CDB consists
of a set of tables that establish conversations with remote database management
systems (DBMSs). The distributed data facility (DDF) uses the CDB to send and
receive distributed data requests.

Chapter 2. System planning concepts 11

DB2 directory
The DB2 directory contains information that DB2 uses during normal operation. You
cannot access the directory using SQL, although much of the same information is
contained in the DB2 catalog, for which you can submit queries. The structures in
the directory are not described in the DB2 catalog.

The directory consists of a set of DB2 tables stored in five table spaces in system
database DSNDB01. Each of the table spaces listed in Table 2 is contained in a
VSAM linear data set.

Table 2. Directory table spaces

Table space name Description

SCT02
Skeleton cursor (SKCT)

Contains the internal form of SQL statements
contained in an application. When you bind a plan,
DB2 creates a skeleton cursor table in SCT02.

SPT01
Skeleton package

Similar to SCT02 except that the skeleton package
table is created when you bind a package.

SYSLGRNX
Log range

Tracks the opening and closing of table spaces,
indexes, or partitions. By tracking this information
and associating it with relative byte addresses
(RBAs) as contained in the DB2 log, DB2 can
reduce recovery time by reducing the amount of
log that must be scanned for a particular table
space, index, or partition.

SYSUTILX
System utilities

Contains a row for every utility job that is running.
The row stays until the utility is finished. If the
utility terminates without completing, DB2 uses the
information in the row when you restart the utility.

DBD01
Database descriptor (DBD)

Contains internal information, called database
descriptors (DBDs), about the databases that exist
within DB2.

Each database has exactly one corresponding
DBD that describes the database, table spaces,
tables, table check constraints, indexes, and
referential relationships. A DBD also contains other
information about accessing tables in the database.
DB2 creates and updates DBDs whenever their
corresponding databases are created or updated.

Active and archive logs
DB2 records all data changes and significant events in a log as they occur. In the
case of failure, DB2 uses this data to recover.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies the contents of the active log to a disk or magnetic tape data
set called the archive log.

You can choose either single logging or dual logging.

v A single active log contains between 2 and 31 active log data sets.

v With dual logging, the active log has the capacity for 4 to 62 active log data sets,
because two identical copies of the log records are kept.

Each active log data set is a single-volume, single-extent VSAM LDS.

12 Administration Guide

Bootstrap data set (BSDS)
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that
contains information critical to DB2. Specifically, the BSDS contains:

v An inventory of all active and archive log data sets known to DB2. DB2 uses this
information to track the active and archive log data sets. DB2 also uses this
information to locate log records to satisfy log read requests during normal DB2
system activity and during restart and recovery processing.

v A wrap-around inventory of all recent DB2 checkpoint activity. DB2 uses this
information during restart processing.

v The distributed data facility (DDF) communication record, which contains
information necessary to use DB2 as a distributed server or requester.

v Information about buffer pools.

Because the BSDS is essential to recovery in the event of subsystem failure, during
installation DB2 automatically creates two copies of the BSDS and, if space
permits, places them on separate volumes.

Buffer pools
Buffer pools, also known as virtual buffer pools, are areas of virtual storage in which
DB2 temporarily stores pages of table spaces or indexes. When an application
program accesses a row of a table, DB2 retrieves the page containing that row and
places the page in a buffer. If the needed data is already in a buffer, the application
program does not have to wait for it to be retrieved from disk, significantly reducing
the cost of retrieving the page.

Buffer pools require monitoring and tuning. The size of buffer pools is critical to the
performance characteristics of an application or group of applications that access
data in those buffer pools.

When you use Parallel Sysplex data sharing, buffer pools map to structures called
group buffer pools. These structures reside in a special PR/SM™ LPAR logical
partition called a coupling facility, which enables several DB2s to share information
and control the coherency of data.

There are several options for where buffer pools reside:

v Strictly within DB2’s DBM1 primary address space. This option offers the best
performance, but limits the amount of space to 1.6 GB.

v Partly within the DBM1 address space, but using extended storage (ESO
hiperspace) for infrequently updated data (“clean” data). Using extended storage
expands the storage capacity to 1.6 GB of primary and 8 GB of extended
storage. DB2 must move the data back into the DBM1 address space to address
it.

v Solely within an MVS data space. Data spaces greatly expand capacity and are
provided to position DB2 for future S/390® processor enhancements that will
provide large real memory.

If storage constraints in DB2’s DBM1 address space are likely to be a problem for
your site, consider the hiperspace and data space options.

Buffer pools in data spaces: A buffer pool in a data space can support up to 8
million buffers. For a 32 KB buffer pool, that is 256 gigabytes of virtual storage.
Because of these very large sizes, a buffer pool can span multiple data spaces,
although a single data space never has more than one buffer pool in it.

Chapter 2. System planning concepts 13

Buffer pools in hiperspace: Mutually exclusive from data spaces is the option to
store clean data in extended storage, called hiperpools.

The second level of storage, the hiperpool, is an extension to the virtual buffer pool.
Virtual buffer pools hold the most frequently accessed data. Clean data in virtual
buffer pools that is not accessed frequently can be moved to its corresponding
hiperpool—only one hiperpool can exist for each virtual buffer pool.

Hiperpools can span up to four hiperspaces, 2 GB expanded storage areas. Using
hiperspaces and hiperpools improves performance because you can cache up to 8
GB to help avoid I/O operations.

Data definition control support database
The data definition control support database is automatically created during
installation. This database is a user-maintained collection of tables used by data
definition control support to restrict the submission of specific DB2 DDL (data
definition language) statements to selected application identifiers (plans or
collections of packages). After this database is created, you must populate the
tables to use of this facility. The system name for this database is DSNRGFDB.

Resource limit facility database
The resource limit facility database (DSNRLST) is a facility that lets you control the
amount of processor resources used by dynamic SELECT statements. For
example, you might choose to disable bind operations during critical times of day to
avoid contention with the DB2 catalog.

You can establish a single limit for all users, different limits for individual users, or
both. You can choose to have these limits applied before the statement is executed
(this is called predictive governing), or while a statement is running (sometimes
called reactive governing). You can even use both modes of governing. You define
these limits in one or more resource limit specification tables (RLST).

Work file database
The work file database is used as storage for processing SQL statements that
require working space, such as that required for a sort. DB2 creates a work file
database for you at installation time, and you can create additional work file table
spaces at any time using CREATE TABLESPACE statements.

In a non-data-sharing environment, the work file database is called DSNDB07. In a
data sharing environment, each DB2 member in the data sharing group has its own
work file database.

TEMP database
The TEMP database is for declared temporary tables only. DB2 stores all declared
temporary tables in this database. You can create one TEMP database for each
DB2 subsystem or data sharing member.

More information about data structures
Table 3 on page 15 lists additional information sources about topics that this section
introduces.

14 Administration Guide

|
|
|
|

|

|
|

Table 3. More information about DB2 structures

For more information about... See...

Basic concepts for designing data structures,
including:
v Table spaces
v Tables, views
v Columns
v Indexes

An Introduction to DB2 for OS/390

Data structures

Data structures, defining v An Introduction to DB2 for OS/390
v “Chapter 5. Implementing your design” on

page 41

Table space size limits Appendix A of DB2 SQL Reference

Table columns, data types Volume 1 of DB2 SQL Reference

Referential integrity Volume 1 of DB2 Application Programming
and SQL Guide

System structures

Shared system structures DB2 Data Sharing: Planning and
Administration

Catalog tables Appendix D of DB2 SQL Reference

Catalog, data set naming conventions DB2 Installation Guide

CDB DB2 Installation Guide

Directory, data set naming conventions DB2 Installation Guide

Logs “Chapter 18. Managing the log and the
bootstrap data set” on page 331

BSDS usage, functions “Managing the bootstrap data set (BSDS)” on
page 341

Buffer pools, tuning v “Chapter 27. Tuning DB2 buffer, EDM, RID,
and sort pools” on page 549

v DB2 Command Reference

Group buffer pools DB2 Data Sharing: Planning and
Administration

Data definition control support database “Chapter 11. Controlling access through a
closed application” on page 157

RLST “Resource limit facility (governor)” on
page 581

Work file and TEMP database, defining Volume 2 of DB2 SQL Reference

Control and maintenance of DB2
You use commands and utilities to perform the tasks required to control and
maintain DB2:
v Commands can be entered at a terminal, an MVS console, or through an

APF-authorized program or application that uses the instrumentation facility
interface (IFI)

v Utility jobs run as standard MVS batch jobs

Chapter 2. System planning concepts 15

||

||

|
|
|
|
|
|

|

|

||
|
|

||

||

||
|

|

||
|

||

||

||

||

||
|

||
|

||
|
|

||
|

||
|

||
|

||
|

|

Commands
The commands are divided into the following categories:
v DSN command and subcommands
v DB2 commands
v IMS commands
v CICS attachment facility commands
v MVS IRLM commands
v TSO CLIST commands

To enter a DB2 command from an authorized MVS console, you use a subsystem
command prefix (composed of 1 to 8 characters) at the beginning of the command.
The default subsystem command prefix is -DSN1, which you can change when you
install or migrate DB2.

Example: The following command starts the DB2 subsystem that is associated with
the command prefix -DSN1:
-DSN1 START DB2

Utilities
You use utilities to perform many of the tasks required to maintain DB2 data. Those
tasks include loading a table, copying a table space, or recovering a database to a
previous point in time.

The utilities run as batch jobs under MVS. DB2 interactive (DB2I) provides a simple
way to prepare the job control language (JCL) for those jobs and to perform many
other operations by entering values on panels. DB2I runs under TSO using ISPF
services. A utility control statement tells a particular utility what task to perform.

High availability
It is not necessary to start or stop DB2 often. DB2 continually adds function to
improve availability, especially in the following areas:
v “Daily operations and tuning”
v “Backup and recovery”
v “Restart” on page 17

Daily operations and tuning
Some of the high availability features related to normal DB2 operations include:

v You can bind application plans and packages online. Packages let you change
and rebind smaller units. Using package versions permits binding while the
applications continue to run.

v You can define and change databases and authorizations online.

v You can change buffer pool sizes online.

v You can use utilities to reorganize indexes, table spaces, or partitions of indexes
or table spaces.

v DB2’s data sharing function lets several DB2 subsystems process applications on
shared data. While the different subsystems share data, they appear as a single
DB2 to end users. Applications can be rerouted to avoid outages if one of the
subsystems must be taken down for maintenance.

Backup and recovery
Unplanned outages are difficult to avoid entirely. However, a good backup strategy
can reduce the elapsed time of an unplanned outage. To reduce the probability and
duration of unplanned outages, you should periodically back up and reorganize your
data.

16 Administration Guide

A lot of factors affect the availability of the databases. Here are some key points to
be aware of:

v You should limit your use of, and understand the options of, utilities such as
COPY and REORG.

– You can recover online such structures as table spaces, partitions, data sets,
a range of pages, a single page, and indexes.

– You can recover table spaces and indexes at the same time to reduce
recovery time.

– With some options on the COPY utility, you can read and update a table
space while copying it.

v I/O errors have the following affects:

– I/O errors on a range of data do not affect availability to the rest of the data.

– If an I/O error occurs when DB2 is writing to the log, DB2 continues to
operate.

– If an I/O error is on the active log, DB2 moves to the next data set. If the error
is on the archive log, DB2 dynamically allocates another data set.

v Documented disaster recovery methods are crucial in the case of disasters that
might cause a complete shutdown of your local DB2 system.

v If DB2 is forced to a single mode of operations for the bootstrap data set or logs,
you can usually restore dual operation while DB2 continues to run.

Restart
A key to the perception of high availability is getting the DB2 subsystem back up
and running quickly after an unplanned outage.

v Some restart processing can occur concurrently with new work. Also, you can
choose to postpone some processing.

v During a restart, DB2 applies data changes from its log that was not written at
the time of failure. Some of this process can be run in parallel.

v You can register DB2 to the Automatic Restart Manager of OS/390. This facility
automatically restarts DB2 should it go down as a result of a failure.

More information about control and maintenance of DB2
Table 4 lists additional information sources about topics that this section introduces.

Table 4. More information about DB2 control and maintenance

For more information about... See...

Commands v “Part 4. Operation and recovery” on
page 241

v DB2 Command Reference

Utilities DB2 Utility Guide and Reference

Data sharing DB2 Data Sharing: Planning and
Administration

Recovery v “Recovering page sets and data sets” on
page 393

v DB2 Utility Guide and Reference

Chapter 2. System planning concepts 17

|

|

||

||

||
|
|

||

||
|

||
|
|
|

The DB2 environment
This section provides an overview of DB2 components and environments that work
together in the OS/390 and z/OS environment. DB2 operates as a formal
subsystem of OS/390. DB2 utilities run in the batch environment, and applications
that access DB2 resources can run in the batch, TSO, IMS, or CICS environments.
IBM provides attachment facilities to connect DB2 to each of these environments.

Address spaces
DB2 uses several different address spaces for the following purposes:

Database services
ssnmDBM1 manipulates most of the structures in user-created databases.

System services
ssnmMSR performs a variety of system-related functions.

Distributed data facility
ssnmDIST provides support for remote requests.

IRLM (Internal resource lock manager)
IRLMPROC controls DB2 locking.

DB2-established
ssnmSPAS, for stored procedures, provides an isolated execution
environment for user-written SQL programs at a DB2 server.

WLM-established
Zero to many address spaces for stored procedures and user-defined
functions. WLM-established address spaces are handled in order of priority
and isolated from other stored procedures or user-defined functions running
in other address spaces

User address spaces
At least one, possibly several, of the following types of user address
spaces:
v TSO
v Batch
v CICS
v IMS dependent region
v IMS control region

DB2’s lock manager
DB2’s internal resource lock manager (IRLM) is both a separate subsystem and an
integral component of DB2. IRLM is shipped with DB2, and each DB2 subsystem
must have its own instance of IRLM.

Recommendation: Always run with the latest level of IRLM.

You cannot share IRLM between DB2s or between DB2 and IMS. (IRLM is also
shipped with IMS.) If you are running a DB2 data sharing group, there is a
corresponding IRLM group.

What IRLM does
IRLM works with DB2 to serialize access to your data. DB2 requests locks from
IRLM to ensure data integrity when applications, utilities, commands, and so forth,
are all attempting to access the same data.

18 Administration Guide

|

|
|
|
|
|

Administering IRLM
IRLM requires some control and monitoring. The external interfaces to the IRLM
include:

v Installation

Install IRLM when you install DB2. Consider that locks take up storage, and
adequate storage for IRLM is crucial to the performance of your system.

Another important performance item is to make the priority of the IRLM address
space above all the DB2 address spaces.

v Commands

Some MVS commands specifically for IRLM let you modify parameters, display
information about the status of the IRLM and its storage use, and start and stop
IRLM.

v Tracing

DB2’s trace facility gives you the ability to trace lock interactions.

IRLM uses the MVS component trace services for its diagnostic traces. You
normally use these under the direction of IBM Service.

DB2’s attachment facilities
This section describes the attachment facilities that you can use in the OS/390
environment to begin a DB2 session. You can also begin DB2 sessions from other
environments on clients such as Windows® or UNIX® by using interfaces that
include ODBC, JDBC™, and SQLJ.

An attachment facility provides the interface between DB2 and another
environment. Figure 2 shows the OS/390 attachment facilities with interfaces to
DB2.

The OS/390 environments include:
v CICS (Customer Information Control System)
v IMS (Information Management System)
v TSO (Time Sharing Option)
v Batch

The OS/390 attachment facilities include:
v CICS
v IMS
v TSO
v CAF (call attachment facility)
v RRS (Resource Recovery Services)

CICS

CAF
CAF

IMS IMS
RRS

RRS

TSO

TSO

DB2

Figure 2. Attaching to DB2

Chapter 2. System planning concepts 19

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

In the TSO and batch environments, you can use the TSO, CAF, and RRS
attachment facilities to access DB2.

CICS
The Customer Information Control System (CICS) attachment facility provided with
the CICS transaction server lets you access DB2 from CICS. After you start DB2,
you can operate DB2 from a CICS terminal. You can start and stop CICS and DB2
independently, and you can establish or terminate the connection between them at
any time. You also have the option of allowing CICS to connect to DB2
automatically.

The CICS attachment facility also provides CICS applications with access to DB2
data while operating in the CICS environment. CICS applications, therefore, can
access both DB2 data and CICS data. In case of system failure, CICS coordinates
recovery of both DB2 and CICS data.

CICS operations: The CICS attachment facility uses standard CICS
command-level services where needed.

Examples:
EXEC CICS WAIT
EXEC CICS ABEND

A portion of the CICS attachment facility executes under the control of the
transaction issuing the SQL requests. Therefore these calls for CICS services
appear to be issued by the application transaction.

With proper planning, you can include DB2 in a CICS XRF recovery scenario.

Application programming with CICS: Programmers writing CICS command-level
programs can use the same data communication coding techniques to write the
data communication portions of application programs that access DB2 data. Only
the database portion of the programming changes. For the database portions,
programmers use SQL statements to retrieve or modify data in DB2 tables.

To a CICS terminal user, application programs that access both CICS and DB2 data
appear identical to application programs that access only CICS data.

DB2 supports this cross-product programming by coordinating recovery resources
with those of CICS. CICS applications can therefore access CICS-controlled
resources as well as DB2 databases.

Function shipping of SQL requests is not supported. In a CICS multi-region
operation (MRO) environment, each CICS address space can have its own
attachment to the DB2 subsystem. A single CICS region can be connected to only
one DB2 subsystem at a time.

System administration and operation with CICS: An authorized CICS terminal
operator can issue DB2 commands to control and monitor both the attachment
facility and DB2 itself. Authorized terminal operators can also start and stop DB2
databases.

Even though you perform DB2 functions through CICS, you need to have the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment to
bind application plans and packages.

20 Administration Guide

|
|

IMS
The Information Management System (IMS) attachment facility allows you to access
DB2 from IMS. The IMS attachment facility receives and interprets requests for
access to DB2 databases using exits provided by IMS subsystems. Usually, IMS
connects to DB2 automatically with no operator intervention.

In addition to Data Language I (DL/I) and Fast Path calls, IMS applications can
make calls to DB2 using embedded SQL statements. In case of system failure, IMS
coordinates recovery of both DB2 and IMS data.

With proper planning, you can include DB2 in an IMS XRF recovery scenario.

Application programming with IMS: With the IMS attachment facility, DB2
provides database services for IMS dependent regions. DL/I batch support allows
users to access both IMS data (DL/I) and DB2 data in the IMS batch environment,
which includes:

v Access to DB2 and DL/I data from application programs.

v Coordinated recovery through a two-phase commit process.

v Use of the IMS extended restart (XRST) and symbolic checkpoint (CHKP) calls
by application programs to coordinate recovery with IMS, DB2, and generalized
sequential access method (GSAM) files.

IMS programmers writing the data communication portion of application programs
do not need to alter their coding technique to write the data communication portion
when accessing DB2; only the database portions of the application programs
change. For the database portions, programmers code SQL statements to retrieve
or modify data in DB2 tables.

To an IMS terminal user, IMS application programs that access DB2 appear
identical to IMS.

DB2 supports this cross-product programming by coordinating database recovery
services with those of IMS. Any IMS program uses the same synchronization and
rollback calls in application programs that access DB2 data as they use in IMS
DB/DC application programs that access DL/I data.

Another aid for cross-product programming is the DataPropagator NonRelational
(DPropNR) licensed program. DPropNR allows automatic updates to DB2 tables
when corresponding information in an IMS database is updated, and it allows
automatic updates to an IMS database when a DB2 table is updated.

System administration and operation with IMS: An authorized IMS terminal
operator can issue DB2 commands to control and monitor DB2. The terminal
operator can also start and stop DB2 databases.

Even though you perform DB2 functions through IMS, you need the TSO
attachment facility and ISPF to take advantage of the online functions supplied with
DB2 to install and customize your system. You also need the TSO attachment
facility to bind application plans and packages.

TSO
The Time Sharing Option (TSO) attachment facility is required for binding
application plans and packages and for executing several online functions that are
provided with DB2.

Chapter 2. System planning concepts 21

|
|
|
|

|

|

|
|
|

Using the TSO attachment facility, you can access DB2 by running in either
foreground or batch. You gain foreground access through a TSO terminal; you gain
batch access by invoking the TSO terminal monitor program (TMP) from an MVS
batch job.

The following two command processors are available:

v DSN command processor — Runs as a TSO command processor and uses the
TSO attachment facility.

v DB2 Interactive (DB2I) — Consists of Interactive System Productivity Facility
(ISPF) panels. ISPF has an interactive connection to DB2, which invokes the
DSN command processor. Using DB2I panels, you can perform most DB2 tasks
interactively, such as running SQL statements, commands, and utilities.

Whether you access DB2 in foreground or batch, attaching through the TSO
attachment facility and the DSN command processor makes access easier. DB2
subcommands that execute under DSN are subject to the command size limitations
as defined by TSO. TSO allows authorized DB2 users or jobs to create, modify, and
maintain databases and application programs. You invoke the DSN processor from
the foreground by issuing a command at a TSO terminal. From batch, first invoke
TMP from within an MVS batch job, and then pass commands to TMP in the
SYSTSIN data set.

After DSN is running, you can issue DB2 commands or DSN subcommands. You
cannot issue a -START DB2 command from within DSN. If DB2 is not running, DSN
cannot establish a connection to it; a connection is required so that DSN can
transfer commands to DB2 for processing.

CAF
Most TSO applications must use the TSO attachment facility, which invokes the
DSN command processor. Together, DSN and TSO provide services such as
automatic connection to DB2, attention key support, and translation of return codes
into error messages. However, when using DSN services, your application must run
under the control of DSN.

The call attachment facility (CAF) provides an alternative connection for TSO and
batch applications needing tight control over the session environment. Applications
using CAF can explicitly control the state of their connections to DB2 by using
connection functions that CAF supplies.

RRS
OS/390 Resource Recovery Services (RRS) is a feature of OS/390 that coordinates
two-phase commit processing of recoverable resources in an MVS system. DB2
supports use of these services for DB2 applications that use the RRS attachment
facility provided with DB2. Use the RRS attachment to access resources such as
SQL tables, DL/I databases, MQSeries® messages, and recoverable VSAM files
within a single transaction scope.

The RRS attachment is required for stored procedures that run in a
WLM-established address space.

DB2 and distributed data
In a distributed data environment, DB2 applications can access data at many
different DB2 sites and at remote relational database systems.

22 Administration Guide

|

|
|

|
|
|
|

Example: Assume a company needs to satisfy customer requests at hundreds of
locations and the company representatives who answer those requests work at
locations that span a wide geographic area. You can document requests on
workstations that have DB2 Connect® Personal Edition. This information is
uploaded to DB2 for OS/390 and z/OS. The representatives can then use Java
applications to access the customer request information in DB2 from their local
offices.

The company’s distributed environment relies on the distributed data facility (DDF),
which is part of DB2 for OS/390 and z/OS. DB2 applications can use DDF to
access data at other DB2 sites and at remote relational database systems that
support Distributed Relational Database Architecture (DRDA). DRDA is a standard
for distributed connectivity. All IBM DB2 servers support this DRDA standard.

DDF also enables applications that run in a remote environment that supports
DRDA. These applications can use DDF to access data in DB2 servers. Examples
of application requesters include IBM DB2 Connect and other DRDA-compliant
client products.

With DDF, you can have up to 150 000 distributed threads connect to a DB2 server
at the same time. A thread is a DB2 structure that describes an application's
connection and traces its progress.

Use stored procedures to reduce processor and elapsed time costs of distributed
access. A stored procedure is user-written SQL program that a requester can invoke
at the server. By encapsulating the SQL, many fewer messages flow across the
wire.

Local DB2 applications can use stored procedures as well to take advantage of the
ability to encapsulate SQL that is shared among different applications.

The decision to access distributed data has implications for many DB2 activities:
application programming, data recovery, authorization, and so on.

DB2 and OS/390 and z/OS
z/OS is the next generation of the OS/390 operating system. z/OS and the IBM
Eserver zSeries 900 server offer architecture that provides qualities of service that
are critical for e-business. The z/OS operating system is based on 64-bit
z/Architecture. The operating system is highly secure, scalable, and high
performing. With these characteristics, z/OS provides a strong base for Internet and
Java-enabled applications and a comprehensive and diverse environment for
running your applications.

OS/390 is the operating system software for the IBM System/390® family of
enterprise servers. At the core of OS/390 is the base control program, MVS.

As a formal subsystem of OS/390, DB2 uses:

v Availability and scalability features that include System/390 Parallel Sysplex
cluster technology that enables multiple processors to perform work.

v VTAM and TCP/IP for distributed data facility

v Reliability features that include protection from unplanned outages and recovery
routines

v Serviceability features that include:
SYS1.LOGREC

Chapter 2. System planning concepts 23

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

|
|

SYS1.DUMP

v Synchronous cross-memory services for address space switching

v System Management Facilities (SMF) for statistics, accounting information, and
performance data

DB2 and the Parallel Sysplex
The Parallel Sysplex is a key example of the synergy of DB2 and System/390. DB2
takes advantage of the System/390 Parallel Sysplex, with its superior processing
capabilities. By allowing two or more processors to share the same data, you can
maximize performance while minimizing cost; improve system availability and
concurrency; expand system capacity; and configure your system environment more
flexibly. With data sharing, applications running on more than one DB2 subsystem
can read from and write to the same set of data concurrently.

Sharing DB2s must belong to a DB2 data sharing group. A data sharing group is a
collection of one or more DB2 subsystems accessing shared DB2 data. Each DB2
subsystem belonging to a particular data sharing group is a member of that group.
All members of a group use the same shared DB2 catalog and directory.

With data sharing, you can grow your system incrementally by adding additional
central processor complexes and DB2s to the data sharing group. You don’t have to
move part of the workload onto another system, alleviating the need to manage
copies of the data or to use distributed processing to access the data.

You can configure your environment flexibly. For example, you can tailor each
OS/390 image to meet the requirements for the user set on that image. For
processing that occurs during peak workload periods, you can bring up a dormant
DB2 to help process the work.

DB2 and the SecureWay Security Server for OS/390
You can use the Resource Access Control Facility (RACF) component of the
SecureWay Security Server for OS/390, or an equivalent product, to control access
to your OS/390 system. When users begin sessions with TSO, IMS, or CICS, their
identities are checked to prevent unauthorized access to the system.

Recommendation: Use the Security Server check the security of DB2 users and to
protect DB2 resources. The Security Server provides effective protection for DB2
data by permitting only DB2-mediated access to DB2 data sets.

Much authorization to DB2 objects can be controlled directly from the Security
Server. An exit routine (a program that runs as an extension of DB2) that is shipped
with the OS/390 Security Server lets you centralize access control.

DB2 and DFSMS
The DFSMSdfp™ storage management subsystem (SMS) can be used to manage
DB2 disk data sets. The purpose of SMS is to automate as much as possible the
management of physical storage by centralizing control, automating tasks, and
providing interactive controls for system administrators. SMS can reduce users’
needs to be concerned about physical details of performance, space, and device
management.

24 Administration Guide

|

|

|
|

|
|
|
|

Consult with your site’s storage administrator about using SMS for DB2 private
data, image copies, and archive logs. For data that is especially
performance-sensitive, there might need to be more manual control over data set
placement.

Table spaces or indexes with data sets larger than 4 gigabytes require
SMS-managed data sets.

Extended partitioned data sets (PDSE), a feature of DFSMSdfp, are useful for
managing stored procedures that run in a stored procedures address space. PDSE
enables extent information for the load libraries to be dynamically updated, reducing
the need to start and stop the stored procedures address space.

More information about the OS/390 environment
Table 5 lists additional information sources about topics that this section introduces.

Table 5. More information about the OS/390 environment

For more information about... See...

z/OS www.ibm.com/servers/eserver/zseries/zos/

OS/390 www.s390.ibm.com/os390/

IRLM installation DB2 Installation Guide

IRLM address spaces “Setting address space priority” on page 614

IRLM commands DB2 Command Reference

IRLM lock tracing “Using the statistics and accounting traces to
monitor locking” on page 701

Exit routines Appendix B (Volume 2) of DB2 Administration
Guide

Security methods “Part 3. Security and auditing” on page 93

PDSE data sets MVS/DFP: Using Data Sets

SMS “Using SMS to archive log data sets” on
page 337

DFSMShsm “Managing your DB2 data sets with
DFSMShsm™” on page 37

Attachment facilities, programming Volume 2 of DB2 Application Programming
and SQL Guide

CICS XRF v “Extended recovery facility (XRF)
toleration” on page 374

v CICS for MVS/ESA Operations and Utilities
Guide

CICS connections “Chapter 17. Monitoring and controlling DB2
and its connections” on page 267

CICS administration DB2 Installation Guide

IMS XRF v “Extended recovery facility (XRF)
toleration” on page 374

v IMS Administration Guide: System

DL/I batch Volume 2 of DB2 Application Programming
and SQL Guide

DataPropagator NonRelational DataPropagator NonRelational MVS/ESA
Administration Guide

Chapter 2. System planning concepts 25

|
|

|
|
|
|

|

|

||

||

||

||

||

||

||

||
|

||
|

||

||

||
|

||
|

||
|

||
|

|
|

||
|

||

||
|
|

||
|

||
|

Table 5. More information about the OS/390 environment (continued)

For more information about... See...

ISPF Volume 2 of DB2 Application Programming
and SQL Guide

Distributed data Volume 1 of DB2 Application Programming
and SQL Guide

Parallel Sysplex data sharing DB2 Data Sharing: Planning and
Administration

26 Administration Guide

|

||

||
|

||
|

||
|
|

Part 2. Designing a database: advanced topics

Chapter 3. Introduction to designing a database: advanced topics 29

Chapter 4. Creating storage groups and managing DB2 data sets 31
Creating DB2 storage groups 31
Defining index space storage. 33
Managing your own DB2 data sets 33

Managing your data sets using access method services. 34
Requirements for your own data sets. 34
DEFINE CLUSTER command 36

Deferring allocation of data sets for table spaces 36
Managing your DB2 data sets with DFSMShsm™ 37

Recalling archive logs . 37
Migrating to DFSMShsm . 38
Using DFSMShsm with the RECOVER utility 38

Creating EA-enabled table spaces and index spaces 39
Extending DB2-managed data sets 39
Extending user-managed data sets 40

Chapter 5. Implementing your design. 41
Implementing your databases 41
Implementing your table spaces 42

Creating a table space explicitly 42
Creating a table space implicitly 42
Choosing a page size . 43
Choosing a page size for LOBs 44

Distinctions between DB2 base tables and temporary tables 45
Using schemas . 48

Authorization to process schema definitions 49
Processing schema definitions 49

Chapter 6. Loading data into DB2 tables 51
Loading methods . 51
Loading tables with the LOAD utility 51
Replacing data . 52
Loading data using the SQL INSERT statement 53
Loading data from DL/I . 54

Chapter 7. Altering your database design 55
Using the ALTER statement . 55
Dropping and re-creating DB2 objects 55
Altering DB2 storage groups . 56

Letting SMS manage your DB2 storage groups 56
Adding or removing volumes from a DB2 storage group 56

Altering DB2 databases. 57
Altering table spaces. 57

Changing the space allocation for user-managed data sets 57
Dropping, re-creating, or converting a table space 57

Altering tables . 59
Using the ALTER TABLE statement 59
Adding a new column . 59
Altering a table for referential integrity 61

Adding referential constraints to existing tables 61
Adding parent keys and foreign keys 62

© Copyright IBM Corp. 1982, 2001 27

|

||

Dropping parent keys and foreign keys 62
Adding or dropping table check constraints 63

Altering the assignment of a validation routine 63
Checking rows of a table with a new validation routine 64

Altering a table for capture of changed data 64
Changing an edit procedure or a field procedure 64
Altering the subtype of a string column 65
Altering data types and deleting columns 65

Implications of dropping a table 66
Check objects that depend on the table 67
Re-creating a table . 67

Redefining the attributes on an identity column 68
Moving a table to a table space of a different page size 69

Altering indexes . 69
Changing the description of an index 69
Rebalancing data in partitioned table spaces 70

Altering views . 70
Altering stored procedures and user-defined functions 70

Altering stored procedures. 70
Altering user-defined functions 71

Changing the high-level qualifier for DB2 data sets 71
Define a new integrated catalog alias 72
Change the qualifier for system data sets 72

Step 1: Change the load module to reflect the new qualifier 72
Step 2: Stop DB2 with no outstanding activity 73
Step 3: Rename system data sets with the new qualifier 73
Step 4: Update the BSDS with the new qualifier. 74
Step 5: Establish a new xxxxmstr cataloged procedure 75
Step 6: Start DB2 with the new xxxxmstr and load module 75

Change qualifiers for other databases and user data sets 75
Changing your work database to use the new high-level qualifier 76
Changing user-managed objects to use the new qualifier 76
Changing DB2-managed objects to use the new qualifier 77

Moving DB2 data . 78
Tools for moving DB2 data 78
Moving a DB2 data set . 80
Copying a relational database 81
Copying an entire DB2 subsystem. 81

Chapter 8. Estimating disk storage for user data 83
Factors that affect storage. 83
Calculating the space required for a table 84

Calculating record lengths and pages 84
Saving space with data compression 86
Estimating storage for LOBs 86
Estimating storage when using the LOAD utility 86

Calculating the space required for a dictionary 87
Disk requirements . 88
Virtual storage requirements 88

Calculating the space required for an index 88
Levels of index pages . 89
Calculating the space required for an index 90

28 Administration Guide

||

||

Chapter 3. Introduction to designing a database: advanced
topics

The scope of “Part 2. Designing a database: advanced topics” on page 27, formerly
entitled,″Designing a database,″ has been changed in Version 7. In previous
versions, ″Designing a database″ provided a range of information, from basic to
advanced, about designing a database. “Part 2. Designing a database: advanced
topics” on page 27 now presents only the advanced topics. The newest member of
the DB2 for OS/390 and z/OS library, An Introduction to DB2 for OS/390, covers
basic information about designing and implementing a database.

Table 6 shows where you can find more information about topics related to
designing a database.

Table 6. More information about designing a database

For more information about... See...

Basic database design concepts for DB2
Universal Database for OS/390 and z/OS,
including:
v Designing tables and views
v Designing columns
v Designing indexes
v Designing table spaces

An Introduction to DB2 for OS/390

Maintaining data integrity, including:
v Maintaining referential constraints
v Defining table check constraints
v Planning to use triggers

Part 2 of DB2 Application Programming and
SQL Guide

Maintaining data integrity, including
implications for the following SQL statements:
INSERT, UPDATE, DELETE, and DROP

Chapter 5 of DB2 SQL Reference

Maintaining data integrity, including
implications for the following utilities: COPY,
QUIESCE, RECOVER, and REPORT

Part 2 of DB2 Utility Guide and Reference

Detailed information on partitioning and
nonpartitioning indexes

Chapter 5 of DB2 SQL Reference

Compressing data in a table space or a
partition

Part 5 (Volume 2) of DB2 Administration
Guide

© Copyright IBM Corp. 1982, 2001 29

|
|
|
|
|
|
|

||

||

|
|
|
|
|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|
|
|
|

30 Administration Guide

Chapter 4. Creating storage groups and managing DB2 data
sets

This chapter provides information on how to create storage groups and manage
your DB2 data sets:

“Creating DB2 storage groups”
“Managing your own DB2 data sets” on page 33
“Managing your DB2 data sets with DFSMShsm™” on page 37
“Extending DB2-managed data sets” on page 39
“Extending user-managed data sets” on page 40

DB2 manages the auxiliary storage requirements of a DB2 database by using DB2
storage groups. Data sets in these DB2 storage groups are DB2-managed data
sets. These DB2 storage groups are not the same as storage groups defined by
DFSMS’s storage management subsystem (DFSMS). A DB2 storage group is a
named set of disk volumes, in which DB2:
v Allocates storage for table spaces and indexes
v Defines the necessary VSAM data sets
v Extends and deletes the VSAM data sets
v Alters VSAM data sets

Creating DB2 storage groups
A name for DB2 storage groups and databases is an unqualified identifier of up to
eight characters. A DB2 storage group name must not be the same as the name of
any other storage group in the DB2 catalog, and a DB2 database name must not
be the same as the name of any other DB2 database. The following examples are
used in the sample application:

Object Name
DB2 storage group DSN8G710
Database DSN8D71A

See the DB2 SQL Reference for more information about naming conventions.

To create a DB2 storage group, use the SQL statement CREATE STOGROUP. For
detailed information on CREATE STOGROUP, see Chapter 5 of DB2 SQL
Reference.

When you create table spaces and indexes, you name the storage group from
which you want space to be allocated. Try to assign frequently accessed objects
(indexes, for example) to fast devices, and assign seldom-used tables to slower
devices. This approach to choosing storage groups improves performance.

Here are some of the things that DB2 does for you in managing your auxiliary
storage requirements:

v When a table space is created, DB2 defines the necessary VSAM data sets
using VSAM access method services. After the data sets are created, you can
process them with access method service commands that support VSAM
control-interval (CI) processing (for example, IMPORT and EXPORT).

Exception: You can defer the allocation of data sets for table spaces and index
spaces by specifying the DEFINE NO clause on the associated statement
(CREATE TABLESPACE and CREATE INDEX), which also must specify the
USING STOGROUP clause. For more information about deferring data set

© Copyright IBM Corp. 1982, 2001 31

allocation, see either “Deferring allocation of data sets for table spaces” on
page 36 or Chapter 5 of DB2 SQL Reference.

v When a table space is dropped, DB2 automatically deletes the associated data
sets.

v When a data set in a segmented or simple table space reaches its maximum
size of 2 GB, DB2 might automatically create a new data set. The primary data
set allocation is obtained for each new data set.

v When needed, DB2 can extend individual data sets. For more information, see
“Extending DB2-managed data sets” on page 39.

v When creating or reorganizing a table space that has associated data sets, DB2
deletes and then redefines them. However, when you run REORG with the
REUSE parameter and SHRLEVEL NONE, REORG resets and reuses
DB2–managed data sets without deleting and redefining them.

v When you want to move data sets to a new volume, you can alter the volumes
list in your storage group. DB2 automatically relocates your data sets during
utility operations that build or rebuild a data set (LOAD REPLACE, REORG,
REBUILD, and RECOVER). To move your user-defined data sets, you must
delete and redefine your data sets.

After you define a storage group, DB2 stores information about it in the DB2
catalog. (This catalog is not the same as the integrated catalog facility catalog that
describes DB2 VSAM data sets). The catalog table SYSIBM.SYSSTOGROUP has a
row for each storage group, and SYSIBM.SYSVOLUMES has a row for each
volume. With the proper authorization, you can display the catalog information
about DB2 storage groups by using SQL statements. See Appendix D of DB2 SQL
Reference for more information about using SQL statements to display catalog
information about DB2 storage groups.

A default storage group, SYSDEFLT, is defined when DB2 is installed. If you are
authorized and do not take specific steps to manage your own storage, you can still
define tables, indexes, table spaces, and databases; DB2 uses SYSDEFLT to
allocate the necessary auxiliary storage. Information about SYSDEFLT, as with any
other storage group, is kept in the catalog tables SYSIBM.SYSSTOGROUP and
SYSIBM.SYSVOLUMES.

Use storage groups whenever you can, either specifically or by default. However, if
you want to maintain closer control over the physical storage of your tables and
indexes, you can define and manage your own VSAM data sets using VSAM
access method services. See “Managing your own DB2 data sets” on page 33 for
more information about managing VSAM data sets.. Yet another possibility is to let
SMS manage some or all of your DB2 data sets. See “Managing your DB2 data
sets with DFSMShsm™” on page 37 for more information.

When defining DB2 storage groups, use the VOLUMES(’*’) attribute on the
CREATE STOGROUP statement to let SMS control the selection of volumes during
allocation. See “Managing your DB2 data sets with DFSMShsm™” on page 37 for
more information. Otherwise, if you use DB2 to allocate data to specific volumes,
you must assign an SMS Storage Class with Guaranteed Space, and you must
manage free space for each volume to prevent failures during the initial allocation
and extension. Using Guaranteed Space reduces the benefits of SMS allocation,
requires more time for space management, and can result in more space
shortages. You should only use Guaranteed Space when space needs are relatively
small and do not change.

32 Administration Guide

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

For both user-managed and DB2-managed data sets, you need at least one
integrated catalog facility catalog, either user or master, created with the integrated
catalog facility. Recommendation: Let SMS manage your DB2 storage groups, you
can use asterisks (nonspecific volume IDs) in the VOLUMES clause. You must
identify the catalog of the integrated catalog facility (known as the integrated
catalog) when you create a storage group or when you create a table space that
does not use storage groups.

Defining index space storage
Generally, the CREATE INDEX statement creates an index space in the same DB2
database that contains the table on which the index is defined. This is true even if
you defer building the index.

Exceptions:

v If you specify the USING VCAT clause, you create and manage the data sets
yourself.

v If you specify the DEFINE NO clause on a CREATE INDEX statement that uses
the USING STOGROUP clause, DB2 defers the allocation of the data sets for the
index space.

When you use CREATE INDEX, always specify a USING clause. When you specify
USING, you declare whether you want DB2-managed or user-managed data sets.
For DB2-managed data sets, you specify the primary and secondary space
allocation parameters on the CREATE INDEX statement. If you do not specify
USING, DB2 assigns the index data sets to the default storage groups using default
space attributes. For information about how space allocation can affect the
performance of mass inserts, see “Speed up preformatting by allocating in
cylinders” on page 540.

You can specify the USING clause to allocate space for the entire index, or, if the
index is a partitioning index, you can allocate space for each partition. Information
about space allocation for the index is kept in the SYSIBM.SYSINDEXPART table of
the DB2 catalog. Other information about the index is in SYSIBM.SYSINDEXES.
For more information about determining the space required for an index, see
“Calculating the space required for an index” on page 88. For more information
about CREATE INDEX clauses, see Chapter 5 of DB2 SQL Reference.

Managing your own DB2 data sets
You might choose to manage your own VSAM data sets for reasons such as these:

v You have a large linear table space on several data sets. If you manage your
own data sets, you can better control the placement of individual data sets on the
volumes. (Although you can keep a similar type of control by using single-volume
DB2 storage groups.)

v You want to prevent deleting a data set within a specified time period, by using
the TO and FOR options of the access method services DEFINE and ALTER
commands. You can create and manage the data set yourself, or you can create
the data set with DB2 and use the ALTER command of access method services
to change the TO and FOR options.

v You are concerned about recovering dropped table spaces. Your own data set is
not automatically deleted when a table space is dropped, making it easier to
reclaim the data if the table space is dropped.

Chapter 4. Creating storage groups and managing DB2 data sets 33

Managing your data sets using access method services
To manage DB2 auxiliary storage yourself, you use access method services. To
define the required data sets, use DEFINE CLUSTER; to add secondary volumes to
expanding data sets, use ALTER ADDVOLUMES; and to delete data sets, use
DELETE CLUSTER.

You can define a data set for each of these items:
v A simple or segmented table space
v A partition of a partitioned table space
v A nonpartitioning index
v A partition of a partitioning index

Furthermore, as table spaces and index spaces expand, you might need to provide
additional data sets. To take advantage of parallel I/O streams when doing certain
read-only queries, consider spreading large table spaces over different disk
volumes that are attached on separate channel paths. For more information about
data set extension, see “Extending DB2-managed data sets” on page 39.

Requirements for your own data sets
DB2 checks whether you have defined your data sets correctly. If you plan to define
and manage VSAM data sets yourself, you must perform these steps:

1. Define the data sets before you issue the CREATE TABLESPACE or the
CREATE INDEX statement.

If you create a partitioned table space, you must create a separate data set for
each partition, or allocate space for each partition by using the PART option of
the NUMPARTS clause.

2. Give each data set a name with this format:
catname.DSNDBx.dbname.psname.y0001.Annn

catname
Integrated catalog name or alias (up to eight characters). Use the same
name or alias here as in the USING VCAT clause of the CREATE
TABLESPACE and CREATE INDEX statements.

x C (for VSAM clusters) or D (for VSAM data components).

dbname
DB2 database name. If the data set is for a table space, dbname must
be the name given in the CREATE TABLESPACE statement. If the data
set is for an index, dbname must be the name of the database
containing the base table. If you are using the default database,
dbname must be DSNDB04.

psname
Table space name or index name. This name must be unique within the
database.

You use this name on the CREATE TABLESPACE or CREATE INDEX
statement. (You can use a name longer than eight characters on the
CREATE INDEX statement, but the first eight characters of that name
must be the same as in the data set’s psname.)

y0001 Instance qualifier for the data set.

Define one data set for the table space or index with a value of I for y if
one of the following conditions is true:
v You plan to run REORG with SHRLEVEL CHANGE or SHRLEVEL

REFERENCE without the FASTSWITCH YES option.

34 Administration Guide

|

||

|
|
|
|

v You do not plan to run REORG with SHRLEVEL CHANGE or
SHRLEVEL REFERENCE.

Define two data sets if you plan to run REORG, using the
FASTSWITCH YES option, with SHRLEVEL CHANGE or SHRLEVEL
REFERENCE. Define one data set with a value of I for y, and one with
a value of J for y.

For more information on defining data sets for REORG, see Part 2 of
DB2 Utility Guide and Reference.

nnn Data set number. For partitioned table spaces, the number is 001 for
the first partition, 002 for the second, and so forth, up to the maximum
of 254 partitions.

For a nonpartitioning index on a partitioned table space that you define
using the LARGE option, the maximum data set number is 128.

For simple or segmented table spaces, the number is 001 for the first
data set. When little space is available, DB2 issues a warning message.
If the size of the data set for a simple or a segmented table space
approaches the maximum limit, define another data set. Give the new
data set the same name as the first data set and the number 002. The
next data set will be 003, and so on.

You can reach the extent limit for a data set before you reach the limit
for a partitioned or a nonpartitioned table space. If this happens, DB2
does not extend the data set.

For detailed information about limits in DB2 for OS/390 and z/OS, see
Appendix A of DB2 Utility Guide and Reference.

3. Use the DEFINE CLUSTER command to define the size of the primary and
secondary extents of the VSAM cluster. If you specify zero for the secondary
extent size, data set extension does not occur.

4. Define the data sets as LINEAR. Do not use RECORDSIZE or
CONTROLINTERVALSIZE; these attributes are invalid.

5. Use the REUSE option. You must define the data set as REUSE before running
the DSN1COPY utility.

6. Use SHAREOPTIONS(3,3).

The DEFINE CLUSTER command has many optional parameters that do not apply
when DB2 uses the data set. If you use the parameters SPANNED,
EXCEPTIONEXIT, SPEED, BUFFERSPACE, or WRITECHECK, VSAM applies
them to your data set, but DB2 ignores them when it accesses the data set.

The value of the OWNER parameter for clusters that are defined for storage groups
is the first SYSADM authorization ID specified at installation.

When you drop indexes or table spaces for which you defined the data sets, you
must delete the data sets unless you want to reuse them. To reuse a data set, first
commit, and then create a new table space or index with the same name. When
DB2 uses the new object, it overwrites the old information with new information,
which destroys the old data.

Likewise, if you delete data sets, you must drop the corresponding table spaces
and indexes; DB2 does not do that automatically.

Chapter 4. Creating storage groups and managing DB2 data sets 35

|
|

|
|
|
|

|
|

|
|
|

DEFINE CLUSTER command
Figure 3 shows the DEFINE CLUSTER command, which defines two data sets for
the SYSUSER data space. By defining both data sets for the same table space,
you can run REORG with SHRLEVEL CHANGE or SHRLEVEL REFERENCE
against the table space. For more information on defining data sets for REORG,
see Chapter 2 of DB2 Utility Guide and Reference.

For more information about defining and managing VSAM data sets, see
DFSMS/MVS: Access Method Services for the Integrated Catalog.

Deferring allocation of data sets for table spaces
When you execute a CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 generally defines the necessary VSAM data sets for the
table space. In some cases, however, you might want to define a table space
without immediately allocating the associated data sets.

For example, you might be installing a software program that requires that many
table spaces be created, but your company might not need to use some of those
table spaces; you might prefer not to allocate data sets for the table spaces you will
not be using.

To defer the physical allocation of DB2-managed data sets, you use the DEFINE
NO clause. When you specify the DEFINE NO clause, the table space is defined,
but DB2 does not allocate the associated data sets until a row is inserted or loaded
into a table in that table space. The DB2 catalog table SYSIBM.SYSTABLESPART
contains a record of the created table space and an indication that the data sets are
not yet allocated.

If you specify DEFINE NO for a table space that has a table that contains data,
DB2 ignores the DEFINE NO clause and immediately allocates the storage for the
table space. The DEFINE NO clause is not allowed for LOB table spaces, for table
spaces in a work file database or a TEMP database, or for user-managed data sets
(which are defined with the USING VCAT clause).

DEFINE CLUSTER-
(NAME(DSNCAT.DSNDBC.DSNDB06.SYSUSER.I0001.A001) -
LINEAR -
REUSE -
VOLUMES(DSNV01) -
RECORDS(100 100) -
SHAREOPTIONS(3 3)) -

DATA -
(NAME(DSNCAT.DSNDBD.DSNDB06.SYSUSER.I0001.A001) -

CATALOG(DSNCAT)
DEFINE CLUSTER-

(NAME(DSNCAT.DSNDBC.DSNDB06.SYSUSER.J0001.A001) -
LINEAR -
REUSE -
VOLUMES(DSNV01) -
RECORDS(240 120) -
SHAREOPTIONS(3 3)) -

DATA -
(NAME(DSNCAT.DSNDBD.DSNDB06.SYSUSER.J0001.A001) -

CATALOG(DSNCAT)

Figure 3. Defining data sets for the SYSUSER table space

36 Administration Guide

|
|
|
|
|

|
|
|

Using the DEFINE NO clause is recommended when:
v Performance of the CREATE TABLESPACE statement is important.
v Disk resource is constrained.

Do not use the DEFINE NO clause on a table space if you use a program outside
of DB2 to propagate data into a table in the table space. The DB2 catalog stores
information about whether the data sets for a table space have been allocated. If
you use DEFINE NO on a table space that includes a table into which data is
propagated from a program outside of DB2, the table space data sets will be
allocated, but the DB2 catalog won’t reflect this fact. As a result, DB2 will act as if
the data sets for the table space have not yet been allocated. The resulting
inconsistency causes DB2 to deny application programs access to the data until the
inconsistency is resolved.

Managing your DB2 data sets with DFSMShsm™

The Hierarchical Storage Management functional component (DFSMShsm) of
DFSMS manages space and data availability among the storage devices in your
system. You can use DFSMShsm to move data sets that have not been recently
used to slower, less expensive storage devices; this helps to ensure that disk space
is managed efficiently.

Recalling archive logs
DFSMShsm can automatically migrate and recall archive log and image copy data
sets. If DB2 needs an archive log data set or an image copy data set that
DFSMShsm has migrated, a recall begins automatically and DB2 waits for the recall
to complete before continuing.

For processes that read more than one archive log data set, such as the
RECOVER utility, DB2 anticipates a DFSMShsm recall of migrated archive log data
sets. When a DB2 process finishes reading one data set, it can continue with the
next data set without delay, because the data set might already have been recalled
by DFSMShsm.

If you accepted the default value YES for the RECALL DATABASE parameter on
the Operator Functions panel (DSNTIPO), DB2 also recalls migrated table spaces
and index spaces. At data set open time, DB2 waits for DFSMShsm to perform the
recall. The amount of time DB2 waits while the recall is being performed is specified
on the RECALL DELAY parameter, which is also on panel DSNTIPO. If RECALL
DELAY is set to zero, DB2 does not wait, and the recall is performed
asynchronously.

DB2 subsystem data sets, including the DB2 catalog, DB2 directory, active logs,
and work file databases (DSNDB07 in a non data-sharing environment), can be
archived by System Managed Storage (SMS) but should be recalled by using
DFSMShsm before starting DB2. An alternative is to avoid migrating by assigning a
management class to these data sets that prevents migration. Considerations for
using DFSMShsm for archive log data sets are discussed in “Archive log data sets”
on page 336.

If a volume has a STOGROUP specified, it must be recalled only to volumes of the
same device type as others in the STOGROUP.

Chapter 4. Creating storage groups and managing DB2 data sets 37

|
|
|
|

In addition, you must coordinate the DFSMShsm automatic purge period, the DB2
log retention period, and MODIFY utility usage. Otherwise, the image copies or logs
you might need during a recovery could already have been deleted.

Migrating to DFSMShsm
If you decide to use DFSMShsm for your DB2 data sets, you should develop a
migration plan with your system administrator. With user-managed data sets, you
can specify DFSMShsm classes on the access method services DEFINE statement.
With DB2 storage groups, you need to develop automatic class selection routines.

General-use Programming Interface

To allow DFSMShsm to manage your DB2 storage groups, you can use one or
more asterisks as volume IDs in your CREATE STOGROUP or ALTER STOGROUP
statement, as shown here:
CREATE STOGROUP G202
VOLUMES ('*')
VCAT DB2SMST;

End of General-use Programming Interface

This example causes all database data set allocations and definitions to use
nonspecific selection through DFSMShsm filtering services.

When you use DFSMShsm and DB2 storage groups, you can use the system
parameters SMSDCFL and SMSDCIX to assign table spaces and indexes to
different DFSMShsm data classes.

v SMSDCFL specifies a DFSMShsm data class for table spaces. If you assign a
value to SMSDCFL, DB2 specifies that value when it uses Access Method
Services to define a data set for a table space.

v SMSDCIX specifies a DFSMShsm data class for indexes. If you assign a value
to SMSDCIX, DB2 specifies that value when it uses Access Method Services to
define a data set for an index.

Before you set the data class system parameters, you need to do two things:
v Define the data classes for your table space data sets and index data sets.
v Code the SMS automatic class selection (ACS) routines to assign indexes to one

SMS storage class and to assign table spaces to a different SMS storage class.

For more information about creating data classes, see DFSMS/MVS Storage
Management Library: Implementing System-Managed Storage.

Using DFSMShsm with the RECOVER utility
The RECOVER utility can execute the DFDSS command RESTORE, which
generally uses extensions larger than the data set’s primary and secondary values.
RECOVER executes this command if the recoverable point is a copy that was taken
with the CONCURRENT option. However, DFDSS RESTORE extends a data set
differently from DB2, so you must alter the page set to contain extents defined by
DB2. Use ALTER TABLESPACE to enlarge the primary and secondary values for
DB2–managed data sets, because DB2 can run out of extents when you use
REORG or LOAD REPLACE (unloading and reloading the same data).

38 Administration Guide

After using ALTER TABLESPACE, the new values take effect only when you use
REORG or LOAD REPLACE. Using RECOVER again does not resolve the extent
definition.

For user-defined data sets, define the data sets with larger primary and secondary
values (see “Managing your own DB2 data sets” on page 33).

For more information about using DFSMShsm to manage DB2 data sets, see MVS
Storage Management Library: Storage Management Subsystem Migration Planning
Guide and DFSMS/MVS: DFSMShsm Managing Your Own Data.

Creating EA-enabled table spaces and index spaces
DFSMS has an extended-addressability function, which is necessary to create data
sets that are larger than 4 GB. Therefore, the term for page sets that are enabled
for extended addressability is EA-enabled. You must use EA-enabled table spaces
or index spaces if you specify a DSSIZE that is larger than 4 GB in the CREATE
TABLESPACE statement.

To create EA-enabled page sets, you must:

1. Use SMS to manage the data sets associated with the EA-enabled page sets.

2. Associate the data sets with a data class (an SMS construct) that specifies the
extended format and extended addressability options.

To make this association between data sets and the data class, use an
automatic class selection (ACS) routine to assign the DB2 data sets to the
relevant SMS data class. The ACS routine does the assignment based on the
data set name. No performance penalty occurs for having non-EA-enabled DB2
page sets assigned to this data class, too, if you would rather not have two
separate data classes for DB2.

For user-managed data sets, you can use ACS routines or specify the
appropriate data class on the DEFINE CLUSTER command when you create
the data set.

3. Create the partitioned or LOB table space with a DSSIZE of 8 GB or greater.
The partitioning index for the partitioned table space takes on the EA-enabled
attribute from its associated table space. See DB2 SQL Reference for more
information about the correct syntax.

After a page set is created, you cannot use the ALTER TABLESPACE statement
to change the DSSIZE. You must drop and re-create the table space.

Also, you cannot change the data sets of the page set to turn off the extended
addressability or extended format attributes. If someone modifies the data class
to turn off the extended addressability or extended format attributes, DB2 issues
an error message the next time it opens the page set.

Extending DB2-managed data sets
When the data set is created, DB2 always allocates a primary allocation space on a
volume that has space available and is specified in the DB2 storage group. Any
new extension always gets a secondary allocation space. When the extensions
reach the end of the volume, DB2 accesses all candidate volumes from the DB2
storage group and issues the access method services command ALTER
ADDVOLUMES to add all volumes in the integrated catalog as candidate volumes
for the data set. DB2 then makes a request to extend a secondary allocation space
on any one of the candidate volumes that has space available. After the extension

Chapter 4. Creating storage groups and managing DB2 data sets 39

|
|
|
|
|

is successful, DB2 issues the access method services command ALTER
REMOVEVOLUMES to remove all candidate volumes from the integrated catalog
for the data set.

DB2 extends data sets when:
v The requested space exceeds the remaining space
v 10 percent of the smaller allocation space (but not over 10 allocation units such

as tracks or cylinders) exceeds the remaining space

If DB2 fails to extend a data set with a secondary allocation space because there is
no secondary allocation space available on any single candidate volume of a DB2
storage group, DB2 tries again to extend with the requested space, if the requested
space is smaller than the secondary allocation space. Use IFCID 258 in statistics
class 3 to monitor data set extension activity.

Extending nonpartitioned spaces: For a nonpartitioned table space or an index
space, DB2 defines the first piece of the page set starting with a primary allocation
space, and extends that piece with secondary allocation spaces. When the end of
the first piece is reached, DB2 defines a new piece (which is a new data set) and
extends to that new piece starting with a primary allocation space.

Extending partitioned spaces: For a partitioned table space or an index space,
each partition is a data set; therefore, DB2 defines each partition with the primary
allocation space and extends each partition’s data set with secondary allocation
space, as needed.

When data extension fails: If a data set uses all possible extents, DB2 cannot
extend that data set. For a partitioned page set, the extension fails only for the
particular partition that DB2 is trying to extend. For nonpartitioned page sets, DB2
cannot extend to a new data set piece, which means the extension for the entire
page set fails.

To avoid extension failures, the value of (PRIQTY + max_extents × SECQTY) must
be at least as large as the data set size (as specified on the DSSIZE clause or the
implicit size for that type of page set). For nonpartitioning indexes, that value must
reach the value for PIECESIZE (explicitly or implicitly specified). If DB2 reaches the
maximum number of extents before reaching the limit, the extension fails.

Extending user-managed data sets
User-managed data sets are extended using only volumes available in the
integrated catalog facility catalog. Before the current volume runs out of space, you
must issue the access method services commands ALTER ADDVOLUMES or
ALTER REMOVEVOLUMES for candidate volumes.

40 Administration Guide

|
|

Chapter 5. Implementing your design

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

This chapter provides information on advanced topics related to implementing a
database:

“Implementing your databases”
“Implementing your table spaces” on page 42
“Distinctions between DB2 base tables and temporary tables” on page 45
“Using schemas” on page 48

Table 7 shows where you can find more information about topics related to
implementing a database design.

Table 7. More information about implementing a database design

For more information about... See...

Basic concepts in implementing a database
design for DB2 Universal Database for
OS/390 and z/OS, including:
v Choosing names for DB2 objects
v Implementing your databases
v Implementing your table spaces, including

reorganizing your data
v Implementing your tables
v Implementing your indexes
v Implementing referential constraints
v Implementing your views

An Introduction to DB2 for OS/390

Details on SQL statements used to implement
a database design (CREATE and DECLARE,
for example)

DB2 SQL Reference

Loading tables with referential constraints DB2 Utility Guide and Reference

Using the catalog in database design Appendix E of DB2 SQL Reference

Implementing your databases
In DB2 for OS/390 and z/OS, a database is a logical collection of tables spaces and
index spaces. Consider the following factors when deciding whether to define a new
database for a new set of objects:

v An entire database can be started and stopped as a unit; the statuses of all its
objects can be displayed by a single command that names only the database.
Therefore, place a set of tables that are used together into the same database.
(The same database holds all indexes on those tables.)

v Some operations lock an entire database. For example, some phases of the
LOAD utility prevent some SQL statements from using the same database
concurrently. Therefore, placing many unrelated tables in a single database is
often inconvenient.

When one user is executing a CREATE, ALTER, or DROP statement for a table,
no other user can access the database that contains that table. QMF™ users,
especially, might do a great deal of data definition; the operations SAVE DATA
and ERASE data-object are accomplished by creating and dropping DB2 tables.
For maximum concurrency, create a separate database for each QMF user.

© Copyright IBM Corp. 1982, 2001 41

||

||

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

||

||
|

|
|

v The internal database descriptors (DBDs) might become inconveniently large;
Part 2 of DB2 Installation Guide contains some calculations showing how the
size depends on the number of columns in a table. DBDs grow as new objects
are defined, but they do not immediately shrink when objects are dropped—the
DBD space for a dropped object is not reclaimed until the MODIFY RECOVERY
utility is used to delete records of obsolete copies from SYSIBM.SYSCOPY.
DBDs occupy storage and are the objects of occasional input and output
operations. Therefore, limiting the size of DBDs is another reason to define new
databases. The MODIFY utility is described in Part 2 of DB2 Utility Guide and
Reference.

If you are using declared temporary tables, you must define a database that is
defined AS TEMP (the TEMP database). DB2 stores all declared temporary tables
in the TEMP database. The majority of the factors described above do not apply to
the TEMP database. For details on declared temporary tables, see “Distinctions
between DB2 base tables and temporary tables” on page 45.

Implementing your table spaces
Table spaces are the physical spaces that hold tables. A table space can have one
or more tables. Simple and segmented table spaces hold a maximum of 64 GB of
data and might use one or more VSAM data sets. Partitioned table spaces that are
created with the DSSIZE or LARGE option, and LOB table spaces can be larger.
Table spaces are divided into units called pages that are either 4 KB, 8 KB, 16 KB,
or 32 KB in size. As a general rule, have no more than 50 to 100 table spaces in
one DB2 database.

You need to create additional table spaces if your database contains LOB data. For
more information, see Chapter 5 of DB2 SQL Reference.

Data in most table spaces can be compressed, which can allow you to store more
data on each data page. For more information, see “Compressing your data” on
page 606.

Creating a table space explicitly
Use the CREATE TABLESPACE statement to create a table space explicitly. The
statement allows you to specify the attributes of the table space.

Generally when you use the CREATE TABLESPACE statement with the USING
STOGROUP clause, DB2 allocates data sets for the table space. However, if you
also specify the DEFINE NO clause, you can defer the allocation of data sets until
data is inserted or loaded into a table in the table space. For more information
about deferring data set allocation, see “Deferring allocation of data sets for table
spaces” on page 36.

You can create simple, segmented, partitioned, and LOB table spaces. For detailed
information about CREATE TABLESPACE, see Chapter 5 of DB2 SQL Reference.

Creating a table space implicitly
As with DB2 storage groups and databases, you do not need to create a table
space before you create a table unless you are defining a declared temporary table
or managing all your own data sets. When you use CREATE TABLE, DB2
generates a table space for you. However, DB2 generates a table space only if you
use CREATE TABLE without specifying an existing table space name. If the table
contains a LOB column and SQLRULES are STD, DB2 also creates the LOB table

42 Administration Guide

space, the auxiliary table, and auxiliary index. If you do not specify a database
name in the CREATE TABLE statement, DB2 uses the default database, DSNDB04,
and the default DB2 storage group, SYSDEFLT. DB2 also uses defaults for space
allocation and other table space attributes.

If you create a table space implicitly, DB2 derives a table space name from the
name of your table according to these rules:

v The table space name is the same as the table name if these conditions apply:
– No other table space or index space in the database already has that name.
– The table name has no more than eight characters.
– The characters are all alphanumeric, and the first character is not a digit.

v If some other table space in the database already has the same name as the
table, DB2 assigns a name of the form xxxxnyyy, where xxxx is the first four
characters of the table name, and nyyy is a single digit and three letters that
guarantees uniqueness.

DB2 stores this name in the DB2 catalog in the SYSIBM.SYSTABLESPACE table
along with all your other table space names. The rules for LOB table spaces are in
Chapter 5 of DB2 SQL Reference.

Choosing a page size
DB2 provides many options for data page sizes. The size of the data page is
determined by the buffer pool in which you define the table space. For example, a
table space that is defined in a 4-KB buffer pool has 4-KB page sizes, and one that
is defined in an 8-KB buffer pool has 8-KB page sizes. (Indexes must be defined in
a 4-KB buffer pool.)

Data in table spaces is stored and allocated in 4-KB record segments. Thus, an
8-KB page size means two 4-KB records, and a 32-KB page size means eight 4-KB
records. A good starting point is to use the default of 4-KB page sizes when access
to the data is random and only a few rows per page are needed. If row sizes are
very small, using the 4-KB page size is recommended.

However, there are situations in which larger page sizes are needed or
recommended:

v When the size of individual rows is greater than 4 KB. In this case, you must
use a larger page size. When considering the size of work file table spaces,
remember that some SQL operations, such as joins, can create a result row that
does not fit in a 4-KB page. That is a good reason to have at least one work file
that has 32-KB pages. (Work files cannot use 8-KB or 16-KB pages.)

v When you can achieve higher density on disk by choosing a larger page
size. For example, only one 2100-byte record can be stored in a 4-KB page,
which wastes almost half of the space. However, storing the record in a 32-KB
page can significantly reduce this waste. The downside with this approach is the
potential of incurring higher buffer pool storage costs or higher I/O costs—if you
only touch a small number of rows, you are bringing a bigger chunk of data from
disk into the buffer pool.

Using 8-KB or 16-KB page sizes can let you store more data on your disk with
less impact on I/O and buffer pool storage costs. If you use a larger page size
and access is random, you might need to go back and increase the size of the
buffer pool to achieve the same read-hit ratio you do with the smaller page size.

v When a larger page size can reduce data sharing overhead. One way to
reduce the cost of data sharing is to reduce the number of times the coupling
facility must be accessed. Particularly for sequential processing, larger page

Chapter 5. Implementing your design 43

sizes can reduce this number. More data can be returned on each access of the
coupling facility, and fewer locks must be taken on the larger page size, further
reducing coupling facility interactions.

If data is returned from the coupling facility, each access that returns more data
is more costly than those that return smaller amounts of data, but, because the
total number of accesses is reduced, coupling facility overhead is reduced.

For random processing, using an 8-KB or 16-KB page size instead of a 32-KB
page size might improve the read-hit ratio to the buffer pool and reduce I/O
resource consumption.

Choosing a page size for LOBs
Choosing a page size for LOBs (in the LOB table space) is a tradeoff between
minimizing the number of getpages (maximizing performance) and not wasting
space. With LOB table spaces, no more than one LOB value is ever stored in a
given page in a LOB table space. Space that is not used by the LOB value in the
last page that is occupied by the LOB remains unused. DB2 also uses additional
space for control information. The smaller the LOB, the greater the proportion of
space for this “non-data” is used.

For example, if you have a 17-KB LOB, the 4-KB page size is the most efficient for
storage. A 17-KB LOB requires five 4-KB pages for a total of 20 KB of storage
space. Pages that are 8 KB, 16 KB, and 32 KB in size waste more space, because
they require 24 KB, 32 KB, and 32 KB, respectively, for the LOB.

Table 8 shows that the number of data pages is lower for larger page sizes, but
larger page sizes might have more unused space.

Table 8. Relationship between LOB size and data pages based on page size

LOB size Page size LOB data pages
% Non-LOB data or
unused space

262 144 bytes 4 KB 64 1.6

8 KB 32 3.0

16 KB 16 5.6

32 KB 8 11.1

4 MB 4 KB 1029 0.78

8 KB 513 0.39

16 KB 256 0.39

32 KB 128 0.78

33 MB 4 KB 8234 0.76

8 KB 4106 0.39

16 KB 2050 0.19

32 KB 1024 0.10

Choosing a page size based on average LOB size: If you know all of your LOBs
are not the same size, you can still make an estimate of what page size to choose.
To estimate the average size of a LOB, you need to add a percentage to account
for unused space and control information. To estimate the average size of a LOB
value, use the following formula:
LOB size = (average LOB length) × 1.05

44 Administration Guide

Table 9 has some suggested page sizes for LOBs with the intent to reduce the
amount of I/O (getpages).

Table 9. Suggested page sizes based on average LOB length

Average LOB size (n) Suggested page size

n ≤ 4 KB 4 KB

4 KB < n ≤ 8 KB 8 KB

8 KB < n ≤ 16 KB 16 KB

16 KB < n 32 KB

The estimates in Table 9 mean that a LOB value of 17 KB can mean 15 KB of
unused space. Again, you must analyze your data to determine what is best.

General guidelines for LOBs of same size: If your LOBs are all the same size,
you can fairly easily choose a page size that uses space efficiently without
sacrificing performance. For LOBs that are all the same size, consider the
alternative in Table 10 to maximize your space savings.

Table 10. Suggested page sizes when LOBs are same size

LOB size (y) Suggested page size

y ≤ 4 KB 4 KB

4 KB < y ≤ 8 KB 8 KB

8 KB < y ≤ 12 KB 4 KB

12 KB < y ≤ 16 KB 16 KB

16 KB < y ≤ 24 KB 8 KB

24 KB < y ≤ 32 KB 32 KB

32 KB < y ≤ 48 KB 16 KB

48 KB < y 32 KB

Distinctions between DB2 base tables and temporary tables
Table 11 summarizes important differences between base tables and the two types
of temporary tables. Additional examples of implementing temporary tables and
information about restrictions and extensions of temporary tables can be found in
Part 1 of DB2 Application Programming and SQL Guide and in Chapter 5 of DB2
SQL Reference. For information about temporary tables and their impact on DB2
resources, see “Work file data sets” on page 599.

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables

Base tables Created temporary tables Declared temporary tables

Creation, persistence, and ability to share table descriptions

Chapter 5. Implementing your design 45

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Base tables Created temporary tables Declared temporary tables

CREATE TABLE statement puts a
description of the table in catalog
table SYSTABLES. The table
description is persistent and is
shareable across application
processes.

The name of the table in the CREATE
statement can be a two-part or
three-part name. If the table name is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements.

CREATE GLOBAL TEMPORARY
TABLE statement puts a description of
the table in catalog table
SYSTABLES. The table description is
persistent and is shareable across
application processes.

The name of the table in the CREATE
statement can be a two-part or
three-part name. If the table name is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements.

DECLARE GLOBAL TEMPORARY
TABLE statement does not put a
description of the table in catalog
table SYSTABLES. The table
description is not persistent beyond
the life of the application process that
issued the DECLARE statement and
the description is known only to that
application process. Thus, each
application process could have its own
possibly unique description of the
same table.

The name of the table in the
DECLARE statement can be a
two-part or three-part name. If the
table name is qualified, SESSION
must be used as the qualifier for the
owner (the second part in a three-part
name). If the table name in not
qualified, DB2 implicitly uses
SESSION as the qualifier.

Table instantiation and ability to share data

CREATE TABLE statement creates
one empty instance of the table, and
all application processes use that one
instance of the table. The table and
data are persistent.

CREATE GLOBAL TEMPORARY
TABLE statement does not create an
instance of the table. The first implicit
or explicit reference to the table in an
OPEN, SELECT, INSERT, or DELETE
operation executed by any program in
the application process creates an
empty instance of the given table.
Each application process has its own
unique instance of the table, and the
instance is not persistent beyond the
life of the application process.

DECLARE GLOBAL TEMPORARY
TABLE statement creates an empty
instance of the table for the
application process. Each application
process has its own unique instance
of the table, and the instance is not
persistent beyond the life of the
application process.

References to the table in application processes

References to the table name in
multiple application processes refer to
the same single persistent table
description and same instance at the
current server.

If the table name being referenced is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements. The name can be a
two-part or three-part name.

References to the table name in
multiple application processes refer to
the same single persistent table
description but to a distinct instance of
the table for each application process
at the current server.

If the table name being referenced is
not qualified, DB2 implicitly qualifies
the name using the standard DB2
qualification rules applied to the SQL
statements. The name can be a
two-part or three-part name.

References to that table name in
multiple application processes refer to
a distinct description and instance of
the table for each application process
at the current server.

References to the table name in an
SQL statement (other than the
DECLARE GLOBAL TEMPORARY
TABLE statement) must include
SESSION as the qualifier (the first
part in a two-part table name or the
second part in a three-part name). If
the table name is not qualified with
SESSION, DB2 assumes the
reference is to a base table.

Table privileges and authorization

46 Administration Guide

Table 11. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Base tables Created temporary tables Declared temporary tables

The owner implicitly has all table
privileges on the table and the
authority to drop the table. The
owner’s table privileges can be
granted and revoked, either
individually or with the ALL clause.

Another authorization ID can access
the table only if it has been granted
appropriate privileges for the table.

The owner implicitly has all table
privileges on the table and the
authority to drop the table. The
owner’s table privileges can be
granted and revoked, but only with the
ALL clause; individual table privileges
cannot be granted or revoked.

Another authorization ID can access
the table only if it has been granted
ALL privileges for the table.

PUBLIC implicitly has all table
privileges on the table without GRANT
authority and has the authority to drop
the table. These table privileges
cannot be granted or revoked.

Any authorization ID can access the
table without a grant of any privileges
for the table.

Indexes and other SQL statement support

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are supported.

Indexes, UPDATE (searched or
positioned), and DELETE (positioned
only) are not supported.

Indexes and SQL statements that
modify data (INSERT, UPDATE,
DELETE, and so on) are supported

Locking, logging, and recovery

Locking, logging, and recovery do
apply.

Locking, logging, and recovery do not
apply. Work files are used as the
space for the table.

Some locking, logging, and limited
recovery do apply. No row or table
locks are acquired. Share-level locks
on the table space and DBD are
acquired. A segmented table lock is
acquired when all the rows are
deleted from the table or the table is
dropped. Undo recovery (rolling back
changes to a savepoint or the most
recent commit point) is supported, but
redo recovery (forward log recovery)
is not supported.

Table space and database operations

Table space and database operations,
do apply.

Table space and database operations,
do not apply.

Table space and database operations,
do apply.

Table space requirements and table size limitations

The table can be stored in simple
table spaces in default database
DSNDB04 or user-defined table
spaces (simple, segmented, or
partitioned) in user-defined databases.

Table cannot span table spaces.
Therefore, the size of the table is
limited by the table space size (as
determined by the primary and
secondary space allocation values
specified for the table space’s data
sets) and the shared usage of the
table space among multiple users.
When the table space is full, an error
occurs for the SQL operation.

The table is stored in table spaces in
the work file database.

The table can span work file table
spaces. Therefore, the size of the
table is limited by the number of
available work file table spaces, the
size of each table space, and the
number of data set extents that are
allowed for the table spaces. Unlike
the other types of tables, created
temporary tables do not reach size
limitations as easily.

The table is stored in segmented table
spaces in the TEMP database (a
database that is defined AS TEMP).

The table cannot span table spaces.
Therefore, the size of the table is
limited by the table space size (as
determined by the primary and
secondary space allocation values
specified for the table space’s data
sets) and the shared usage of the
table space among multiple users.
When the table space is full, an error
occurs for the SQL operation.

Chapter 5. Implementing your design 47

Using schemas
A schema is a collection of named objects. The objects that a schema can contain
include distinct types, functions, stored procedures, and triggers. An object is
assigned to a schema when it is created.

When a distinct type, function, stored procedure, or trigger is created, it is given a
qualified two-part name. The first part is the schema name (or the qualifier), which
is either implicitly or explicitly specified. The default schema is the authorization ID
of the owner of the plan or package. The second part is the name of the object.

Schemas extend the concept of qualifiers for tables, views, indexes, and aliases to
enable the qualifiers for distinct types, functions, stored procedures, and triggers to
be called schema names.

You can create a schema with the schema processor by using the CREATE
SCHEMA statement. CREATE SCHEMA cannot be embedded in a host program or
executed interactively. To process the CREATE SCHEMA statement, you must use
the schema processor, as described in “Processing schema definitions” on page 49.
The ability to process schema definitions is provided for conformance to ISO/ANSI
standards. The result of processing a schema definition is identical to the result of
executing the SQL statements without a schema definition.

Outside of the schema processor, the order of statements is important. They must
be arranged so that all referenced objects have been previously created. This
restriction is relaxed when the statements are processed by the schema processor
if the object table is created within the same CREATE SCHEMA. The requirement
that all referenced objects have been previously created is not checked until all of
the statements have been processed. For example, within the context of the
schema processor, you can define a constraint that references a table that does not
exist yet or GRANT an authorization on a table that does not exist yet. Figure 4 is
an example of a valid schema definition.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE TESTSTUFF
(TESTNO CHAR(4),
RESULT CHAR(4),
TESTTYPE CHAR(3))

CREATE TABLE STAFF
(EMPNUM CHAR(3) NOT NULL,
EMPNAME CHAR(20),
GRADE DECIMAL(4),
CITY CHAR(15))

CREATE VIEW STAFFV1
AS SELECT * FROM STAFF

WHERE GRADE >= 12

GRANT INSERT ON TESTSTUFF TO PUBLIC

GRANT ALL PRIVILEGES ON STAFF
TO PUBLIC

Figure 4. Example of schema processor input

48 Administration Guide

Authorization to process schema definitions
The schema processor sets the current SQLID to the value of the schema
authorization ID before executing any of the statements in the schema definition.
Therefore, that ID must have SYSADM or SYSCTRL authority, or it must be the
primary or one of the secondary authorization IDs of the process that executes the
schema processor. The same ID must have all the privileges that are needed to
execute all the statements in the schema definition.

Processing schema definitions
Run the schema processor (DSNHSP) as a batch job; use the sample JCL provided
in member DSNTEJ1S of the SDSNSAMP library. The schema processor accepts
only one schema definition in a single job. No statements that are outside the
schema definition are accepted. Only SQL comments can precede the CREATE
SCHEMA statement; the end of input ends the schema definition. SQL comments
can also be used within and between SQL statements.

The processor takes the SQL from CREATE SCHEMA (the SYSIN data set),
dynamically executes it, and prints the results in the SYSPRINT data set.

If a statement in the schema definition has an error, the schema processor
processes the remaining statements but rolls back all the work at the end. In this
case, you need to fix the statement in error and resubmit the entire schema
definition.

Chapter 5. Implementing your design 49

50 Administration Guide

Chapter 6. Loading data into DB2 tables

This chapter provides an overview of how to load data into DB2 tables:
“Loading methods”
“Loading tables with the LOAD utility”
“Replacing data” on page 52
“Loading data using the SQL INSERT statement” on page 53
“Loading data from DL/I” on page 54

You can use several methods to fill DB2 tables, but you will probably load most of
your tables by using the LOAD utility.

Loading methods
You can load tables in DB2 by using:

v The LOAD utility. See “Loading tables with the LOAD utility” and Part 2 of DB2
Utility Guide and Reference . The utility loads data into DB2 persistent tables,
from either sequential data sets or SQL/DS™ unload data sets, using BSAM. The
LOAD utility cannot be used to load data into DB2 temporary tables.

When loading tables with indexes, referential constraints, or table check
constraints, LOAD can perform several checks on the validity of data. If errors
are found, the table space being loaded, its index spaces, and even other table
spaces might be left in a restricted status.

Plan to make necessary corrections and remove restrictions after any such
LOAD job. For instructions, see “Replacing data” on page 52.

v An SQL INSERT statement in an application program. See “Loading data using
the SQL INSERT statement” on page 53 and DB2 SQL Reference. This method
allows you to develop an application that loads data into DB2 tables that is
tailored to your own requirements.

v An SQL INSERT statement to copy all or selected rows of another table. You can
do that interactively, using SPUFI. See “Loading data using the SQL INSERT
statement” on page 53 and DB2 SQL Reference.

To reformat data from IMS DL/I databases and VSAM and SAM loading for the
LOAD utility, use DB2 DataPropagator. See “Loading data from DL/I” on page 54.

For general guidance about running DB2 utility jobs, see DB2 Utility Guide and
Reference. For information about DB2 DataPropagator, see DB2 UDB Replication
Guide and Reference.

Loading tables with the LOAD utility
Use LOAD to load one or more persistent tables of a table space, or one or more
partitions of a table space. LOAD operates on a table space, so you must have
authority for all tables in the table space when you run LOAD.

The LOAD utility loads records into the tables and builds or extends any indexes
defined on them. If the table space already contains data, you can choose whether
you want to add the new data to the existing data or replace the existing data.

You can load input data into ASCII, EBCDIC, or UNICODE tables. The ASCII,
EBCDIC, and UNICODE options on the LOAD utility statement let you specify
whether the data in the input file is ASCII, EBCDIC, or UNICODE. The CCSID
option of the LOAD utility statement lets you specify the CCSIDs of the data in the

© Copyright IBM Corp. 1982, 2001 51

|
|
|
|

input file. If the CCSID of the input data does not match the CCSID of the table
space, the input fields are converted to the CCSID of the table space before they
are loaded.

For nonpartitioned table spaces, or if nonpartitioning indexes are defined on a table
in a partitioned table space, data in the table space being loaded is unavailable to
other application programs during the load operation. Also, some SQL statements,
such as CREATE, DROP, and ALTER, might experience contention when they run
against another table space in the same DB2 database while the table is being
loaded.

Additionally, LOAD can be used to:
v Compress data and build a compression dictionary
v Convert data between compatible data types
v Load multiple tables in a single table space

When you load a table and do not supply a value for one or more of the columns,
the action DB2 takes depends on the circumstances.

v If the column is not a ROWID or identity column, DB2 loads the default value of
the column, which is specified by the DEFAULT clause of the CREATE or ALTER
TABLE statement.

v If the column is a ROWID or identity column that uses the GENERATED BY
DEFAULT option, DB2 provides a unique value.

For ROWID or identity columns that use the GENERATED ALWAYS option, you
cannot supply a value, because this option means that DB2 always generates a
unique value.

The LOAD utility treats LOB columns as varying-length data. The length value for a
LOB column must be 4 bytes. When the input record is greater than 32 KB, you
might have to load the LOB data separately. The auxiliary tables are loaded when
the base table is loaded. You cannot specify the name of the auxiliary table to load.

Replacing data
You can use LOAD REPLACE to replace data in a single-table table space or in a
multiple-table table space. You can replace all the data in a table space (using the
REPLACE option), or you can load new records into a table space without
destroying the rows already there (using the RESUME option).

Making corrections after LOAD: LOAD can place a table space or index space
into one of several kinds of restricted status. Your use of a table space in restricted
status is severely limited. In general, you cannot access its data through SQL; you
can only drop the table space or one of its tables, or perform some operation that
resets the status.

To discover what spaces are in restricted status, use the command:
-DISPLAY DATABASE (*) SPACENAM (*) RESTRICT

LOAD places a table space in the copy-pending state if you load with LOG NO,
which you might do to save space in the log. Immediately after that operation, DB2
cannot recover the table space. However, the table space can be recovered by
loading it again. Prepare for recovery, and remove the restriction, by making a full
image copy using SHRLEVEL REFERENCE. (If you end the copy job before it is
finished, the table space is still in copy-pending status.)

52 Administration Guide

|
|
|

When you use REORG or LOAD REPLACE with the COPYDDN keyword, a full
image copy data set (SHRLEVEL REF) is created during the execution of the
REORG or LOAD utility. This full image copy is known as an inline copy. The table
space is not left in copy-pending state regardless of which LOG option was
specified for the utility.

The inline copy is valid only if you replace the entire table space or partition. If you
request an inline copy by specifying the keyword COPYDDN in a LOAD utility
statement, but the load is RESUME YES, or is RESUME NO and REPLACE is not
specified, an error message is issued and the LOAD terminates.

LOAD places all the index spaces for a table space in the rebuild-pending status if
you end the job (using -TERM UTILITY) before it completes the INDEXVAL phase.
It places the table space itself in recovery-pending status if you end the job before it
completes the RELOAD phase.

LOAD places a table space in the check-pending status if its referential or check
integrity is in doubt. Because of this restriction, use of the CHECK DATA utility is
recommended. That utility locates and, optionally, removes invalid data. If the
CHECK DATA utility removes invalid data, the data remaining satisfies all referential
and table check constraints, and the check-pending restriction is lifted.

Loading data using the SQL INSERT statement
The information in this section, up to “Loading data from DL/I” on page 54 is
General-use Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1095.

Another way to load data into tables is with the SQL INSERT statement. You can
issue the statement interactively or embed it in an application program.

The simplest form of INSERT inserts a single row of data. In this form of the
statement, you specify the table name, the columns into which the data is to be
inserted, and the data itself.

Suppose you create a test table, TEMPDEPT, with the same characteristics as the
department table:
CREATE TABLE SMITH.TEMPDEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) NOT NULL,
ADMRDEPT CHAR(3) NOT NULL)
IN DSN8D71A.DSN8S71D;

To add a row to table TEMPDEPT, you can enter:
INSERT INTO SMITH.TEMPDEPT

VALUES ('X05','EDUCATION','000631','A01');

If you write an application program to load data into tables, you use that form of
INSERT, probably with host variables instead of the actual values shown above.

You can also use a form of INSERT that copies rows from another table. You can
load TEMPDEPT with the following statement:
INSERT INTO SMITH.TEMPDEPT

SELECT DEPTNO,DEPTNAME,MGRNO,ADMRDEPT
FROM DSN8710.DEPT
WHERE ADMRDEPT='D01';

Chapter 6. Loading data into DB2 tables 53

The statement loads TEMPDEPT with data from the department table about all
departments that report to Department D01.

If you are inserting a large number of rows, then consider using one of the following
methods:
v Use the LOAD or UNLOAD utilities.
v Use multiple INSERT statements with predicates that isolate the data to be

loaded, and then commit after each insert operation.

When a table, whose indexes are already defined, is populated by using the
INSERT statement, both the FREEPAGE and the PCTFREE parameters are
ignored. FREEPAGE and PCTFREE are only in effect during a LOAD or REORG
operation.

Tables with ROWID columns: You can load a value for a ROWID column with an
INSERT and fullselect only if the ROWID column is defined as GENERATED BY
DEFAULT. If you have a table with a column defined as ROWID GENERATED
ALWAYS, you can propagate non-ROWID columns from a table with the same
definition.

For the complete syntax of the INSERT statement, see DB2 SQL Reference.

Loading data from DL/I
To convert data in IMS DL/I databases from a hierarchical structure to a relational
structure so that it can be loaded into DB2 tables, you can use the DataRefresher™

licensed programs.

54 Administration Guide

|
|
|
|
|

Chapter 7. Altering your database design

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

After using a relational database for a while, you might want to change some
aspects of its design. This chapter tells how to change:

v The definitions of DB2 objects; see:
“Altering DB2 storage groups” on page 56
“Altering DB2 databases” on page 57
“Altering table spaces” on page 57
“Altering tables” on page 59
“Altering indexes” on page 69
“Altering views” on page 70

v Data set high-level qualifier; see “Changing the high-level qualifier for DB2 data
sets” on page 71.

v The location of DB2 data; see “Moving DB2 data” on page 78.

You can alter the definition of a DB2 object by using one of the following methods:
v Using an SQL ALTER statement
v Dropping the object and then re-creating it with different specifications

Using the ALTER statement
Use the SQL ALTER statement to change DB2 storage groups, databases, table
spaces, tables, and indexes. ALTER changes the way those objects are defined in
the DB2 catalog, but it does not accomplish every change. For example, you cannot
drop a column from a table using the ALTER statement. Application and object
registration tables can restrict the use of ALTER. See “Chapter 11. Controlling
access through a closed application” on page 157 for more information.

Dropping and re-creating DB2 objects
When you cannot make a change with ALTER, you must:
1. Use the DROP statement to remove the object.
2. Use the COMMIT statement to commit the changes to the database object.
3. Use the CREATE statement to re-create the object.

The DROP statement has a cascading effect; objects that are dependent on the
dropped object are also dropped. For example, all authorities for those objects
disappear. Plans or packages that reference deleted objects are marked invalid by
DB2. Before dropping an object, check the DB2 catalog to determine the impact of
the operation.

When a user with the EXECUTE authority tries to execute an invalidated plan or
package, DB2 first rebinds it automatically, using the same options that were used
during the most recent bind operation. (To see if a plan or package is invalidated,
check the VALID column in SYSIBM.SYSPLAN or SYSIBM.SYSPACKAGE.)

For more information about invalidated plans and packages and rebinding, see Part
4 of DB2 Application Programming and SQL Guide. For more information about
dropping a table, see “Implications of dropping a table” on page 66. Information
about dropping other objects is in DB2 SQL Reference.

© Copyright IBM Corp. 1982, 2001 55

Altering DB2 storage groups
You can use the ALTER STOGROUP statement to specify whether you want SMS
to manage your DB2 storage groups, or to add or remove volumes from a storage
group. If you want to migrate to another device type or change the catalog name of
the integrated catalog facility, you need to move the data. See “Moving DB2 data”
on page 78 for more information.

Letting SMS manage your DB2 storage groups
To let SMS manage the storage needed for the objects that the storage group
supports, specify ADD VOLUMES ('*') and REMOVE VOLUMES (current-vols) in
the ALTER STOGROUP statement, where current-vols is the list of the volumes
currently assigned to the storage group:
ALTER STOGROUP DSN8G710

REMOVE VOLUMES (VOL1)
ADD VOLUMES ('*');

SMS manages every new data set that is created after the ALTER STOGROUP
statement is executed; SMS does not manage data sets that are created before the
execution of the statement. See “Migrating to DFSMShsm” on page 38 for more
considerations for using SMS to manage data sets.

Adding or removing volumes from a DB2 storage group
When you add or remove volumes from a storage group, all the volumes in a
storage group must be of the same type; and, when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
that were used when the data set was defined.

The changes you make to the volume list by ALTER STOGROUP have no effect on
existing storage. Changes take effect when new objects are defined or when the
REORG, RECOVER, or LOAD REPLACE utilities are used on those objects. For
example, if you use ALTER STOGROUP to remove volume 22222 from storage
group DSN8G710, the DB2 data on that volume remains intact. However, when a
new table space is defined using DSN8G710, volume 22222 is not available for
space allocation.

To force a volume off and add a new volume, follow these steps:

1. Use the SYSIBM.SYSTABLEPART catalog table to determine which table
spaces are associated with the storage group. The following query tells which
table spaces use storage group DSN8G710:
SELECT TSNAME, DBNAME

FROM SYSIBM.SYSTABLEPART
WHERE STORNAME ='DSN8G710' AND STORTYPE = 'I';

2. Make an image copy of each table space; for example, COPY TABLESPACE
dbname.tsname DEVT SYSDA.

3. Ensure that the table space is not being updated in such a way that the data set
might need to be extended. For example, you can stop the database.

4. Use the ALTER STOGROUP statement to remove the volume associated with
the old storage group and to add the new volume.
ALTER STOGROUP DSN8G710

REMOVE VOLUMES (VOL1)
ADD VOLUMES (VOL2);

56 Administration Guide

|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

Important: When a new volume is added, or when a storage group is used to
extend a data set, the volumes must have the same device type as the volumes
used when the data set was defined.

5. Start the database with utility-only processing, and use the RECOVER or
REORG utility to move the data in each table space; for example, RECOVER
dbname.tsname.

6. Start the database.

Altering DB2 databases
The ALTER DATABASE statement allows you to change the following clauses that
are used to create a database:

v STOGROUP. Lets you change the name of the default storage group to support
disk space requirements for table spaces and indexes within the database. The
new default DB2 storage group is used only for new table spaces and indexes;
existing definitions do not change.

v BUFFERPOOL. Lets you change the name of the default buffer pool for table
spaces and indexes within the database. Again, it applies only to new table
spaces and indexes; existing definitions do not change.

v INDEXBP. Lets you change the name of the default buffer pool for the indexes
within the database. The new default buffer pool is used only for new indexes;
existing definitions do not change.

Altering table spaces
Use the ALTER TABLESPACE statement to modify the description of a table space.
The statement can be embedded in an application program or issued interactively.
For details on the ALTER TABLESPACE statement, see Chapter 5 of DB2 SQL
Reference.

Changing the space allocation for user-managed data sets
If the table space is supported by user-managed data sets, use this method to
change the space allocation:

1. Run the REORG utility, and specify the UNLOAD PAUSE option.

2. When the utility has completed the unload and has stopped, delete and redefine
the data sets.

If the table space was created with the CLOSE NO parameter, the table space
must be stopped with the STOP DATABASE command and the SPACENAM
option before you delete and define the data sets.

3. Resubmit the utility job with the RESTART(PHASE) parameter specified on the
EXEC statement. The job now uses the new data sets when reloading.

Use of the REORG utility to extend data sets causes the newly acquired free space
to be distributed throughout the table space rather than to be clustered at the end.

Dropping, re-creating, or converting a table space
To make changes to a table space, such as changing SEGSIZE or the number of
partitions or to convert it to a large table space, you must first drop the table space
and then re-create it. You must commit the DROP TABLESPACE statement before
creating a table space or index with the same name. When you drop a table space,
all entries for that table space are dropped from SYSIBM.SYSCOPY. This makes
recovery for that table space impossible from previous image copies. You can
change or convert your table spaces with the following steps:

Chapter 7. Altering your database design 57

|
|
|

1. Locate the original CREATE TABLE statement and all authorization statements
for all tables in the table space. (For example, TA1, TA2, TA3, ... in TS1.) If
you cannot find these statements, query the DB2 catalog to determine the
table's description, the description of all indexes and views on it, and all users
with privileges on the table.

2. In another table space (TS2, for example), create tables TB1, TB2, TB3, ...
identical to TA1, TA2, TA3, For example, use statements like:
CREATE TABLE TB1 LIKE TA1 IN TS2;

3. If necessary, unload the data using a statement such as:
REORG TABLESPACE DSN8D71A.TS1 LOG NO SORTDATA UNLOAD EXTERNAL;

Or, you can insert the data from your old tables into the new tables by
executing an INSERT statement for each table. For example:
INSERT INTO TB1

SELECT * FROM TA1;

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

4. Drop the table space by executing the statement:
DROP TABLESPACE TS1;

The compression dictionary for the table space is dropped, if one exists. All
tables in TS1 are dropped automatically.

5. Commit the DROP statement.

6. Create the new table space, TS1, and grant the appropriate user privileges.
You can also create a partitioned table space. You could use the following
statements:
CREATE TABLESPACE TS1

IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 4000
SECQTY 130
ERASE NO

NUMPARTS 95
(PART 45 USING STOGROUP DSN8G710

PRIQTY 4000
SECQTY 130
COMPRESS YES,

PART 62 USING STOGROUP DSN8G710
PRIQTY 4000
SECQTY 130
COMPRESS NO)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

7. Create new tables TA1, TA2, TA3,

8. Re-create indexes on the tables, and re-grant user privileges on those tables.
See “Implications of dropping a table” on page 66 for more information.

9. Execute an INSERT statement for each table. For example:
INSERT INTO TA1

SELECT * FROM TB1;

58 Administration Guide

|

|

|
|

|
|
|
|
|
|

|

|
|

If a table contains a ROWID column or an identity column and you want to
keep the existing column values, you must define that column as
GENERATED BY DEFAULT. If the ROWID column or identity column is
defined with GENERATED ALWAYS, and you want DB2 to generate new
values for that column, specify OVERRIDING USER VALUE on the INSERT
statement with the subselect.

10. Drop table space TS2.

If a table in the table space has been created with RESTRICT ON DROP, you
must alter that table to remove the restriction before you can drop the table
space.

11. Notify users to re-create any synonyms they had on TA1, TA2, TA3,

Altering tables
When you alter a table, you do not change the data in the table; you merely change
the specifications you used in creating the table.

Using the ALTER TABLE statement
With ALTER TABLE you can:

v Add a new column; see “Adding a new column”.

v Change the AUDIT clause, using the options ALL, CHANGES, or NONE. For the
effects of the AUDIT value, see “Chapter 13. Protecting data sets” on page 215.

v Add or drop a parent key or a foreign key; see “Altering a table for referential
integrity” on page 61.

v Change the VALIDPROC clause; see “Altering the assignment of a validation
routine” on page 63.

v Change the DATA CAPTURE clause; see “Altering a table for capture of changed
data” on page 64.

v Add or drop a table check constraint; see “Adding or dropping table check
constraints” on page 63.

v Add or drop the restriction on dropping the table and the database and table
space that contain the table; see DB2 SQL Reference.

v Redefine the attributes of an identity column; see “Redefining the attributes on an
identity column” on page 68.

v Alter the length of a VARCHAR column using the SET DATA TYPE VARCHAR
clause; see DB2 SQL Reference.

In addition, this section includes techniques for making the following changes:
“Changing an edit procedure or a field procedure” on page 64
“Altering the subtype of a string column” on page 65
“Moving a table to a table space of a different page size” on page 69

For other changes, you must drop and re-create the table as described in “Altering
data types and deleting columns” on page 65.

Adding a new column
When you use ALTER TABLE to add a new column, the new column becomes the
rightmost column of the table. The physical records are not actually changed until
values are inserted in the new column. Plans and packages are not invalidated
unless the new column is a TIME, TIMESTAMP, or DATE. However, to use the new
column in a program, you need to modify and recompile the program and bind the
plan or package again. You might also need to modify any program containing a

Chapter 7. Altering your database design 59

|
|
|
|
|
|

|

|
|

|
|

|
|

static SQL statement SELECT *, which will return the new column after the plan or
package is rebound. You must also modify any INSERT statement not containing a
column list.

Access time to the table is not affected immediately, unless the record was
previously fixed length. If the record was fixed length, the addition of a new column
causes DB2 to treat the record as variable length and then access time is affected
immediately. To change the records to fixed length, follow these steps:

1. Run REORG with COPY on the table space, using the inline copy.

2. Run the MODIFY utility with the DELETE option to delete records of all image
copies that were made before the REORG you ran in step 1.

3. Create a unique index if you add a column that specifies PRIMARY KEY.

Inserting values in the new column might also degrade performance by forcing rows
onto another physical page. You can avoid this situation by creating the table space
with enough free space to accommodate normal expansion. If you already have this
problem, run REORG on the table space to fix it.

You can define the new column as NOT NULL by using the DEFAULT clause
unless the column has a ROWID data type or is an identity column. If the column
has a ROWID data type or is an identity column, you must specify NOT NULL
without the DEFAULT clause.You can let DB2 choose the default value, or you can
specify a constant or the value of the CURRENT SQLID or USER special register
as the value to be used as the default. When you retrieve an existing row from the
table, a default value is provided for the new column. Except in the following cases,
the value for retrieval is the same as the value for insert:

v For columns of data type DATE, TIME, and TIMESTAMP, the retrieval defaults
are:

Data Type Default for Retrieval
DATE 0001-01-01
TIME 00.00.00
TIMESTAMP 0001-01-01-00.00.00.000000

v For DEFAULT USER and DEFAULT CURRENT SQLID, the value retrieved for
rows that existed before the column was added is the value of the special
register when the column was added.

If the new column is a ROWID column, DB2 returns the same, unique row ID value
for a row each time you access that row. Reorganizing a table space does not
affect the values on a ROWID column. You cannot use the DEFAULT clause for
ROWID columns.

If the new column is an identity column (a numeric column that is defined with the
AS IDENTITY clause), DB2 places the table space in REORG-pending (REORP)
status, and access to the table space is restricted until the table space is
reorganized. When the REORG utility is run, DB2
v Generates a unique value for the identity column of each existing row
v Physically stores these values in the database
v Removes the REORP status

You cannot use the DEFAULT clause for identity columns. For more information
about identity columns, see DB2 SQL Reference.

If the new column is a short string column, you can specify a field procedure for it;
see “Field procedures” on page 934. If you do specify a field procedure, you cannot
also specify NOT NULL.

60 Administration Guide

|
|
|
|

|
|
|

The following example adds a new column to the table DSN8710.DEPT, which
contains a location code for the department. The column name is LOCNCODE, and
its data type is CHAR (4).
ALTER TABLE DSN8710.DEPT

ADD LOCNCODE CHAR (4);

Altering a table for referential integrity
You can alter a table to add, change, or remove referential constraints. If you plan
to let DB2 enforce referential integrity in a set of tables, then see Part 2 of DB2
Application Programming and SQL Guide for a description of the requirements for
referential constraints. This section discusses these topics:
v “Adding referential constraints to existing tables”
v “Adding parent keys and foreign keys” on page 62
v “Dropping parent keys and foreign keys” on page 62
v “Adding or dropping table check constraints” on page 63

Adding referential constraints to existing tables
Assume that the tables in the sample application already exist, have the appropriate
column definitions, and are already populated. You want to define relationships
among them by adding primary and foreign keys with the ALTER TABLE statement.
The rules for these relationships are as follows:

v An existing table must have a unique index on its primary key columns before
you can add the primary key. The index becomes the primary index.

v The parent key of the parent table must be added before the corresponding
foreign key of the dependent table.

You can build the same referential structure several different ways. The following
sequence does not have the fewest number of possible operations, but it is perhaps
the simplest to explain.

1. Create a unique index on the primary key columns for any table that does not
already have one.

2. For each table, issue an ALTER TABLE statement to add its primary key.

In the next steps, you issue an ALTER TABLE statement to add foreign keys for
each table except the activity table. This leaves the table space in
check-pending status, which you reset by running CHECK DATA with the
DELETE(YES) option.

CHECK DATA deletes are not bound by delete rules; they cascade to all
descendents of a deleted row. This can be disastrous. For example, if you
delete the row for department A00 from the department table, the delete might
propagate through most of the referential structure. The following steps prevent
deletion from more than one table at a time.

3. Add the foreign keys for the department table and run CHECK DATA
DELETE(YES) on its table space. Correct any rows in the exception table, and
use INSERT to replace them in the department table. This table is now
consistent with existing data.

4. Drop the foreign key on MGRNO in the department table. This “disconnects” it
from the employee table, without changing its data.

5. Add the foreign key to the employee table, run CHECK DATA again, and correct
any errors. If errors are reported, be particularly careful not to make any row
inconsistent with the department table when you make corrections.

6. Again add the foreign key on MGRNO to the department table. This again
leaves the table space in check pending status, so run CHECK DATA. If you

Chapter 7. Altering your database design 61

have not changed the data since the previous check, you can use
DELETE(YES) with no fear of cascading deletions.

7. For each of the following tables, in the order shown, add its foreign keys, run
CHECK DATA DELETE(YES), and correct any rows in error:
a. Project table
b. Project activity table
c. Employee to project activity table

Adding parent keys and foreign keys
You can add parent keys, both primary and unique, and foreign keys to an existing
table.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
ALTER TABLE statement. For example, if the department table and its index
XDEPT1 already exist, create its primary key by issuing:
ALTER TABLE DSN8710.DEPT

ADD PRIMARY KEY (DEPTNO);

To add a unique key to an existing table, use the UNIQUE clause of the ALTER
TABLE statement. For example, if the department table has a unique index defined
on column DEPTNAME, you can add a unique key constraint, KEY_DEPTNAME
consisting of column DEPTNAME by issuing:
ALTER TABLE DSN8710.DEPT

ADD CONSTRAINT KEY_DEPTNAME UNIQUE (DEPTNAME);

Adding a parent key or a foreign key to an existing table has the following
restrictions and implications:

v If you add a primary key, the table must already have a unique index on the key
columns. The index that was most recently created on the key columns becomes
the primary index. Because of the unique index, no duplicate values of the key
exist in the table, therefore you do not need to check the validity of the data.

v If you add a unique key, the table must already have a unique index with a key
that is identical to the unique key. DB2 arbitrarily chooses a unique index on the
key columns to enforce the unique key. Because of the unique index, no
duplicate values of the key exist in the table, therefore you do not need to check
the validity of the data.

v You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if
you want to add two foreign keys to a table, you must execute two ALTER
TABLE statements.

v If you add a foreign key, the parent key and unique index of the parent table
must already exist. Adding the foreign key requires the ALTER privilege on the
dependent table and either the ALTER or REFERENCES privilege on the parent
table.

v Adding a foreign key establishes a relationship, with the many implications
described in Part 2 of DB2 Application Programming and SQL Guide. DB2 does
not validate the data. Instead, if the table is populated (or, in the case of a
nonsegmented table space, if the table space has ever been populated), the
table space containing the table is placed in check-pending status, just as if it
had been loaded with ENFORCE NO. In this case, you need to execute CHECK
DATA to clear the check-pending status.

Dropping parent keys and foreign keys
You can drop parent keys, both primary and unique, and foreign keys from an
existing table. Before you drop a foreign key or a parent key, consider carefully the
effects on your application programs. The primary key of a table is intended to

62 Administration Guide

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

serve as a permanent, unique identifier of the occurrences of the entities it
describes. Application programs often depend on that identifier. The foreign key
defines a referential relationship and a delete rule. Without the key, your application
programs must enforce the constraints.

When you drop a foreign key using the DROP FOREIGN KEY clause of the ALTER
TABLE statement, DB2 drops the corresponding referential relationships. You must
have the ALTER privilege on the dependent table and either the ALTER or
REFERENCES privilege on the parent table. If the referential constraint references
a unique key that has been created implicitly, and no other relationships are
dependent on that unique key, the implicit unique key is also dropped.

When you drop a unique key using the DROP UNIQUE clause of the ALTER
TABLE statement, DB2 drops all the referential relationships in which the unique
key is a parent key; you must have the ALTER privilege on any dependent tables.
As a result, the dependent tables no longer have foreign keys, and the table’s
unique index that enforced the unique key no longer indicates that it enforces a
unique key although it is still a unique index.

When you drop a primary key using the DROP PRIMARY KEY clause of the ALTER
TABLE statement, DB2 drops all the referential relationships in which the primary
key is a parent key; you must have the ALTER privilege on any dependent tables.
The dependent tables no longer have foreign keys; the table’s primary index is no
longer primary, but it is still a unique index.

Adding or dropping table check constraints
You can define a check constraint on a table by using the ADD CHECK clause of
the ALTER TABLE statement. If the table is empty, the check constraint is added to
the description of the table.

If the table is not empty, what happens when you define the check constraint
depends on the value of the CURRENT RULES special register, which can be
either STD or DB2.

v If the value is STD, the check constraint is enforced immediately when it is
defined. If a row does not conform, the table check constraint is not added to the
table and an error occurs.

v If the value is DB2, the check constraint is added to the table description but its
enforcement is deferred. Because some rows in the table might violate the check
constraint, the table is placed in check-pending status.

The ALTER TABLE statement that is used to define a check constraint always fails
if the table space or partition that contains the table is in a check-pending status,
the CURRENT RULES special register value is STD, and the table is not empty.

To remove a check constraint from a table, use the DROP CONSTRAINT or DROP
CHECK clauses of the ALTER TABLE statement. You must not use DROP
CONSTRAINT on the same ALTER TABLE statement as DROP FOREIGN KEY,
DROP CHECK, DROP PRIMARY KEY, or DROP UNIQUE.

Altering the assignment of a validation routine
If you have a validation exit routine associated with a table, you can use the ALTER
TABLE statement to make the following changes:

v Disassociate the validation routine from the table using the VALIDPROC NULL
clause. The routine is no longer given control when DB2 accesses the table. For
example:

Chapter 7. Altering your database design 63

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

ALTER TABLE DSN8710.EMP
VALIDPROC NULL;

v Assign a new validation routine to the table using the VALIDPROC clause. (Only
one validation routine can be connected to a table at a time; so if a validation
routine already exists, DB2 disconnects the old one and connects the new
routine.) Rows that existed before the connection of a new validation routine are
not validated. In this example, the previous validation routine is disconnected and
a new routine is connected with the program name EMPLNEWE:
ALTER TABLE DSN8710.EMP

VALIDPROC EMPLNEWE;

Checking rows of a table with a new validation routine
To ensure that the rows of a table conform to a new validation routine, you must run
the validation routine against the old rows. One way to accomplish this is to use the
REORG and LOAD utilities as shown in the following steps:

1. Use REORG to reorganize the table space that contains the table with the new
validation routine. Specify UNLOAD ONLY, as in this example:
REORG TABLESPACE DSN8D71A.DSN8S71E

UNLOAD ONLY

This step creates a data set that is used as input to the LOAD utility.

2. Run LOAD with the REPLACE option, and specify a discard data set to hold
any invalid records. For example:
LOAD INTO TABLE DSN8710.EMP

REPLACE
FORMAT UNLOAD
DISCARDDN SYSDISC

The EMPLNEWE validation routine validates all rows after the LOAD step has
completed. DB2 copies any invalid rows into the SYSDISC data set.

Altering a table for capture of changed data
You can use DATA CAPTURE CHANGES on the ALTER TABLE statement to have
data changes to that table written to the log in an expanded format. You can then
retrieve the log by using a program such as the log apply feature of the Remote
Recovery Data Facility (RRDF) program offering, or DB2 DataPropagator.

LOB values are not available for DATA CAPTURE CHANGES. To return a table
back to normal logging, use DATA CAPTURE NONE.

Changing an edit procedure or a field procedure
You cannot use ALTER TABLE to change the assignment of an edit procedure or a
field procedure. However, with the assistance of DB2 utilities, you can change an
existing edit procedure or field procedure.

To change an edit procedure or a field procedure for a table space in which the
maximum record length is less than 32 KB, use the following procedure:

1. Run the UNLOAD utility or run the REORG utility with the UNLOAD EXTERNAL
option to unload the data decoded by the existing edit procedure or field
procedure.

These utilities generate a LOAD statement in the data set (specified by the
PUNCHDDN option) that you can use to reload the data into the original table
space.

64 Administration Guide

|
|

|
|
|

|
|
|

If you are using the same edit procedure or field procedure for many tables,
unload the data from all the table spaces that have tables that use the
procedure.

2. Modify the code for the edit procedure or the field procedure.

3. After the unload operation is completed, stop DB2.

4. Link-edit the new procedure, using the same name as the old procedure.

5. Start DB2.

6. Use the LOAD utility to reload the data. LOAD then uses the new edit
procedure or field procedure to encode the data.

To change an edit procedure or a field procedure for a table space in which the
maximum record length is greater than 32 KB, use the DSNTIAUL sample program
to unload the data.

Altering the subtype of a string column
If you add a column with a string data type, you can specify its subtype in the
ALTER TABLE statement. Subtypes are valid for string columns of data types
CHAR and VARCHAR. SBCS and MIXED are valid subtypes for CLOB data.

You can also change the subtype of an existing string column, but not by using
ALTER TABLE. The operation involves updating the FOREIGN KEY column of the
SYSIBM.SYSCOLUMNS catalog table and requires the SYSADM authority,
SYSCTRL authority, or DBADM authority for the catalog database. The
interpretation of the FOREIGNKEY column depends on whether the MIXED DATA
install option is YES or NO.

If the MIXED DATA install option on installation panel DSNTIPF is YES, use one of
the following values in the column:

B for bit data
S for SBCS data
Any other value for MIXED data

If the MIXED DATA install option is NO, use one of the following values in the
column:

B for bit data
Any other value for SBCS data

Entering an M in the column when the MIXED DATA install option is NO specifies
SBCS data, not MIXED data.

Altering data types and deleting columns
Some changes to a table cannot be made with an ALTER TABLE statement. For
example, an original specification of CHAR (20) must be lengthened to CHAR (25),
a column defined as SMALLINT must be redefined as INTEGER, a column defined
with NOT NULL must allow null values, or the attributes of an identity column must
be redefined..

To make such changes, you need to perform the following steps:

1. Unload the table.

2. Drop the table.

Chapter 7. Altering your database design 65

|
|
|

|

|

|

|

|
|

|
|
|

|
|
|
|
|

|

|

|

Be very careful about dropping a table—in most cases, recovering a dropped
table is nearly impossible. If you decide to drop a table, remember that such
changes might invalidate a plan or a package, as described in “Dropping and
re-creating DB2 objects” on page 55.

You must alter tables that have been created with RESTRICT ON DROP to
remove the restriction before you can drop them.

3. Commit the changes.

4. Re-create the table.

If the table has an identity column:

v Choose carefully the new value for the START WITH attribute of the CREATE
TABLE statement if you want the first generated column value to resume in
sequence after the last generated column value of the table that was saved
by the unload in step 1.

v Define the table as GENERATED BY DEFAULT so that the previously
generated identity values are reloaded.

5. Reload the table.

Implications of dropping a table
The DROP TABLE statement deletes a table. For example, to drop the project
table, execute:
DROP TABLE DSN8710.PROJ;

The statement deletes the row in the SYSIBM.SYSTABLES catalog table that
contains information about DSN8710.PROJ. It also drops any other objects that
depend on the project table. As a result:

v The column names of the table are dropped from SYSIBM.SYSCOLUMNS.

v If the dropped table has an identity column, all information regarding the identity
column is removed from SYSIBM.SYSSEQUENCES.

v If triggers are defined on the table, they are dropped, and the corresponding
rows are removed from SYSIBM.SYSTRIGGERS and SYSIBM.SYSPACKAGES.

v Any views based on the table are dropped.

v Application plans or packages that involve the use of the table are invalidated.

v Synonyms for the table are dropped from SYSIBM.SYSSYNONYMS.

v Indexes created on any columns of the table are dropped.

v Referential constraints that involve the table are dropped. In this case, the project
table is no longer a dependent of the department and employee tables, nor is it a
parent of the project activity table.

v Authorization information that is kept in the DB2 catalog authorization tables is
updated to reflect the dropping of the table. Users who were previously
authorized to use the table, or views on it, no longer have those privileges,
because catalog rows are deleted.

v Access path statistics and space statistics for the table are deleted from the
catalog.

v The storage space of the dropped table might be reclaimed.

If the table space containing the table is:

– Implicitly created (using CREATE TABLE without the TABLESPACE clause),
the table space is also dropped. If the data sets are in a storage group,
dropping the table space reclaims the space. For user-managed data sets,
you must reclaim the space yourself.

– Partitioned, or contains only the one table, you can drop the table space.

– Segmented, DB2 reclaims the space.

66 Administration Guide

|
|
|
|

|
|

|

|

|

|
|
|
|

|
|

|

|
|

|
|

– Simple, and contains other tables, you must run the REORG utility to reclaim
the space.

v If the table contains a LOB column, the auxiliary table and the index on the
auxiliary table are dropped. The LOB table space is dropped if it was created
with SQLRULES(STD). See DB2 SQL Referencefor details.

If a table has a partitioning index, you must drop the table space or use LOAD
REPLACE when loading the redefined table. If the CREATE TABLE creates a table
space implicitly, commit the DROP statement before re-creating a table by the same
name. You must also commit the DROP statement before you create any new
indexes with the same name as the original indexes.

Check objects that depend on the table
Before dropping a table, check to see what other objects are dependent on it. The
SYSIBM.SYSVIEWDEP, SYSIBM.SYSPLANDEP, and SYSIBM.SYSPACKDEP
tables tell what views, application plans, and packages are dependent on different
DB2 objects. This example lists the views, with their creators, that are affected if
you drop the project table.
SELECT DNAME, DCREATOR

FROM SYSIBM.SYSVIEWDEP
WHERE BNAME = 'PROJ'
AND BCREATOR = 'DSN8710'
AND BTYPE = 'T';

The next example lists the packages, identified by the package name, collection ID,
and consistency token (in hexadecimal representation), that are affected if you drop
the project table.
SELECT DNAME, DCOLLID, HEX(DCONTOKEN)

FROM SYSIBM.SYSPACKDEP
WHERE BNAME = 'PROJ'
AND BQUALIFIER = 'DSN8710'
AND BTYPE = 'T';

This example lists the plans, identified by plan name, that are affected if you drop
the project table.
SELECT DNAME

FROM SYSIBM.SYSPLANDEP
WHERE BNAME = 'PROJ'
AND BCREATOR = 'DSN8710'
AND BTYPE = 'T';

The SYSIBM.SYSINDEXES table tells you what indexes currently exist on a table.
From the SYSIBM.SYSTABAUTH table, you can determine which users are
authorized to use the table.

Re-creating a table
To re-create a DB2 table to increase the length attribute of a string column or the
precision of a numeric column, follow these steps:

1. If you do not have the original CREATE TABLE statement and all authorization
statements for the table (call it T1), query the catalog to determine its
description, the description of all indexes and views on it, and all users with
privileges on it.

2. Create a new table (call it T2) with the desired attributes.

3. Execute the following INSERT statement:
INSERT INTO T2

SELECT * FROM T1;

Chapter 7. Altering your database design 67

This copies the contents of T1 into T2.

4. Execute the statement DROP TABLE T1. If T1 is the only table in an explicitly
created table space, and you do not mind losing the compression dictionary, if
one exists, drop the table space instead, so that the space is reclaimed.

5. Commit the DROP statement.

6. Use the statement RENAME TABLE to rename table T2 to T1.

7. Run the REORG utility on the table space that contains table T1.

8. Notify users to re-create any synonyms, indexes, views, and authorizations they
had on T1.

If you want to change a data type from string to numeric or from numeric to string
(for example, INTEGER to CHAR or CHAR to INTEGER), use the CHAR and
DECIMAL scalar functions in the SELECT statement to do the conversion.Another
alternative is to:

1. Use UNLOAD or REORG UNLOAD EXTERNAL (if the data to unload in less
than 32 KB) to save the data in a sequential file, and then

2. Use the LOAD utility to repopulate the table after re-creating it. When you
reload the table, make sure you edit the LOAD statement to match the new
column definition.

This method is particularly appealing when you are trying to re-create a large table.

Redefining the attributes on an identity column
At some point, you might need to change the attributes of an identity column. For
example, you might want to allow or disallow identity column values to wrap, or
change values of other attributes. Changing the attributes of an identity column, like
changing other data types, requires that you drop and then recreate the table (see
“Altering data types and deleting columns” on page 65 for special considerations for
altering identity columns).

If you want identity column values to wrap, specify the CYCLE attribute on the SQL
statements CREATE TABLE, DECLARE GLOBAL TEMPORARY TABLE, or ALTER
TABLE. The CYCLE attribute lets an identity column continue to generate values
after it reaches the minimum or maximum value of the cycle sequence. When
wrapping is in effect, duplicate column values are implicitly allowed (even when the
column is GENERATED ALWAYS) unless a unique index is defined on the column.
To ensure unique values for an identity column, you must define a unique index on
that column.

If you do not want identity column values to wrap, specify the NO CYCLE attribute
(the default if both CYCLE and NO CYCLE are not specified). If the NO CYCLE
attribute is in effect and you run out of values, then you must:

1. Unload the table.

2. Drop the table.

3. Re-create the table, specifying:

v New values for attributes (such as data type, MAXVALUE, and MINVALUE)
that allow a larger range, if possible

v GENERATED BY DEFAULT so that you can reload existing values

v An appropriate START WITH value that allows the sequence to continue from
where it ended in the unloaded table

4. Reload the table.

68 Administration Guide

|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|

|

The attributes MINVALUE and MAXVALUE on the AS IDENTITY clause let you
specify the minimum and maximum values that are generated for an identity
column. See Chapter 5 of DB2 SQL Reference for more information about identity
column attributes.

Moving a table to a table space of a different page size
You cannot alter a table to use a different page size. However, you can move a
table to a table space of a different page size:

1. Unload the table using UNLOAD FROM TABLE or REORG UNLOAD
EXTERNAL FROM TABLE.

2. Use CREATE TABLE LIKE on the table to re-create it in the table space of the
new page size.

3. Use DB2 Control Center, DB2 Administration Tool, or catalog queries to
determine the dependent objects: views, authorization, plans, packages,
synonyms, triggers, referential integrity, and indexes.

4. Drop the original table.

5. Rename the new table to the name of the old table using RENAME TABLE.

6. Re-create all dependent objects.

7. Rebind plans and packages.

8. Reload the table using data from the SYSRECnn data set and the control
statements from the SYSPUNCH data set, which was created when the table
was unloaded.

Altering indexes
You can use the ALTER INDEX statement to change the description of an index or
to rebalance data among partitions in partitioned table spaces. The statement can
be embedded in an application program or issued interactively. For details on the
ALTER INDEX statement, see Chapter 5 of DB2 SQL Reference.

Changing the description of an index
You can change most of the index clauses, including: BUFFERPOOL, CLOSE,
COPY, PIECESIZE, and those clauses that are associated with storage space, free
space, and group bufferpool caching. To change any other clause of the index
definition, you must drop the index, commit, and redefine it. Dropping an index does
not cause DB2 to drop any other objects. As described in “Dropping and re-creating
DB2 objects” on page 55, the consequence of dropping indexes is that DB2
invalidates application plans and packages that use the index and automatically
rebinds them when they are next used.

If you want to drop a unique index, you must take additional steps before running a
DROP INDEX statement. Any primary key, unique key, or referential constraints
associated with the unique index must be dropped before you drop the unique
index. However, you can drop a unique index for a unique key without dropping the
unique constraint if the unique key was created before Version 7.

You must commit the DROP INDEX statement before you create any new table
spaces or indexes by the same name. If an index is dropped and then an
application program using that index is run (and thereby automatically rebound),
that application program does not use the old index. If, at a later time, the index is
re-created, and the application program is not rebound, the application program
cannot take advantage of the new index.

Chapter 7. Altering your database design 69

|
|
|
|

|

|
|
|

|

|

|
|
|
|

|
|
|

|
|
|
|
|

Rebalancing data in partitioned table spaces
When data becomes out of balance in partitioned table spaces, performance can
decrease. It is possible to improve performance by rebalancing the partitions to
redistribute the data. You can use the ALTER INDEX statement and a REORG job
to shift data among the affected partitions. The result is that data is is balanced
according to your specifications.

You can rebalance data by changing the limit key values of all or most of the
partitions. The limit key is the highest value of the index key for a partition. You roll
the changes through the partitions one or more at a time, making relatively small
parts of the data unavailable at any given time. For more information about
rebalancing data using the ALTER INDEX statement, see An Introduction to DB2 for
OS/390.

Altering views
In many cases, changing user requirements can be satisfied by modifying an
existing view. But no ALTER VIEW statement exists; the only way to change a view
is by dropping the view, committing the drop, and re-creating the view. When you
drop a view, DB2 also drops the dependent views.

When you drop a view, DB2 invalidates application plans and packages that are
dependent on the view and revokes the privileges of users who are authorized to
use it. DB2 attempts to rebind the package or plan the next time it is executed, and
you receive an error if you do not re-create the view.

To tell how much rebinding and reauthorizing is needed if you drop a view, check
these catalog tables:

Table 12. Catalog tables to check after dropping a view

Catalog table What to check

SYSIBM.SYSPLANDEP Application plans dependent on the view

SYSIBM.SYSPACKDEP Packages dependent on the view

SYSIBM.SYSVIEWDEP Views dependent on the view

SYSIBM.SYSTABAUTH Users authorized to use the view

For more information about defining and dropping views, see Chapter 5 of DB2
SQL Reference.

Altering stored procedures and user-defined functions
You modify stored procedures and user-defined functions with the ALTER
PROCEDURE and ALTER FUNCTION statements. Details for these statements are
in DB2 Application Programming and SQL Guide.

Altering stored procedures
The ALTER PROCEDURE statement updates the description of a stored procedure.
This example changes SYSPROC.MYPROC to run only in the WLM environment
PARTSEC:
ALTER PROCEDURE SYSPROC.MYPROC

WLM ENVIRONMENT PARTSEC;

70 Administration Guide

|

|
|
|
|
|

|
|
|
|
|
|

If SYSPROC.MYPROC is defined with SECURITY DEFINER, the external security
environment for the stored procedure uses the authorization ID of the owner of the
stored procedure. This example changes the procedure to use the authorization ID
of the person running it:
ALTER PROCEDURE SYSPROC.MYPROC

SECURITY USER;

Altering user-defined functions
The ALTER FUNCTION statement updates the description of user-defined
functions. Changes take effect immediately.

In this example, two functions named CENTER exist in the PELLOW schema. The
first function has two input parameters with INTEGER and FLOAT data types,
respectively. The specific name for the first function is FOCUS1. The second
function has three parameters with CHAR(25), DEC(5,2), and INTEGER data types.

Using the specific name to identify the function, change the WLM environment in
which the first function runs from WLMENVNAME1 to WLMENVNAME2:
ALTER SPECIFIC FUNCTION PELLOW.FOCUS1

WLM ENVIRONMENT WLMENVNAME2;

This example changes the second function when any arguments are null:
ALTER FUNCTION PELLOW.CENTER (CHAR(25), DEC(5,2), INTEGER)

RETURNS ON NULL CALL;

Changing the high-level qualifier for DB2 data sets
The high-level qualifier for DB2 data sets is the catalog name of the integrated
catalog facility, which is commonly called the “user catalog”. You cannot change this
qualifier for DB2 data sets using the DB2 installation or migration update process.
This section describes other ways to change this qualifier for both system data sets
and user data sets.

These procedures do not actually move or copy data. For information about moving
data, see “Moving DB2 data” on page 78.

Changing the high-level qualifier for DB2 data sets is a complex task; so, you
should have both experience with DB2 and with managing user catalogs. The
following tasks are described:

v “Define a new integrated catalog alias” on page 72

v “Change the qualifier for system data sets” on page 72, which includes the DB2
catalog, directory, active and archive logs, and the BSDS

v “Change qualifiers for other databases and user data sets” on page 75, which
includes the work file database (DSNDB07), the default database (DSNDB04),
and other DB2 databases and user databases

To concentrate on DB2-related issues, this procedure assumes that the catalog
alias resides in the same user catalog as the one that is currently used. If the new
catalog alias resides in a different user catalog, refer to DFSMS/MVS: Access
Method Services for the Integrated Catalog for information about planning such a
move.

If the data sets are managed by the Storage Management Subsystem (SMS), make
sure that automatic class selection routines are in place for the new data set name.

Chapter 7. Altering your database design 71

Define a new integrated catalog alias
This step can be done at any time before changing the high-level qualifier for
system or user data sets.

Set up the new high-level qualifier as an alias to a current integrated catalog, using
the following command:
DEFINE ALIAS (NAME (newcat) RELATE (usercat) CATALOG (master-cat))

See DFSMS/MVS: Access Method Services for the Integrated Catalog for more
information.

Change the qualifier for system data sets
In this task, you stop DB2, change the high-level qualifier in the system parameter
load module (possibly DSNZPARM), and establish a new xxxxMSTR cataloged
procedure before restarting DB2. These steps must be done in sequence.

Step 1: Change the load module to reflect the new qualifier
To change the system parameter load module to specify the new qualifier for new
archive data sets and the DB2 catalog and directory data sets, you must use the
installation process.

1. Run the installation CLIST, and specify INSTALL TYPE=INSTALL and DATA
SHARING FUNCTION=NONE.

2. Enter new values for the fields shown in Table 13.

Table 13. CLIST panels and fields to change to reflect new qualifier

Panel name Field name Comments

DSNTIPA1 INSTALL TYPE Specify INSTALL. Do not specify a new
default prefix for the input data sets listed on
this panel.

DSNTIPA1 OUTPUT MEMBER
NAME

DSNTIPA2 CATALOG ALIAS

DSNTIPH COPY 1 NAME and
COPY 2 NAME

These are the bootstrap data set names.

DSNTIPH COPY 1 PREFIX and
COPY 2 PREFIX

These fields appear for both active and
archive log prefixes.

DSNTIPT SAMPLE LIBRARY This field allows you to specify a field name
for edited output of the installation CLIST.
Avoid overlaying existing data sets by
changing the middle node, NEW, to
something else. The only members you use
in this procedure are xxxxMSTR and
DSNTIJUZ in the sample library.

DSNTIPO PARAMETER
MODULE

Change this value only if you want to
preserve the existing member through the
CLIST.

The output from the CLIST is a new set of tailored JCL with new cataloged
procedures and a DSNTIJUZ job, which produces a new member.

3. Run DSNTIJUZ.

72 Administration Guide

Unless you have specified a new name for the load module, make sure the
output load module does not go to the SDSNEXIT or SDSNLOAD library used
by the active DB2 subsystem.

DSNTIJUZ also places any archive log data sets into the BSDS and creates a
new DSNHDECP member. You do not need to run these steps, because they
are unnecessary for changing the high-level qualifier.

Step 2: Stop DB2 with no outstanding activity
In this step, make sure the subsystem does not have any outstanding activity, such
as outstanding units of recovery or pending writes. This ensures that DB2 does not
need to access the data sets on restart through the log, which contains the old data
set qualifiers.

1. Enter the following command:
-STOP DB2 MODE(QUIESCE)

This command allows DB2 to complete processing currently executing
programs.

2. Enter the following command:
-START DB2 ACCESS(MAINT)

3. Use the following commands to make sure the subsystem is in a consistent
state. See Chapter 2 of DB2 Command Reference and “Part 4. Operation and
recovery” on page 241 for more information about these commands.

-DISPLAY THREAD(*) TYPE(*)
-DISPLAY UTILITY (*)
-TERM UTILITY(*)
-DISPLAY DATABASE(*) RESTRICT
-DISPLAY DATABASE(*) SPACENAM(*) RESTRICT
-RECOVER INDOUBT

Correct any problems before continuing.

4. Stop DB2, using the following command:
-STOP DB2 MODE(QUIESCE)

5. Run the print log map utility (DSNJU004) to identify the current active log data
set and the last checkpoint RBA. For information about the print log map utility,
see Part 3 of DB2 Utility Guide and Reference.

6. Run DSN1LOGP with the SUMMARY (YES) option, using the last checkpoint
RBA from the output of the print log map utility you ran in the previous step. For
information about DSN1LOGP, see Part 3 of DB2 Utility Guide and Reference.

The report headed DSN1157I RESTART SUMMARY identifies active units of
recovery or pending writes. If either situation exists, do not attempt to continue.
Start DB2 with ACCESS(MAINT), use the necessary commands to correct the
problem, and repeat steps 4 through 6 until all activity is complete.

Step 3: Rename system data sets with the new qualifier
All of the following steps assume that the new qualifier and the old qualifier reside
in the same user catalog. Access method services does not allow ALTER where the
new name does not match the existing catalog structure for an SMS-managed
VSAM data set. If the data set is not managed by SMS, the rename succeeds, but
DB2 cannot allocate it as described in DFSMS/MVS: Access Method Services for
the Integrated Catalog.

DB2 table spaces are defined as linear data sets with DSNDBC as the second
node of the name for the cluster and DSNDBD for the data component (as
described in “Requirements for your own data sets” on page 34). The examples

Chapter 7. Altering your database design 73

shown here assume the normal defaults for DB2 and VSAM data set names. Use
access method services statements with a generic name (*) to simplify the process.
Access method services allows only one generic name per data set name string.

1. Using IDCAMS, change the names of the catalog and directory table spaces.
Also, be sure to specify the instance qualifier of your data set, y, which can be
either I or J:

ALTER oldcat.DSNDBC.DSNDB01.*.y0001.A001 -
NEWNAME (newcat.DSNDBC.DSNDB01.*.y0001.A001)

ALTER oldcat.DSNDBD.DSNDB01.*.y0001.A001 -
NEWNAME (newcat.DSNDBD.DSNDB01.*.y0001.A001)

ALTER oldcat.DSNDBC.DSNDB06.*.y0001.A001 -
NEWNAME (newcat.DSNDBC.DSNDB06.*.y0001.A001)

ALTER oldcat.DSNDBD.DSNDB06.*.y0001.A001 -
NEWNAME (newcat.DSNDBD.DSNDB06.*.y0001.A001)

2. Using IDCAMS, change the active log names. Active log data sets are named
oldcat.LOGCOPY1.COPY01 for the cluster component and
oldcat.LOGCOPY1.COPY01.DATA for the data component.

ALTER oldcat.LOGCOPY1.* -
NEWNAME (newcat.LOGCOPY1.*)

ALTER oldcat.LOGCOPY1.*.DATA -
NEWNAME (newcat.LOGCOPY1.*.DATA)

ALTER oldcat.LOGCOPY2.* -
NEWNAME (newcat.LOGCOPY2.*)

ALTER oldcat.LOGCOPY2.*.DATA -
NEWNAME (newcat.LOGCOPY2.*.DATA)

3. Using IDCAMS, change the BSDS names.
ALTER oldcat.BSDS01 -

NEWNAME (newcat.BSDS01)
ALTER oldcat.BSDS01.* -

NEWNAME (newcat.BSDS01.*)
ALTER oldcat.BSDS02 -

NEWNAME (newcat.BSDS02)
ALTER oldcat.BSDS02.* -

NEWNAME (newcat.BSDS02.*)

Step 4: Update the BSDS with the new qualifier
Update the first BSDS with the new alias and correct data set names for the active
logs. This procedure does not attempt to change the names of existing archive log
data sets. If these catalog entries or data sets will not be available in the future,
copy all the table spaces in the DB2 subsystem to establish a new recovery point.
You can optionally delete the entries from the BSDS. If you do not delete the
entries, they will gradually be replaced by newer entries.

1. Run the change log inventory utility (DSNJU003).

Use the new qualifier for the BSDS, because it has now been renamed. The
following example illustrates the control statements required for three logs and
dual copy is specified for the logs. This is only an example; the number of logs
can vary and dual copy is an option. The starting and ending log RBAs are from
the print log map report.
NEWCAT VSAMCAT=newcat
DELETE DSNAME=oldcat.LOGCOPY1.DS01
DELETE DSNAME=oldcat.LOGCOPY1.DS02
DELETE DSNAME=oldcat.LOGCOPY1.DS03
DELETE DSNAME=oldcat.LOGCOPY2.DS01
DELETE DSNAME=oldcat.LOGCOPY2.DS02
DELETE DSNAME=oldcat.LOGCOPY2.DS03
NEWLOG DSNAME=newcat.LOGCOPY1.DS01,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DS02,COPY1,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY1.DS03,COPY1,STARTRBA=strtrba,ENDRBA=endrba

74 Administration Guide

|
|

NEWLOG DSNAME=newcat.LOGCOPY2.DS01,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS02,COPY2,STARTRBA=strtrba,ENDRBA=endrba
NEWLOG DSNAME=newcat.LOGCOPY2.DS03,COPY2,STARTRBA=strtrba,ENDRBA=endrba

During startup, DB2 compares the newcat value with the value in the system
parameter load module, and they must be the same.

2. Using the IDCAMS REPRO command, replace the contents of BSDS2 with the
contents of BSDS01.

3. Run the print log map utility (DSNJU004) to verify your changes to the BSDS.

4. At a convenient time, change the DD statements for the BSDS in any of your
off-line utilities to use the new qualifier.

Step 5: Establish a new xxxxmstr cataloged procedure
Before you start DB2, follow these steps:

1. Update xxxxMSTR in SYS1.PROCLIB with the new BSDS data set names.

2. Copy the new system parameter load module to the active
SDSNEXIT/SDSNLOAD library.

Step 6: Start DB2 with the new xxxxmstr and load module
Use the START DB2 command with the new load module name as shown here:
-START DB2 PARM(new_name)

If you stopped DSNDB01 or DSNDB06 in “Step 2: Stop DB2 with no outstanding
activity” on page 73, you must explicitly start them in this step.

Change qualifiers for other databases and user data sets
This step changes qualifiers for DB2 databases other than the catalog and
directory. DSNDB07 is a system database but contains no permanent data, and can
be deleted and redefined with the new qualifier. If you are changing its qualifier, do
that before the rest of the user databases.

Change the databases in the following list that apply to your environment.
DSNDB07 (work file database)
DSNDB04 (default database)
DSNDDF (communications database)
DSNRLST (resource limit facility database)
DSNRGFDB (the database for data definition control)
Any other application databases that use the old high-level qualifier

At this point, the DB2 catalog tables SYSSTOGROUP, SYSTABLEPART, and
SYSINDEXPART contain information about the old integrated user catalog alias. To
update those tables with the new alias, you must follow the procedures below. Until
you do so, the underlying resources are not available. The following procedures are
described separately.
v “Changing your work database to use the new high-level qualifier” on page 76
v “Changing user-managed objects to use the new qualifier” on page 76
v “Changing DB2-managed objects to use the new qualifier” on page 77

Table spaces and indexes that span more than one data set require special
procedures. Partitioned table spaces can have different partitions allocated to
different DB2 storage groups. Nonpartitioned table spaces or indexes only have the
additional data sets to rename (those with the lowest level name of A002, A003,
and so on).

Chapter 7. Altering your database design 75

Changing your work database to use the new high-level qualifier
You can use one of two methods to change the high-level qualifier for your work
database or possibly DSNDB07. Which method you use depends on if you have a
new installation or a migrated installation.

New installation:

1. Reallocate the database using the installation job DSNTIJTM from
prefix.SDSNSAMP

2. Modify your existing job. Change the job to remove the BIND step for DSNTIAD
and rename the data set names in the DSNTTMP step to your new names,
making sure you include your current allocations.

Migrated installations: Migrated installations do not have a usable DSNTIJTM,
because the IDCAMS allocation step is missing. For migrated installations, you
must:
1. Stop the database, using the following command (for a database named

DSNDB07):
-STOP DATABASE (DSNDB07)

2. Drop the database, using the following SQL statement:
DROP DATABASE DSNDB07;

3. Re-create the database, using the following SQL statement:
CREATE DATABASE DSNDB07;

4. Define the clusters, using the following access method services commands.
Also, be sure to specify the instance qualifier of your data set, y, which can be
either I or J:

ALTER oldcat.DSNDBC.DSNDB07.DSN4K01.y0001.A001
NEWNAME newcat.DSNDBC.DSNDB07.DSN4K01.y0001.A001

ALTER oldcat.DSNDBC.DSNDB07.DSN32K01.y0001.A001
NEWNAME newcat.DSNDBC.DSNDB07.DSN32K01.y0001.A001

Repeat the above statements (with the appropriate table space name) for as
many table spaces as you use.

5. Create the table spaces in DSNDB07.
CREATE TABLESPACE DSN4K01

IN DSNDB07
BUFFERPOOL BP0
CLOSE NO
USING VCAT DSNC710;

CREATE TABLESPACE DSN32K01
IN DSNDB07
BUFFERPOOL BP32K
CLOSE NO
USING VCAT DSNC710;

6. Start the database, using the following command:
-START DATABASE (DSNDB07)

Changing user-managed objects to use the new qualifier
1. Stop the table spaces and index spaces, using the following command:

-STOP DATABASE(dbname) SPACENAM(*)

2. Use the following SQL ALTER TABLESPACE and ALTER INDEX statements
with the USING clause to specify the new qualifier:
ALTER TABLESPACE dbname.tsname

USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

76 Administration Guide

|
|

Repeat for all the objects in the database.

3. Using IDCAMS, rename the data sets to the new qualifier. Also, be sure to
specify the instance qualifier of your data set, y, which can be either I or J:

ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBC.dbname.*.y0001.A001

ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

4. Start the table spaces and index spaces, using the following command:
-START DATABASE(dbname) SPACENAM(*)

5. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE(dbname)

6. Using SQL, verify that you can access the data.

Renaming the data sets can be done while DB2 is down. They are included here
because the names must be generated for each database, table space, and index
space that is to change.

Changing DB2-managed objects to use the new qualifier
Use this procedure when you want to keep the existing DB2 storage group,
changing only the high-level qualifier. If you want to move the data to a new DB2
storage group, see page 81.

1. Remove all table spaces and index spaces from the storage group by
converting the data sets temporarily to user-managed data sets.

a. Stop each database that has data sets you are going to convert, using the
following command:
-STOP DATABASE(dbname) SPACENAM(*)

b. Convert to user-managed data sets with the USING VCAT clause of the
SQL ALTER TABLESPACE and ALTER INDEX statements, as shown in the
following statements. Use the new catalog name for VCAT.
ALTER TABLESPACE dbname.tsname

USING VCAT newcat;

ALTER INDEX creator.index-name
USING VCAT newcat;

2. Drop the storage group, using the following statement:
DROP STOGROUP stogroup-name;

The DROP succeeds only if all the objects that referenced this STOGROUP are
dropped or converted to user-managed (USING VCAT clause).

3. Re-create the storage group using the correct volumes and the new alias, using
the following statement:
CREATE STOGROUP stogroup-name

VOLUMES (VOL1,VOL2)
VCAT newcat;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier of
your data set, y, which can be either I or J:
ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBC.dbname.*.y0001.A001
ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -

NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

If your table space or index space spans more than one data set, be sure to
rename those data sets also.

Chapter 7. Altering your database design 77

|
|

|
|

5. Convert the data sets back to DB2-managed data sets by using the new DB2
storage group. Use the following SQL ALTER TABLESPACE and ALTER INDEX
statements:
ALTER TABLESPACE dbname.tsname

USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name
PRIQTY priqty
SECQTY secqty;

If you specify USING STOGROUP without specifying the PRIQTY and SECQTY
clauses, DB2 uses the default values. For more information about USING
STOGROUP, see DB2 SQL Reference.

6. Start each database, using the following command:
-START DATABASE(dbname) SPACENAM(*)

7. Verify the success of the procedure by entering the following command:
-DISPLAY DATABASE(dbname)

8. Using SQL, verify that you can access the data.

Moving DB2 data
This section discusses the following topics:

v “Tools for moving DB2 data” introduces some of the tools available to make
moving DB2 data easier.

v “Moving a DB2 data set” on page 80 describes moving a data set from one
volume to another.

v “Copying a relational database” on page 81 describes copying a user-managed
relational database, with its object definitions and its data, from one DB2
subsystem to another, on the same or different MVS system.

v “Copying an entire DB2 subsystem” on page 81 describes copying a DB2
subsystem from one MVS system to another. Copying a subsystem includes
these items:
– All the user data and object definitions
– The DB2 system data sets:

- The log
- The bootstrap data set
- Image copy data sets
- The DB2 catalog
- The integrated catalog that records all the DB2 data sets

Tools for moving DB2 data
Important: Before copying any DB2 data, resolve any data that is in an inconsistent
state. Use the DISPLAY DATABASE command to determine whether any
inconsistent state exists, and the RECOVER INDOUBT command or the RECOVER
utility to resolve the inconsistency. The copying process generally loses all traces of
an inconsistency except the problems that result.

Although DB2 data sets are created using VSAM access method services, they are
specially formatted for DB2 and cannot be processed by services that use VSAM

78 Administration Guide

record processing. They can be processed by VSAM utilities that use
control-interval (CI) processing and, if they are linear data sets (LDSs), also by
utilities that recognize the LDS type.

Furthermore, copying the data might not be enough. Some operations require
copying DB2 object definitions. And when copying from one subsystem to another,
you must consider internal values that appear in the DB2 catalog and the log, for
example, the DB2 object identifiers (OBIDs) and log relative byte addresses
(RBAs).

Fortunately, several tools exist that simplify the operations:

v The REORG and LOAD utilities.

Those can be used to move data sets from one disk device type to another
within the same DB2 subsystem. For instructions on using LOAD and REORG,
see Part 2 of DB2 Utility Guide and Reference.

v The COPY and RECOVER utilities. Using those utilities, you can recover an
image copy of a DB2 table space or index space onto another disk device within
the same subsystem. For instructions on using COPY and RECOVER, see Part
2 of DB2 Utility Guide and Reference.

v The UNLOAD or REORG UNLOAD EXTERNAL utility unloads a DB2 table into a
sequential file and generates statements to allow the LOAD utility to load it
elsewhere. For instructions on using UNLOAD or REORG UNLOAD EXTERNAL,
see DB2 Utility Guide and Reference.

v The DSN1COPY utility. The utility copies the data set for a table space or index
space to another data set. It can also translate the object identifiers and reset the
log RBAs in the target data set. For instructions, see Part 3 of DB2 Utility Guide
and Reference.

The following tools are not parts of DB2 but are separate licensed programs or
program offerings:

v DB2 DataPropagator. This licensed program can extract data from DB2 tables,
DL/I databases, VSAM files, and sequential files. For instructions, see “Loading
data from DL/I” on page 54.

v DFSMS/MVS®, which contains the following functional components:

– Data Set Services (DFSMSdss™)

Use DFSMSdss to copy data between disk devices. For instructions, see Data
Facility Data Set Services: User's Guide and Reference. You can use online
panels to control this, through the Interactive Storage Management Facility
(ISMF) that is available with DFSMS/MVS; for instructions, refer to
DFSMS/MVS: Storage Administration Reference for DFSMSdfp.

– Data Facility Product (DFSMSdfp)

This is a prerequisite for DB2. You can use access method services EXPORT
and IMPORT commands with DB2 data sets when control interval processing
(CIMODE) is used. For instructions on EXPORT and IMPORT, see
DFSMS/MVS: Access Method Services for the Integrated Catalog.

– Hierarchical Storage Manager (DFSMShsm)

With the MIGRATE, HMIGRATE, or HRECALL commands, which can specify
specific data set names, you can move data sets from one disk device type to
another within the same DB2 subsystem. Do not migrate the DB2 directory,
DB2 catalog, and the work file database (DSNDB07). Do not migrate any data
sets that are in use frequently, such as the bootstrap data set and the active
log. With the MIGRATE VOLUME command, you can move an entire disk
volume from one device type to another. The program can be controlled using

Chapter 7. Altering your database design 79

|
|
|
|

online panels, through the Interactive Storage Management Facility (ISMF).
For instructions, see DFSMS/MVS: DFSMShsm Managing Your Own Data.

The following table shows which tools are applicable to which operations:

Table 14. Tools applicable to data-moving operations

Tool Moving a data
set

Copying a data
base

Copying an
entire
subsystem

REORG and LOAD Yes Yes —

COPY and RECOVER Yes — —

DSNTIAUL Yes Yes —

DSN1COPY Yes Yes —

DataRefresher or DXT™ Yes Yes —

DFSMSdss Yes — Yes

DFSMSdfp Yes — Yes

DFSMShsm Yes — —

Some of the listed tools rebuild the table space and index space data sets, and
they therefore generally require longer to execute than the tools that merely copy
them. The tools that rebuild are REORG and LOAD, RECOVER and REBUILD,
DSNTIAUL, and DataRefresher. The tools that merely copy data sets are
DSN1COPY, DFSMSdss, DFSMSdfp EXPORT and IMPORT, and DFSMShsm.

DSN1COPY is fairly efficient in use, but somewhat complex to set up. It requires a
separate job step to allocate the target data sets, one job step for each data set to
copy the data, and a step to delete or rename the source data sets. DFSMSdss,
DFSMSdfp, and DFSMShsm all simplify the job setup significantly.

Although less efficient in execution, RECOVER is easy to set up if image copies
and recover jobs already exist. You might only need to redefine the data sets
involved and recover the objects as usual.

Moving a DB2 data set
The movement DB2 data is accomplished by RECOVER, REORG, or DSN1COPY,
or by the use of non-DB2 facilities, such as DFSMSdss. Both the DB2 utilities and
the non-DB2 tools can be used while DB2 is running, but the space to be moved
should be stopped to prevent users from accessing it.

The following procedures differ mainly in that the first one assumes you do not want
to reorganize or recover the data. Generally, this means that the first procedure is
faster. In all cases, make sure that there is enough space on the target volume to
accommodate the data set.

If you use storage groups, then you can change the storage group definition to
include the new volumes, as described in “Altering DB2 storage groups” on
page 56.

Moving data without REORG or RECOVER:

1. Stop the database.

2. Move the data, using DSN1COPY or a non-DB2 facility.

80 Administration Guide

3. Issue the ALTER INDEX or ALTER TABLESPACE statement to use the new
integrated catalog facility catalog name or DB2 storage group name.

4. Start the database.

Moving DB2-Managed data with REORG, RECOVER, or REBUILD: With this
procedure you create a storage group (possibly using a new catalog alias) and
move the data to that new storage group.

1. Create a new storage group using the correct volumes and the new alias, as
shown in the following statement:
CREATE STOGROUP stogroup-name

VOLUMES (VOL1,VOL2)
VCAT (newcat);

2. Prevent access to the data sets you are going to move, by entering the
following command:
-STOP DATABASE(dbname) SPACENAM(*)

3. Enter the ALTER TABLESPACE and ALTER INDEX SQL statements to use the
new storage group name, as shown in the following statements:
ALTER TABLESPACE dbname.tsname

USING STOGROUP stogroup-name;

ALTER INDEX creator.index-name
USING STOGROUP stogroup-name;

4. Using IDCAMS, rename the data sets for the index spaces and table spaces to
use the new high-level qualifier. Also, be sure to specify the instance qualifier of
your data set, y, which can be either I or J. If you have run REORG with
SHRLEVEL CHANGE or SHRLEVEL REFERENCE on any table spaces or
index spaces, the fifth-level qualifier might be J0001.

ALTER oldcat.DSNDBC.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBC.dbname.*.y0001.A001

ALTER oldcat.DSNDBD.dbname.*.y0001.A001 -
NEWNAME newcat.DSNDBD.dbname.*.y0001.A001

5. Start the database for utility processing only, using the following command:
-START DATABASE(dbname) SPACENAM(*) ACCESS(UT)

6. Use the REORG or the RECOVER utility on the table space or index space, or
use the REBUILD utility on the index space.

7. Start the database, using the following command:
-START DATABASE(dbname) SPACENAM(*)

Copying a relational database
This operation involves not only copying data, but finding or generating, and
executing, SQL statements to create storage groups, databases, table spaces,
tables, indexes, views, synonyms, and aliases.

As with the other operations, DSN1COPY is likely to execute faster than the other
applicable tools. It copies directly from one data set to another, while the other tools
extract input for LOAD, which then loads table spaces and builds indexes. But
again, DSN1COPY is more difficult to set up. In particular, you must know the
internal DB2 object identifiers, which other tools translate automatically.

Copying an entire DB2 subsystem
This operation involves copying an entire DB2 subsystem from one MVS system to
another. (Although you can have two DB2 subsystems on the same MVS system,
one cannot be a copy of the other.)

Chapter 7. Altering your database design 81

|
|
|
|

Only two of the tools listed are applicable: DFSMSdss DUMP and RESTORE, and
DFSMSdfp EXPORT and IMPORT. Refer to the documentation on those programs
for the most recent information about their use.

82 Administration Guide

Chapter 8. Estimating disk storage for user data

This chapter provides information on how to estimate the amount of disk storage
you need for your data, including:

“Factors that affect storage”
“Calculating the space required for a table” on page 84
“Calculating the space required for a dictionary” on page 87
“Calculating the space required for an index” on page 88

Recommendation: Use DB2 Estimator to calculate space estimates for tables,
indexes, and factors discussed in this chapter.

Factors that affect storage
The amount of disk space you need for your data is not just the number of bytes of
data; the true number is some multiple of that. That is,
Space required = M × (bytes of data)

The multiplier M depends on your circumstances. It includes factors that are
common to all data sets on disk, as well as others that are peculiar to DB2. It can
vary significantly, from a low of about 1.25, to 4.0 or more. For a first approximation,
set M=2, and skip to “Calculating the space required for a table” on page 84.

For more accuracy, calculate M as the product of the following factors:
v Record overhead
v Free space
v Unusable space
v Data set excess
v Indexes

Record overhead: Allows for eight bytes of record header and control data, plus
space wasted for records that do not fit exactly into a DB2 page. For the second
consideration, see “Choosing a page size” on page 43. The factor can range from
about 1.01 (for a careful space-saving design) to as great as 4.0. A typical value is
about 1.10.

Free space: Allows for space intentionally left empty to allow for inserts and
updates. You can specify this factor on the CREATE TABLESPACE statement; see
“Specifying free space on pages” on page 538 for more information. The factor can
range from 1.0 (for no free space) to 200 (99% of each page used left free, and a
free page following each used page). With default values, the factor is about 1.05.

Unusable space: Track lengths in excess of the nearest multiple of page lengths.
By default, DB2 uses 4 KB pages, which are blocked to fit as many pages as
possible on a track. Table 15shows the track size, number of pages per track, and
the value of the unusable-space factor for several different device types.

Table 15. Unusable space factor by device type

Device type 3380 3390 9340

Track size 47476 56664 46456

Pages per track 10 12 10

Factor value 1.16 1.15 1.03

© Copyright IBM Corp. 1982, 2001 83

Data set excess: Allows for unused space within allocated data sets, occurring as
unused tracks or part of a track at the end of any data set. The amount of unused
space depends upon the volatility of the data, the amount of space management
done, and the size of the data set. Generally, large data sets can be managed more
closely, and those that do not change in size are easier to manage. The factor can
range without limit above 1.02. A typical value is 1.10.

Indexes: Allows for Storage for indexes to data. For data with no indexes, the
factor is 1.0. For a single index on a short column, the factor is 1.01. If every
column is indexed, the factor can be greater than 2.0. A typical value is 1.20. For
further discussion of the factor, see “Calculating the space required for an index” on
page 88.

Table 16 shows calculations of the multiplier M for three different database designs:

v The tight design is carefully chosen to save space and allows only one index on
a single, short field.

v The loose design allows a large value for every factor, but still well short of the
maximum. Free space adds 30% to the estimate, and indexes add 40%.

v The medium design has values between the other two. You might want to use
these values in an early stage of database design.

In each design, the device type is assumed to be a 3390. Therefore, the
unusable-space factor is 1.15. M is always the product of the five factors.

Table 16. Calculations for three different database designs

Factor
Tight
design

Medium
design

Loose
design

Record overhead × 1.02 1.10 1.30

Free space × 1.00 1.05 1.30

Unusable space × 1.15 1.15 1.15

Data set excess × 1.02 1.10 1.30

Indexes = 1.02 1.20 1.40

Multiplier M 1.22 1.75 3.54

In addition to the space for your data, external storage devices are required for:
v Image copies of data sets, which can be on tape
v System libraries, system databases, and the system log
v Temporary work files for utility and sort jobs

A rough estimate of the additional external storage needed is three times the
amount calculated above (space for your data) for disk storage.

Calculating the space required for a table
This section helps you calculate the space required for a table. Space allocation
parameters are specified in kilobytes (KB).

Calculating record lengths and pages
An important consideration in the design of a table is the record size. In DB2, a
record is the storage representation of a row. Records are stored within pages that
are 4 KB, 8 KB, 16 KB, or 32 KB. Generally, you cannot create a table in which the
maximum record size is greater than the page size.

84 Administration Guide

|
|
|
|

Also consider:
v Normalizing your entities
v Using larger page sizes
v Using LOB data types if a single column in a table is greater than 32 K

In addition to the bytes of actual data in the row (not including LOB data, which is
not stored in the base row or included in the total length of the row), each record
has:
v A six-byte prefix
v One additional byte for each column that can contain null values
v Two additional bytes for each varying-length column or ROWID column
v Six bytes of descriptive information in the base table for each LOB column

The sum of each column’s length is the record length, which is the length of data
that is physically stored in the table. The logical record length can be longer, for
example, if the table contains LOBs.

Every data page has:
v A 22-byte header
v A 2-byte directory entry for each record stored in the page

To simplify the calculation of record and page length, consider the directory entry as
part of the record. Then, every record has a fixed overhead of 8 bytes, and the
space available to store records in a 4 KB page is 4074 bytes. Achieving that
maximum in practice is not always simple. For example, if you are using the default
values, the LOAD utility leaves approximately 5 percent of a page as free space
when loading more than one record per page. Therefore, if two records are to fit in
a page, each record cannot be longer than 1934 bytes (approximately 0.95 × 4074
× 0.5). Furthermore, the page size of the table space in which the table is defined
limits the record length. If the table space is 4 KB, the record length of each record
cannot be greater than 4056 bytes. Because of the 8-byte overhead for each
record, the sum of column lengths cannot be greater than 4048 bytes (4056 minus
the 8-byte overhead for a record).

DB2 provides three larger page sizes to allow for longer records. You can improve
performance by using pages for record lengths that best suit your needs. For details
on selecting an appropriate page size, see “Choosing a page size” on page 43.

As shown in Table 17, the maximum record size for each page size depends on the
size of the table space and on whether you specified the EDITPROC clause.

Table 17. Maximum record size (in bytes)

EDITPROC Page Size = 4
KB

Page Size = 8
KB

Page Size = 16
KB

Page Size = 32
KB

NO 4056 8138 16330 32714

YES 4046 8128 16320 32704

Creating a table using CREATE TABLE LIKE in a table space of a larger page size
changes the specification of LONG VARCHAR to VARCHAR and LONG
VARGRAPHIC to VARGRAPHIC. You can also use CREATE TABLE LIKE to create
a table with a smaller page size in a table space if the maximum record size is
within the allowable record size of the new table space.

Chapter 8. Estimating disk storage for user data 85

|
|
|
|

|
|
|

|

Saving space with data compression
You can reduce the space required for a table by using data compression if your
system meets the requirements. To find out how much space you can save by
compressing your data, run the DSN1COMP utility on your data sets. Message
DSN1940I of DSN1COMP reports an estimate of the percentage of kilobytes that
would be saved by using data compression. See Part 3 of DB2 Utility Guide and
Reference for more information on the DSN1COMP utility.

The disk saved by data compression is countered by the disk required for a
dictionary. Every compressed table space or partition requires a dictionary. See
“Calculating the space required for a dictionary” on page 87 to figure the disk
requirements and the virtual storage requirements for a dictionary.

Estimating storage for LOBs
Tables with large object data types (LOBs) can store byte strings up to 2 GB. A
base table can be defined with one or more LOB columns. The LOB columns are
logically part of the base table but are physically stored in an auxiliary table. In
place of each LOB column, there is an indicator column, which is a column with
descriptive information about the LOB. When a base table has LOB columns, then
each row of the table has a row identifier, which is a varying-length 17-byte field.
You must consider the overhead of the indicator column and row identifiers when
estimating table size. If the LOB column is NULL or has a value of zero, no space
is allocated in the auxiliary table.

When estimating the storage required for LOB table spaces, begin with your
estimates from other table spaces, round up to the next page size, and then
multiply by 1.1. One page never contains more than one LOB. When a LOB value
is deleted, the space occupied by that value remains allocated as long as any
application might access that value.

An auxiliary table resides in a LOB table space. There can be only one auxiliary
table in a LOB table space. An auxiliary table can store only one LOB column of a
base table and there must be one and only one index on this column.

See DB2 Installation Guide for information on storage options for LOB values.

Estimating storage when using the LOAD utility
For a table to be loaded by the LOAD utility, the value can be estimated as follows:

v Let FLOOR be the operation of discarding the decimal portion of a real number.

v Let CEILING be the operation of rounding a real number up to the next highest
integer.

v Let number of records be the total number of records to be loaded.

v Let average record size be the sum of the lengths of the fields in each record,
using an average value for varying-length fields, and including the following
amounts for overhead:

8 bytes for the total record
1 byte for each field that allows nulls
2 bytes for each varying-length field

If the average record size is less than 32, use 32. See the CREATE TABLE
statement in Chapter 5 of DB2 SQL Reference for information on how many
bytes are required for different column types.

v Let percsave be the percentage of kilobytes saved by compression (as reported
by the DSN1COMP utility in message DSN1940I)

86 Administration Guide

v Let compression ratio be percsave/100

Then calculate as follows:

1. Usable page size is the page size minus a number of bytes of overhead (that is,
4 KB− 40 for 4 KB pages, 8 KB− 54 for 8 KB pages, 16 KB−54 for 16 KB
pages, or 32 KB−54 for 32 KB pages) multiplied by (100-p) / 100, where p is
the value of PCTFREE. If your average record size is less than 16, then usable
page size is 255 (maximum records per page) multiplied by average record size
multiplied by (100-p) / 100.

2. Records per page is MIN(MAXROWS, FLOOR(usable page size / average
record size)), but cannot exceed 255 and cannot exceed the value you specify
for MAXROWS.

3. Pages used is 2+CEILING(number of records / records per page).

4. Total pages is FLOOR(pages used × (1+fp) / fp), where fp is the (nonzero)
value of FREEPAGE. If FREEPAGE is 0, then total pages is equal to pages
used. (See “Free space” on page 83 for more information about FREEPAGE.) If
you are using data compression, you need additional pages to store the
dictionary. See “Calculating the space required for a dictionary” to figure how
many pages the dictionary requires.

5. Estimated number of kilobytes required for a table:

v If you do not use data compression, the estimated number of kilobytes is
total pages × page size (4 KB, 8 KB, 16 KB, or 32 KB).

v If you use data compression, the estimated number of kilobytes is (total
pages × page size (4 KB, 8 KB, 16 KB, or 32 KB) × (1 - compression ratio).

For example, consider a table space containing a single table with the following
characteristics:

Number of records = 100000
Average record size = 80 bytes
Page size = 4 KB
PCTFREE = 5 (5% of space is left free on each page)
FREEPAGE = 20 (one page is left free for each 20 pages used)
MAXROWS = 255

If the data is not compressed, you get the following results:
Usable page size = 4074 × 0.95 = 3870 bytes
Records per page = MIN(MAXROWS, FLOOR(3870 / 80)) = 48
Pages used = 2 + CEILING(100000 / 48) = 2085
Total pages = FLOOR(2085 ×21 / 20) = 2189
Estimated number of kilobytes = 2189 × 4 = 8756

If the data is compressed, multiply the estimated number of kilobytes for an
uncompressed table by (1 - compression ratio) for the estimated number of
kilobytes required for the compressed table.

Calculating the space required for a dictionary
This section helps you calculate the disk space required by a dictionary and the
virtual storage required in the DSN1DBM1 address space when a dictionary is read
into storage from a buffer pool. A dictionary contains the information used for
compressing and decompressing the data in a table space or partition, and it
resides in that table space or partition. You can skip this section if you are not going
to compress data. Space allocation parameters are specified in pages (either 4 KB,
8 KB, 16 KB, or 32 KB).

Chapter 8. Estimating disk storage for user data 87

|
|
|
|

Disk requirements
This section helps you calculate the disk requirements for a dictionary associated
with a compressed nonsegmented table space and for a dictionary associated with
a compressed segmented table space.

For a nonsegmented table space, the dictionary contains 4096 entries in most
cases. This means you need to allocate an additional sixteen 4 KB pages, eight 8
KB pages, four 16 KB pages, or two 32 KB pages. Although it is possible that your
dictionary can contain fewer entries, allocate enough space to accommodate a
dictionary with 4096 entries. For 32 KB pages, 1 segment (minimum of 4 pages) is
sufficient to contain the dictionary. Refer to Table 18 to see how many 4 KB pages,
8 KB pages, 16 KB pages, or 32 KB pages to allocate for the dictionary of a
compressed nonsegmented table space.

Table 18. Pages required for the dictionary of a compressed non-segmented table space

Table space
page size
(KB)

Dictionary size (number of entries)

512 1024 2048 4096 8192

4 2 4 8 16 32

8 1 2 4 8 16

16 1 1 2 4 8

32 1 1 1 2 4

For a segmented table space, the size of the dictionary depends on the size of
your segments. Assuming 4096 entries is recommended. Use Table 19 to see how
many 4-KB pages to allocate for the dictionary of a compressed segmented table
space.

Table 19. Pages required for the dictionary of a compressed segmented table space

Segment size
(4-KB pages)

Dictionary size (number of entries)

512 1024 2048 4096 8192

4 4 4 8 16 32

8 8 8 8 16 32

12 12 12 12 24 36

≥16 Segment size Segment size Segment size Segment size Segment size

Virtual storage requirements
You can calculate how much storage is needed in the DSN1DBM1 address space
for each dictionary with this formula:

dictionary size (number of entries) ×16 bytes

When a dictionary is read into storage from a buffer pool, the whole dictionary is
read, and it remains there as long as the compressed table space is being
accessed.

Calculating the space required for an index
This section describes the levels of index pages and helps you calculate the
storage required for an index.

88 Administration Guide

Levels of index pages
Indexes can have more than one level of pages. Index pages that point directly to
the data in your tables are called leaf pages. If the index has more than one leaf
page, it must have at least one nonleaf page that contains entries that point to the
leaf pages. If the index has more than one nonleaf page, then the nonleaf pages
whose entries point directly to leaf pages are said to be on level 1; a second level
of nonleaf pages must point to level 1, and so on. The highest level contains a
single page (which DB2 creates when it first builds your index) called the root page.
The root page is a 4-KB index page. The index tree points directly to the data in
your tables, and gives the key and the RID. Figure 5 shows, in schematic form, a
typical index.

If you insert data with a constantly increasing key, DB2 adds the new highest key to
the top of a new page. Be aware, however, that DB2 treats nulls as the highest
value. When the existing high key contains a null value in the first column that
differentiates it from the new key that is inserted, the inserted nonnull index entries
cannot take advantage of the highest-value split.

For example, assume that the existing high key is:
SMITH ROBERT J

Next you insert:
SMITH ROBERT (null)

Finally you insert:
SMITH ROBERT Z

DB2 does not treat this final value as the new high key.

Root Page

Page A

Page B

Highest key of page A

Highest key of page 1

Highest key of page X Highest key of page Z

Highest key of page B

Nonleaf Page A Nonleaf Page B

Page 1

Page X Page Z

Leaf Page 1 Leaf Page X Leaf Page Z

Key Record-ID

Table

RowRow

Row

Level 2

Level 1

Level 0
Key Record-IDKey Record-ID

Figure 5. Sample index structure and pointers (three-level index)

Chapter 8. Estimating disk storage for user data 89

Calculating the space required for an index
Space allocation parameters are specified in kilobytes. For an index to be loaded by
the LOAD utility, you should estimate the future storage requirements of the index.

Estimating the space requirements for DB2 objects is easier if you collect and
maintain a statistical history of those objects. The accuracy of your estimates
depends on the currentness of the statistical data. To ensure that the statistics
history is current, use the MODIFY STATISTICS utility to delete outdated statistical
data from the catalog history tables.

The storage required for an index, newly built by the LOAD utility, depends on the
number of index pages at all levels. That, in turn, depends on whether the index is
unique or not. The numbers of leaf pages (index pages that point directly to the
data in your tables) and of nonleaf pages (index pages that contain the page
number and the highest key of each page in the next-level index) are calculated
separately.

An index key on an auxiliary table used for LOBs is 19 bytes and uses the same
formula as other indexes. The RID value stored within the index is 5 bytes, the
same as for large table spaces.

These index calculations are intended only to help you estimate the storage
required for an index. Because there is no way to predict the exact number of
duplicate keys that can occur in an index, the results of these calculations are not
absolute. It is possible, for example, that for a nonunique index, more index entries
than the calculations indicate might fit on an index page.

The calculations are divided into cases using a unique index and using a nonunique
index.

In the following calculations, let:
v k = the length of the index key. The length of the index key is the sum of the

lengths of all the columns of the key, plus the number of columns that allow nulls.
v n = the average number of data records per distinct key value of a nonunique

index. For example:
a = number of data records per index
b = number of distinct key values per index
s = the proportion of available space (equal to (100-f)/100, where p is the
value of PCTFREE)
n = a / b

v f = the value of PCTFREE.
v p = the value of FREEPAGE.
v r = record identifier (RID) length. Let r = 4 for indexes on non-large table spaces

and r = 5 for indexes on large spaces and auxiliary tables.
v FLOOR = the operation of discarding the decimal portion of a real number.
v CEILING = the operation of rounding a real number up to the next highest

integer.
v MAX = the operation of selecting the highest integer value.

Calculate pages for a unique index: Use the following calculations to estimate the
number of leaf and nonleaf pages in a unique index.

Calculate the total leaf pages:
1. Space per key L k + r + 3
2. Usable space per page LFLOOR((100 - f) × 4038 / 100)
3. Entries per page LFLOOR(usable space per page / space per key)

90 Administration Guide

|
|
|
|
|

|
|

|
|

4. Total leaf pages LCEILING(number of table rows / entries per page)

Calculate the total nonleaf pages:
1. Space per key L k + 7
2. Usable space per page LFLOOR (MAX(90, (100- f)) × 4046/100)
3. Entries per page LFLOOR((usable space per page / space per key)
4. Minimum child pages LMAX(2, (entries per page + 1))
5. Level 2 pages LCEILING(total leaf pages / minimum child pages)
6. Level 3 pages LCEILING(level 2 pages / minimum child pages)
7. Level x pages LCEILING(previous level pages / minimum child pages)
8. Total nonleaf pages L(level 2 pages + level 3 pages + ...+ level x pages

until the number of level x pages = 1)

Calculate pages for a nonunique index: Use the following calculations to
estimate the number of leaf and nonleaf pages for a nonunique index.

Calculate the total leaf pages:
1. Space per key L 4 + k + (n × (r+1))
2. Usable space per page LFLOOR((100 - f) × 4038 / 100)
3. Key entries per page L n ×(usable space per page / space per key)
4. Remaining space per page L usable space per page - (key entries per page

/ n) × space per key
5. Data records per partial entry L FLOOR((remaining space per page - (k + 4))

/ 5)
6. Partial entries per page L(n / CEILING(n / data records per partial entry)) if

data records per partial entry >= 1, or 0 if data records per partial entry < 1
7. Entries per page LMAX(1, (key entries per page + partial entries per page))
8. Total leaf pages LCEILING(number of table rows / entries per page)

Calculate the total nonleaf pages:
1. Space per key L k + r + 7
2. Usable space per page LFLOOR (MAX(90, (100- f)) × (4046/100)
3. Entries per page LFLOOR((usable space per page / space per key)
4. Minimum child pages LMAX(2, (entries per page + 1))
5. Level 2 pages LCEILING(total leaf pages / minimum child pages)
6. Level 3 pages LCEILING(level 2 pages / minimum child pages)
7. Level x pages LCEILING(previous level pages / minimum child pages)
8. Total nonleaf pages L(level 2 pages + level 3 pages + ...+ level x pages

until x = 1)

Calculate the total space requirement: Finally, calculate the number of kilobytes
required for an index built by LOAD.
1. Free pages L FLOOR(total leaf pages / p), or 0 if p = 0
2. Space map pages LCEILING((tree pages + free pages) / 8131)
3. Tree pages L MAX(2, (total leaf pages + total nonleaf pages))
4. Total index pages LMAX(4, (1 + tree pages + free pages + space map pages))
5. Total space requirement L4 × (total index pages + 2)

In the following example of the entire calculation, assume that an index is defined
with these characteristics:
v It is unique.
v The table it indexes has 100000 rows.
v The key is a single column defined as CHAR(10) NOT NULL.
v The value of PCTFREE is 5.
v The value of FREEPAGE is 4.

The calculations are shown in Table 20 on page 92.

Chapter 8. Estimating disk storage for user data 91

Table 20. The total space requirement for an index

Quantity Calculation Result

Length of key
Average number of duplicate keys
PCTFREE
FREEPAGE

k
n
f
p

10
1
5
4

Calculate total leaf pages
Space per key
Usable space per page
Entries per page

Total leaf pages

k + 7
FLOOR((100 − f) × 4038/100)
FLOOR(usable space per page / space per key)

CEILING(number of table rows / entries per page)

17
3844
225

445

Calculate total nonleaf pages
Space per key
Usable space per page
Entries per page
Minimum child pages
Level 2 pages
Level 3 pages

Total nonleaf pages

k + 7
FLOOR(MAX(90, (100 − f)) × (4046/100)
FLOOR(usable space per page / space per key)
MAX(2, (entries per page + 1))
CEILING(total leaf pages / minimum child pages)
CEILING(level 2 pages / minimum child pages)

(level 2 pages + level 3 pages + ... + level x pages until x = 1)

17
3836
226
227

2
1

3

Calculate total space required
Free pages
Tree pages
Space map pages
Total index pages

TOTAL SPACE REQUIRED, in KB

FLOOR(total leaf pages / p), or 0 if p = 0
MAX(2, (total leaf pages + total nonleaf pages))
CEILING((tree pages + free pages)/8131)
MAX(4, (1 + tree pages + free pages + space map pages))

4 × (total index pages + 2)

111
448

1
561

2252

92 Administration Guide

Part 3. Security and auditing

Chapter 9. Introduction to security and auditing in DB2 97
Security planning . 97

If you are new to DB2 . 97
If you have used DB2 before. 97

Auditing . 98
Controlling data access . 98

Access control within DB2 . 99
Controlling access to a DB2 subsystem 100

Access at a local DB2 . 100
Access from a remote application 101

Data set protection . 101

Chapter 10. Controlling access to DB2 objects 103
Explicit privileges and authorities 104

Authorization identifiers . 104
Explicit privileges . 104
Administrative authorities. 108
Field-level access control by views 112
Authority over the catalog and directory 113

Implicit privileges of ownership. 114
Establishing ownership of objects with unqualified names 114
Establishing ownership of objects with qualified names 115
Privileges by type of object 116
Granting implicit privileges 116
Changing ownership . 116

Privileges exercised through a plan or a package 117
Establishing ownership of a plan or a package 117
Qualifying unqualified names 118
Checking authorization to execute 118

Checking authorization at a second DB2 server 119
Checking authorization to execute an RRSAF application without a plan 120
Caching authorization IDs for best performance 120

Controls in the program . 121
A recommendation against use of controls in the program 121
Restricting a plan or a package to particular systems 122

Privileges required for remote packages 122
Special considerations for user-defined functions and stored procedures . . . 123

Additional authorization for stored procedures 124
Controlling access to catalog tables for stored procedures 124
Example of routine roles and authorizations 125

How to code the user-defined function program (implementor role) . . . 125
Defining the user-defined function (definer role) 128
Using the user-defined function (invoker role) 128
How DB2 determines authorization IDs 129

Which IDs can exercise which privileges 129
Authorization for dynamic SQL statements 132

Run behavior . 133
Bind behavior . 133
Define behavior . 133
Invoke behavior . 133
Common attribute values for bind, define, and invoke behavior 134
Example of determining authorization IDs for dynamic SQL statements in

routines . 135

© Copyright IBM Corp. 1982, 2001 93

||

Simplifying authorization 139
Composite privileges . 139
Multiple actions in one statement 139

Some role models . 139
Examples of granting and revoking privileges 140

Examples using GRANT . 142
System administrator's privileges 142
Package administrator's privileges 143
Database administrator's privileges 143
Database controller's privileges 143

Examples with secondary IDs 143
Application programmers' privileges 144
Privileges for binding the plan 145
Moving PROGRAM1 into production 145
Spiffy’s approach to distributed data. 146

The REVOKE statement . 146
Privileges granted from two or more IDs 147
Revoking privileges granted by other IDs 147
Restricting revocation of privileges 148
Other implications of the REVOKE statement 150

Finding catalog information about privileges 152
Retrieving information in the catalog 152

Retrieving all DB2 authorization IDs with granted privileges 152
Retrieving multiple grants of the same authorization 153
Retrieving all IDs with DBADM authority 153
Retrieving IDs authorized to access a table 153
Retrieving IDs authorized to access a routine 154
Retrieving the tables an ID is authorized to access 154
Retrieving the plans and packages that access a table 154

Using views of the DB2 catalog tables 155

Chapter 11. Controlling access through a closed application 157
Controlling data definition . 157

Required installation options 158
Controlling by application name 158
Controlling by application name with exceptions 160
Registering sets of objects 161
Controlling by object name 162
Controlling by object name with exceptions 163

Managing the registration tables and their indexes 164
An overview of the registration tables 164

Columns of the ART . 164
Columns of the ORT . 165

Creating the tables and indexes 166
Adding columns . 167
Updating the tables . 167
Columns for optional use. 167
Stopping data definition control 167

Chapter 12. Controlling access to a DB2 subsystem 169
Controlling local requests . 169
Processing connections . 170

The steps in detail . 170
Supplying secondary IDs for connection requests. 172
Required CICS specifications 173

Processing sign-ons . 173

94 Administration Guide

The steps in detail . 173
Supplying secondary IDs for sign-on requests 175

Controlling requests from remote applications 176
Overview of security mechanisms for DRDA and SNA 176

Mechanisms used by DB2 for OS/390 and z/OS as a requester 176
Mechanisms accepted by DB2 for OS/390 and z/OS as a server 177

The communications database for the server 178
Columns used in SYSIBM.LUNAMES 178
Columns used in SYSIBM.USERNAMES 179

Controlling inbound connections that use SNA protocols 180
Controlling what LUs can attach to the network 180
Verifying a partner LU . 180
Accepting a remote attachment request 180

Controlling inbound connections that use TCP/IP protocols 187
Steps, tools, and decisions 187

Planning to send remote requests 189
The communications database for the requester 190

Columns used in SYSIBM.LUNAMES 190
Columns used in SYSIBM.IPNAMES 191
Columns used in SYSIBM.USERNAMES 192
Columns used in SYSIBM.LOCATIONS 192

What IDs you send . 193
Translating outbound IDs. 195
Sending passwords . 197

Sending RACF encrypted passwords 197
Sending RACF PassTickets. 197
Sending encrypted passwords from a workstation 198

Establishing RACF protection for DB2 198
Defining DB2 resources to RACF. 200

Define the names of protected access profiles 200
Add entries to the RACF router table 201
Enable RACF checking for the DSNR and SERVER classes 202
Enable partner-LU verification 202

Permitting RACF access . 202
Define RACF user IDs for DB2 started tasks 203
Add RACF groups . 206
Permit access for users and groups. 207

Establishing RACF protection for stored procedures 209
Step 1: Control access by using the attachment facilities (required) . . . 209
Step 2: Control access to WLM (optional) 210
Step 3: Control access to non-DB2 resources (optional) 211

Establishing RACF protection for TCP/IP 212
Establishing Kerberos authentication through RACF 212
Other methods of controlling access 214

Chapter 13. Protecting data sets 215
Controlling data sets through RACF. 215

Adding groups to control DB2 data sets 215
Creating generic profiles for data sets 215
Permitting DB2 authorization IDs to use the profiles 217
Allowing DB2 authorization IDs to create data sets 217

Chapter 14. Auditing . 219
How can I tell who has accessed the data? 219

Options of the audit trace 220
The role of authorization IDs 220

Part 3. Security and auditing 95

||

||

Auditing classes of events 220
Audit class descriptions 220
Auditing specific IDs . 221
Starting and stopping the audit trace 221
Considerations for distributed data 222

Auditing a specific table . 222
Using audit records . 223

Reporting the records . 224
Suggestions for reports 224

Other sources of audit information 225
What security measures are in force? 225
What helps ensure data accuracy and consistency? 226

Is required data present? Is it of the required type? 226
Are data values unique where required? 226
Has data a required pattern? Is it in a specific range? 226
Is new data in a specific set? Is it consistent with other tables? 227
What ensures that updates are tracked? 227
What ensures that concurrent users access consistent data? 228
Have any transactions been lost or left incomplete? 228

How can I tell that data is consistent? 229
SQL queries . 229
Data modifications . 229
CHECK utility . 230
DISPLAY DATABASE command 230
REPORT utility . 230
Operation log . 230
Internal integrity reports . 230

How can DB2 recover data after failures? 231
How can I protect the software? 232
How can I ensure efficient usage of resources? 232

Chapter 15. A sample security plan for employee data 233
Managers’ access . 233

To what ID is the SELECT privilege granted? 234
Allowing distributed access 235

Actions at the central server location 235
Actions at remote locations 236

Auditing managers’ use . 236
Payroll operations . 236

Salary updates . 237
Additional controls . 237
To what ID are privileges granted? 238
Auditing use by payroll operations and payroll management 238

Others who have access . 238
IDs with database administrative authority 238
IDs with system administrative authority 239
The employee table owner 239
Auditing for other users . 240

96 Administration Guide

Chapter 9. Introduction to security and auditing in DB2

The two topics of security and auditing overlap a great deal, but not completely.

Security covers anything to do with the control of access, whether to the DB2
subsystem, its data, or its resources. A security plan sets objectives for a security
system, determining who shall have access to what, and in what circumstances.
The plan also describes how to meet the objectives, using functions of DB2,
functions of other programs, and administrative procedures.

Auditing is how you determine whether the security plan is working and who
actually has accessed data. It includes other questions also, such as: Have
attempts been made to gain unauthorized access? Is the data in the system
accurate and consistent? Are system resources used efficiently?

Because the two topics are not the same, this chapter suggests different ways to
approach the information that follows. For a brief overview of the range of objects
that DB2 protects, look at the left-hand columns of Table 21 on page 105 through
Table 30 on page 108.

Security planning
If you have any sensitive data in your DB2 subsystem, you must plan carefully to
allow access to the data only as you desire. The plan sets objectives for the access
allowed and describes means of achieving the objectives. Clearly, the nature of the
plan depends entirely on the data to be protected, and thus, there is no single way
to approach the task. Consider the following suggestions:

If you are new to DB2
Follow these guidelines to learn about security and auditing:

1. Read carefully the introductory section on “Controlling data access” on page 98.

2. Skim chapters “Chapter 10. Controlling access to DB2 objects” on page 103
through “Chapter 14. Auditing” on page 219. Those chapters describe the tools
you use to implement your plan, but they probably contain more detail than you
want on a first reading.

3. Read the case study in “Chapter 15. A sample security plan for employee data”
on page 233. The sample plan describes decisions of the kind you must make
about access to your own data.

4. List your security objectives and the means you will use to achieve them.

5. Reread the chapter parts that describe the functions you expect to use. Be sure
you can achieve the objectives you have set, or adjust your plan accordingly.

If you have used DB2 before
This section contains a summary of the changes in Version 7 for security and
auditing.

Kerberos Security Server: You can implement Kerberos authentication through
RACF as explained in “Establishing Kerberos authentication through RACF” on
page 212.

© Copyright IBM Corp. 1982, 2001 97

Catalog tables for stored procedures: Guidelines are given for granting access to
catalog tables that programmers need to develop stored procedures in “Controlling
access to catalog tables for stored procedures” on page 124.

Auditing
If you are auditing the activity of a DB2 subsystem, you might have turned directly
to this section of your book. If that plunges you into an ocean of unfamiliar
terminology, begin by reading “Part 1. Introduction” on page 1, which provides a
brief and general view of what DB2 is all about.

We assume you are interested at least in the question of control of access to data.
First read “Controlling data access” below, and then “Chapter 10. Controlling access
to DB2 objects” on page 103. Read also “Chapter 14. Auditing” on page 219.

Controlling data access
Access to data includes, but is not limited to, access by a person engaged in an
interactive terminal session. For example, access could be from a program running
in batch mode, or an IMS or CICS transaction. Hence, so as not to focus your
attention too narrowly, we choose the term process to represent all access to data.

As Figure 6 on page 99 suggests, there are several routes from a process to DB2
data, with controls on every route.

One of the ways that DB2 controls access to data is through the use of identifiers.
Three types of identifiers are: primary authorization IDs, secondary authorization
IDs, and SQL IDs.

v Generally it is the primary authorization ID that identifies a process. For example,
statistics and performance trace records use a primary authorization ID to identify
a process.

v A secondary authorization ID, which is optional, can hold additional privileges
available to the process. For example, a secondary authorization ID could be a
Resource Access Control Facility (RACF) group ID.

v An SQL ID, which holds the privileges exercised when issuing certain dynamic
SQL statements, can be set equal to the primary or any of the secondary IDs. If
an authorization ID of a process has SYSADM authority, then the process can
set its SQL ID to any authorization ID.

98 Administration Guide

Access control within DB2
Within the DB2 subsystem, a process could be represented by a primary
authorization identifier (ID), possibly one or more secondary IDs, and an SQL ID.
The use of IDs is affected by your security and network systems, and by the
choices you make for DB2 connections.

If two different accesses to DB2 are associated with the same set of IDs, DB2
cannot determine whether they involve the same process. You might know that
someone else is using your ID, but DB2 does not; nor does DB2 know that you are
using someone else's ID. DB2 recognizes only the IDs. Therefore, this book uses
phrases like “an ID owns an object” or “taking an action”.

Thus, IDs can hold privileges that allow them to take certain actions or be
prohibited from doing so. The list of DB2 privileges provides extremely fine control.
For example, you can grant to an ID all the privileges over a table. Or, you could,
separately and specifically, grant the privileges to retrieve data from the table, insert
rows, delete rows, or update specific columns. By granting or not granting those
privileges over views of the table, you can effectively determine exactly what an ID
can do to the table, down to the level of specific fields. Specific privileges are also
available over databases, plans, packages, and the entire DB2 subsystem.

DB2 also defines sets of related privileges, called administrative authorities. By
granting an administrative authority to an ID, you grant all the privileges associated
with it, in one statement.

Ownership of an object carries with it a set of related privileges over the object. An
ID can own an object it creates, or it can create an object to be owned by another
ID. There are separate controls for creation and ownership.

The privilege to execute an application plan or a package deserves special
attention. Executing a plan or package exercises implicitly all the privileges that the
owner needed when binding it. Hence, granting the privilege to execute can provide
a finely detailed set of privileges and can eliminate the need to grant other

Process

Control of access
to DB2 subsystem

Data set
protection

Primary
ID

Secondary
ID 1

Secondary
ID n

SQL ID

Access control
within DB2

Control of access
to DB2 objects

DB2 data

…

Figure 6. DB2 data access control

Chapter 9. Introduction to security and auditing in DB2 99

privileges separately. For example, assume an application plan issues the INSERT
and SELECT statement on several tables. You need to grant INSERT and SELECT
privileges only to the plan owner. Any authorization ID that is later granted the
EXECUTE privilege on the plan can perform those same INSERT and SELECT
statements through the plan without explicitly being granted the privilege to do so.

Instead of granting privileges to many primary authorization IDs, consider
associating each of those primary IDs with the same secondary ID; then, grant the
privileges to the secondary ID. A primary ID can be associated with one or more
secondary IDs when it gains access to the DB2 subsystem; the association is made
within an exit routine. The assignment of privileges to the secondary ID is controlled
entirely within DB2.

“Chapter 10. Controlling access to DB2 objects” on page 103 tells how to use the
system of privileges within DB2. Alternatively, the entire system of control within
DB2 can be disabled, by setting USE PROTECTION to NO when installing or
updating DB2. If protection in DB2 is disabled, then any user that gains access can
do anything, but no GRANT or REVOKE statements are allowed.

Using an exit routine to control authorization checking: DB2 provides an
installation-wide exit point that lets you determine how you want to handle
authorization checking. This exit point can give you a single point of control by
letting the Security Server of OS/390 Release 4 handle DB2 authorization checks.
You can also use this exit point to write your own authorization checking routine. If
your installation uses the access control authorization exit, that exit routine might be
controlling authorization rules rather then those documented in this publication. For
more information about this exit point, see “Access control authorization exit” on
page 909.

Controlling access to a DB2 subsystem
Whether or not a process can gain access to a specific DB2 subsystem can be
controlled outside of DB2. A common procedure is to grant access only through
RACF or some similar security system. Profiles for access to DB2 from various
environments, and DB2 address spaces, are defined as resources to RACF. Each
request to access DB2 is associated with an ID. RACF checks that the ID is
authorized for DB2 resources and permits, or does not permit, access to DB2.

The RACF system provides several advantages of its own. For example, it can:
v Identify and verify the identifier associated with a process
v Connect those identifiers to RACF group names
v Log and report unauthorized attempts to access protected resources

Access at a local DB2
A local DB2 user is subject to several checks even before reaching DB2. For
example, if you are running DB2 under TSO and using the TSO logon ID as the
DB2 primary authorization ID, then that ID was verified with a password when the
user logs on.

When the user gains access to DB2, a user-written or IBM-supplied exit routine
connected to DB2 can check the authorization ID further, change it, and associate it
with secondary IDs. In doing that, it can use the services of an external security
system again. “Chapter 12. Controlling access to a DB2 subsystem” on page 169
gives detailed instructions.

100 Administration Guide

Access from a remote application
A remote user is also subject to several checks before reaching your DB2. You can
use RACF or a similar security subsystem.

RACF can:

v Verify an identifier associated with a remote attachment request and check it with
a password.

v Generate PassTickets on the sending side. PassTickets can be used instead of
passwords. A PassTicket lets a user gain access to a host system without
sending the RACF password across the network. “Sending RACF PassTickets”
on page 197 contains information about RACF PassTickets.

The communications database: DB2’s communications database (CDB) does
allow some control of authentication in that you can cause IDs to be translated
before sending them to the remote system. See “The communications database for
the requester” on page 190 for more information. See “The communications
database for the server” on page 178 for information about controls on the server
side.

Data set protection
The data in a DB2 subsystem is contained in data sets. As Figure 6 on page 99
suggests, those data sets might be accessed without going through DB2 at all. If
the data is sensitive, you want to control that route.

If you are using RACF or a similar security system to control access to DB2, the
simplest means of controlling data set access outside of DB2 is to use RACF for
that purpose also. That means defining RACF profiles for data sets and permitting
access to them for certain DB2 IDs.

If your data is very sensitive, you may want to consider encrypting it, for protection
against unauthorized access to data sets and backup copies outside DB2. You can
use DB2 edit procedures or field procedures to encrypt data, and those routines
can use the Integrated Cryptographic Service Facility (ICSF) of MVS. For
information about this facility, see ICSF/MVS General Information.

Data compression is not a substitute for encryption. In some cases, the
compression method does not actually shorten the data, and then the data is left
uncompressed and readable. If you both encrypt and compress data, compress it
first to obtain the maximum compression, and then encrypt the result. When
retrieving, take the steps in reverse order: decrypt the data first, and then
decompress the result.

Chapter 9. Introduction to security and auditing in DB2 101

102 Administration Guide

Chapter 10. Controlling access to DB2 objects

The information in this chapter is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

DB2 controls access to its objects by a set of privileges. Each privilege allows an
action on some object. Figure 7 shows the three primary ways within DB2 to give
an ID access to data.1

The security planner must be aware of every way to allow access to data. To write
such a plan, first see:

“Explicit privileges and authorities” on page 104
“Implicit privileges of ownership” on page 114
“Privileges exercised through a plan or a package” on page 117 and “Special
considerations for user-defined functions and stored procedures” on page 123.

DB2 has primary authorization IDs, secondary authorization IDs, and SQL IDs.
Some privileges can be exercised only by one type of ID, others by more than one.
To decide what IDs should hold specific privileges, see “Which IDs can exercise
which privileges” on page 129.

After you decide what IDs should hold specific privileges, you have the tools
needed to implement a security plan. Before you begin it, see what others have
done in “Some role models” on page 139 and “Examples of granting and revoking
privileges” on page 140.

Granted privileges and the ownership of objects are recorded in the DB2 catalog.
To check the implementation of your security plan, see “Finding catalog information
about privileges” on page 152.

The types of objects to which access is controlled are described in “Chapter 2.
System planning concepts” on page 7.

1. Certain authorities are assigned when DB2 is installed, and can be reassigned by changing the subsystem parameter
(DSNZPARM); you could consider changing the DSNZPARM value to be a fourth way of granting data access in DB2.

ID

Privilege:
controlled by
explicit granting
and revoking

Ownership:
controlled by
privileges needed
to create objects

Plan and package
execution:

controlled by
privilege to
execute

Data

Figure 7. Access to data within DB2

© Copyright IBM Corp. 1982, 2001 103

Explicit privileges and authorities
One way of controlling access within DB2 is by granting, not granting, or revoking
explicit privileges and authorities.

A privilege allows a specific operation, sometimes on a specific object.
An explicit privilege has a name and is held as the result of an SQL GRANT or
REVOKE statement.
An administrative authority is a set of privileges, often covering a related set of
objects. Authorities often include privileges that are not explicit, have no name,
and cannot be specifically granted; for example, the ability to terminate any
utility job, which is included in the SYSOPR authority.

Privileges and authorities are held by authorization IDs.

Authorization identifiers
Every process that connects to or signs on to DB2 is represented by a set of one or
more DB2 short identifiers called authorization IDs. Authorization IDs can be
assigned to a process by default procedures or by user-written exit routines.
Methods of assigning those IDs are described in detail in “Chapter 12. Controlling
access to a DB2 subsystem” on page 169; see especially Table 50 on page 171 and
Table 51 on page 172.

As a result of assigning authorization IDs, every process has exactly one ID called
the primary authorization ID. All other IDs are secondary authorization IDs.

Furthermore, one ID (either primary or secondary) is designated as the current SQL
ID. You can change the value of the SQL ID during your session. If ALPHA is your
primary or one of your secondary authorization IDs, you can make it your current
SQL ID by issuing the SQL statement:
SET CURRENT SQLID = 'ALPHA';

If you issue that statement through the distributed data facility, then ALPHA must be
one of the IDs associated with your process at the location where the statement
runs. As explained in “Controlling requests from remote applications” on page 176,
your primary ID can be translated before being sent to a remote location, and
secondary IDs are associated with your process at the remote location. The current
SQL ID, however, is not translated.

An ID with SYSADM authority can set the current SQL ID to any string of up to 8
bytes, whether or not it is an authorization ID or associated with the process that is
running.

Explicit privileges
To provide finely detailed control, there are many explicit privileges. The
descriptions of the privileges are grouped into categories as follows:
v Tables in Table 21 on page 105
v Plans in Table 22 on page 105
v Packages in Table 23 on page 105
v Collections in Table 24 on page 105
v Databases in Table 25 on page 106
v Systems in Table 26 on page 106
v Usage in Table 27 on page 107
v Schemas in Table 28 on page 107
v Distinct types and Java classes in Table 29 on page 108
v Routines in Table 30 on page 108

104 Administration Guide

|

Table 21. Explicit DB2 table privileges

Table privileges Allow these SQL statements for a named table or view

ALTER ALTER TABLE, to change the table definition

DELETE DELETE, to delete rows2

INDEX CREATE INDEX, to create an index on the table

INSERT INSERT, to insert rows

REFERENCES ALTER or CREATE TABLE, to add or remove a referential
constraint referring to the named table or to a list of columns in
the table

SELECT SELECT, to retrieve data from the table

TRIGGER CREATE TRIGGER, to define a trigger on a table

UPDATE UPDATE, to update all columns or a specific list of columns 2

GRANT ALL SQL statements of all table privileges

Table 22 shows plan privileges that DB2 allows.

Table 22. Explicit DB2 plan privileges

Plan privileges Allow these subcommands for a named application plan

BIND BIND, REBIND, and FREE PLAN, to bind or free the plan

EXECUTE RUN, to use the plan when running the application

Table 23 shows package privileges that DB2 allows.

Table 23. Explicit DB2 package privileges

Package privileges Allow these operations for a named package

BIND The BIND, REBIND, and FREE PACKAGE subcommands,
and the DROP PACKAGE statement, to bind or free the
package, and, depending on the installation option BIND
NEW PACKAGE, to bind a new version of a package

COPY The COPY option of BIND PACKAGE, to copy a package

EXECUTE Inclusion of the package in the PKLIST option of BIND PLAN

GRANT ALL All package privileges

Table 24 shows DB2 collection privileges.

Table 24. Explicit DB2 collection privileges

Collection privileges Allow these operations for a named package
collection

CREATE IN Naming the collection in the BIND PACKAGE
subcommand

2. If you use SQLRULES(STD), or if the CURRENT RULES special register is set to 'STD', you must have the SELECT privilege for
searched updates and deletes.

Chapter 10. Controlling access to DB2 objects 105

Table 25 shows DB2 database privileges.

Table 25. Explicit DB2 database privileges

Database privileges Allow these operations on a named database

CREATETAB The CREATE TABLE statement, to create tables in the
database

CREATETS The CREATE TABLESPACE statement, to create table
spaces in the database

DISPLAYDB The DISPLAY DATABASE command, to display the database
status

DROP The DROP and ALTER DATABASE statements, to drop or
alter the database

IMAGCOPY The QUIESCE, COPY, and MERGECOPY utilities, to prepare
for, make, and merge copies of table spaces in the database;
the MODIFY utility, to remove records of copies

LOAD The LOAD utility, to load tables in the database

RECOVERDB The RECOVER, REBUILD INDEX, and REPORT utilities, to
recover objects in the database and report their recovery
status

REORG The REORG utility, to reorganize objects in the database

REPAIR The REPAIR and DIAGNOSE utilities (except REPAIR DBD
and DIAGNOSE WAIT) to generate diagnostic information
about, and repair data in, objects in the database

STARTDB The START DATABASE command, to start the database

STATS The RUNSTATS and CHECK utilities, to gather statistics and
check indexes and referential constraints for objects in the
database

STOPDB The STOP DATABASE command, to stop the database

Table 26 shows DB2 subsystem privileges.

Table 26. Explicit DB2 subsystem privileges

System privileges Allow these operations

ARCHIVE The ARCHIVE LOG command, to archive the current active
log, the DISPLAY ARCHIVE command, to give information
about input archive logs, the SET LOG command, to modify
the checkpoint frequency specified during installation, and the
SET ARCHIVE command, to control allocation and
deallocation of tape units for archive processing.

BINDADD The BIND subcommand with the ADD option, to create new
plans and packages

BINDAGENT The BIND, REBIND, and FREE subcommands, and the
DROP PACKAGE statement, to bind, rebind, or free a plan or
package, or copy a package, on behalf of the grantor. The
BINDAGENT privilege is intended for separation of function,
not for added security. A bind agent with the EXECUTE
privilege might be able to gain all the authority of the grantor
of BINDAGENT.

BSDS The RECOVER BSDS command, to recover the bootstrap
data set

106 Administration Guide

Table 26. Explicit DB2 subsystem privileges (continued)

System privileges Allow these operations

CREATEALIAS The CREATE ALIAS statement, to create an alias for a table
or view name

CREATEDBA The CREATE DATABASE statement, to create a database
and have DBADM authority over it

CREATEDBC The CREATE DATABASE statement, to create a database
and have DBCTRL authority over it

CREATEESG The CREATE STOGROUP statement, to create a storage
group

CREATETMTAB The CREATE GLOBAL TEMPORARY TABLE statement, to
define a created temporary table

DISPLAY The DISPLAY ARCHIVE, DISPLAY BUFFERPOOL, DISPLAY
DATABASE, DISPLAY LOCATION, DISPLAY LOG, DISPLAY
THREAD, and DISPLAY TRACE commands, to display
system information

MONITOR1 Receive trace data that is not potentially sensitive

MONITOR2 Receive all trace data

RECOVER The RECOVER INDOUBT command, to recover threads

STOPALL The STOP DB2 command, to stop DB2

STOSPACE The STOSPACE utility, to obtain data about space usage

TRACE The START TRACE, STOP TRACE, and MODIFY TRACE
commands, to control tracing

Table 27 shows DB2 use privileges.

Table 27. Explicit DB2 use privileges

Use privileges Allow use of these objects

USE OF BUFFERPOOL A buffer pool

USE OF STOGROUP A storage group

USE OF TABLESPACE A table space

Table 28 shows DB2 schema privileges.

Table 28. Explicit DB2 schema privileges

Schema privileges Allow use of these operations

CREATEIN Create distinct types, user-defined functions, triggers, and
stored procedures in the designated schemas

ALTERIN Alter user-defined functions or stored procedures, or specify
a comment for distinct types, user-defined functions,
triggers, and stored procedures in the designated schemas

DROPIN Drop distinct types, user-defined functions, triggers, and
stored procedures in the designated schemas

Chapter 10. Controlling access to DB2 objects 107

Table 29 shows DB2 distinct type and Java class privileges.

Table 29. Explicit DB2 distinct type and Java class privileges

Distinct type and Java class privileges Allow use of these objects

USAGE ON DISTINCT TYPE A distinct type

USAGE ON JAR (Java class for a routine) A Java class

Table 30 shows DB2 routine privileges.

Table 30. Explicit DB2 routine privileges

Routine privileges Allow use of these objects

EXECUTE ON FUNCTION A user-defined function

EXECUTE ON PROCEDURE A stored procedure

Privileges needed for statements, commands, and utility jobs: For lists of all
privileges and authorities that let you:

v Execute a particular SQL statement, see the description of the statement in
Chapter 5 of DB2 SQL Reference.

v Issue a particular DB2 command, see the description of the command in Chapter
2 of DB2 Command Reference.

v Run a particular type of utility job, see the description of the utility in DB2
Command Reference.

Administrative authorities
Figure 8 on page 109 shows how privileges are grouped into authorities and how
the authorities form a branched hierarchy. Table 31 on page 110 supplements the
figure and includes capabilities of each authority that are not represented by explicit
privileges described in Table 21 on page 105.

108 Administration Guide

|

||

||

||

||
|

|

Authority: SYSCTRL

System privileges:
BINDADD CREATEDBC
BINDAGENT CREATESG
BSDS CREATETMTAB
CREATEALIAS MONITOR1
CREATEDBA MONITOR2
STOSPACE

Privileges on all tables:
ALTER INDEX
REFERENCES TRIGGER

Privileges on catalog tables*:
SELECT UPDATE
INSERT DELETE

Privileges on all plans:
BIND

Privileges on all packages:
BIND COPY

Privileges on all collections:
CREATE IN

Privileges on all schemas:
CREATE IN DROPIN
ALTERIN

Use privileges on:
BUFFERPOOL TABLESPACE
STOGROUP

Authority: Installation SYSADM

No additional named privileges

Authority: SYSADM

EXECUTE privilege on all plans;
All privileges on all packages;
EXECUTE privilege on all routines;
USAGE privilege on distinct types

Authority: PACKADM

Privileges on a collection:
CREATE IN

Privileges on all packages in the
collection:

BIND COPY
EXECUTE

Authority: DBADM

Privileges on tables and views
in one database:

ALTER INSERT
DELETE SELECT
INDEX UPDATE
REFERENCES TRIGGER

Authority: Installation SYSOPR

Privileges:
ARCHIVE STARTDB (

Cannot change
access mode)

Authority: SYSOPR

Privileges:
DISPLAY STOPALL
RECOVER TRACE

Privileges on routines:
START DISPLAY
STOP

Authority: DBCTRL

Privileges on one database:
DROP LOAD
RECOVERDB REORG
REPAIR

Authority: DBMAINT

Privileges on one database:
CREATETAB STARTDB
CREATETS STATS
DISPLAYDB STOPDB
IMAGCOPY

* For the applicable catalog tables and the operations that can be
performed on them by SYSCTRL, see the DB2 catalog appendix
in .DB2 SQL Reference

Figure 8. Individual privileges of administrative authorities. Each authority includes the privileges in its box plus all the
privileges of all authorities beneath it. Installation SYSOPR authority is an exception; it can do some things that
SYSADM and SYSCTRL cannot.

Chapter 10. Controlling access to DB2 objects 109

Table 31 shows DB2 authorities and the actions that they are allowed.

Table 31. DB2 authorities

Authority Description

SYSOPR System operator:
v Can issue most DB2 commands
v Cannot issue ARCHIVE LOG, START DATABASE, STOP DATABASE,

and RECOVER BSDS
v Can terminate any utility job
v Can run the DSN1SDMP utility

Installation
SYSOPR

One or two IDs are assigned this authority when DB2 is installed. They
have all the privileges of SYSOPR, plus:

v Authority is not recorded in the DB2 catalog. The catalog need not be
available to check installation SYSOPR authority.

v No ID can revoke the authority; it can be removed only by changing
the module that contains the subsystem initialization parameters
(typically DSNZPARM).

Those IDs can also:

v Access DB2 when the subsystem is started with ACCESS(MAINT).

v Run all allowable utilities on the directory and catalog databases
(DSNDB01 and DSNDB06).

v Run the REPAIR utility with the DBD statement.

v Start and stop the database containing the application registration
table (ART) and object registration table (ORT). “Chapter 11.
Controlling access through a closed application” on page 157
describes these tables.

v Issue dynamic SQL statements that are not controlled by the DB2
governor.

v Issue a START DATABASE command to recover objects that have
LPL entries or group buffer pool recovery-pending status. These IDs
cannot change the access mode.

PACKADM Package administrator, which has all package privileges on all packages
in specific collections, or on all collections, plus the CREATE IN privilege
on those collections. If held with the GRANT option, PACKADM can grant
those privileges to others. If the installation option BIND NEW PACKAGE
is BIND, PACKADM also has the privilege to add new packages or new
versions of existing packages.

DBMAINT Database maintenance, the holder of which, in a specific database, can
create certain objects, run certain utilities, and issue certain commands. If
held with the GRANT option, DBMAINT can grant those privileges to
others. The holder can use the TERM UTILITY command to terminate all
utilities except DIAGNOSE, REPORT, and STOSPACE on the database.

DBCTRL Database control, which includes DBMAINT over a specific database,
plus the database privileges to run utilities that can change the data. The
user ID with DBCTRL authority can create an alias for another user ID on
any table in the database. If held with the GRANT option, DBCTRL can
grant those privileges to others.

110 Administration Guide

|
|
|

Table 31. DB2 authorities (continued)

Authority Description

DBADM Database administration, which includes DBCTRL over a specific
database, plus privileges to access any of its tables through SQL
statements. If held with the GRANT option, DBADM can grant those
privileges to others.

Can also drop and alter any table space, table, or index in the database,
issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for any
table, and issue a COMMENT ON statement for any index. If the value of
field DBADM CREATE VIEW on installation panel DSNTIPP was set to
YES during DB2 installation, a user with DBADM authority can:

v Create a view for another user ID. The view must be based on at least
one table and that table must be in the database where the user ID
that issued the CREATE VIEW statement has DBADM authority. See
the description of the CREATE VIEW statement in Chapter 5 of DB2
SQL Reference.

v Create an alias for another user ID on any table in the database.

However, a user with DBADM authority on one database can create a
view on tables and views in that database and other databases if the
authorization ID for which the view is created has all other privileges that
are required to create the view. A user with DBADM authority cannot
create a view on a view that is owned by another user ID.

SYSCTRL System control, which has nearly complete control of the DB2 subsystem
but cannot access user data directly, unless granted the privilege to do
so. Designed for administering a system containing sensitive data,
SYSCTRL can:
v Act as installation SYSOPR (when the catalog is available) or

DBCTRL over any database
v Run any allowable utility on any database
v Issue a COMMENT ON, LABEL ON, or LOCK TABLE statement for

any table
v Create a view for itself or others on any catalog table
v Create tables and aliases for itself or others
v Bind a new plan or package, naming any ID as the owner

Without additional privileges, it cannot:
v Execute DML statements on user tables or views
v Run plans or packages
v Set the current SQL ID to a value that is not one of its primary or

secondary IDs
v Start or stop the database containing the ART and ORT
v Act fully as SYSADM or as DBADM over any database
v Access DB2 when the subsystem is started with ACCESS(MAINT)

SYSCTRL authority is intended for separation of function, not for added
security. If any plans have their EXECUTE privilege granted to PUBLIC,
an ID with SYSCTRL authority can grant itself SYSADM authority. The
only control over such actions is to audit the activity of IDs with high
levels of authority.

Chapter 10. Controlling access to DB2 objects 111

#
#
|
|
|

|
|
|
|
|

|

|
|
|
|
|

Table 31. DB2 authorities (continued)

Authority Description

SYSADM System administrator, which includes SYSCTRL, plus access to all data.
SYSADM can:
v Use all the privileges of DBADM over any database
v Use EXECUTE and BIND on any plan or package, COPY on any

package
v Use privileges over views that are owned by others
v Set the current SQL ID to any valid value, whether it is currently a

primary or secondary authorization ID
v Create and drop synonyms and views for others on any table
v Use any valid value for OWNER in BIND or REBIND
v Drop database DSNDB07
v Grant any of the privileges listed above to others

Holders of SYSADM authority can also drop or alter any DB2 object,
except system databases, issue a COMMENT ON or LABEL ON
statement for any table or view, and terminate any utility job, but
SYSADM cannot specifically grant those privileges.

Installation
SYSADM

One or two IDs are assigned this authority when DB2 is installed. They
have all the privileges of SYSADM, plus:

v Authority is not recorded in the DB2 catalog. The catalog need not be
available to check installation SYSADM authority. (The authority
outside the catalog is crucial: If the catalog table space SYSDBAUT is
stopped, for example, DB2 cannot check the authority to start it again.
Only an installation SYSADM can start it.)

v No ID can revoke this authority; it can be removed only by changing
the module that contains the subsystem initialization parameters
(typically DSNZPARM).

Those IDs can also:

v Run the CATMAINT utility

v Access DB2 when the subsystem is started with ACCESS(MAINT)

v Start databases DSNDB01 and DSNDB06 when those are stopped or
in restricted status

v Run the DIAGNOSE utility with the WAIT statement

v Start and stop the database containing the ART and ORT

Field-level access control by views
Any of the table privileges, except ALTER, REFERENCES, TRIGGER, and INDEX
can also be granted on a view. By creating a view and granting privileges on it, you
can give an ID access to only a specific combination of data. The capability is
sometimes called “field-level access control” or “field-level sensitivity”.

For example, suppose you want a particular ID, say MATH110, to be able to extract
certain data from the sample employee table for statistical investigation. To be
exact, suppose you want to allow access to data:
v From columns HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, and COMM

(but not an employee's name or identification number)
v Only for employees hired after 1975
v Only for employees with an education level of 13 or higher
v Only for employees whose job is not MANAGER or PRES

To do that, create and name a view that shows exactly that combination of data:

112 Administration Guide

CREATE VIEW SALARIES AS
SELECT HIREDATE, JOB, EDLEVEL, SEX, SALARY, BONUS, COMM

FROM DSN8710.EMP
WHERE HIREDATE > '1975-12-31' AND EDLEVEL >= 13

AND JOB <> 'MANAGER' AND JOB <> 'PRES';

Then grant the SELECT privilege on the view SALARIES to MATH110:
GRANT SELECT ON SALARIES TO MATH110;

Then MATH110 can execute SELECT statements on the restricted set of data only.

Authority over the catalog and directory
The DB2 catalog is in database DSNDB06. An ID with SYSCTRL or SYSADM
authority can control access to the catalog by granting privileges or authorities on
that database or on its tables or views, or by binding plans or packages that access
the catalog. Unlike SYSADM, however, SYSCTRL cannot act as DBADM over
database DSNDB06.

Authorities that are granted on DSNDB06 also cover database DSNDB01, which
contains the DB2 directory. An ID with SYSADM authority can control access to the
directory by granting privileges to run utilities (that are listed in Table 32) on
DSNDB06, but cannot grant privileges on DSNDB01 directly.

Every authority except SYSOPR carries the privilege to run some utilities on
databases DSNDB01 and DSNDB06. Table 32 shows what utilities the other
authorities can run on those databases.

Table 32. Utility privileges on the DB2 catalog and directory

Utilities Authorities

Installation SYSOPR,
SYSCTRL, SYSADM,
Installation SYSADM

DBCTRL,
DBADM on
DSNDB06

DBMAINT on
DSNDB06

LOAD 1,
REPAIR DBD

None (cannot be run on DSNDB01 and DSNDB06)

CHECK DATA,
CHECK LOB,
REORG
TABLESPACE,
STOSPACE

Yes No No

REBUILD INDEX,
RECOVER,
REORG INDEX,
REPAIR, REPORT

Yes Yes No

CHECK INDEX, COPY,
MERGECOPY, MODIFY,
QUIESCE, RUNSTATS

Yes Yes Yes

Notes:

1. LOAD can be used to add lines to SYSIBM.SYSSTRINGS.

Chapter 10. Controlling access to DB2 objects 113

Implicit privileges of ownership
You create DB2 objects, except for plans and packages, by issuing SQL CREATE
statements in which you name the object. When you create an object, you establish
its ownership, and the owner implicitly holds certain privileges over it. (Plans and
packages have unique features of their own, described in “Privileges exercised
through a plan or a package” on page 117 and “Special considerations for
user-defined functions and stored procedures” on page 123.)

Establishing ownership of objects with unqualified names
If an object name is unqualified, how ownership of the object is established
depends on the type of object. Ownership of tables, views, indexes, aliases, and
synonyms with unqualified names is established differently than ownership of
user-defined functions, stored procedures, distinct types, and triggers with
unqualified names. This section describes how ownership is established for each
group of objects.

If the name of a table, view, index, alias, or synonym is unqualified, you establish
the object's ownership in these ways:

v If you issue the CREATE statement dynamically, perhaps using SPUFI, QMF, or
some similar program, the owner of the created object is your current SQL ID.
That ID must have the privileges that are needed to create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the ownership of the created object depends on the option used for
the bind operation. You can bind the plan or package with either the QUALIFIER
option, the OWNER option, or both.

– If the plan or package is bound with the QUALIFIER option only, the
QUALIFIER is the owner of the object. The QUALIFIER option allows the
binder to name a qualifier to use for all unqualified names of tables, views,
indexes, aliases, or synonyms that appear in the plan or package.

– If the plan or package is bound with the OWNER option only, the OWNER is
the owner of the object.

– If the plan or package is bound with both the QUALIFIER option and the
OWNER option, the QUALIFIER is the owner of the object.

– If neither option is specified, the binder of the plan or package is implicitly the
object owner.

In addition, the plan or package owner must have all required privileges on the
objects designated by the qualified names.

If the name of a user-defined function, stored procedure, distinct type, or trigger is
unqualified, the implicit qualifier is determined as described in “Qualifying
unqualified names” on page 118. However, you establish the ownership of one of
these objects in these ways:

v If you issue the CREATE statement dynamically, the owner of the created object
is your current SQL ID. That ID must have the privileges that are needed to
create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use the
OWNER bind option, the binder of the package or plan is implicitly the object
owner.

114 Administration Guide

The owner of a JAR (Java class for a routine) that is used by a stored procedure or
a user-defined function is the current SQL ID of the process that performs the
INSTALL_JAR function. For information on installing a JAR, see DB2 Application
Programming Guide and Reference for Java.

Establishing ownership of objects with qualified names
If an object name is qualified, how ownership of the object is established depends,
again, on the type of object. This section describes how ownership is established
for each group of objects.

If you create a table, view, index, or alias with a qualified name, the qualifier
becomes the owner of the object, subject to these restrictions for specifying the
qualifier:

v If you issue the CREATE statement dynamically, and have no administrative
authority, the qualifier must be your primary ID or one of your secondary IDs.
However, if your current SQL ID has at least DBCTRL authority, you can use any
qualifier for a table or index. If your current SQL ID has at least DBADM
authority, it can also use any qualifier for a view.

If the current SQL ID has at least DBCTRL authority, the qualifier ID does not
need any privileges. Otherwise, the SQL ID must have any additional privileges
that are needed to create the object; those are CREATETS or USE OF
TABLESPACE for a table, and USE OF BUFFERPOOL and USE OF
STOGROUP for an index. If the current SQL ID does not have at least DBCTRL
authority, all the necessary privileges must be held by the qualifier ID.

v If you issue the CREATE statement statically, and the owner of the plan or
package that contains the statement has no administrative authority, the qualifier
can be only the owner. However, if the owner has at least DBCTRL authority, the
plan or package can use any qualifier for a table or an index. If the owner of the
plan or package has at least DBADM authority, it can also use any qualifier for a
view.

If you create a distinct type, user-defined function, stored procedure, or trigger with
a qualified name, the qualifier is the schema name. It identifies the schema to which
the object belongs. You can think of all objects that are qualified by the same
schema name as a group of related objects. Unlike other objects, however, the
qualifier does not identify the owner of the object. You establish ownership of a
distinct type, user-defined function, stored procedure, or trigger in these ways:

v If you issue the CREATE statement dynamically, the owner of the created object
is your current SQL ID. That ID must have the privileges that are needed to
create the object.

v If you issue the CREATE statement statically, by running a plan or package that
contains it, the owner of the object is the plan or package owner. You can use
the OWNER bind option to explicitly name the object owner. If you do not use the
OWNER bind option, the binder of the package or plan is the implicit object
owner.

The owner of a JAR (Java class for a routine) that is used by a stored procedure or
a user-defined function is the current SQL ID of the process that performs the
INSTALL_JAR function. For information on installing a JAR, see DB2 Application
Programming Guide and Reference for Java

Chapter 10. Controlling access to DB2 objects 115

|
|
|
|

|
|

|
|
|

|
|
|
|

Privileges by type of object
The following table lists implicit privileges of ownership for each type of object.

Table 33. Implicit privileges of ownership by object type

Object type Implicit privileges of ownership

Storage group To alter or drop the group and to name it in the USING clause of a
CREATE INDEX or CREATE TABLESPACE statement

Database DBCTRL or DBADM authority over the database, depending on the
privilege (CREATEDBC or CREATEDBA) that is used to create it.
DBCTRL authority does not include the privilege to access data in tables
in the database.

Table space To alter or drop the table space and to name it in the IN clause of a
CREATE TABLE statement

Table v To alter or drop the table or any indexes on it
v To lock the table, comment on it, or label it
v To create an index or view for the table
v To select or update any row or column
v To insert or delete any row
v To use the LOAD utility for the table
v To define referential constraints on any table or set of columns
v To create a trigger on the table

Index To alter, comment on, or drop the index

View v To drop, comment on, or label the view, or to select any row or column
v To update any row or column, insert or delete any row (if the view is

not read-only)

Synonym To use or drop the synonym

Package To bind, rebind, free, copy, execute, or drop the package

Plan To bind, rebind, free, or execute the plan

Alias To drop the alias

Distinct type To use or drop a distinct type

User-defined
functions

To execute, alter, drop, start, stop, or display a user-defined function

Stored procedure To execute, alter, drop, start, stop, or display a stored procedure

JAR (Java class
for a routine)

To replace, use, or drop the JAR

Granting implicit privileges
Some implicit privileges of ownership correspond to privileges that can be granted
by a GRANT statement, and some do not. For those that do correspond, the owner
of the object can grant the privilege to another user. For example, the owner of a
table can grant the SELECT privilege on the table to any other user.

Changing ownership
The privileges that are implicit in ownership cannot be revoked. Except for a plan or
package, as long as an object exists, its owner cannot be changed. All that can be
done is to drop the object, which usually deletes all privileges on it, and then
re-create it with a new owner.3

3. Dropping a package does not delete all privileges on it if another version of the package still remains in the catalog.

116 Administration Guide

#

|
|
|

In practice, however, sharing the privileges of ownership is sometimes appropriate.
To do this, make the owning ID a secondary ID to which several primary
authorization IDs are connected. You can change the list of primary IDs connected
to the secondary ID without dropping and re-creating the object.

Privileges exercised through a plan or a package
This section describes the privileges that are required for executing plans and
packages. User-defined function and stored procedure packages, also known as
routine packages, have additional, unique requirements that are described in
“Special considerations for user-defined functions and stored procedures” on
page 123.

An application plan or a package can take many actions on many tables, all of them
requiring one or more privileges. The owner of the plan or package must hold every
required privilege. Another ID can execute the plan or package if it has only the
EXECUTE privilege. In that way, another ID can exercise all the privileges that are
used in validating the plan or package, but only within the restrictions that are
imposed by the SQL statements in the original program.

For example, the program might contain:
EXEC SQL

SELECT * INTO :EMPREC FROM DSN8710.EMP
WHERE EMPNO='000010';

The example puts the data for employee number 000010 into the host structure
EMPREC. The data comes from table DSN8710.EMP. However, the ID that has
EXECUTE privilege for this plan can only access rows in the DSN8710.EMP table
that have EMPNO = '000010'.

The executing ID can use some of the owner's privileges, within limits. If the
privileges are revoked from the owner, the plan or the package is invalidated. It
must be rebound, and the new owner must have the required privileges.

Establishing ownership of a plan or a package
The BIND and REBIND subcommands create or change an application plan or a
package. On either subcommand, use the OWNER option to name the owner of the
resulting plan or package. Keep these points in mind when naming an owner:
v Any user can name the primary or any secondary ID.
v An ID with the BINDAGENT privilege can name the grantor of that privilege.
v An ID with SYSCTRL or SYSADM authority can name any authorization ID on a

BIND command, but not on a REBIND command.

If you omit the OWNER option:
v On BIND, your primary ID becomes the owner.
v On REBIND, the previous owner retains ownership.

Some systems that can bind a package at a DB2 system do not support the
OWNER option. When the option is not supported, the primary authorization ID is
always the owner of the package, and a secondary ID cannot be named as the
owner.

Chapter 10. Controlling access to DB2 objects 117

Qualifying unqualified names
A plan or package can contain SQL statements that use unqualified table and view
names. For static SQL, the default qualifier for those names is the owner of the
plan or package. However, you can use the QUALIFIER option of the BIND
command to specify a different qualifier.

For plans or packages that contain static SQL, using the BINDAGENT privilege and
the OWNER and QUALIFIER options gives you considerable flexibility in performing
bind operations. For example, if ALPHA has the BINDAGENT privilege from BETA,
and BETA has privileges over tables that are owned by GAMMA, ALPHA can bind a
plan using OWNER (BETA) and QUALIFIER (GAMMA). ALPHA, as merely a
binding agent, does not need to have privileges over the tables and does not have
the privilege to execute the plan.

For plans or packages that contain dynamic SQL, DYNAMICRULES behavior
determines how DB2 qualifies unqualified object names. See “Authorization for
dynamic SQL statements” on page 132 for more information.

For unqualified distinct types, user-defined functions, stored procedures, and trigger
names in dynamic SQL statements, DB2 finds the schema name to use as the
qualifier by searching schema names in the CURRENT PATH special register. For
static statements, the PATH bind option determines the path that DB2 searches to
resolve unqualified distinct types, user-defined functions, stored procedures, and
trigger names.

However, an exception exists for ALTER, CREATE, DROP, COMMENT ON,
GRANT, and REVOKE statements. For static SQL, specify the qualifier for these
statements in the QUALIFIER bind option. For dynamic SQL, the qualifier for these
statements is the authorization ID of the CURRENT SQLID special register. See
Chapter 2 of DB2 SQL Reference for more information about unqualified names.

Checking authorization to execute
The plan or package owner must have authorization to execute all static SQL
statements that are embedded in the plan or package. However, you do not need to
have the authorizations in place when the plan or package is bound; in fact, the
SQL objects that are referred to do not need to exist at that time.

A bind operation always checks whether a local object exists and whether the
owner has the required privileges on it. Any failure results in a message. To choose
whether the failure prevents the bind operation from completing, use the VALIDATE
option of BIND PLAN and BIND PACKAGE, and also the SQLERROR option of
BIND PACKAGE. See Part 5 of DB2 Application Programming and SQL Guide for
instructions. If you let the operation complete, the checks are made again at run
time. The corresponding checks for remote objects are always made at run time.

Authorization to execute dynamic SQL statements is also checked at run time.
Table 36 on page 129 shows which IDs can supply the authorizations that are
required for different types of statements.

Applications that use the Recoverable Resource Manager Services attachment
facility (RRSAF) to connect to DB2 do not require a plan. If the requesting
application is an RRSAF application, DB2 follows the rules described in “Checking
authorization to execute an RRSAF application without a plan” on page 120 to
check authorizations.

118 Administration Guide

Checking authorization at a second DB2 server
Authorization for execution at a second DB2 server (also known as a “double-hop”
situation) is a special case of DB2 private protocol access when bind option
DBPROTOCOL (PRIVATE) is in effect. See Figure 9.

In the figure, a remote requester, either a DB2 for OS/390 and z/OS or some other
requesting system, runs a package at the DB2 server. A statement in the package
uses an alias or a three-part name to request services from a second DB2 for
OS/390 and z/OS server. The ID that is checked for the privileges that are needed
to run at the second server can be:

v The owner of the plan that is running at the requester (if the requester is DB2 for
MVS/ESA or DB2 for OS/390 and z/OS)

v The owner of the package that is running at the DB2 server

v The authorization ID of the process that runs the package at the first DB2 server
(the “process runner”)

In addition, if a remote alias is used in the SQL, the alias must be defined at the
requester site. The ID that is used depends on these four factors:

v Whether the requester is DB2 for OS/390 and z/OS or DB2 for MVS/ESA, or a
different system.

v The value of the bind option DYNAMICRULES. See “Authorization for dynamic
SQL statements” on page 132 for detailed information about the
DYNAMICRULES options.

v Whether the parameter HOPAUTH at the DB2 server site was set to BOTH or
RUNNER when the installation job DSNTIJUZ was run. The default value is
BOTH.

v Whether the statement that is executed at the second server is static or dynamic
SQL.

Hop situation with non-DB2 for OS/390 and z/OS or DB2 for MVS/ESA server:
Using DBPROTOCOL(DRDA), a three-part name statement can hop to a server
other than DB2 for OS/390 and z/OS or DB2 for MVS/ESA. In this hop situation,
only package authorization information is passed to the second server.

A hop is not allowed on a connection that matches the LUWID of another existing
DRDA thread. For example, in a hop situation from site A to site B to site C to site
A, a hop is not allowed to site A again.

Table 34 on page 120 shows how these factors determine the ID that must hold the
required privileges when bind option DBPROTOCOL (PRIVATE) is in effect.

Requester

DB2 server
(Process runner)

Second DB2 server

Runs a package

Uses DB2 private protocol to
execute an SQL statement
remotely

Figure 9. Execution at a second DB2 server

Chapter 10. Controlling access to DB2 objects 119

Table 34. The authorization ID that must hold required privileges for the double-hop situation

Requester DYNAMICRULES HOPAUTH Statement Authorization ID

DB2 for MVS/ESA or
DB2 for OS/390 and
z/OS

Run behavior (default)* n/a
Static Plan owner

Dynamic Process runner

Bind behavior* n/a Either Plan owner

Different system
or
RRSAF application
without a plan

Run behavior (default)*
YES (default)

Static Package owner

Dynamic Process runner

NO Either Process runner

Bind behavior* n/a Either Package owner

Note: *If DYNAMICRULES define behavior is in effect, DB2 converts to
DYNAMICRULES bind behavior. If DYNAMICRULES invoke behavior is in effect,
DB2 converts to DYNAMICRULES run behavior.

Checking authorization to execute an RRSAF application without
a plan
RRSAF provides the capability for an application to connect to DB2 and run without
a DB2 plan. If an RRSAF application does not have a plan, the following
authorization rules are true:

v For the following types of packages, the primary or secondary authorization ID of
the process is used for checking authorization to execute the package:

– A local package

– A remote package that is on a DB2 for OS/390 and z/OS or DB2 for
MVS/ESA system and is accessed using DRDA

v At a DB2 for OS/390 and z/OS or DB2 for MVS/ESA server, the authorization to
execute the DESCRIBE TABLE statement includes checking the primary and
secondary authorization IDs.

v For a double hop situation, the authorization ID that must hold the required
privileges to execute SQL statements at the second server is determined as if the
requester is not a DB2 for OS/390 and z/OS or DB2 for MVS/ESA system.
Table 34 lists the specific privileges.

Caching authorization IDs for best performance
You can specify that DB2 cache authorization IDs for plans, packages, or routines
(user-defined functions and stored procedures). Caching IDs can greatly improve
performance, especially when user IDs are reused frequently. One cache exists for
each plan, one global cache exists for packages, and a global cache exists for
routines. The global cache for packages and routines are allocated at DB2 startup.
For a data sharing group, each member does its own authorization caching.

Caching IDs for plans: Authorization checking is fastest when the EXECUTE
privilege is granted to PUBLIC and, after that, when the plan is reused by an ID that
already appears in the cache.

You set the size of the plan authorization cache in the BIND PLAN subcommand.
For suggestions on setting this cache size, see Part 5 of DB2 Application
Programming and SQL Guide. The default cache size is specified by an installation
option, with an initial default setting of 1024 bytes.

Caching IDs for packages: This performance enhancement provides a run-time
benefit for:

v Stored procedures.

120 Administration Guide

v Remotely bound packages.

v Local packages in a package list in which the plan owner does not have execute
authority on the package at bind time, but does at run time.

v Local packages that are not explicitly listed in a package list, but are implicitly
listed by collection-id.*, *.*, or *.package-id.

Set the size of the package authorization cache using the PACKAGE AUTH CACHE
field on installation panel DSNTIPP. The default value, 32 KB, is enough storage to
support about 370 collection-id.package-id entries or collection-id.* entries.

You can cache more package authorization information by granting package
execute authority to collection.*, by granting package execute authority to PUBLIC
for some packages or collections, or by increasing the size of the cache.

Field QTPACAUT in the package accounting trace indicates how often DB2 was
successful at reading package authorization information from the cache.

Caching IDs for routines: The routine authorization cache stores authorization
IDs with the EXECUTE privilege on a specific routine. A routine is identified as
schema.routine-name.type, where the routine name is the specific function name for
user-defined functions, the procedure name for stored procedures, or ’*’ for all
routines in the schema.

Set the size of the routine authorization cache using the ROUTINE AUTH CACHE
field on installation panel DSNTIPP. The initial default setting of 32 KB is enough
storage to support about 370 schema.routine.type or schema.*.type entries.

You can cache more routine authorization information by granting EXECUTE on
schema.*, by granting routine execute authority to PUBLIC for some or all routines
in the schema, or by increasing the size of the cache.

Controls in the program
Because an ID executes a package or an application plan by running a program,
implementing control measures in the program can be useful. For example,
consider the SQL statement on page 117, which permits access to the row of the
employee table WHERE EMPNO='000010'. If you replace the value 10 with a host
variable, the program could supply the value of the variable and permit access to
various employee numbers. Routines in the program could limit that access to
certain IDs, or to certain times of the day, on certain days of the week, or in other
special circumstances.

Stored procedures provide an alternative to controls in the program. By
encapsulating several SQL statements into a single message to the DB2 server,
sensitive portions of the application program can be protected. Also, stored
procedures can include access to non-DB2 resources, as well as DB2.

A recommendation against use of controls in the program
Do not use programs to extend security. Whenever possible, use other techniques,
such as stored procedures or views, as a security mechanism. Program controls
are separate from other access controls, can be difficult to implement properly, are
difficult to audit, and relatively simple to bypass. Almost any debugging facility can
be used to bypass security checks. Other programs might use the plan without
doing the needed checking. Errors in the program checks might allow unauthorized
access.

Chapter 10. Controlling access to DB2 objects 121

Because the routines that check security might be quite separate from the SQL
statement, the security check could be entirely disabled without requiring a bind
operation for a new plan.

Also, a BIND REPLACE operation for an existing plan does not necessarily revoke
the existing EXECUTE privileges on the plan. (To revoke those privileges is the
default, but the plan owner has the option to retain them. For packages, the
EXECUTE privileges are always retained.)

For those reasons, if the program accesses any sensitive data, the EXECUTE
privileges on the plan and on packages are also sensitive. They should be granted
only to a carefully planned list of IDs.

Restricting a plan or a package to particular systems
If you do use controls in the program, limit the use of a plan or package to the
particular systems for which it was designed. DB2 does not ensure that only
specific programs are used with a plan, but program-to-plan control can be enforced
in IMS and CICS. DB2 does provide a consistency check to avoid accidental
mismatches between program and plan, but that is not a security check.

The ENABLE and DISABLE options: The ENABLE and DISABLE options on the
BIND and REBIND subcommands for plans and packages can limit their use. For
example, ENABLE IMS allows running the plan or package from any IMS
connection and, unless other systems are named also, prevents running it from any
other type of connection. DISABLE BATCH prevents running the plan or package
through a batch job but allows running it from all other types of connection. You can
exercise even finer control, enabling or disabling particular IMS connection names,
CICS application IDs, requesting locations, and so on. For details, see the syntax of
the BIND and REBIND subcommands in DB2 Command Reference.

Privileges required for remote packages
Generally, the privileges that are required for a remote bind (BIND PACKAGE
location.collection) must be granted at the server location. That is, the ID that owns
the package must have all the privileges that are required to run the package at the
server, and BINDADD4 and CREATE IN privileges at the server. The exceptions
are:

v For a BIND COPY operation, the owner must have the COPY privilege at the
local DB2, where the package being copied resides.

v If the creator of the package is not the owner, the creator must have SYSCTRL
authority or higher, or must have been granted the BINDAGENT privilege by the
owner. That authority or privilege is granted at the local DB2.

Binding a plan with a package list (BIND PLAN PKLIST) is done at the local DB2,
and bind privileges must be held there. Authorization to execute a package at a
remote location is checked at execution time, as follows:

v For DB2 private protocol, the owner of the plan at the requesting DB2 must have
EXECUTE privilege for the package at the DB2 server.

v For DRDA, if the server is a DB2 for OS/390 and z/OS subsystem, the
authorization ID of the process (primary ID or any secondary ID) must have
EXECUTE privilege for the package at the DB2 server.

v If the server is not DB2 for OS/390 and z/OS, the primary authorization ID must
have whatever privileges are needed. Check that product's documentation.

4. Or BIND, depending on the installation option BIND NEW PACKAGE.

122 Administration Guide

Special considerations for user-defined functions and stored
procedures

A number of steps are involved in implementing, defining, and invoking user-defined
functions and stored procedures, which are also called routines. This section
explains those steps and the authorizations they require. They are summarized in
Table 35.

Table 35. Common tasks and required privileges for routines

Role Tasks Required privileges

Implementor If SQL is in the routine: codes, precompiles,
compiles, and link-edits the program to use
as the routine. Binds the program as the
routine package.

If no SQL is in the routine: codes, compiles,
and link-edits the program.

If binding a package, BINDADD system
privilege and CREATE IN on the
collection.

Definer Issues a CREATE FUNCTION statement to
define a user-defined function or CREATE
PROCEDURE statement to define a stored
procedure.

CREATEIN privilege on the schema.
EXECUTE authority on the routine
package when invoked.

Invoker Invokes a routine from an SQL application. EXECUTE authority on the routine.

The routine implementor typically codes the routine in a program, precompiles the
program, and binds the DBRM, if the program contains SQL statements. In general,
the authorization ID that binds the DBRM into a package is the package owner. The
implementor is the routine package owner. As package owner, the implementor has
EXECUTE authority (implicitly) on the package and has the authority to grant
EXECUTE privileges to other users to execute the code within the package.

The implementor grants EXECUTE authority on the routine package to the definer.
EXECUTE authority is only necessary if the package contains SQL. For
user-defined functions, the definer requires EXECUTE authority on the package.
For stored procedures, EXECUTE authority on the package is not limited to the
definer.

The definer is the routine owner. The definer issues a CREATE FUNCTION
statement to define a user-defined function or a CREATE PROCEDURE statement
to define a stored procedure. If the SQL statement is:

v Embedded in an application program, the definer is the authorization ID of the
owner of the plan or package.

v Dynamically prepared, the definer is the SQL authorization ID that is contained in
the CURRENT SQLID special register.

The definer grants EXECUTE authority on the routine to the invoker, that is, any
user ID that needs to invoke the routine.

The invoker invokes the routine from an SQL statement in the invoking plan or
package. The invoker:

v For a static statement, is the authorization ID of the plan or package owner.

v For a dynamic statement, depends on DYNAMICRULES behavior. See
“Authorization for dynamic SQL statements” on page 132 for a description of the
options.

Chapter 10. Controlling access to DB2 objects 123

See Chapter 5 of DB2 SQL Reference for more information about the CREATE
FUNCTION and CREATE PROCEDURE statements.

Additional authorization for stored procedures
Prior to Version 7, stored procedures were defined to DB2 by inserting rows into
catalog table SYSIBM.SYSPROCEDURES. Starting in Version 7, a stored
procedure is defined using the CREATE PROCEDURE statement.

The CALL statement invokes a stored procedure. The privileges that are required to
execute a stored procedure invoked by the CALL statement are described in
Chapter 5 of DB2 SQL Reference.

This section also describes additional privileges that are required on each package
that the stored procedure uses during its execution. The database server
determines the privileges that are required and the authorization ID that must have
the privileges.

Controlling access to catalog tables for stored procedures
The catalog tables SYSROUTINES_SRC and SYSROUTINES_OPTS contain
source code and build options for generated routines that are created by coding
tools like the DB2 Stored Procedure Builder. Because a variety of users can use
these coding tools, you need to control access to these catalog tables by
performing the following steps:

v Determine criteria for limiting each application programmer’s access to a subset
of the SYSROUTINES_SRC and SYSROUTINES_OPTS rows.

v Create a view for each programmer by using these criteria.

v Grant the SELECT, INSERT, UPDATE, and DELETE privileges on each view to
the appropriate programmer.

For example, programmer A1 is working on a set of stored procedures for project
B1. You decide that programmer A1 must use schema names for the stored
procedures that begin with the characters A1B1. Then you can create views that
limit A1’s SYSROUTINES_SRC and SYSROUTINES_OPTS accesses to rows
where the SCHEMA value begins with A1B1. The following CREATE statement
creates a view on SYSROUTINES_SRC:
CREATE VIEW A1.B1GRSRC AS

SELECT SCHEMA, ROUTINENAME, VERSION,
SEQNO, IBMREQD, CREATESTMT
FROM SYSIBM.SYSROUTINE_SRC
WHERE SCHEMA LIKE 'A1B1%'

WITH CHECK OPTION;

The following CREATE statement creates a view on SYSROUTINES_OPTS:
CREATE VIEW A1.B1GROPTS AS

SELECT SCHEMA, ROUTINENAME, VERSION,
BUILDSCHEMA, BUILDNAME, BUILDOWNER, IBMREQD,
PRECOMPILE_OPTS, COMPILE_OPTS, PRELINK_OPTS,
LINK_OPTS, BIND_OPTS, SOURCEDSN
FROM SYSIBM.SYSROUTINE_OPTS
WHERE SCHEMA LIKE 'A1B1%'

WITH CHECK OPTION;

Finally, use the following statement to let A1 view or update the appropriate
SYSROUTINE_SRC and SYSROUTINE_OPTS rows:

124 Administration Guide

|

|
|
|
|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

GRANT SELECT, INSERT, DELETE, UPDATE
ON (A1.B1GRSRC,A1.B1GROPTS)
TO A1;

After a set of generated routines goes into production, you can decide to regain
control over the routine definitions in SYSROUTINES_SRC and
SYSROUTINES_OPTS by revoking the INSERT, DELETE, and UPDATE privileges
on the appropriate views. It is convenient for programmers to keep the SELECT
privilege on their views so that they can use the old rows for reference when they
define new generated routines.

Example of routine roles and authorizations
This example describes how to get a routine up and running, and how to use and
assign the required privileges and authorizations. In the example, the routine is an
external user-defined function.

How to code the user-defined function program (implementor
role)
1. The implementor codes a user-defined function program that implements the

user-defined function. Assume the implementor codes the following external
user-defined function, C_SALARY, written in C:

Chapter 10. Controlling access to DB2 objects 125

|
|
|

|
|
|
|
|
|

/**
* This routine accepts an employee serial number and a percent raise. *
* If the employee is a manager, the raise is not applied. Otherwise, *
* the new salary is computed, truncated if it exceeds the employee's *
* manager's salary, and then applied to the database. *
**/
void C_SALARY /* main routine */
(char *employeeSerial /* in: employee serial no. */

decimal *percentRaise /* in: percentage raise */
decimal *newSalary, /* out: employee's new salary */
short int *niEmployeeSerial /* in: indic var, empl ser */
short int *niPercentRaise /* in: indic var, % raise */
short int *niNewSalary, /* out: indic var, new salary */
char *sqlstate, /* out: SQLSTATE */
char *fnName, /* in: family name of function*/
char *specificName, /* in: specific name of func */
char *message /* out: diagnostic message */

)
{

EXEC SQL BEGIN DECLARE SECTION;
char hvEMPNO-7-; /* host var for empl serial */
decimal hvSALARY; /* host var for empl salary */
char hvWORKDEPT-3-; /* host var for empl dept no. */
decimal hvManagerSalary; /* host var, emp's mgr's salry*/
EXEC SQL END DECLARE SECTION;

sqlstate = 0;
memset(message,0,70);
/***
* Copy the employee's serial into a host variable *
***/
strcpy(hvEMPNO,employeeSerial);
/***
* Get the employee's work department and current salary *
***/
EXEC SQL SELECT WORKDEPT, SALARY

INTO :hvWORKDEPT, :hvSALARY
FROM EMP
WHERE EMPNO = :hvEMPNO;

/***
* See if the employee is a manager *
***/
EXEC SQL SELECT DEPTNO

INTO :hvWORKDEPT
FROM DEPT
WHERE MGRNO = :hvEMPNO;

/***
* If the employee is a manager, do not apply the raise *
***/
if(SQLCODE == 0)

{
newSalary = hvSALARY;

}

126 Administration Guide

The implementor requires the UPDATE privilege on table EMP. Users with the
EXECUTE privilege on function C_SALARY do not need the UPDATE privilege
on the table.

2. Because this function program contains SQL, the implementor performs the
following steps:

v Precompiles the user-defined function program

v Link-edits the user-defined function program with DSNRLI (RRS attachment
facility) and names the user-defined function program’s load module
C_SALARY

v Binds the DBRM into package MYCOLLID.C_SALARY.

The implementor is now the function package owner.

3. The implementor then grants the EXECUTE privilege on the user-defined
function package to the definer.
GRANT EXECUTE ON PACKAGE MYCOLLID.C_SALARY
TO definer

As package owner, the implementor can grant execute privileges to other users,
which allows those users to execute code within the package. For example:
GRANT EXECUTE ON PACKAGE MYCOLID.C_SALARY

TO other_user

/***
* Otherwise, compute and apply the raise such that it does not *
* exceed the employee's manager's salary *
***/
else

{
/***
* Get the employee's manager's salary *
***/
EXEC SQL SELECT SALARY

INTO :hvManagerSalary
FROM EMP
WHERE EMPNO = (SELECT MGRNO

FROM DSN8610.DEPT
WHERE DEPTNO = :hvWORKDEPT);

/***
* Compute proposed raise for the employee *
***/
newSalary = hvSALARY * (1 + percentRaise/100);
/***
* Don't let the proposed raise exceed the manager's salary *
***/
if(newSalary > hvManagerSalary

newSalary = hvManagerSalary;
/***
* Apply the raise *
***/
hvSALARY = newSalary;
EXEC SQL UPDATE EMP

SET SALARY = :hvSALARY
WHERE EMPNO = :hvEMPNO;

}

return;
} /* end C_SALARY */

Chapter 10. Controlling access to DB2 objects 127

Defining the user-defined function (definer role)
1. The definer executes the CREATE FUNCTION statement to define the

user-defined function, salary_change, to DB2.
CREATE FUNCTION

SALARY_CHANGE(
VARCHAR(6)
DECIMAL(5,2))

RETURNS
DECIMAL(9,2)

SPECIFIC schema.SALCHANGE
LANGUAGE C
DETERMINISTIC
MODIFIES SQL DATA
EXTERNAL NAME C_SALARY
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL CALL
NO EXTERNAL ACTION
NO SCRATCHPAD
NO FINAL CALL
ALLOW PARALLEL
NO COLLID
ASUTIME LIMIT 1
STAY RESIDENT NO
PROGRAM TYPE SUB
WLM ENVIRONMENT WLMENV
SECURITY DB2
NO DBINFO;

The definer now owns the user-defined function. The definer can execute the
user-defined function package, because the user-defined function package
owner, in this case the implementor, granted the EXECUTE privilege to the
definer (see 127) on the package that contains the user-defined function.

2. The definer then grants the EXECUTE privilege on SALARY_CHANGE to all
function invokers.
GRANT EXECUTE ON FUNCTION SALARY_CHANGE

TO invoker1, invoker2, invoker3, invoker4

Using the user-defined function (invoker role)
1. The invoker codes an application program, named SALARY_ADJ. The

application program contains a static SQL statement that invokes the
user-defined function, SALARY_CHANGE, to give the employee a 10 percent
raise if the employee is not a manager, such as in the following statement:
EXEC SQL SELECT FIRSTNME,

LASTNAME
SALARY_CHANGE(:hvEMPNO, 10.0)

INTO :hvFIRSTNME,
:hvLASTNAME,
:hvSALARY

FROM EMP
WHERE EMPNO = :hvEMPNO;

2. The invoker then precompiles, compile, link-edits, and binds the invoking
application's DBRM into the invoking package or plan (the package or plan that
contains the SQL that invokes the user-defined function). The invoker is now the
owner of the invoking plan or package.

The invoker must hold the SELECT privilege on the table EMP in addition to the
EXECUTE privilege on the function SALARY_CHANGE.

128 Administration Guide

How DB2 determines authorization IDs
DB2 determines the authorization ID (invoker) that executes a user-defined function
package based on whether the SQL statement that invokes the user-defined
function is static or dynamic. In this example, the invoking package SALARY_ADJ
contains a static SQL SELECT statement that invokes the user-defined function
SALARY_CHANGE. Therefore, DB2 uses the rules for static SQL to determine the
authorization ID (invoker) that executes the user-defined function package
C_SALARY.

v While execution occurs in invoking package SALARY_ADJ, DB2 uses the
authorization ID of the invoker, the package owner.

The invoker requires the EXECUTE privilege on the user-defined function,
SALARY_CHANGE, which the package SALARY_ADJ invokes. The user-defined
function definer has the EXECUTE privilege on the user-defined function
package C_SALARY, therefore, the invoker does not require the EXECUTE
privilege.

v When execution changes to the user-defined function package C_SALARY, DB2
uses the authorization ID of the implementor, the package owner. The package
owner is the authorization ID with authority to execute all static SQL in the
user-defined function package C_SALARY.

For an example of determining authorization IDs for dynamic SQL, see “Example of
determining authorization IDs for dynamic SQL statements in routines” on page 135.

Which IDs can exercise which privileges
When a process gains access to DB2, it has a primary authorization ID, an SQL ID,
and perhaps one or more secondary authorization IDs. A plan or package also has
an owner ID. A specific one of those IDs must hold the required privileges for some
actions; for other actions, any one or several of the IDs must hold the required
privileges. Table 36 summarizes, for different actions, which IDs can provide the
necessary privileges. For more specific details on any statement or command, see
DB2 SQL Reference or DB2 Command Reference.

Performance hints: A process can have up to 245 secondary IDs. For some
actions, DB2 searches a catalog table for each ID until it finds a required privilege.
Therefore, the more secondary IDs that must be checked, the longer the check
takes. For dynamic SQL, the current SQL ID is checked first; the operation is
fastest if that ID has all the necessary privileges.

Table 36. Required privileges for basic operations

Operation ID Required privileges

Dynamic SQL statements

GRANT Current SQL ID Any of these:
v The applicable privilege with the grant

option
v An authority that includes the privilege,

with the grant option (not needed for
SYSADM or SYSCTRL)

v Ownership that implicitly includes the
privilege

REVOKE Current SQL ID Must either have granted the privilege that is
being revoked, or hold SYSCTRL or
SYSADM authority

Chapter 10. Controlling access to DB2 objects 129

Table 36. Required privileges for basic operations (continued)

Operation ID Required privileges

CREATE, for
unqualified object
name

Current SQL ID Applicable table, database, or schema
privilege.

Qualify name of object
created

ID named as owner Applicable table or database privilege. If the
current SQL ID has SYSADM authority, the
qualifier can be any ID at all, and need not
have any privilege.

Other dynamic SQL if
DYNAMICRULES
uses run behavior

All primary and
secondary IDs and
the current SQL ID
together

As required by the statement; see
“Composite privileges” on page 139.
Unqualified object names are qualified by the
value of the special register CURRENT
SQLID. See “Authorization for dynamic SQL
statements” on page 132.

Other dynamic SQL if
DYNAMICRULES
uses bind behavior

Plan or package
owner

As required by the statement; see
“Composite privileges” on page 139.
DYNAMICRULES behavior determines how
unqualified object names are qualified; see
“Authorization for dynamic SQL statements”
on page 132.

Other dynamic SQL if
DYNAMICRULES
uses define behavior

Function or procedure
owner

As required by the statement; see
“Composite privileges” on page 139.
DYNAMICRULES behavior determines how
unqualified object names are qualified; see
“Authorization for dynamic SQL statements”
on page 132.

Other dynamic SQL if
DYNAMICRULES
uses invoke behavior

ID of the SQL
statement that
invoked the function
or procedure

As required by the statement; see
“Composite privileges” on page 139.
DYNAMICRULES behavior determines how
unqualified object names are qualified; see
“Authorization for dynamic SQL statements”
on page 132.

Operations on plans and packages

Execute a plan Primary or any
secondary ID

Any of these:
v Ownership of the plan
v EXECUTE privilege for the plan
v SYSADM authority

Bind embedded SQL
statements, for any
bind operation

Plan or package
owner

Any of these:
v Applicable privileges required by the

statements
v Authorities that include the privileges
v Ownership that implicitly includes the

privileges

Object names include the value of
QUALIFIER, where it applies.

Include package in
PKLIST1

Plan owner Any of these:
v Ownership of the package
v EXECUTE privilege for the package
v PACKADM authority over the package

collection
v SYSADM authority

130 Administration Guide

Table 36. Required privileges for basic operations (continued)

Operation ID Required privileges

BIND a new plan
using the default
owner or primary
authorization ID

Primary ID BINDADD privilege, or SYSCTRL or
SYSADM authority

BIND a new package
using the default
owner or primary
authorization ID

Primary ID If the value of the field BIND NEW
PACKAGE on installation panel DSNTIPP is
BIND, any of these:
v BINDADD privilege and CREATE IN

privilege for the collection
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
these:
v BINDADD privilege and either the

CREATE IN or PACKADM privilege for the
collection

v SYSADM or SYSCTRL authority

BIND REPLACE or
REBIND for a plan or
package using the
default owner or
primary authorization
ID

Primary or any
secondary ID

Any of these:
v Ownership of the plan or package
v BIND privilege for the plan or package
v BINDAGENT from the plan or package

owner
v PACKADM authority for the collection (for

a package only)
v SYSADM or SYSCTRL authority

See also “Multiple actions in one statement”
on page 139.

BIND a new version
of a package, with
default owner

Primary ID If BIND NEW PACKAGE is BIND, any of
these:
v BIND privilege on the package or

collection
v BINDADD privilege and CREATE IN

privilege for the collection
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

If BIND NEW PACKAGE is BINDADD, any of
these:
v BINDADD privilege and either the

CREATE IN or PACKADM privilege for the
collection

v SYSADM or SYSCTRL authority

FREE or DROP a
package2

Primary or any
secondary ID

Any of these:
v Ownership of the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

COPY a package Primary or any
secondary ID

Any of these:
v Ownership of the package
v COPY privilege for the package
v BINDAGENT from the package owner
v PACKADM authority for the collection
v SYSADM or SYSCTRL authority

Chapter 10. Controlling access to DB2 objects 131

Table 36. Required privileges for basic operations (continued)

Operation ID Required privileges

FREE a plan Primary or any
secondary ID

Any of these:
v Ownership of the plan
v BIND privilege for the plan
v BINDAGENT from the plan owner
v SYSADM or SYSCTRL authority

Name a new OWNER
other than the primary
authorization ID for
any bind operation

Primary or any
secondary ID

Any of these:
v New owner is the primary or any

secondary ID
v BINDAGENT from the new owner
v SYSADM or SYSCTRL authority

Notes:

1. A user-defined function, stored procedure, or trigger package does not need to
be included in a package list.

2. A trigger package cannot be deleted by FREE PACKAGE or DROP PACKAGE.
The DROP TRIGGER statement must be used to delete the trigger package.

Authorization for dynamic SQL statements
This section explains authorization behavior for dynamic SQL statements. The two
key factors that influence authorization behavior are the DYNAMICRULES value
and the run time environment of a package.

The BIND or REBIND option DYNAMICRULES determines what values apply at run
time for the following dynamic SQL attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements
v Whether dynamic SQL statements can include GRANT, REVOKE, ALTER,

CREATE, DROP, and RENAME statements

In addition to the DYNAMICRULES value, the run-time environment of a package
controls how dynamic SQL statements behave at run time. The two possible
run-time environments are:

v The package runs as part of a stand-alone program.

v The package runs as a stored procedure or user-defined function package, or
runs under a stored procedure or user-defined function.

A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:

– The program is called by a stored procedure or user-defined function.

– The program is in a series of nested calls that start with a stored procedure or
user-defined function.

The combination of the DYNAMICRULES value and the run-time environment
determine the values for the dynamic SQL attributes. That set of attribute values is
called the dynamic SQL statement behavior. The four behaviors are:
v Run behavior
v Bind behavior
v Define behavior
v Invoke behavior

132 Administration Guide

This section explains each behavior. The behaviors are summarized in Table 38 on
page 135 . The DYNAMICRULES options associated with each behavior are
summarized in Table 37 on page 134.

Run behavior
DB2 processes dynamic SQL statements using the standard attribute values for
dynamic SQL statements, which are collectively called run behavior:

v DB2 uses the authorization ID of the application process and the SQL
authorization ID (the value of the CURRENT SQLID special register):
– For authorization checking of dynamic SQL statements
– As the implicit qualifier of table, view, index, and alias names

v Dynamic SQL statements use the values of application programming options that
were specified during installation. The installation option USE FOR
DYNAMICRULES has no effect.

v GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements can be
executed dynamically.

Bind behavior
DB2 processes dynamic SQL statements using the following attribute values, which
are collectively called bind behavior:

v DB2 uses the authorization ID of the plan or package for authorization checking
of dynamic SQL statements.

v Unqualified table, view, index, and alias names in dynamic SQL statements are
implicitly qualified with value of the bind option QUALIFIER; if you do not specify
QUALIFIER, DB2 uses the authorization ID of the plan or package owner as the
implicit qualifier.

v The attribute values that are described in “Common attribute values for bind,
define, and invoke behavior” on page 134.

The values of the authorization ID and the qualifier for unqualified objects are the
same as those that are used for embedded or static SQL statements.

Define behavior
When the package is run as or under a stored procedure or user-defined function
package or runs under a stored procedure or user-defined function, DB2 processes
dynamic SQL statements using define behavior, which consists of the following
attribute values:

v DB2 uses the authorization ID of the user-defined function or stored procedure
owner for authorization checking of dynamic SQL statements in the application
package.

v The default qualifier for unqualified objects is the user-defined function or stored
procedure owner.

v The attribute values that are described in “Common attribute values for bind,
define, and invoke behavior” on page 134.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the
DYNAMICRULES value specified.

Invoke behavior
When the package is run as or under a stored procedure or user-defined function
package or runs under a stored procedure or user-defined function, DB2 processes
dynamic SQL statements using invoke behavior, which consists of the following
attribute values:

Chapter 10. Controlling access to DB2 objects 133

v DB2 uses the authorization ID of the user-defined function or stored procedure
invoker for authorization checking of dynamic SQL statements in the application
package.

If the invoker is the primary authorization ID of the process or the CURRENT
SQLID value, secondary authorization IDs will also be checked if they are
needed for the required authorization. Otherwise, only one ID, the ID of the
invoker, is checked for the required authorization.

v The default qualifier for unqualified objects is the user-defined function or stored
procedure invoker.

v The attribute values that are described in “Common attribute values for bind,
define, and invoke behavior”.

When the package is run as a stand-alone program, DB2 processes dynamic SQL
statements using bind behavior or run behavior, depending on the
DYNAMICRULES value specified.

Common attribute values for bind, define, and invoke behavior
The following attribute values apply to dynamic SQL statements in plans or
packages that have bind, define, or invoke behavior:

v You can execute the statement SET CURRENT SQLID in a package or plan that
is bound with any DYNAMICRULES value. However, DB2 does not use the value
of CURRENT SQLID as the authorization ID for dynamic SQL statements.

DB2 always uses the value of CURRENT SQLID as the qualifier for the
EXPLAIN output PLAN_TABLE.

v If the value of installation option USE FOR DYNAMICRULES is YES, DB2 uses
the application programming default values that were specified during installation
to parse and semantically verify dynamic SQL statements. If the value of USE for
DYNAMICRULES is NO, DB2 uses the precompiler options to parse and
semantically verify dynamic SQL statements. For a list of the application
programming defaults that USE FOR DYNAMICRULES affects, see Part 5 of
DB2 Application Programming and SQL Guide.

v GRANT, REVOKE, CREATE, ALTER, DROP, and RENAME statements cannot
be executed dynamically.

Table 37 shows the combination of DYNAMICRULES value and run-time
environment that yield each dynamic SQL behavior. Table 38 on page 135 shows
the dynamic SQL attribute values for each type of dynamic SQL behavior.

Table 37. How DYNAMICRULES and the run-time environment determine dynamic SQL statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Stand-alone program environment
User-defined function or stored
procedure environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Notes:

134 Administration Guide

1. The BIND and RUN values can be specified for packages and plans. The other
values can be specified only for packages.

Table 38. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Current SQLID User-defined
function or stored
procedure owner

Authorization ID of
invoker 1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

Current SQLID User-defined
function or stored
procedure owner

Authorization ID of
invoker

CURRENT SQLID 2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
DSNHDECP
parameter
DYNRULS 3

Install panel
DSNTIPF

Determined by
DSNHDECP
parameter
DYNRULS 3

Determined by
DSNHDECP
parameter
DYNRULS 3

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

Notes:

1. If the invoker is the primary authorization ID of the process or the CURRENT
SQLID value, secondary authorization IDs will also be checked if they are
needed for the required authorization. Otherwise, only one ID, the ID of the
invoker, is checked for the required authorization.

2. DB2 uses the value of CURRENT SQLID as the authorization ID for dynamic
SQL statements only for plans and packages that have DYNAMICRULES run
behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID
that is associated with each dynamic SQL behavior, as shown in this table.

The value to which CURRENT SQLID is initialized is independent of the
dynamic SQL behavior. For stand-alone programs, CURRENT SQLID is
initialized to the primary authorization ID. See DB2 Application Programming
and SQL Guide for information on initialization of CURRENT SQLID for
user-defined functions and stored procedures.

You can execute the SET CURRENT SQLID statement to change the value of
CURRENT SQLID for packages with any dynamic SQL behavior, but DB2 uses
the CURRENT SQLID value only for plans and packages with run behavior.

3. The value of DSNHDECP parameter DYNRULS, which you specify in field USE
FOR DYNAMICRULES in installation panel DSNTIPF, determines whether DB2
uses the precompiler options or the application programming defaults for
dynamic SQL statements. See Part 5 of DB2 Application Programming and SQL
Guide for more information.

Example of determining authorization IDs for dynamic SQL
statements in routines
Suppose that A is a stored procedure and C is a program that is neither a
user-defined function nor a stored procedure. Also suppose that subroutine B is
called by both stored procedure A and program C. Subroutine B, which is invoked
by a language call, is neither a user-defined function nor a stored procedure. AP is
the package that is associated with stored procedure A, and BP is the package that

Chapter 10. Controlling access to DB2 objects 135

is associated with subroutine B. A, B, and C execute as shown in Figure 10 .

Stored procedure A was defined by IDASP and is therefore owned by IDASP. The
stored procedure package AP was bound by IDA and is therefore owned by IDA.
Package BP was bound by IDB and is therefore owned by IDB. The authorization
ID under which EXEC SQL CALL A runs is IDD, the owner of plan DP.

The authorization ID under which dynamic SQL statements in package AP run is
determined in the following way:

v If package AP uses DYNAMICRULES bind behavior, the authorization ID for
dynamic SQL statements in package AP is IDA, the owner of package AP.

v If package AP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package AP is the value of CURRENT SQLID when
the statements execute.

v If package AP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package AP is IDASP, the definer (owner) of stored
procedure A.

v If package AP uses DYNAMICRULES invoke behavior, the authorization ID for
dynamic SQL statements in package AP is IDD, the invoker of stored procedure
A.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:

Program C

Program D

Package AP

Plan DP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Subroutine B

Call B(...) Call B(...)

Figure 10. Authorization for dynamic SQL statements in programs and routines

136 Administration Guide

v If package BP uses DYNAMICRULES bind behavior, the authorization ID for
dynamic SQL statements in package BP is IDB, the owner of package BP.

v If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior:

– When subroutine B is called by stored procedure A, the authorization ID for
dynamic SQL statements in package BP is IDASP, the definer of stored
procedure A.

– When subroutine B is called by program C:

- If package BP uses the DYNAMICRULES option DEFINERUN, DB2
executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option DEFINEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

v If package BP uses DYNAMICRULES invoke behavior:

– When subroutine B is called by stored procedure A, the authorization ID for
dynamic SQL statements in package BP is IDD, the authorization ID under
which EXEC SQL CALL A executed.

– When subroutine B is called by program C:

- If package BP uses the DYNAMICRULES option INVOKERUN, DB2
executes package BP using DYNAMICRULES run behavior, which means
that the authorization ID for dynamic SQL statements in package BP is the
value of CURRENT SQLID when the statements execute.

- If package BP uses the DYNAMICRULES option INVOKEBIND, DB2
executes package BP using DYNAMICRULES bind behavior, which means
that the authorization ID for dynamic SQL statements in package BP is IDB,
the owner of package BP.

Now suppose that B is a user-defined function, as shown in Figure 11 on page 138.

Chapter 10. Controlling access to DB2 objects 137

User-defined function B was defined by IDBUDF and is therefore owned by ID
IDBUDF. Stored procedure A invokes user-defined function B under authorization ID
IDA. Program C invokes user-defined function B under authorization ID IDC. In both
cases, the invoking SQL statement (EXEC SQL SELECT B) is static.

The authorization ID under which dynamic SQL statements in package BP run is
determined in the following way:

v If package BP uses DYNAMICRULES bind behavior, the authorization ID for
dynamic SQL statements in package BP is IDB, the owner of package BP.

v If package BP uses DYNAMICRULES run behavior, the authorization ID for
dynamic SQL statements in package BP is the value of CURRENT SQLID when
the statements execute.

v If package BP uses DYNAMICRULES define behavior, the authorization ID for
dynamic SQL statements in package BP is IDBUDF, the definer of user-defined
function B.

v If package BP uses DYNAMICRULES invoke behavior:

– When user-defined function B is invoked by stored procedure A, the
authorization ID for dynamic SQL statements in package BP is IDA, the
authorization ID under which B is invoked in stored procedure A.

– When user-defined function B is invoked by program C, the authorization ID
for dynamic SQL statements in package BP is IDC, the owner of package CP,
and is the authorization ID under which B is invoked in program C.

Program C

Program D

Package AP

Plan DP

Package CP

Package BP

Package owner: IDB
DYNAMICRULES(...)

Stored Procedure A

EXEC SQL CALL A(...)
(Authorization ID IDD)

Definer (owner): IDASP

Package owner: IDA
DYNAMICRULES(...)

Plan owner: IDD

Package
owner: IDC

User-defined
function B

UDF owner: IDBUDF

(Authorization ID IDA)

EXEC SQL
SELECT B(...)...

(Authorization ID IDC)

EXEC SQL
SELECT B(...)...

Figure 11. Authorization for dynamic SQL statements in programs and nested routines

138 Administration Guide

Simplifying authorization
You can simplify authorization in several ways. Make sure you do not violate any of
the authorization standards at your installation:

v Have the implementor bind the user-defined function package using
DYNAMICRULES define behavior. With this behavior in effect, DB2 only needs to
check one ID to execute dynamic SQL statements in the routine, the definer's,
rather than check the many different IDs that invoke the user-defined function.

v If you have many different routines, group those routines into schemas. Then,
grant EXECUTE on the routines in the schema to the appropriate users. Users
have execute authority on any functions you add to that schema. For example:
GRANT EXECUTE ON FUNCTION schemaname.* TO PUBLIC;

Composite privileges
An SQL statement can name more than one object; for example, a SELECT
operation can join two or more tables, or an INSERT can use a subquery. Those
operations require privileges on all the tables. You might be able to issue such a
statement dynamically even though one of your IDs alone does not have all the
required privileges.

If DYNAMICRULES run behavior is in effect when the dynamic statement is
prepared, it is validated if the set of your primary and all your secondary IDs has all
the needed privileges among them. If you embed the same statement in a host
program and try to bind it into a plan or package, the validation fails. The validation
also fails for the dynamic statement if DYNAMICRULES bind, define, or invoke
behavior is in effect when you issue the dynamic statement. In each case, all the
required privileges must be held by the single authorization ID, determined by
DYNAMICRULES behavior.

Multiple actions in one statement
A REBIND or FREE command can name more than one plan or package. If no
owner is named, the set of privileges associated with the primary and secondary
IDs must include the BIND privilege for each object. For example, suppose that
FREDDY has the BIND privilege on plan P1 and that REUBEN has the BIND
privilege on plan P2. Assume someone with FREDDY and REUBEN as secondary
authorization IDs issues the following command:
REBIND PLAN(P1,P2)

P1 and P2 are successfully rebound, even though neither FREDDY nor REUBEN
has the BIND privilege for both plans.

Some role models
The names of some authorities suggest job titles. For example, you might expect a
system administrator to have SYSADM authority. But not all organizations divide job
responsibilities in the same way. The table below lists some other common job
titles, the tasks that usually go with them, and the DB2 authorities or privileges that
are needed to carry out those tasks.

Table 39. Some common jobs, tasks, and required privileges

Job title Tasks Required privileges

System Operator Issues commands to start and stop DB2;
control traces; display databases and
threads; recover indoubt threads; start,
stop, and display routines.

SYSOPR authority.

Chapter 10. Controlling access to DB2 objects 139

Table 39. Some common jobs, tasks, and required privileges (continued)

Job title Tasks Required privileges

System Administrator Performs emergency backup, with access
to all data.

SYSADM authority.

Security Administrator Authorizes other users, for some or all
levels below.

SYSCTRL authority.

Database Administrator Designs, creates, loads, reorganizes, and
monitors databases, tables, and other
objects.

DBADM authority over a database; use of
storage groups and buffer pools.

System Programmer Installs a DB2 subsystem; recovers the
DB2 catalog; repairs data.

Installation SYSADM, which is assigned
when DB2 is installed. (Consider securing
the password for an ID with this authority
so that the authority is available only when
needed.)

Application Programmer Develops and tests DB2 application
programs; can create tables of test data.

BIND on existing plans or packages, or
BINDADD; CREATE IN on some
collections; privileges on some objects;
CREATETAB on some database, with a
default table space provided.

Production Binder Binds, rebinds, and frees application plans. BINDAGENT, granted by users with
BINDADD and CREATE IN privileges.

Package Administrator Manages collections and the packages in
them, and delegates the responsibilities.

PACKADM authority.

User Analyst Defines the data requirements for an
application program, by examining the DB2
catalog.

SELECT on the SYSTABLES,
SYSCOLUMNS, and SYSVIEWS catalog
tables. CREATETMTAB system privilege
to create created temporary tables.

Program End User Executes an application program. EXECUTE for the application plan.

Information Center
Consultant

Defines the data requirements for a query
user; provides the data by creating tables
and views, loading tables, and granting
access.

DBADM authority over some database;
SELECT on the SYSTABLES,
SYSCOLUMNS, and SYSVIEWS catalog
tables.

Query User Issues SQL statements to retrieve, add, or
change data. Can save results as tables or
in global temporary tables.

SELECT, INSERT, UPDATE, DELETE on
some tables and views; CREATETAB, to
create tables in other than the default
database; CREATETMTAB system
privilege to create temporary tables;
SELECT on SYSTABLES,
SYSCOLUMNS, or views thereof. QMF
provides the views.

Examples of granting and revoking privileges
The SQL GRANT statement lets you grant privileges explicitly. The REVOKE
statement lets you take them away. Only a privilege that has been specifically
granted can be revoked. (You can use either statement only if authorization
checking was enabled when DB2 was installed.)

You can grant and revoke privileges to and from a single ID, or you can name
several IDs on one statement. You can grant privileges to the ID PUBLIC, making
them available to all IDs at the local DB2, including the owner IDs of packages that
are bound from a remote location.

140 Administration Guide

When you grant any privilege to PUBLIC, DB2 catalog tables record the grantee of
the privilege as PUBLIC. Implicit table privileges are also granted to PUBLIC for
declared temporary tables. PUBLIC is a special identifier used by DB2 internally; do
not use PUBLIC as a primary or secondary authorization ID. When a privilege is
revoked from PUBLIC, authorization IDs to which the privilege was specifically
granted still retain the privilege.

The holding of other privileges can depend on privileges granted to PUBLIC. Then,
GRANTOR is listed as PUBLIC, as in the following examples:

v USER1 creates a table and grants ALL PRIVILEGES on it to PUBLIC. USER2
then creates a view on the table. In the catalog table SYSIBM.SYSTABAUTH,
GRANTOR is PUBLIC and GRANTEE is USER2. Creating the view requires the
SELECT privilege, which is held by PUBLIC. If PUBLIC loses the privilege, the
view is dropped.

v Another user binds a plan, PLAN1, whose program refers to the table that was
created in the previous example. In SYSTABAUTH, GRANTOR is PUBLIC,
GRANTEE is PLAN1, and GRANTEETYPE is P. Again, if PUBLIC loses its
privilege, the plan can be invalidated.

You can grant a specific privilege on one object in a single statement, you can grant
a list of privileges, and you can grant privileges over a list of objects. You can also
grant ALL, for all the privileges of accessing a single table, or for all privileges that
are associated with a specific package. If the same grantor grants access to the
same grantee more than once, without revoking it, DB2 ignores the duplicate grants
and keeps only one record in the catalog for the authorization. That suppression of
duplicate records applies not only to explicit grants, but also to the implicit grants of
privileges that are made when a package is created.

Granting privileges to remote users: A query that arrives at your local DB2
through the distributed data facility is accompanied by an authorization ID. That ID
can go through connection or sign-on processing when it arrives, can be translated
to another value, and can be associated with secondary authorization IDs. (For the
details of all those processes, see “Controlling requests from remote applications”
on page 176.)

The end result is that the query is associated with a set of IDs that is known to your
local DB2. How you assign privileges to those IDs is no different from how you
assign them to IDs that are associated with local queries.

You can grant a table privilege to any ID anywhere that uses DB2 private protocol
access to your data, by issuing:
GRANT privilege TO PUBLIC AT ALL LOCATIONS;

The privilege can be any table privilege except ALTER, INDEX, REFERENCES, or
TRIGGER.

If you grant to PUBLIC AT ALL LOCATIONS, the grantee is PUBLIC*. PUBLIC is a
special identifier used by DB2 internally; do not use PUBLIC* as a primary or
secondary authorization ID. When a privilege is revoked from PUBLIC AT ALL
LOCATIONS, authorization IDs to which the privilege was specifically granted still
retain the privilege.

There are, however, some differences in the privileges that a query using DB2
private protocol access can use:

Chapter 10. Controlling access to DB2 objects 141

#
#

#

#
#

#
#
#
#
#

v It cannot use privileges granted TO PUBLIC; it can use privileges granted TO
PUBLIC AT ALL LOCATIONS.

v It can exercise only the SELECT, INSERT, UPDATE, and DELETE privileges at
the remote location.

Those restrictions do not apply to queries run by a package bound at your local
DB2. Those queries can use any privilege granted to their associated IDs or any
privilege granted to PUBLIC.

Examples using GRANT
The scenario in this section illustrates the different types of grant statements. The
data in this scenario is not highly critical, because the focus is on GRANT rather
than on the broader topic of security.

Suppose that the Spiffy Computer Company wants to create a database to hold
information that is usually posted on hallway bulletin boards—things like notices of
upcoming holidays and bowling scores. The president of the Spiffy Computer
Company, Truly Spiffy, is a wonderful bowler with a great ego, and wants everyone
in the company to have access to her scores.

To create and maintain the tables and programs that are needed for this application,
the security plan provides for the roles shown in Figure 12.

Spiffy's system of privileges and authorities associates each role with an
authorization ID.

System administrator's privileges

Privileges: Ownership of SG1
Authority: SYSADM

User ID: ADMIN

The system administrator uses the ADMIN authorization ID, which has SYSADM
authority, to create a storage group (SG1) and issue the following statements:

1. GRANT PACKADM ON COLLECTION BOWLS TO PKA01 WITH GRANT OPTION;

This grants package privileges on all packages in the collection BOWLS, plus
the CREATE IN privilege on that collection to PKA01, who can also grant those
privileges to others.

2. GRANT CREATEDBA TO DBA01;

System administrator
ID: ADMIN

Package administrator
ID: PKA01

Database administrator
ID: PKA01

Application programmers
IDs: PGMR01, PGMR02

PGMR03

Production binder
ID: BINDER

Database controllers
IDs: DBUTIL1, DBUTIL2

Figure 12. Security plan for the Spiffy Computer Company. Lines connect the grantor of a
privilege or authority to the grantee.

142 Administration Guide

This grants the privilege to create a database and have DBADM authority over it
to DBA01.

3. GRANT USE OF STOGROUP SG1 TO DBA01 WITH GRANT OPTION;

This allows DBA01 to use storage group SG1 and to grant that privilege to
others.

4. GRANT USE OF BUFFERPOOL BP0, BP1 TO DBA01 WITH GRANT OPTION;

This allows DBA01 to use buffer pools BP0 and BP1 and to grant that privilege
to others.

Package administrator's privileges

Authority: PACKADM over the collection BOWLS
User ID: PKA01

The package administrator, PKA01, controls the binding of packages into collections
and can grant the CREATE IN privilege and the package privileges to others.

Database administrator's privileges

Privi leges: CREATEDBA
Use of SG1 with GRANT

Ownership of DB1
Use of BP0 and BP1 with GRANT

Authority: DBADM over DB1
User ID: DBA01

The database administrator, DBA01, using the CREATEDBA privilege, creates the
database DB1. Then DBA01 automatically has DBADM authority over the database.

Database controller's privileges

Authority: DBCTRL over DB1
User ID: DBUTIL1, DBUTIL2

The database administrator at Spiffy wants help running the COPY and RECOVER
utilities and therefore grants DBCTRL authority over database DB1 to DBUTIL1 and
DBUTIL2.

To do that, the database administrator issues the following statement:
GRANT DBCTRL ON DATABASE DB1 TO DBUTIL1, DBUTIL2;

Examples with secondary IDs
The examples that follow illustrate the use of secondary authorization IDs.

That means using RACF (or a similar external security system) to define user
groups and connect primary authorization IDs to them. The primary DB2
authorization ID is the user's RACF user ID, and the associated secondary
authorization IDs are the names of the groups to which the primary ID is connected.
DB2 privileges are then granted to the secondary IDs but might not be explicitly
granted to any primary ID.

This approach reduces the number of grants that are needed and associates
privileges with a functional ID, rather than an individual one. The functional ID can
remain in place until Spiffy redesigns its procedures. Individual IDs, which come

Chapter 10. Controlling access to DB2 objects 143

and go, can be connected to or disconnected from the group that exercises the
functional ID's privileges, without requiring new grants or revokes.

Application programmers' privileges
The database administrator at Spiffy wants several employees in the Software
Support department to create tables in the DB1 database and creates DEVGROUP
as a RACF group ID for this purpose. To make things simpler, the database
administrator decides that each CREATE TABLE statement should implicitly create
a unique table space for the table. Hence, DEVGROUP needs the CREATETAB
and CREATETS privileges, and the privileges to use the SG1 storage group and
one of the buffer pools, BP0, for the implicitly created table spaces. The following
figure shows this group and their privileges:

Use of BP0
Use of SG1
CREATETS on DB1
CREATETAB on DB1

Privileges: (All without GRANT)
RACF Group ID: DEVGROUP

The database administrator, DBA01, owns database DB1 and has the privileges to
use storage group SG1 and buffer pool BP0 (both with the GRANT option). The
database administrator issues the following statements:
1. GRANT CREATETAB, CREATETS ON DATABASE DB1 TO DEVGROUP;
2. GRANT USE OF STOGROUP SG1 TO DEVGROUP;
3. GRANT USE OF BUFFERPOOL BP0 TO DEVGROUP;

The system and database administrators at Spiffy still need to control the use of
those resources, so the statements above are issued without the GRANT option.

Three programmers in the Software Support department write and test a new
program, PROGRAM1. Their IDs are PGMR01, PGMR02, and PGMR03. Each one
needs to create test tables, use the SG1 storage group, and use one of the buffer
pools. However, all of those resources are controlled by DEVGROUP, which is a
RACF group ID.

Therefore, granting privileges over those resources specifically to PGMR01,
PGMR02, and PGMR03 is unnecessary. All that is needed is to connect each ID to
the RACF group DEVGROUP. (Assuming that the installed connection and sign-on
procedures allow secondary authorization IDs. For examples of RACF commands
that connect IDs to RACF groups, and for a description of the connection and
sign-on procedures, see “Chapter 12. Controlling access to a DB2 subsystem” on
page 169.)

The following figure shows this group and its members:

RACF group ID: DEVGROUP
Group members: PGMR01, PGMR02, PGMR03

The security administrator connects as many members as desired to the group
DEVGROUP. Each member can exercise all the privileges that are granted to the
group ID.

144 Administration Guide

Privileges for binding the plan
Three programmers can now share the tasks done by the ID DEVGROUP.
Someone creates a test table, DEVGROUP.T1, in database DB1 and loads it with
test data. Someone writes a program, PROGRAM1, to display bowling scores that
are contained in T1. Someone must bind the plan and packages that accompany
the program, and that requires an additional privilege. The following figure shows
the BINDADD privilege granted to the group:

Privilege: BINDADD
RACF group ID: DEVGROUP

ADMIN, who has SYSADM authority, grants the required privilege by issuing the
following statement:
GRANT BINDADD TO DEVGROUP;

With that privilege, any member of the RACF group DEVGROUP can bind plans
and packages that are to be owned by DEVGROUP. Any member of the group can
rebind a plan or package that is owned by DEVGROUP.

The Software Support department proceeds to create and test the program.

Moving PROGRAM1 into production
Spiffy has a different set of tables, containing actual data that is owned by another
group ID, PRODCTN. The program was written with unqualified table names; the
new packages and plan must refer to table PRODCTN.T1. To move the completed
program into production, someone must:
v Rebind the application plan with the owner PRODCTN.
v Rebind the packages into the collection BOWLS, again with the owner

PRODCTN.

Spiffy gives that job to a production binder, with the ID BINDER. BINDER needs
privileges to bind a plan or package that DEVGROUP owns, to bind a plan or
package with OWNER (PRODCTN), and to add a package to the collection
BOWLS. The following figure shows the privileges for BINDER:

BINDAGENT for PRODCTN
CREATE on BOWLS

Privileges: BINDAGENT for DEVGROUP
User ID: BINDER

Any member of the group DEVGROUP can grant the BINDAGENT privilege, by
using the statements below. Any member of PRODCTN can also grant the
BINDAGENT privilege, by using a similar set of statements.
1. SET CURRENT SQLID='DEVGROUP';
2. GRANT BINDAGENT TO BINDER;

The package administrator for BOWLS, PACKADM, can grant the CREATE privilege
with this statement:
GRANT CREATE ON COLLECTION BOWLS TO BINDER;

With the plan in place, the database administrator at Spiffy wants to make the
PROGRAM1 plan available to all employees by issuing the statement:
GRANT EXECUTE ON PLAN PROGRAM1 TO PUBLIC;

Chapter 10. Controlling access to DB2 objects 145

More than one ID has the authority or privileges necessary to issue this statement.
ADMIN has SYSADM authority and can grant the EXECUTE privilege. Or, PGMR01
can set CURRENT SQLID to PRODCTN, which owns PROGRAM1, and issue the
statement. When EXECUTE is granted to public, other IDs do not need any explicit
authority on T1; having the privilege of executing the plan is sufficient.

Finally, the plan to display bowling scores at Spiffy Computer Company is complete.
The production plan, PROGRAM1, is created, and all IDs have the authority to
execute the plan.

Spiffy’s approach to distributed data
Some time after the system and database administrators at Spiffy install their
security plan, Truly Spiffy tells them that other applications on other systems must
connect to the local DB2. She wants people at every location to be able to access
bowling scores through PROGRAM1 on the local system.

The solution is to:

1. Add a CONNECT statement to the program, naming the location at which table
PRODCTN.T1 resides. (In this case, the table and the package reside at only
the central location.)

2. Issue the statement: GRANT CREATE IN COLLECTION BOWLS TO DEVGROUP; (PKA01,
who has PACKADM authority, grants the required privileges to DEVGROUP by
issuing this statement.)

3. Bind the SQL statements in PROGRAM1 as a package.

After that is done, the package owner can issue the statement:
GRANT EXECUTE ON PACKAGE PROGRAM1 TO PUBLIC;

Any system that is connected to the original DB2 location can then run PROGRAM1
and execute the package, using DRDA access. (If the remote system is another
DB2, a plan must be bound there that includes the package in its package list.)

That solution, of course, is vastly simplified. Here the focus is on granting
appropriate privileges and authorities. In practice, you would also need to consider
questions like these:
v Is the performance of a remote query acceptable for this application?
v If other DBMSs are not DB2 subsystems, will the non-SQL portions of

PROGRAM1 run in their environments?

The REVOKE statement
An ID that has granted a privilege can revoke it by issuing the REVOKE statement:
REVOKE authorization-specification FROM auth-id

An ID with SYSADM or SYSCTRL authority can revoke a privilege that has been
granted by another ID with:
REVOKE authorization-specification FROM auth-id BY auth-id

The BY clause specifies the authorization ID that originally granted the privilege. If
two or more grantors grant the same privilege to an ID, executing a single REVOKE
statement does not remove the privilege. To remove it, each grant of the privilege
must be revoked.

The WITH GRANT OPTION clause of the GRANT statement allows an ID to pass
the granted privilege to others. If the privilege is removed from the ID, its deletion
can cascade to others, with side effects that are not immediately evident. When a

146 Administration Guide

privilege is removed from authorization ID X, it is also removed from any ID to
which X granted it, unless that ID also has the privilege from some other source.5

For example, suppose that DBA01 has granted DBCTRL authority with the GRANT
option on database DB1 to DBUTIL1, and DBUTIL1 has granted the CREATETAB
privilege on DB1 to PGMR01. If DBA01 revokes DBCTRL from DBUTIL1, PGMR01
loses the CREATETAB privilege. If PGMR01 also granted that to OPER1 and
OPER2, they also lose it. However, table T1, which PGMR01 created while enjoying
the CREATETAB privilege, is not dropped, and the privileges that PGMR01 has or
granted as its owner are not deleted. If PGMR01 granted SELECT on T1 to
OPER1, the validity of that grant rests on PGMR01's ownership of the table. Even
when the privilege of creating the table is revoked, the table remains, the privilege
remains, and OPER1 can still access T1.

Privileges granted from two or more IDs
In addition to the CREATETAB privilege that is granted by DBUTIL1, suppose
DBUTIL2 also granted the CREATETAB privilege to PGMR01. The action is
recorded in the catalog, with its date and time, but it has no other effect until the
grant from DBUTIL1 to PGMR01 is revoked. Then it is necessary to determine by
what authority PGMR01 granted CREATETAB to OPER1 and the others. Figure 13
diagrams the situation; arrows represent the granting of the CREATETAB privilege.

As in the diagram, suppose that DBUTIL1 and DBUTIL2 at Time 1 and Time 2,
respectively, each issue this statement:
GRANT CREATETAB ON DATABASE DB1 TO PGMR01 WITH GRANT OPTION;

At Time 3, PGMR01 grants the privilege to OPER1. Later, DBUTIL1's authority is
revoked, or perhaps DBUTIL1 explicitly revokes the CREATETAB privilege from
PGMR01. PGMR01 has the privilege also from DBUTIL2, and does not lose it.
Does OPER1 lose the privilege?

v If Time 3 is later than Time 2, OPER1 does not lose the privilege. The recorded
dates and times show that, at Time 3, PGMR01 could have granted the privilege
entirely on the basis of the privilege that was granted by DBUTIL2. That privilege
was not revoked.

v If Time 3 is earlier than Time 2, OPER1 does lose the privilege. The recorded
dates and times show that, at Time 3, PGMR01 could only have granted the
privilege on the basis of the privilege that was granted by DBUTIL1. That
privilege was revoked, so the privileges dependent on it are also revoked.

Revoking privileges granted by other IDs
An ID with SYSADM or SYSCTRL authority can revoke privileges that are granted
by other IDs.

To revoke the CREATETAB privilege on database DB1 from PGMR01 entirely, use:

5. DB2 does not cascade a revoke of SYSADM authority from the installation SYSADM authorization IDs.

DBUTIL2

Time 2

Time 3Time 1
DBUTIL1 PGMR01 OPER1

Figure 13. Authorization granted by two or more IDs

Chapter 10. Controlling access to DB2 objects 147

REVOKE CREATETAB ON DATABASE DB1 FROM PGMR01 BY ALL;

To revoke privileges that are granted by DBUTIL1 and to leave intact the same
privileges if they were granted by any other ID, use:
REVOKE CREATETAB, CREATETS ON DATABASE DB1 FROM PGMR01 BY DBUTIL1;

Restricting revocation of privileges
The RESTRICT clause of the REVOKE statement applies to user-defined functions,
JARS (Java classes for a routine), stored procedures, and distinct types.
RESTRICT must be specified to either:

v Revoke the EXECUTE privilege on a user-defined function, JAR, or stored
procedure

v Revoke the USAGE privilege on a distinct type

When an attempt is made to revoke one of these privileges, DB2 determines
whether the revokee owns an object that is dependent on the privilege. If such a
dependency exists, the revoke proceeds only if the revokee also holds this privilege
from another source (grantor) or holds this privilege indirectly (such as if PUBLIC
has this privilege, or if the revokee has SYSADM authority).

For example, consider this scenario.
v UserA creates a user-defined function, UserA.UDFA.
v UserA grants EXECUTE on UserA.UDFA to UserB.
v User B then creates a user-defined function UserB.UDFB that is sourced on

UserA.UDFA.

At this point, if UserA attempts to revoke EXECUTE on UserA.UDFA from UserB,
the revoke fails with an accompanying message indicating that a dependency exists
on this privilege. If, however, UserB had the EXECUTE privilege on UserA.UDFA
from another source, directly or indirectly, the EXECUTE privilege that was granted
by UserA is revoked successfully.

The objects that are owned by the revokee that can have dependencies on distinct
type, JARS (Java classes for a routine), user-defined function, or stored procedure
privileges are as follows.

For distinct types:
v A table that has a column that is defined as a distinct type
v A user-defined function that has a parameter that is defined as a distinct type
v A stored procedure that has a parameter that is defined as a distinct type

For user-defined functions:
v Another user-defined function that is sourced on the user-defined function
v A view that uses the user-defined function
v A table that uses the user-defined function in a check constraint or user-defined

default clause
v A trigger package that uses the user-defined function

For JAR (Java classes for a routine):
v A Java user-defined function that uses a JAR
v A Java stored procedure that uses a JAR

For stored procedures, a trigger package that refers to the stored procedure in a
CALL statement

148 Administration Guide

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|

Another way for the revoke to succeed is to drop the object that has a dependency
on the privilege. To determine which objects are dependent on which privileges
before attempting the revoke, use the following SELECT statements.

For a distinct type:

v List all tables owned by the revokee USRT002 that contain columns that use the
distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSCOLUMNS WHERE

TBCREATOR = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
COLTYPE = 'DISTINCT';

v List the user-defined functions owned by the revokee USRT002 that contain a
parameter defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
ROUTINETYPE = 'F';

v List the stored procedures that are owned by the revokee USRT002 that contain
a parameter defined as distinct type USRT001.UDT1:
SELECT * FROM SYSIBM.SYSPARMS WHERE

OWNER = 'USRT002' AND
TYPESCHEMA = 'USRT001' AND
TYPENAME = 'UDT1' AND
ROUTINETYPE = 'P';

For a user-defined function:

v List the user-defined functions that are owned by the revokee USRT002 that are
sourced on user-defined function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = 'USRTOO2' AND
SOURCESCHEMA = 'USRTOO1' AND
SOURCESPECIFIC = 'SPECUDF1' AND
ROUTINETYPE = 'F';

v List the views that are owned by the revokee USRT002 that use user-defined
function USRT001.SPECUDF1:
SELECT * FROM SYSIBM.SYSVIEWDEP WHERE

DCREATOR = 'USRTOO2' AND
BSCHEMA = 'USRT001' AND
BNAME = 'SPECUDF1' AND
BTYPE = 'F';

v List the tables that are owned by the revokee USRT002 that use user-defined
function USRT001.A_INTEGER in a check constraint or user-defined default
clause:
SELECT * FROM SYSIBM.SYSCONSTDEP WHERE

DTBCREATOR = 'USRT002' AND
BSCHEMA = 'USRT001' AND
BNAME = 'A_INTEGER' AND
BTYPE = 'F';

v List the trigger packages that are owned by the revokee USRT002 that use
user-defined function USRT001.UDF4:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = 'USRT002' AND
BQUALIFIER = 'USRT001' AND
BNAME = 'UDF4' AND
BTYPE = 'F';

Chapter 10. Controlling access to DB2 objects 149

For a JAR (Java class for a routine):

List the routines owned by the revokee USRT002 that use a JAR named
USRT001.SPJAR:
SELECT * FROM SYSIBM.SYSROUTINES WHERE

OWNER = 'USRT002' AND
JARCHEMA = 'USRT001' AND
JAR_ID = 'SPJAR';

For a stored procedure that is used in a trigger package:

List the trigger packages that refer to the stored procedure USRT001.WLMOCN2
that is owned by the revokee USRT002:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE

DOWNER = 'USRT002' AND
BQUALIFIER = 'USRT001' AND
BNAME = 'WLMLOCN2' AND
BTYPE = 'O';

Other implications of the REVOKE statement
View deletion: If a table privilege is revoked from the owner of a view on the table,
the corresponding privilege on the view is revoked. The privilege is revoked not only
from the owner of the view, but also from all other IDs to which the privilege was
granted. If the SELECT privilege on the base table is revoked from the owner of the
view, the view is dropped. However, if another grantor granted the SELECT
privilege to the view owner before the view was created, the view is not dropped.
For example, suppose OPER2 has the SELECT and INSERT privileges on table T1
and creates a view of the table. If the INSERT privilege on T1 is revoked from
OPER2, all insert privileges on the view are revoked.If the SELECT privilege on T1
is revoked from OPER2, and if OPER2 did not have the SELECT privilege from
another grantor before the view was created, the view is dropped.

If a view uses a user-defined function, the view owner must have the EXECUTE
privilege on the function. If the EXECUTE privilege is revoked, the revoke fails,
because the view is using the privilege, and the RESTRICT clause prevents the
attempt to revoke the privilege.

Views created by SYSADM: An authorization ID with SYSADM authority to create
a view for another authorization ID. In this case, the view could have both a creator
and an owner. The owner is automatically given the SELECT privilege on the view.
However, the privilege on the base table determines whether the view is dropped.
For example, suppose that IDADM, with SYSADM authority, creates a view on
TABLX with OPER as the owner. OPER now has the SELECT privilege on the view,
but not necessarily any privileges on the base table. If SYSADM is revoked from
IDADM so that the SELECT privilege on TABLX is gone, the view is dropped.

If one ID creates a view for another, the catalog table SYSIBM.SYSTABAUTH might
need two rows to record the fact, as follows:

v If IDADM creates a view for OPER when OPER has enough privileges to create
the view by itself, only one row is inserted in SYSTABAUTH. The row shows only
that OPER granted the required privileges.

v If IDADM creates a view for OPER when OPER does not have enough privileges
to create the view by itself, two rows are inserted in SYSTABAUTH. One row
shows IDADM as GRANTOR and OPER as GRANTEE of the SELECT privilege.
The other row shows any other privileges that OPER might have on the view
because of privileges that are held on the base table.

150 Administration Guide

|

|
|

|
|
|
|

|

Invalidated and inoperative application plans and packages: If the owner of an
application plan or package loses a privilege that is required by the plan or
package, and the owner does not have that privilege from another source, DB2
invalidates the plan or package. For example, suppose OPER2 has the SELECT
and INSERT privileges on table T1 and creates a plan that uses SELECT, but not
INSERT. If the SELECT privilege is revoked, DB2 invalidates the plan. If the
INSERT privilege is revoked, the plan is unaffected. If the revoked privilege was
EXECUTE on a user-defined function, DB2 marks the plan or package inoperative
instead of invalid.

Implications for caching: If authorization data is cached for packages, a revoke of
EXECUTE authority on the package from an ID causes that ID to be removed from
the cache.

Similarly, if authorization data is cached for routines, a revoke or cascaded revoke
of EXECUTE authority on a routine, or on all routines in a schema (schema.*), from
any ID causes the ID to be removed from the cache.

If authorization data is cached for plans, a revoke of EXECUTE authority on the
plan from any ID causes the authorization cache to be invalidated.

If an application is caching dynamic SQL statements, and a privilege is revoked that
was needed when the statement was originally prepared and cached, that
statement is removed from the cache. Subsequent PREPARE requests for that
statement do not find it in the cache and therefore execute a full PREPARE. If the
plan or package is bound with KEEPDYNAMIC(YES), which means the application
does not need to explicitly re-prepare the statement after a commit operation, you
might get an error on an OPEN, DESCRIBE, or EXECUTE of that statement
following the next commit operation. The error can occur because a prepare
operation is performed implicitly by DB2. If you no longer have sufficient authority
for the prepare, the OPEN, DESCRIBE, or EXECUTE request fails.

Revoking SYSADM from install SYSADM: If you REVOKE SYSADM from the
install SYSADM user ID, DB2 does not cascade the revoke. You can therefore
change the install SYSADM user ID or delete extraneous SYSADM user IDs. To
change the Install SYSADM user ID:

1. Select the new Install SYSADM user ID.

2. GRANT it SYSADM authority.

3. REVOKE SYSADM authority from the old Install SYSADM user ID.

4. Update the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

To delete an extraneous SYSADM user ID:

1. Write down the current Install SYSADM.

2. Make the SYSADM user ID you want to delete an Install SYSADM ID, by
updating the SYSTEM ADMIN 1 or 2 field on installation panel DSNTIPP.

3. REVOKE SYSADM authority from the user ID using another SYSADM user ID.

4. Change the Install SYSADM user ID back to its original value.

Chapter 10. Controlling access to DB2 objects 151

Finding catalog information about privileges
The following catalog tables contain information about the privileges that IDs can
hold:

Table 40. Privileges information in DB2 catalog tables

Table name Records privileges held for

SYSIBM.SYSCOLAUTH Updating columns

SYSIBM.SYSDBAUTH Databases

SYSIBM.SYSPLANAUTH Plans

SYSIBM.SYSPACKAUTH Packages

SYSIBM.SYSRESAUTH Buffer pools, storage groups, collections,
table spaces, JARS, and distinct types

SYSIBM.SYSROUTINEAUTH User-defined functions and stored procedures

SYSIBM.SYSSCHEMAAUTH Schemas

SYSIBM.SYSTABAUTH Tables and views

SYSIBM.SYSUSERAUTH System authorities

For descriptions of the columns of each table, see Appendix D of DB2 SQL
Reference.

Retrieving information in the catalog
You can query the DB2 catalog tables by using SQL SELECT statements.
Executing those statements requires appropriate privileges and authorities, and you
can control access to the catalog by granting and revoking those privileges and
authorities. For suggestions about securing the catalog, see “Using views of the
DB2 catalog tables” on page 155.

The following examples suggest some of the information you can get from the DB2
catalog.

Retrieving all DB2 authorization IDs with granted privileges
Some of the catalog tables listed above include columns named GRANTEE and
GRANTEETYPE. If GRANTEETYPE is blank, the value of GRANTEE is an ID that
has been granted a privilege. No single catalog table contains information about all
privileges. However, to retrieve all IDs with privileges, you can issue the following
SQL statements:
SELECT GRANTEE, 'PACKAGE ' FROM SYSIBM.SYSPACKAUTH
WHERE GRANTEETYPE = ' ' UNION

SELECT GRANTEE, 'TABLE ' FROM SYSIBM.SYSTABAUTH
WHERE GRANTEETYPE = ' ' UNION
SELECT GRANTEE, 'COLUMN ' FROM SYSIBM.SYSCOLAUTH
WHERE GRANTEETYPE = ' ' UNION
SELECT GRANTEE, 'ROUTINE ' FROM SYSIBM.SYSROUTINEAUTH

WHERE GRANTEETYPE = ' ' UNION
SELECT GRANTEE, 'PLAN ' FROM SYSIBM.SYSPLANAUTH

UNION
SELECT GRANTEE, 'SYSTEM ' FROM SYSIBM.SYSUSERAUTH

UNION
SELECT GRANTEE, 'DATABASE' FROM SYSIBM.SYSDBAUTH

UNION
SELECT GRANTEE, 'SCHEMA ' FROM SYSIBM.SYSSCHEMAAUTH

UNION
SELECT GRANTEE, 'USE ' FROM SYSIBM.SYSRESAUTH;

152 Administration Guide

||
|

Periodically, you should compare the list of IDs that is retrieved by these statements
with lists of users from subsystems that connect to DB2—such as IMS, CICS, and
TSO—and with lists of RACF groups and lists of users from other DBMSs that
access your DB2. If DB2 lists IDs that do not exist elsewhere, you should revoke
their privileges.

Retrieving multiple grants of the same authorization
If several grantors grant the same privilege to the same grantee, the catalog can
become cluttered with similar data. This might cause poor performance. (DB2 does
not keep duplicate records of the same privilege granted to the same grantee by
the same grantor.) However, you might want authority granted from several different
IDs. For example, you might want an ID to retain a privilege that is revoked by just
one of the sources that granted it.

The following SQL statement retrieves duplicate grants on plans. If multiple grants
clutter your catalog, examine the output from a query like this one, starting at the
top with the most frequent grants.
SELECT GRANTEE, NAME, COUNT(*)

FROM SYSIBM.SYSPLANAUTH
GROUP BY GRANTEE, NAME
HAVING COUNT(*) > 2
ORDER BY 3 DESC;

Similar statements for other catalog tables can retrieve information about multiple
grants on other types of objects.

Retrieving all IDs with DBADM authority
To retrieve all IDs that have DBADM authority, issue:
SELECT DISTINCT GRANTEE

FROM SYSIBM.SYSDBAUTH
WHERE DBADMAUTH <>' ' AND GRANTEETYPE = ' ';

Retrieving IDs authorized to access a table
To retrieve all IDs that are explicitly authorized to access the employee table
(DSN8710.EMP in database DSN8D71A), issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN8710'
AND GRANTEETYPE = ' ';

To find out who can change the employee table, issue the following statement. It
retrieves IDs with administrative authorities, as well as IDs to which authority is
explicitly granted.
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE TTNAME = 'EMP' AND TCREATOR = 'DSN8710' AND
GRANTEETYPE = ' ' AND

(ALTERAUTH <> ' ' OR
DELETEAUTH <> ' ' OR
INSERTAUTH <> ' ' OR
UPDATEAUTH <> ' ')

UNION
SELECT GRANTEE FROM SYSIBM.SYSUSERAUTH

WHERE SYSADMAUTH <> ' '
UNION
SELECT GRANTEE FROM SYSIBM.SYSDBAUTH

WHERE DBADMAUTH <> ' ' AND NAME = 'DSN8D71A';

To retrieve the columns of DSN8710.EMP for which update privileges have been
granted on a specific set of columns, issue the following statement:

Chapter 10. Controlling access to DB2 objects 153

SELECT DISTINCT COLNAME, GRANTEE, GRANTEETYPE FROM SYSIBM.SYSCOLAUTH
WHERE CREATOR='DSN8710' AND TNAME='EMP'
ORDER BY COLNAME;

The character in the GRANTEETYPE column shows whether the privileges have
been granted to an authorization ID (blank) or are used by an application plan or
package (P).

To retrieve the IDs that have been granted the privilege of updating one or more
columns of DSN8710.EMP, issue the following statement:
SELECT DISTINCT GRANTEE

FROM SYSIBM.SYSTABAUTH
WHERE TTNAME = 'EMP' AND TCREATOR='DSN8710' AND GRANTEETYPE=' '
AND UPDATEAUTH <> ' ';

The query returns only the IDs to which update privileges have been specifically
granted. It does not return those who have the privilege because of SYSADM or
DBADM authority. You could include them by forming the union with another query.

Retrieving IDs authorized to access a routine
To retrieve the IDs that are authorized to access stored procedure PROCA in
schema SCHEMA1, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSROUTINEAUTH

WHERE SPECIFICNAME='PROCA' AND SCHEMA='SCHEMA1' AND GRANTEETYPE=' '
AND ROUTINETYPE ='P';

You can write a similar statement to retrieve the IDs that are authorized to access a
user-defined function. In this case, the value for ROUTINETYPE is 'F'.

Retrieving the tables an ID is authorized to access
To retrieve the list of tables and views that PGMR001 can access, issue the
following statement:
SELECT DISTINCT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH

WHERE GRANTEE = 'PGMR001' AND GRANTEETYPE =' ';

To retrieve the tables, views, and aliases that PGMR001 owns, issue the following
statement:
SELECT NAME FROM SYSIBM.SYSTABLES

WHERE CREATOR = 'PGMR001';

Retrieving the plans and packages that access a table
To retrieve the names of application plans and packages that refer to table
DSN8710.EMP directly, issue the following statement:
SELECT DISTINCT GRANTEE FROM SYSIBM.SYSTABAUTH

WHERE GRANTEETYPE = 'P' AND
TCREATOR = 'DSN8710' AND
TTNAME = 'EMP';

A plan or package can refer to the table indirectly, through a view. To find all views
that refer to the table, query SYSIBM.SYSVIEWDEP. Then find all plans and
packages that refer to those views by issuing statements like the one above.

The query above does not distinguish between plans and packages. To identify a
package, use the COLLECTION column of table SYSTABAUTH, which names the
collection a package resides in and is blank for a plan.

154 Administration Guide

Using views of the DB2 catalog tables
Only an ID with SYSADM or SYSCTRL authority automatically has the privilege of
retrieving data from catalog tables. If you do not want to grant the SELECT privilege
on all catalog tables to PUBLIC, consider using views to let each ID retrieve
information about its own privileges.

For example, the following view includes the owner and the name of every table on
which a user's primary authorization ID has the SELECT privilege:
CREATE VIEW MYSELECTS AS

SELECT TCREATOR, TTNAME FROM SYSIBM.SYSTABAUTH
WHERE SELECTAUTH <> ' ' AND GRANTEETYPE = ' ' AND

GRANTEE IN (USER, 'PUBLIC', 'PUBLIC*', CURRENT SQLID);

The keyword USER in that statement is equal to the value of the primary
authorization ID. To include tables that can be read by a secondary ID, set the
current SQLID to that secondary ID before querying the view.

To make the view available to every ID, issue:
GRANT SELECT ON MYSELECTS TO PUBLIC;

Similar views can show other privileges. This one shows privileges over columns:
CREATE VIEW MYCOLS (OWNER, TNAME, CNAME, REMARKS, LABEL)
AS SELECT DISTINCT TBCREATOR, TBNAME, NAME, REMARKS, LABEL
FROM SYSIBM.SYSCOLUMNS, SYSIBM.SYSTABAUTH
WHERE TCREATOR = TBCREATOR AND TTNAME = TBNAME AND GRANTEETYPE = ' '

AND GRANTEE IN (USER,'PUBLIC',CURRENT SQLID,'PUBLIC*');

Chapter 10. Controlling access to DB2 objects 155

156 Administration Guide

Chapter 11. Controlling access through a closed application

A closed application is an application that requires DB2 objects to be managed
solely through external interfaces. As an example, consider an application process
that uses DB2 as a repository for changing data. The process does not merely write
to and read from a fixed set of tables; it must also create, alter, and drop tables,
and perhaps other objects, to deal with new data formats. Normally, a database
administrator would have the privileges needed to do those operations at any time,
but now the operations must be done only through a specific application. The
application is “closed” because it requires exclusive control over data definition
statements for some set of objects.

If you install data definition control support on installation panel DSNTIPZ, you can
control how specific plans or package collections can use those statements.
Figure 14 lists the specific statements that are controlled. In this chapter, those
statements are referred to as “data definition language”, or “DDL”.

The control does not avoid existing authorization checks; it does impose additional
constraints. You register plans and package collections in a special table, and you
register the objects that the plans and collections that are associated with another
table. DB2 then consults those two registration tables before accepting a given DDL
statement from a process. If the registration tables indicate that the particular
process is not allowed to create, alter, or drop that particular object, DB2 does not
allow it.

This chapter tells how to impose several degrees of control over applications and
objects; see “Controlling data definition”.

If you choose to impose those controls, you have two tables to manage: the
application registration table (ART) and the object registration table (ORT). For
instructions, see “Managing the registration tables and their indexes” on page 164.

Controlling data definition
You can control the use of data definition language through several installation
options and entries in two special tables, the ART and the ORT. In those tables, you
register the names of plans and package collections that make up an application
and the names of the objects whose data definition they control. First, you choose
installation options to make any use of data definition control; see “Required
installation options” on page 158. The next sections illustrate the use of installation
options and the registration tables for the following situations:

v Control by application name

– Registered applications have total control over all DDL in the DB2 subsystem.
See “Controlling by application name” on page 158.

CREATE ALIAS DROP ALIAS COMMENT ON
CREATE DATABASE ALTER DATABASE DROP DATABASE LABEL ON
CREATE INDEX ALTER INDEX DROP INDEX
CREATE STOGROUP ALTER STOGROUP DROP STOGROUP
CREATE SYNONYM DROP SYNONYM
CREATE TABLE ALTER TABLE DROP TABLE
CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE
CREATE VIEW DROP VIEW

Figure 14. Statements controlled by data definition control support

© Copyright IBM Corp. 1982, 2001 157

– Registered applications have total control with some exceptions. See
“Controlling by application name with exceptions” on page 160.

v Control by object name

– All objects in the system are registered and controlled by name. See
“Controlling by object name” on page 162.

– Some specific objects are registered and controlled. DDL is accepted for
objects that are not registered. See “Controlling by object name with
exceptions” on page 163.

The names in some columns in the ART and ORT can be represented by patterns
that use the percent sign (%) and the underscore (_) characters. “Using name
patterns” on page 159 tells you how to do this.

Required installation options
To use the ART and ORT, you must install data definition control support by
entering YES for the first option as follows:
1 INSTALL DD CONTROL SUPT. ===> YES

Also on panel DSNTIPZ, choose the names for the registration tables in your DB2
subsystem, their owners, and the databases they reside in. You can accept the
default names or assign names of your own. The default names are as follows:
6 REGISTRATION OWNER ===> DSNRGCOL
7 REGISTRATION DATABASE ===> DSNRGFDB
8 APPL REGISTRATION TABLE ===> DSN_REGISTER_APPL
9 OBJT REGISTRATION TABLE ===> DSN_REGISTER_OBJT

This chapter uses these default names. If you specify different table names, each
name can have a maximum of 17 characters.

Four other options on installation panel DSNTIPZ, which are described later in this
chapter, determine how DDL statements are controlled:
2 CONTROL ALL APPLICATIONS ===>
3 REQUIRE FULL NAMES ===>
4 UNREGISTERED DDL DEFAULT ===>
5 ART/ORT ESCAPE CHARACTER ===>

Controlling by application name
The simplest use of data definition control is to give one or more applications total
control over the use of DDL in the system. To do that:

1. When installing DB2, choose to control all applications. On panel DSNTIPZ,
specify:
CONTROL ALL APPLICATIONS ===> YES

That choice allows only package collections or plans that are registered in the
ART to use DDL statements. (This case, then, does not require any use of the
ORT.)

2. Register, in the ART, all package collections that you allow to issue DDL
statements, using the value Y in column DEFAULTAPPL. If a plan is to issue
DDL statements that are not bound to a package, register the plan name. You
must supply values for at least the following columns:

Column name Description

APPLIDENT Collection-ID of the package that is executing the DDL or, if no
package exists, the name of the plan that is executing the DDL

158 Administration Guide

APPLIDENTTYPE
Type of item named by APPLIDENT:
P Application plan
C Package collection

DEFAULTAPPL
Indicates whether the plan or package collection named by
APPLIDENT can use DDL. Enter Y (Yes); the default is N (No).

(You can enter information in other columns for your own use. For a complete
description of the table, see “Columns of the ART” on page 164.)

Example: Suppose you want all DDL in your system to be issued only through
certain applications. The applications are identified by:
1. PLANA, the name of an application plan
2. PACKB, a package collection-ID
3. TRULY%, a pattern for any plan name beginning with TRULY
4. TR%, a pattern for any plan name beginning with TR

Table 41 shows the entries you need in your ART.

Table 41. Table DSN_REGISTER_APPL for total system control
APPLIDENT APPLIDENTTYPE DEFAULTAPPL
PLANA P Y
PACKB C Y
TRULY% P Y
TR% P N

Using name patterns: DB2 accepts two pattern characters:
v The percent sign (%), to represent zero or more characters
v The underscore character (_), to represent a single character

Patterns are used here much as they are in the SQL LIKE predicate described in
Chapter 2 of DB2 SQL Reference. However, the one difference is that blanks
following a pattern character are not significant. DB2 treats 'A% ' the same as 'A%'.

The escape character: If you want the percent or underscore character to be
treated as a character, specify an escape character for option 5 on installation panel
DSNTIPZ. The escape character can be any special character, except underscore
(_) or percent (%). For example, to use the pound sign (#), specify:
5 ART/ORT ESCAPE CHARACTER ===> #

With that specification, the pound sign can be used in names in the same way as
an escape character is used in an SQL LIKE predicate.

An inactive table entry: If the row with TR% for APPLIDENT in Table 41 originally
contains the value Y for DEFAULTAPPL, any plan with a name beginning with TR
can execute DDL. Then if DEFAULTAPPL is changed to N to disallow that use, the
changed row does not prevent plans beginning with TR from using DDL; the row
merely fails to allow that use. (When the table is checked, that row is ignored.)
Hence, the plan TRULYXYZ is allowed to use DDL, by the row with APPLIDENT
TRULY%.

Chapter 11. Controlling access through a closed application 159

Controlling by application name with exceptions
In this situation, you want to give one or more applications almost total control over
DDL. You reserve only a few objects that are to be created, altered, or dropped by
other applications. To do that:

1. When installing DB2, choose not to control all applications. On panel DSNTIPZ,
specify:
CONTROL ALL APPLICATIONS ===> NO

That choice allows unregistered applications to use DDL statements. The ORT
determines restrictions that apply to that use.

2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> APPL

That choice restricts the use of DDL statements for objects that are not
registered in the ORT: only registered applications can use DDL for unregistered
objects. Hence, the registered applications retain almost total control; only
registered objects are possible exceptions.

3. In the ORT, register all objects that are exceptions to the system DDL control.
You must supply values for at least the following columns:

Column name Description

QUALIFIER Qualifier for the object name

NAME Simple name of the object

TYPE Type of named object:
C Table, view, index, synonym, or alias
D Database
T Table space
S Storage group

APPLMATCHREQ
Indicates whether only the application named in APPLIDENT
can use DDL for this object: Y (Yes) or N (No)

APPLIDENT Collection-ID of the package that can have exclusive control
over DDL for this object or, if no package exists, the name of
the plan that can have exclusive control

APPLIDENTTYPE
Type of item named by APPLIDENT:
P Application plan
C Package collection

(You can enter information in other columns for your own use. For a complete
description of the table, see “Columns of the ORT” on page 165.)

Example: Suppose that you want almost all DDL in your system to be issued only
through certain applications, known by an application plan (PLANA), a package
collection (PACKB), and a pattern for plan names (TRULY%). However, you also
want these specific exceptions:

The ART remains as in Table 41 on page 159; PLANA and PACKB have total
system control (but with exceptions). Table 42 on page 161 shows the entries that
are needed to register those exceptions in the ORT.

160 Administration Guide

Table 42. Table DSN_REGISTER_OBJT for system control with exceptions
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE
KIM 1 VIEW1 C Y PLANC P
BOB 2 ALIAS C Y PACKD C
FENG 3 TABLE2 C N
SPIFFY 4 MSTR_ C Y TRULY% P

Notes:

1. Requires an application match for the object KIM.VIEW1: the view can be
created, altered, or dropped only by the application plan PLANC.

2. Specifies that BOB.ALIAS can be created, altered, or dropped only by the
package collection PACKD.

3. Requires no application match for FENG.TABLE2: the object can be created,
altered, or dropped by any plan or package collection.

4. The fourth entry requires only a pattern match; the object SPIFFY.MSTRA, for
example, can be created, altered, or dropped by plan TRULYJKL.

Registering sets of objects
Complete two-part names are not required for every object that is registered in the
ORT. To use incomplete names, on installation panel DSNTIPZ specify:
3 REQUIRE FULL NAMES ===> NO

The default value, YES, requires you to use both parts of the name of each
registered object. With the value NO, an incomplete name in the ORT represents a
set of objects that all share the same value for one part of a two-part name. Objects
that are represented by incomplete names in the ORT need an authorizing entry in
the ART.

The entries shown in Table 43 can be added to Table 42 when NO is specified:

Table 43. Table DSN_REGISTER_OBJT for objects with incomplete names
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

TABA C Y PLANX P
TABB C Y PACKY C

SYSADM C N
DBSYSADM T N
USER1 TABLEX C N

The first two entries record two sets of objects, *.TABA and *.TABB, which are
controlled by PLANX and PACKY, respectively. That is, only PLANX can create,
alter, or drop any object whose name is qual.TABA, where qual is any appropriate
qualifier. Only PACKY can create, alter, or drop any object whose name is
qual.TABB. PLANX and PACKY must also be registered in the ART with
QUALIFIEROK set to Y, as shown in Table 44 on page 162. That allows the
applications to use sets of objects that are registered in the ORT with an incomplete
name.

The next two new entries in the ORT record:
1. Tables, views, indexes, or aliases with names like SYSADM.*
2. Table spaces with names like DBSYSADM.*; that is, table spaces in database

DBSYSADM

Chapter 11. Controlling access through a closed application 161

The last entry in the ORT allows two kinds of incomplete names: table names like
USER1.* and table names like *.TABLEX.

ART entries for objects with incomplete names in the ORT: Objects having
names like those patterns can be created, altered, or dropped by any package
collection or application plan, because APPLMATCHREQ = N. However, the
collection or plan that creates, alters, or drops such an object must be registered in
the ART with QUALIFIEROK=Y, to allow it to use incomplete object names.

Table 44 shows PLANA and PACKB registered in the ART to use sets of objects
that are registered in the ORT with incomplete names.

Table 44. Table DSN_REGISTER_APPL for plans that use sets of objects
APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK
PLANA P N Y
PACKB C N Y

Controlling by object name
In this situation, you want each of several applications to control a specific set of
objects, and you want no unregistered objects in the system. You do allow some
registered objects that are not controlled by specific applications. To accomplish
that:

1. When installing DB2, choose not to control all applications, as in “Controlling by
application name with exceptions” on page 160. On panel DSNTIPZ, specify:
CONTROL ALL APPLICATIONS ===> NO

2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> REJECT

That option totally restricts the use of DDL statements for objects that are not
registered in the ORT: no application can create, or use any DDL, for any
unregistered object. (This case, then, might not require any use of the ART.)

3. Register all objects in the system in the ORT by QUALIFIER, NAME, and TYPE.
You can use name patterns for QUALIFIER and NAME. (If you used REQUIRE
FULL NAMES = NO, register sets of objects by NAME and TYPE or by
QUALIFIER and TYPE.) For each controlled object, use APPLMATCHREQ = Y.
Give the name of the plan or package collection that controls the object in the
APPLIDENT column. (Again, you can use a name pattern.) You can have only
one row in the ORT for each combination of QUALIFIER.NAME.TYPE.

4. Register in the ART, with QUALIFIEROK = Y, any plan or package collection
that can use a set of objects that you register in the ORT with an incomplete
name, regardless of whether that set has APPLMATCHREQ = Y.

Example: Table 45 on page 163 shows entries in the ORT for a DB2 subsystem
containing the following objects:

v Two storage groups and a database that are not controlled by a specific
application. Those could be created, altered, or dropped by a user with the
appropriate authority using any application, such as SPUFI or QMF.

v Two table spaces that are not controlled by a specific application. Their names
are qualified by the name of the database they reside in.

v Three objects whose names are qualified by the authorization IDs of their
owners. Those objects could be tables, views, indexes, synonyms, or aliases.
DDL statements for those objects can be issued only through the application plan
named PLANX or the package collection named PACKX.

162 Administration Guide

v Objects with names like EDWARD.OBJ4, ED.OBJ4, and EBHARD.OBJ4, that
can be created, altered, or deleted by application plan SPUFI. Entry E%D in the
QUALIFIER column represents all three objects.

v Objects with names beginning TRULY.MY_, where the underscore character is
actually part of the name. Assuming that you specified # as the escape character,
all of those objects can be created, altered, or dropped only by plans with names
that begin with TRULY.

Assume the following installation option:
REQUIRE FULL NAMES ===> YES

Entries in Table 45 do not specify incomplete names. Hence, objects that are not
represented in the table cannot be created in the system, except by an ID with
installation SYSADM authority.

Table 45. Table DSN_REGISTER_OBJT for total control by object
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE

STOG1 S N
STOG2 S N
DATB1 D N

DATB1 TBSP1 T N
DATB1 TBSP2 T N
KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
E%D OBJ4 C Y SPUFI P
TRULY MY#_% C Y TRULY% P

Controlling by object name with exceptions
In this situation, you want each of several applications to control a specific set of
registered objects. You also allow other applications to use DDL statements for
unregistered objects.

1. When installing DB2, choose not to control all applications, as in “Controlling by
application name with exceptions” on page 160. On panel DSNTIPZ, specify:
CONTROL ALL APPLICATIONS ===> NO

2. Also on panel DSNTIPZ, specify:
UNREGISTERED DDL DEFAULT ===> ACCEPT

That option does not restrict the use of DDL statements for objects that are not
registered in the ORT: any application can use DDL for any unregistered object.

3. Register all controlled objects in the ORT. Use a name and qualifier to identify a
single object. Use only one part of a two-part name to identify a set of objects
that share just that part of the name. For each controlled object, use
APPLMATCHREQ = Y. Give the name of the plan or package collection that
controls the object in the APPLIDENT column.

4. For each set of controlled objects (identified by only a simple name in the ORT),
register the controlling application in the ART. Supply values for the APPLIDENT
and APPLIDENTTYPE columns as in Table 44 on page 162. You must also
supply values for one additional column:

Column name
Description

Chapter 11. Controlling access through a closed application 163

QUALIFIEROK
Specify Y (Yes) to show that the application can supply the remaining
part of the name in DDL statements for objects that are registered in the
ORT by an incomplete name.

Example: The two tables below assume that the installation option, REQUIRE
FULL NAMES, is set to NO, as described in “Registering sets of objects” on
page 161. Table 46 shows entries in the ORT for the following controlled objects:

v The objects KIM.OBJ1, FENG.OBJ2, QUENTIN.OBJ3, and EDWARD.OBJ4, all
of which are controlled by PLANX or PACKX, as described under “Controlling by
object name” on page 162. DB2 cannot interpret the object names as incomplete
names, because the objects that control them, PLANX and PACKX, are
registered in Table 47 with QUALIFIEROK=N.

v Two sets of objects, *.TABA and *.TABB, which are controlled by PLANA and
PACKB, respectively.

Table 46. Table DSN_REGISTER_OBJT for object control with exceptions
QUALIFIER NAME TYPE APPLMATCHREQ APPLIDENT APPLIDENTTYPE
KIM OBJ1 C Y PLANX P
FENG OBJ2 C Y PLANX P
QUENTIN OBJ3 C Y PACKX C
EDWARD OBJ4 C Y PACKX C

TABA C Y PLANA P
TABB C Y PACKB C

Table 47 shows entries in the corresponding ART:

Table 47. Table DSN_REGISTER_APPL for object control with exceptions
APPLIDENT APPLIDENTTYPE DEFAULTAPPL QUALIFIEROK
PLANX P N N
PACKX C N N
PLANA P N Y
PACKB C N Y

In this situation, with the combination of installation options shown above, any
application can use DDL for objects that are not covered by entries in the ORT. For
example, if user HOWARD has the CREATETAB privilege, he can create the table
HOWARD.TABLE10 through any application.

Managing the registration tables and their indexes
“Columns of the ART” and “Columns of the ORT” on page 165 describe the columns
of the two registration tables.

An overview of the registration tables

Columns of the ART
Table 48. Columns of the ART

Column Column name Description

1 APPLIDENT Collection-ID of the package
executing the DDL or, if no
package exists, the name of
the plan that executes the
DDL

164 Administration Guide

Table 48. Columns of the ART (continued)

2 APPLIDENTTYPE Type of application identifier

3 APPLICATIONDESC Optional data. See “Columns
for optional use” on page 167.

4 DEFAULTAPPL Indicates whether all DDL
should be accepted from this
application

5 QUALIFIEROK Indicates whether the
application can supply a
missing name part for objects
that are named in the ORT, if
REQUIRE FULL NAMES =
NO

6 CREATOR Optional data. See “Columns
for optional use” on page 167.

7 CREATETIMESTAMP Optional data. See “Columns
for optional use” on page 167.

8 CHANGER Optional data. See “Columns
for optional use” on page 167.

9 CHANGETIMESTAMP Optional data. See “Columns
for optional use” on page 167.

Columns of the ORT
Table 49. Columns of the ORT

Column Column name Description

1 QUALIFIER Object name qualifier

2 NAME Unqualified object name

3 TYPE Type of object

4 APPLMATCHREQ Indicates whether an
application that names this
object must match the one
named in the APPLIDENT
column

5 APPLIDENT Collection-ID of the plan or
package that executes the
DDL

6 APPLIDENTTYPE Type of application identifier

7 APPLICATIONDESC Optional data. See “Columns
for optional use” on page 167.

8 CREATOR Optional data. See “Columns
for optional use” on page 167.

9 CREATETIMESTAMP Optional data. See “Columns
for optional use” on page 167.

10 CHANGER Optional data. See “Columns
for optional use” on page 167.

11 CHANGETIMESTAMP Optional data. See “Columns
for optional use” on page 167.

Chapter 11. Controlling access through a closed application 165

Creating the tables and indexes
The ART, the ORT, and the required unique indexes on them are created when you
install data definition control support. If you drop any of those objects, you can
re-create them using the CREATE statements shown here:

CREATE statements for the ART and its index:
CREATE TABLE DSNRGCOL.DSN_REGISTER_APPL

(APPLIDENT CHAR(18) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
DEFAULTAPPL CHAR(1) NOT NULL WITH DEFAULT,
QUALIFIEROK CHAR(1) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_APPLI
ON DSNRGCOL.DSN_REGISTER_APPL
(APPLIDENT, APPLIDENTTYPE, DEFAULTAPPL DESC, QUALIFIEROK DESC)
CLUSTER;

CREATE statements for the ORT and its index:
CREATE TABLE DSNRGCOL.DSN_REGISTER_OBJT

(QUALIFIER CHAR(8) NOT NULL WITH DEFAULT,
NAME CHAR(18) NOT NULL WITH DEFAULT,
TYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLMATCHREQ CHAR(1) NOT NULL WITH DEFAULT,
APPLIDENT CHAR(18) NOT NULL WITH DEFAULT,
APPLIDENTTYPE CHAR(1) NOT NULL WITH DEFAULT,
APPLICATIONDESC VARCHAR(30) NOT NULL WITH DEFAULT,
CREATOR CHAR(26) NOT NULL WITH DEFAULT,
CREATETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT,
CHANGER CHAR(26) NOT NULL WITH DEFAULT,
CHANGETIMESTAMP TIMESTAMP NOT NULL WITH DEFAULT)
IN DSNRGFDB.DSNRGFTS;

CREATE UNIQUE INDEX DSNRGCOL.DSN_REGISTER_OBJTI
ON DSNRGCOL.DSN_REGISTER_OBJT
(QUALIFIER, NAME, TYPE) CLUSTER;

You can alter these statements to add columns to the ends of the tables, assign an
auditing status, or choose buffer pool or storage options for indexes. You can create
these tables with table check constraints to limit the types of entries that are
allowed. If you change either of the table names, their owner, or their database, you
must reinstall DB2 in update mode and make the corresponding changes on panel
DSNTIPZ. Name the required index by adding the letter I to the corresponding
table.

Every member of a data sharing group must have the same names for the ART and
ORT tables

If you drop any of the registration tables or indexes, most data definition statements
are rejected until the dropped objects are re-created. The only DDL statements that
are allowed in such circumstances are those that create the registration tables that
are defined during installation, their indexes, and the table spaces and database
that contain them.

The installation job DSNTIJSG creates a segmented table space to hold the ART
and the ORT, using this statement:

166 Administration Guide

CREATE TABLESPACE DSNRGFTS IN DSNRGFDB SEGSIZE 4 CLOSE NO;

If you want to use a table space with a different name or different attributes, you
can modify job DSNTIJSG before installing DB2 or else drop the table space and
re-create it, the two tables, and their indexes.

Adding columns
You can add columns to either registration table for your own use, using the ALTER
TABLE statement. If IBM adds columns to either table in future releases, the
column names will contain only letters and numbers; consider using some special
character, such as the plus sign (+), in your column names to avoid possible
conflict.

Updating the tables
You can load either table with the LOAD utility or update it with SQL INSERT,
UPDATE, or DELETE statements. Security provisions are important. Allow only a
restricted set of authorization IDs, or perhaps only those with SYSADM authority, to
update the ART. Consider assigning a validation exit routine to the ORT, to allow
applications to change only those rows that have the same application identifier in
the APPLIDENT column. A registration table cannot be updated until all jobs whose
DDL statements are controlled by the table have completed.

Columns for optional use
The ART and ORT contain columns that are not used by DB2. Recommendation:
Use these columns to audit and manage the tables as follows:

v In APPLICATIONDESC, put a more readable description of each application than
the eight-character APPLIDENT column can contain.

v In CREATOR or CHANGER, put the authorization ID that created or last changed
the row. The columns are large enough for a three-part name, with the parts
separated by periods in columns 9 and 18. If you enter only the primary
authorization ID (from the SQL value USER), consider entering it right-justified in
the field—that is, preceded by 18 blanks.

v When updating CREATETIMESTAMP and CHANGETIMESTAMP, enter
CURRENT TIMESTAMP. When you load or insert a row, DB2 can automatically
enter the value of CURRENT TIMESTAMP.

Stopping data definition control
When data definition control is active, only the users with installation SYSADM or
installation SYSOPR authority are able to stop the database, a table space, or an
index space containing a registration table or index. When the object is stopped,
only an ID with one of those authorities can start it again.

Bypassing data definition control: An ID with install SYSADM authority can
execute DDL statements regardless of whether data definition control is active, and
of whether the ART or ORT is available, through the following means:

v Through a static SQL statement, if the ID is owner of the plan or package that
contains the statement

v Through a dynamic CREATE statement, if the ID is the current SQLID

v Through a dynamic ALTER or DROP statement, if the ID is the current SQLID,
the primary ID, or any secondary ID of the executing process

Chapter 11. Controlling access through a closed application 167

168 Administration Guide

Chapter 12. Controlling access to a DB2 subsystem

This chapter tells how to control access to the DB2 subsystem from different
environments and how to associate a process with an intended set of authorization
IDs.

Recommendation for external security system: Control access through an
external security system, for which Resource Access Control Facility (RACF) is the
model. “Establishing RACF protection for DB2” on page 198 tells how to make DB2
and its IDs known to RACF.

Control by RACF is not strictly necessary, and some alternatives are described
under “Other methods of controlling access” on page 214. However, most of the
description assumes that RACF, or an equivalent product, is already in place.

Local requests only: If you are not accepting requests from or sending requests to
remote locations, begin this chapter with “Controlling local requests”. When you
come to “Controlling requests from remote applications” on page 176, you can skip
everything up to “Establishing RACF protection for DB2” on page 198.

Remote requests: If you are accepting requests from remote applications, you
might first want to read “Controlling requests from remote applications” on
page 176, which describes the security checks that a remote request is subject to
before it can access your DB2 subsystem. The level of security differs depending
on whether the requesting application is using SNA or Transmission Control
Protocol/Internet Protocol (TCP/IP) protocols to access DB2. After the incoming ID
has been authenticated by the local system, the ID is treated like a local connection
request or a local sign-on request: You can process it with your connection or
sign-on exit routine and associate secondary authorization IDs with it. For more
information, see “Controlling local requests”.

If you are sending requests to a remote DB2 subsystem, that subsystem can
subject your requests to various security checks. For suggestions on how to plan
for those checks, see “Planning to send remote requests” on page 189. If you send
requests to a remote DBMS that is not DB2 for OS/390 and z/OS, use the
documentation for that DRDA database server.

Topics covered in this chapter:
v “Controlling local requests”
v “Processing connections” on page 170
v “Processing sign-ons” on page 173
v “Controlling requests from remote applications” on page 176
v “Planning to send remote requests” on page 189
v “Establishing RACF protection for DB2” on page 198
v “Establishing Kerberos authentication through RACF” on page 212
v “Other methods of controlling access” on page 214

Controlling local requests
Different local processes enter the access control procedure at different points,
depending on the environment where they originate. (Quite different criteria apply to
remote requests; they are described in “Controlling requests from remote
applications” on page 176.)

v The following processes go through connection processing only:

© Copyright IBM Corp. 1982, 2001 169

– Requests originating in TSO foreground and background (including online
utilities and requests through the call attachment facility)

– JES-initiated batch jobs

– Requests through started task control address spaces (from the MVS START
command)

v The following processes go through connection processing and can later go
through the sign-on exit also.
– The IMS control region.
– The CICS recovery coordination task.
– DL/I batch.
– Applications that connect using the Recoverable Resource Manager Services

attachment facility (RRSAF). (See Part 6 of DB2 Application Programming and
SQL Guide for more information.)

v The following processes go through sign-on processing:

– Requests from IMS dependent regions (including MPP, BMP, and Fast Path)

– CICS transaction subtasks

For instructions on controlling the IDs that are associated with connection requests,
see “Processing connections”. For instructions on controlling the IDs that are
associated with sign-on requests, see “Processing sign-ons” on page 173.

IMS, CICS, RRSAF, or DDF-to-DDF connections can send a sign-on request,
typically in order to execute an application plan. That request must provide a
primary ID; optionally, it can provide secondary IDs also. After a plan is allocated, it
need not be deallocated until a new plan is needed. A different transaction can use
the same plan by issuing a new sign-on request with a new primary ID.

Processing connections

A connection request makes a new connection to DB2; it does not reuse an
application plan that is already allocated. Therefore, an essential step in processing
the request is to check that the ID is authorized to use DB2 resources, as shown in
Figure 15.

The steps in detail
The steps in processing connections are:

1. DB2 obtains the initial primary ID. Table 50 on page 171 shows how the source
of the ID depends on the type of address space from which the connection was
made.

Step 1: Obtain primary ID

Step 2: Verify by RACF that the
ID can access DB2

Step 3: Run the connection exit
routine

Not authorized;
reject request

Figure 15. Connection processing

170 Administration Guide

Table 50. Sources of initial primary authorization identifiers

Source Initial primary authorization ID

TSO TSO logon ID.

BATCH USER parameter on JOB statement.

IMS control region or CICS USER parameter on JOB statement.

IMS or CICS started task Entries in the started task control table.

Remote access requests Depends on the security mechanism used. See “Overview of
security mechanisms for DRDA and SNA” on page 176 for
more details.

2. RACF is called through the MVS system authorization facility (SAF) to check
whether the ID that is associated with the address space is authorized to use:

The DB2 resource class (CLASS=DSNR)
The DB2 subsystem (SUBSYS=ssnm)
The connection type requested

For instructions on authorizing those uses, see “Permitting RACF access” on
page 202. The SAF return code (RC) from the invocation determines the next
step, as follows:

If RC > 4, RACF determined that the RACF user ID is not valid or does not
have the necessary authorization to access the resource name; DB2 rejects
the request for a connection.

If RC = 4, the RACF return code is checked. If that value is:

= 4, the resource name is not defined to RACF and DB2 rejects the
request (with reason code X'00F30013'). For instructions on defining the
resource name, see “Defining DB2 resources to RACF” on page 200.

Not = 4, RACF is not active. DB2 continues with the next step, but the
connection request and the user are not verified.

If RC = 0, RACF is active and has verified the RACF user ID; DB2 continues
with the next step.

3. DB2 runs the connection exit routine. To use DB2 secondary IDs, you must
replace the exit routine. See “Supplying secondary IDs for connection requests”
on page 172.

If you do not want to use secondary IDs, do nothing. The IBM-supplied default
connection exit routine continues the connection processing. The processing
has the following effects:

v If a value for the initial primary authorization ID exists, the value becomes the
DB2 primary ID.

v If no value exists (the value is blank), the primary ID is set by default, as
shown in Table 51 on page 172.

v The SQL ID is set equal to the primary ID.

v No secondary IDs exist.

If you want to use secondary IDs, see the description in “Supplying secondary
IDs for connection requests” on page 172. Of course, you can also replace the
exit routine with one that provides different default values for the DB2 primary
ID. If you have written such a routine for an earlier release of DB2, it will
probably work for this release with no change.

Chapter 12. Controlling access to a DB2 subsystem 171

Table 51. Sources of default authorization identifiers

Source Default primary authorization ID

TSO TSO logon ID

BATCH USER parameter on JOB statement

Started task, or batch job with
no USER parameter

Default authorization ID set when DB2 was installed
(UNKNOWN AUTHID on installation panel DSNTIPP)

Remote request None. The user ID is required and is provided by the DRDA
requester.

Supplying secondary IDs for connection requests
If you want to use DB2 secondary authorization IDs, you must replace the default
connection exit routine. If you want to use RACF group names as DB2 secondary
IDs, as illustrated in “Examples of granting and revoking privileges” on page 140,
the easiest method is to use the IBM-supplied sample routine.

Distinguish those two routines carefully.

v The default connection exit routine is supplied as object code, is installed as part
of the normal procedure for installing DB2, and provides values only for the DB2
primary and SQL IDs—not for secondary IDs.

v The sample connection exit routine is supplied as source code (you can change
it), must be compiled and placed in a DB2 library, and provides for secondary
IDs, primary IDs, and SQL IDs. Installation job DSNTIJEX replaces the default
connection exit routine with the sample connection exit routine; see Part 2 of
DB2 Installation Guide for more information.

The sample connection exit routine has the following effects:

v The sample connection exit routine sets the DB2 primary ID the same way as it
is set by the default routine. If the initial primary ID is not blank, it becomes the
DB2 primary ID. If the initial primary ID is blank, the sample routine provides the
same default value as does the default routine. If the sample routine cannot find
a nonblank primary ID, DB2 uses the default ID (UNKNOWN AUTHID) from
installation panel DSNTIPP. In that case, no secondary IDs are supplied.

v If the connection request is from a TSO-managed address space, the routine
sets the SQL ID to the TSO data set name prefix in the TSO user profile table,
but only if the TSO data set name prefix is also equal to the primary ID or one of
the secondary IDs. Those requests include requests through the call attachment
facility, and requests from TSO foreground and background. In all other cases,
the routine sets the SQL ID equal to the primary ID.

v The secondary authorization IDs depend on RACF options:

– If RACF is not active, no secondary IDs exist.

– If RACF is active but its “list of groups” option is not active, one secondary ID
exists (the default connected group name) if that was supplied by the
attachment facility.

– If RACF is active and you selected the “list of groups” option, the routine sets
the list of DB2 secondary IDs to the list of group names to which the RACF
user ID is connected (but not in REVOKE status). The maximum number of
groups is 245. The list of group names is obtained from RACF and includes
the default connected group name.

172 Administration Guide

If you need something that is not provided by either the default or the sample
connection exit routine, you can write your own routine. For instructions, see
“Appendix B. Writing exit routines” on page 901.

Required CICS specifications
In order for a CICS transaction to use the sample connection or sign-on exit
routines, the external security system, such as RACF, must be defined to CICS with
these specifications:

v The CICS system initialization table must specify external security. For CICS
Version 4, specify SEC=YES; for earlier releases of CICS, specify
EXTSEC=YES. If you are using the CICS multiple region option (MRO), you must
specify SEC=YES or EXTSEC=YES for every CICS system that is connected by
interregion communication (IRC).

v If your version of CICS uses a sign-on table (SNT), the CICS sign-on table must
specify EXTSEC=YES for each signed on user that uses the sign-on exit.

v When the user signs on to a CICS terminal-owning region, the terminal-owning
region must propagate the authorization ID to the CICS application-owning
region. For more information on that propagation, see the description of
ATTACHSEC in the applicable version of the CICS Intercommunication Guide.

You must change the sample sign-on exit routine (DSN3SSGN) before using it if the
following conditions are all true. For instructions, see “Sample exit routines” on
page 902.

v You attach to DB2 with an AUTH parameter in the RCT other than
AUTH=GROUP.

v You have the RACF list-of-groups option active.

v You have transactions whose initial primary authorization ID is not defined to
RACF.

Processing sign-ons
For requests from IMS dependent regions, CICS transaction subtasks, or OS/390
RRS connections, the initial primary ID is not obtained until just before allocating a
plan for a transaction. A new sign-on request can run the same plan without
deallocating the plan and reallocating it. Nevertheless, the new sign-on request can
change the primary ID.

Unlike connection processing, sign-on processing does not check the RACF user ID
of the address space. The steps are shown in Figure 16.

The steps in detail
DB2 takes the following steps in processing sign-ons:

1. Determine the initial primary ID as follows:

Step 1: Obtain the primary ID

Step 2: Run the sign-on exit
routine

Figure 16. Sign-on processing

Chapter 12. Controlling access to a DB2 subsystem 173

For IMS sign-ons from message-driven regions, if the user has signed on, the
initial primary authorization ID is the user's sign-on ID.

IMS passes to DB2 the IMS sign-on ID and the associated RACF connected
group name, if one exists.

If the user has not signed on, the primary ID is the LTERM name, or if that is
not available, the PSB name.

For a batch-oriented region, the primary ID is the value of the USER parameter
on the job statement, if that is available. If that is not available, the primary ID is
the program's PSB name.

For CICS sign-ons, the initial primary authorization ID is specified by
authorization directives in the CICS resource control table (RCT). For
instructions on setting up the RCT to indicate the appropriate ID, see the
description of the AUTH option in the macro DSNCRCT TYPE=ENTRY in Part 2
of DB2 Installation Guide , and also the information there about coordinating
CICS and DB2 security.

You can use the following values for authorization IDs:

v The VTAM application name for the CICS system; use AUTH=SIGNID.

v A character string up to eight characters long, which is supplied in the RCT;
use AUTH=(string).

v The CICS group ID (eight characters); use AUTH=GROUP. That option
passes to DB2 the CICS user ID and the associated RACF connected group
name. AUTH=GROUP is not a valid authorization type for transactions that
do not have RACF user IDs that are associated with them (for example,
non-terminal-driven transactions in releases of CICS before CICS Version 4).

v The CICS user ID (eight characters); use AUTH=USERID. AUTH=USERID is
not a valid authorization type for transactions that do not have signed-on user
IDs that are associated with them (for example, non-terminal-driven
transactions in releases of CICS before CICS Version 4).

v The operator ID (three characters padded on the right with five blanks); use
AUTH=USER. AUTH=USER is valid only for transactions that are associated
with a signed-on USERID or a terminal.

v The terminal ID (four characters padded with four blanks); use AUTH=TERM.
AUTH=TERM is valid only for transactions associated with a terminal.

v The transaction ID (four characters padded with four blanks); use
AUTH=TXID.

For remote requests, the source of the initial primary ID is determined by
entries in the SYSIBM.USERNAMES table. “Accepting a remote attachment
request” on page 180 explains how to control the ID.

For connections using Recoverable Resource Manager Services
attachment facility, the processing depends on the type of signon request:
v SIGNON
v AUTH SIGNON
v CONTEXT SIGNON

For SIGNON, the primary authorization ID is retrieved from ACEEUSRI if an
ACEE is associated with the TCB (TCBSENV). This is the normal case.
However, if an ACEE is not associated with the TCB, SIGNON uses the primary
authorization ID that is associated with the address space, that is, from the
ASXB. If the new primary authorization ID was retrieved from the ACEE that is
associated with the TCB and ACEEGRPN is not null, DB2 uses ACEEGRPN to
establish secondary authorization IDs.

174 Administration Guide

With AUTH SIGNON, an APF-authorized program can pass a primary
authorization ID for the connection. If a primary authorization ID is passed,
AUTH SIGNON also uses the value that is passed in the secondary
authorization ID parameter to establish secondary authorization IDs. If the
primary authorization ID is not passed, but a valid ACEE is passed, AUTH
SIGNON uses the value in ACEEUSRI for the primary authorization ID if
ACEEUSRL is not 0. If ACEEUSRI is used for the primary authorization ID,
AUTH SIGNON uses the value in ACEEGRPN as the secondary authorization
ID if ACEEGRPL is not 0.

For CONTEXT SIGNON, the primary authorization ID is retrieved from data that
is associated with the current RRS context using the context_key, which is
supplied as input. CONTEXT SIGNON uses the CTXSDTA and CTXRDTA
functions of RRS context services. An authorized function must use CTXSDTA
to store a primary authorization ID prior to invoking CONTEXT SIGNON.
Optionally, CTXSDTA can be used to store the address of an ACEE in the
context data that has a context_key that was supplied as input to CONTEXT
SIGNON. DB2 uses CTXRDTA to retrieve context data. If an ACEE address is
passed, CONTEXT SIGNON uses the value in ACEEGRPN as the secondary
authorization ID if ACEEGRPL is not 0.

For more information, see Part 6 of DB2 Application Programming and SQL
Guide.

2. DB2 runs the sign-on exit routine. User action: To use DB2 secondary IDs, you
must replace the exit routine.

If you do not want to use secondary IDs, do nothing. Sign-on processing is then
continued by the IBM-supplied default sign-on exit routine, which has the
following effects:
v The initial primary authorization ID remains the primary ID.
v The SQL ID is set equal to the primary ID.
v No secondary IDs exist.

You can replace the exit routine with one of your own, even if it has nothing to
do with secondary IDs. If you do, remember that IMS and CICS recovery
coordinators, their dependent regions, and RRSAF take the exit routine only if
they have provided a user ID in the sign-on parameter list.

If you do want to use secondary IDs, see the description that follows.

Supplying secondary IDs for sign-on requests
If you want the primary authorization ID to be associated with DB2 secondary
authorization IDs, you must replace the default sign-on exit routine. The procedure
is like that for connection processing: If you want to use RACF group names as
DB2 secondary IDs, the easiest method is to use the IBM-supplied sample routine.
An installation job can automatically replace the default routine with the sample
routine; to run it, see “Installation Step 6: Define User Authorization Exit Routines:
DSNTIJEX” in Part 2 of DB2 Installation Guide.

Distinguish carefully between the two routines. The default sign-on routine provides
no secondary IDs and has the effects described in step 2 of “Processing sign-ons”
on page 173. The sample sign-on routine supports DB2 secondary IDs, and is like
the sample connection routine.

The sample sign-on routine has the following effects:

v The initial primary authorization ID is left unchanged as the DB2 primary ID.

Chapter 12. Controlling access to a DB2 subsystem 175

v The SQL ID is made equal to the DB2 primary ID.

v The secondary authorization IDs depend on RACF options:

– If RACF is not active, no secondary IDs exist.

– If RACF is active but its “list of groups” option is not active, one secondary ID
exists; it is the name passed by CICS or by IMS.

– If RACF is active and you have selected the option for a list of groups, the
routine sets the list of DB2 secondary IDs to the list of group names to which
the RACF user ID is connected, up to a limit of 245 groups. The list of group
names includes the default connected group name.

Controlling requests from remote applications
If you are controlling requests from remote applications, your DB2 subsystem might
be accepting requests from applications that use SNA network protocols, TCP/IP
network protocols, or both. This section describes the methods that the DB2 server
can use to control access from those applications. To understand what is described
here, you must be familiar with the communications database, which is part of the
DB2 catalog. The following topics are described in this section:

v “Overview of security mechanisms for DRDA and SNA”

v “The communications database for the server” on page 178

v “Controlling inbound connections that use SNA protocols” on page 180

v “Controlling inbound connections that use TCP/IP protocols” on page 187

Overview of security mechanisms for DRDA and SNA
SNA and DRDA have different security mechanisms. DRDA lets a user be
authenticated using SNA security mechanisms or DRDA mechanisms, which are
independent of the underlying network protocol. For an SNA network connection, a
DRDA requester can send security tokens using a SNA attach or using DRDA
commands. DB2 for OS/390 and z/OS as a requester uses SNA security
mechanisms if it uses a SNA network connection (except for Kerberos) and DRDA
security mechanisms for TCP/IP network connections (or when Kerberos
authentication is chosen, regardless of the network type).

Mechanisms used by DB2 for OS/390 and z/OS as a requester
DB2 for OS/390 and z/OS as a requester chooses SNA or DRDA security
mechanisms based on the network protocol and the authentication mechanisms you
use. If you use SNA protocols, the following SNA authentication mechanisms are
supported:

v User ID only (already verified)

v User ID and password, described in “Sending passwords” on page 197

v User ID and PassTicket, described in “Sending RACF PassTickets” on page 197

Authentication is performed based on SNA protocols, which means that the
authentication tokens are sent in an SNA attach (FMH-5).

If you use TCP/IP protocols, the following DRDA authentication mechanisms are
supported:

v User ID only (already verified)

v User ID and password, described in “Sending passwords” on page 197

v User ID and PassTicket, described in “Sending RACF PassTickets” on page 197

Authentication is performed based on DRDA protocols, which means that the
authentication tokens are sent in DRDA security flows.

176 Administration Guide

|
|
|
|

If you use a requester other than DB2 for OS/390 and z/OS, refer to that product's
documentation.

Mechanisms accepted by DB2 for OS/390 and z/OS as a server
DB2 for OS/390 and z/OS as a server can accept either SNA or DRDA
authentication mechanisms. This means that DB2 can authenticate remote users
from either the security tokens obtained from the SNA ATTACH (FMH-5) or from the
DRDA security commands described by each of the protocols. The following
authentication methods are supported by DB2 for OS/390 and z/OS as a server:

v User ID only (already verified at the requester)

v User ID and password, described in “Sending passwords” on page 197

v User ID and PassTicket, described in “Sending RACF PassTickets” on page 197

v Kerberos tickets, described in “Establishing Kerberos authentication through
RACF” on page 212

v Unencrypted user ID and encrypted password, described in “Sending encrypted
passwords from a workstation” on page 198

v Encrypted user ID and encrypted password, described in “Sending encrypted
passwords from a workstation” on page 198

v User ID, password, and new password, described in “Allowing users to change
expired passwords”

Allowing users to change expired passwords: DB2 can return to the DRDA
requester information about errors and expired passwords. To allow this, specify
YES in the EXTENDED SECURITY field of installation panel DSNTIPR.

When the DRDA requester is notified that the RACF password has expired, and the
requester has implemented function to allow passwords to be changed, the
requester can prompt the end user for the old password and a new password. The
requester sends the old and new passwords to the DB2 server. This function is
supported through DB2 Connect.

With the extended security option, DB2 passes the old and new passwords to
RACF. If the old password is correct, and the new password meets the installation's
password requirements, the end user's password is changed and the DRDA
connection request is honored.

When a user changes a password, the user ID, the old password, and the new
password are sent to DB2. You can now encrypt these three tokens before they are
sent from the client.

Detecting authorization failures (EXTENDED SECURITY): If the DB2 server is
installed with YES for the EXTENDED SECURITY field of installation panel
DSNTIPR, detailed reason codes are returned to a DRDA client when a DDF
connection request fails because of security errors. When using SNA protocols, the
requester must have included support for extended security sense codes. One such
product is DB2 Connect.

If the proper requester support is present, the requester generates SQLCODE
-30082 (SQLSTATE '08001') with a specific indication for the failure. Otherwise, a
generic security failure code is returned.

Chapter 12. Controlling access to a DB2 subsystem 177

|
|

|
|

|
|

|
|
|

The communications database for the server
The information in this section, up to “Controlling inbound connections that use SNA
protocols” on page 180, is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page 1095.

The communications database (CDB) is a set of DB2 catalog tables that let you
control aspects of how requests leave this DB2 and how requests come in. This
section concentrates on the columns of the communications database that pertain
to security on the inbound side (the server).

The SYSIBM.IPNAMES table is not described in this section, because that table is
not used to control inbound TCP/IP requests.

Columns used in SYSIBM.LUNAMES
This table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_IN CHAR(1)
The acceptance option for a remote request from the corresponding
LUNAME:

V The option is “verify.” An incoming request must include one of the
following authentication entities:
v User ID and password
v User ID and RACF PassTicket, described in “Sending RACF

PassTickets” on page 197
v User ID and RACF encrypted password (not recommended)
v Kerberos security tickets, described in “Establishing Kerberos

authentication through RACF” on page 212
v User ID and DRDA encrypted password, described in “Sending

encrypted passwords from a workstation” on page 198.
v User ID, password, and new password, described in “Allowing

users to change expired passwords” on page 177
v User ID and encrypted password, or encrypted user ID and

encrypted password, described in “Allowing users to change
expired passwords” on page 177

A The option is “already verified.” This is the default. With A, a
request does not need an authentication token, although the token
is checked if it is sent.

With this option, an incoming connection request is accepted if it
includes any of the following authentication tokens:
v User ID only
v All authentication methods that option V supports

If the USERNAMES column of SYSIBM.LUNAMES contains I or B,
RACF is not invoked to validate incoming connection requests that
contain only a user ID.

ENCRYPTPSWDS CHAR(1)
This column only applies to DB2 for OS/390 and z/OS or DB2 for MVS/ESA
partners when passwords are used as authentication tokens. It indicates
whether passwords received from and sent to the corresponding LUNAME
are encrypted:

178 Administration Guide

|
|

Y Yes, passwords are encrypted. For outbound requests, the
encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as if it is encrypted.

N No, passwords are not encrypted. This is the default; any character
other than Y is treated as N. Specify N for CONNECT statements
that contain a USER parameter.

Recommendation: When you connect to a DB2 for OS/390 and z/OS
partner that is at Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT='R') instead of using passwords.

USERNAMES CHAR(1)
This column indicates whether an ID accompanying a remote request, sent
from or to the corresponding LUNAME, is subject to translation and “come
from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.
I An inbound ID is subject to translation.
O An outbound ID, sent to the corresponding LUNAME, is subject to

translation.
B Both inbound and outbound IDs are subject to translation.
blank No IDs are translated.

Columns used in SYSIBM.USERNAMES
This table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:
I The row applies to inbound IDs (not applicable for TCP/IP

connections).
O The row applies to outbound IDs.

The field should contain only I or O. Any other character, including blank,
causes the row to be ignored.

AUTHID CHAR(8)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME; all
authorization IDs are translated in the same way. Outbound translation is
not performed on CONNECT statements that contain an authorization ID for
the value of the USER parameter.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following
situations must be true:

v A row exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

NEWAUTHID CHAR(8)
The translated authorization ID. If blank, no translation occurs.

Chapter 12. Controlling access to a DB2 subsystem 179

|
|

|
|
|

Controlling inbound connections that use SNA protocols
Requests from a remote LU are subject to two security checks before they come
into contact with DB2. Those checks control what LUs can attach to the network
and verify the identity of a partner LU.

Finally, DB2 itself imposes several checks before accepting an attachment request.

If using private protocols, the LOCATIONS table controls the locations that can
access DB2. To allow a remote location to access DB2, the remote location name
must be specified in the SYSIBM.LOCATIONS table. This check is only supported
for connections using private protocols.

Controlling what LUs can attach to the network
This check is carried out by VTAM, to prevent an unauthorized LU from attaching to
the network and presenting itself to other LUs as an acceptable partner in
communication. It requires each LU that attaches to the network to identify itself by
a password. If that requirement is in effect for your network, your DB2 subsystem,
like every other LU on the network, must:

1. Choose a VTAM password.

2. Code the password with the PRTCT parameter of the VTAM APPL statement,
when you define your DB2 to VTAM. The APPL statement is described in detail
in Part 3 of DB2 Installation Guide.

Verifying a partner LU
This check is carried out by RACF and VTAM, to check the identity of an LU
sending a request to your DB2. Recommendation: Specify partner-LU verification,
which requires the following steps:

1. Code VERIFY=REQUIRED on the VTAM APPL statement, when you define
your DB2 to VTAM. The APPL statement is described in detail in Part 3 of DB2
Installation Guide.

2. Establish a RACF profile for each LU from which you permit a request. For the
steps required, see “Enable partner-LU verification” on page 202.

Accepting a remote attachment request
When VTAM has established a conversation for a remote application, that
application sends a remote request, which is a request to attach to your local DB2.
(Do not confuse the remote request with a local attachment request that comes
through one of the DB2 attachment facilities—IMS, CICS, TSO, and so on. A
remote attachment request is defined by Systems Network Architecture and LU 6.2
protocols; specifically, it is an SNA Function Management Header 5.)

This section tells what security checks you can impose on remote attachment
requests.

Conversation-level security: This section assumes that you have defined your
DB2 to VTAM with the conversation-level security set to “already verified”. (To do
that, you coded SECACPT=ALREADYV on the VTAM APPL statement, as
described in Part 3 of DB2 Installation Guide. That value provides more options
than does “conversation” (SECACPT=CONV), which we do not recommend.

Steps, tools, and decisions: The steps an attachment request goes through
before acceptance allow much flexibility in choosing security checks. Scan
Figure 17 on page 183 to see what is possible.

180 Administration Guide

|
|
|
|

The primary tools for controlling remote attachment requests are entries in tables
SYSIBM.LUNAMES and SYSIBM.USERNAMES in the communications database.
You need a row in SYSIBM.LUNAMES for each system that sends attachment
requests, a dummy row that allows any system to send attachment requests, or
both. You might need rows in SYSIBM.USERNAMES to permit requests from
specific IDs or specific LUNAMES, or to provide translations for permitted IDs.

When planning to control remote requests, answer the questions posed by the
following topics for each remote LU that can send a request.
1. “Do you permit access?”
2. “Do you manage inbound IDs through DB2 or RACF?”
3. “Do you trust the partner LU?”
4. “If you use passwords, are they encrypted?” on page 182
5. “Do you translate inbound IDs?” on page 185
6. “How do you associate inbound IDs with secondary IDs?” on page 186

Do you permit access?: To permit attachment requests from a particular LU, you
need a row in your SYSIBM.LUNAMES table. The row must either give the specific
LUNAME or it must be a dummy row with the LUNAME blank. (The table can have
only one dummy row, which is used by all LUs for which no specific row exists,
when making requests.) Without one of those rows, the attachment request is
rejected.

Do you manage inbound IDs through DB2 or RACF?: If you manage incoming
IDs through RACF, you must register every acceptable ID with RACF, and DB2
must call RACF to process every request. If you manage incoming IDs through
RACF, either RACF or Kerberos can be used to authenticate the user. Kerberos
cannot be used if you do not have RACF on the system.

If you manage incoming IDs through DB2, you can avoid calls to RACF and can
specify acceptance of many IDs by a single row in the SYSIBM.USERNAMES
table.

To manage incoming IDs through DB2, put an I in the USERNAMES column of
SYSIBM.LUNAMES for the particular LU. (Or, if an O is there already because you
are also sending requests to that LU, change O to B.) Attachment requests from
that LU now go through sign-on processing, and its IDs are subject to translation.
(For more information about translating IDs, see “Do you translate inbound IDs?” on
page 185.)

To manage incoming IDs through RACF, leave USERNAMES blank for that LU (or
leave the O unchanged). Requests from that LU go through connection processing,
and its IDs are not subject to translation.

Do you trust the partner LU?: Presumably, RACF has already validated the
identity of the other LU (described in “Verifying a partner LU” on page 180). If you
trust incoming IDs from that LU, you do not need to validate them by an
authentication token. Put an A in the SECURITY_IN column of the row in
SYSIBM.LUNAMES that corresponds to the other LU; your acceptance level for
requests from that LU is now “already verified”. Requests from that LU are accepted
without an authentication token. (In order to use this option, you must have defined
DB2 to VTAM with SECACPT=ALREADYV, as described in 180.) If an
authentication token does accompany a request, DB2 calls RACF to check the
authorization ID against it. To require an authentication token from a particular LU,

Chapter 12. Controlling access to a DB2 subsystem 181

|
|

put a V in the SECURITY_IN column in SYSIBM.LUNAMES; your acceptance level
for requests from that LU is now “verify”. You must also register every acceptable
incoming ID and its password with RACF.

Performance considerations: Each request to RACF to validate authentication
tokens results in an I/O operation, which has a high performance cost.

Recommendation: To eliminate the I/O, allow RACF to cache security information
in VLF. To activate this option, add the IRRACEE class to the end of MVS VLF
member COFVLFxx in SYS1.PARMLIB, as follows:
CLASS NAME(IRRACEE)
EMAJ (ACEE)

If you use passwords, are they encrypted?: Passwords can be encrypted
through:

v RACF using PassTickets, described in “Sending RACF PassTickets” on
page 197.

v DRDA password encryption support. DB2 for OS/390 and z/OS as a server
supports DRDA encrypted passwords and encrypted user IDs with encrypted
passwords. See “Sending encrypted passwords from a workstation” on page 198
for more information.

If you use Kerberos, are users authenticated?: If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for OS/390
and z/OS can use Kerberos security services to authenticate remote users. See
“Establishing Kerberos authentication through RACF” on page 212.

182 Administration Guide

|
|
|
|

|
|
|
|

Details of remote attachment request processing:

1. If the remote request has no authentication token, DB2 checks the security
acceptance option in the SECURITY_IN column of table SYSIBM.LUNAMES.
No password is sent or checked for the plan or package owner that is sent
from a DB2 subsystem.

2. If the acceptance option is “verify” (SECURITY_IN = V), a security token is
required to authenticate the user. DB2 rejects the request if the token missing.

3. If the USERNAMES column of SYSIBM.LUNAMES contains I or B, the
authorization ID, and the plan or package owner that is sent by a DB2

Activity at the DB2 server

Remote attach request using SNA protocols

ID and authentication check

Step 1: Is an
authentication
token present?

Step 2: Test
the value of
SECURITY_IN.

No =V
Token
required;
reject
request.

Yes =A

Step 3: Is
USERNAMES
I or B?

Check SYSIBM.LUNAMES

Yes

No

Check ID for sign-ons

Step 7: Is a
password
present?

No

Yes Step 8: Verify
ID by RACF.

Not authorized;
reject request.

Check USERNAMES table

Step 9: Seek a
translation row
in USERNAMES.

Not found;
reject request.

Found

Step 10: Obtain
the primary ID.

Connection processing

Not authorized;
reject request.

Step 5: Verify by
RACF that the ID
can access DB2.

Request accepted: continue
Request accepted: continue

Sign-on processing

Step 11: Run the sign-on
exit routine (DSN3@SGN).

Step 12: Local privilege
check at the server.

Step 6: Run the
connection exit
routine (DSN3@ATH).

Not authorized;
reject request.

Step 4: Verify
ID by RACF.

Check ID for connections

Figure 17. Steps in accepting a remote attachment request from requester that is using SNA

Chapter 12. Controlling access to a DB2 subsystem 183

subsystem, are subject to translation under control of the
SYSIBM.USERNAMES table. If the request is allowed, it eventually goes
through sign-on processing.

If USERNAMES does not contain I or B, the authorization ID is not translated.

4. DB2 calls RACF by the RACROUTE macro with REQUEST=VERIFY to check
the ID. DB2 uses the PASSCHK=NO option if no password is specified and
ENCRYPT=YES if the ENCRYPTPSWDS column of SYSIBM.LUNAMES
contains Y. If the ID, password, or PassTicket cannot be verified, DB2 rejects
the request.

In addition, depending on your RACF environment, the following RACF checks
may also be performed:

v If the RACF APPL class is active, RACF verifies that the ID has been given
access to the DB2 APPL. The APPL resource that is checked is the LU
name that the requester used when the attachment request was issued.
This is either the local DB2 LU name or the generic LU name.

v If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized to access MVS from the port of entry (POE). The POE that is
use in the verify call is the requesting LU name.

5. The remote request is now treated like a local connection request with a DIST
environment for the DSNR resource class; for details, see “Processing
connections” on page 170. DB2 calls RACF by the RACROUTE macro with
REQUEST=AUTH, to check whether the authorization ID is allowed to use
DB2 resources that are defined to RACF.

The RACROUTE macro call also verifies that the user is authorized to use
DB2 resources from the requesting system, known as the port of entry (POE);
for details, see “Allowing access from remote requesters” on page 208.

6. DB2 invokes the connection exit routine. The parameter list that is passed to
the routine describes where a remote request originated.

7. If no password exists, RACF is not called. The ID is checked in
SYSIBM.USERNAMES.

8. If a password exists, DB2 calls RACF through the RACROUTE macro with
REQUEST=VERIFY to verify that the ID is known with the password.
ENCRYPT=YES is used if the ENCRYPTPSWDS column of
SYSIBM.LUNAMES contains Y. If DB2 cannot verify the ID or password, the
request is rejected.

9. DB2 searches SYSIBM.USERNAMES for a row that indicates how to translate
the ID. The need for a row that applies to a particular ID and sending location
imposes a “come-from” check on the ID: If no such row exists, DB2 rejects the
request.

10. If an appropriate row is found, DB2 translates the ID as follows:
v If a nonblank value of NEWAUTHID exists in the row, that value becomes

the primary authorization ID.
v If NEWAUTHID is blank, the primary authorization ID remains unchanged.

11. The remote request is now treated like a local sign-on request; for details, see
“Processing sign-ons” on page 173. DB2 invokes the sign-on exit routine. The
parameter list that is passed to the routine describes where a remote request
originated. For details, see “Connection and sign-on routines” on page 901.

12. The remote request now has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. A request from a remote DB2 is also known by
a plan or package owner. Privileges and authorities that are granted to those
IDs at the DB2 server govern the actions that the request can take.

184 Administration Guide

Do you translate inbound IDs?: Ideally, each of your authorization IDs has the
same meaning throughout your entire network. In practice, that might not be so,
and the duplication of IDs on different LUs is a security exposure. For example,
suppose that the ID DBADM1 is known to the local DB2 and has DBADM authority
over certain databases there; suppose also that the same ID exists in some remote
LU. If an attachment request comes in from DBADM1, and if nothing is done to
alter the ID, the wrong user can exercise privileges of DBADM1 in the local DB2.
The way to protect against that exposure is to translate the remote ID into a
different ID before the attachment request is accepted.

You must be prepared to translate the IDs of plan owners, package owners, and the
primary IDs of processes that make remote requests. For the IDs that are sent to
you by other DB2 LUs, see “What IDs you send” on page 193. (Do not plan to
translate all IDs in the connection exit routine—the routine does not receive plan
and package owner IDs.)

If you have decided to manage inbound IDs through DB2, you can translate an
inbound ID to some other value. Within DB2, you grant privileges and authorities
only to the translated value. As Figure 17 on page 183 shows, that “translation” is
not affected by anything you do in your connection or sign-on exit routine. The
output of the translation becomes the input to your sign-on exit routine.
Recommendation: Do not translate inbound IDs in an exit routine; translate them
only through the SYSIBM.USERNAMES table.

The examples in Table 52 shows the possibilities for translation and how to control
translation by SYSIBM.USERNAMES. You can use entries to allow requests only
from particular LUs or particular IDs, or from combinations of an ID and an LU. You
can also translate any incoming ID to another value. Table 53 on page 186 shows
the search order of the SYSIBM.USERNAMES table.

Performance considerations: In the process of accepting remote attachment
requests, any step that calls RACF is likely to have a relatively high performance
cost. To trade some of that cost for a somewhat greater security exposure, have
RACF check the identity of the other LU just once, as described under “Verifying a
partner LU” on page 180. Then trust the partner LU, translating the inbound IDs and
not requiring or using passwords. In this case, no calls are made to RACF from
within DB2; the penalty is only that you make the partner LU responsible for
verifying IDs.

Update considerations: If you update tables in the CDB while the distributed data
facility is running, the changes might not take effect immediately. For details, see
Part 3 of DB2 Installation Guide.

Example: Table 52 shows how USERNAMES translates inbound IDs.

Table 52. Your SYSIBM.USERNAMES table. (Row numbers are added for reference.)
Row TYPE AUTHID LINKNAME NEWAUTHID
1 I blank LUSNFRAN blank
2 I BETTY LUSNFRAN ELIZA
3 I CHARLES blank CHUCK
4 I ALBERT LUDALLAS blank
5 I BETTY blank blank

DB2 searches SYSIBM.USERNAMES to determine how to translate for each of the
following requests:

Chapter 12. Controlling access to a DB2 subsystem 185

ALBERT requests from
LUDALLAS

DB2 searches for an entry for AUTHID=ALBERT and LINKNAME=LUDALLAS. DB2 finds one
in row 4, so the request is accepted. The value of NEWAUTHID in that row is blank, so
ALBERT is left unchanged.

BETTY requests from
LUDALLAS

DB2 searches for an entry for AUTHID=BETTY and LINKNAME=LUDALLAS; none exists.
DB2 then searches for AUTHID=BETTY and LINKNAME=blank. It finds that entry in row 5, so
the request is accepted. The value of NEWAUTHID in that row is blank, so BETTY is left
unchanged.

CHARLES requests
from LUDALLAS

DB2 searches for AUTHID=CHARLES and LINKNAME=LUDALLAS; no such entry exists.
DB2 then searches for AUTHID=CHARLES and LINKNAME=blank. The search ends at row
3; the request is accepted. The value of NEWAUTHID in that row is CHUCK, so CHARLES is
translated to CHUCK.

ALBERT requests from
LUSNFRAN

DB2 searches for AUTHID=ALBERT and LINKNAME=LUSNFRAN; no such entry exists. DB2
then searches for AUTHID=ALBERT and LINKNAME=blank; again no entry exists. Finally,
DB2 searches for AUTHID=blank and LINKNAME=LUSNFRAN, finds that entry in row 1, and
the request is accepted. The value of NEWAUTHID in that row is blank, so ALBERT is left
unchanged.

BETTY requests from
LUSNFRAN

DB2 finds row 2, and BETTY is translated to ELIZA.

CHARLES requests
from LUSNFRAN

DB2 finds row 3 before row 1; CHARLES is translated to CHUCK.

WILBUR requests from
LUSNFRAN

No provision is made for WILBUR, but row 1 of the SYSIBM.USERNAMES table allows any
ID to make a request from LUSNFRAN and to pass without translation. The acceptance level
for LUSNFRAN is “already verified”, so WILBUR can pass without a password check by
RACF. After accessing DB2, WILBUR can use only the privileges that are granted to WILBUR
and to PUBLIC (for DRDA access) or to PUBLIC AT ALL LOCATIONS (for DB2
private-protocol access).

WILBUR requests from
LUDALLAS

Because the acceptance level for LUDALLAS is “verify” as recorded in the
SYSIBM.LUNAMES table, WILBUR must be known to the local RACF. DB2 searches in
succession for one of the combinations WILBUR/LUDALLAS, WILBUR/blank, or
blank/LUDALLAS. None of those is in the table, so the request is rejected. The absence of a
row permitting WILBUR to request from LUDALLAS imposes a “come-from” check: WILBUR
can attach from some locations (LUSNFRAN), and some IDs (ALBERT, BETTY, and
CHARLES) can attach from LUDALLAS, but WILBUR cannot attach if coming from
LUDALLAS.

Table 53 shows the search order for the SYSIBM.USERNAMES table:

Table 53. Precedence search order for SYSIBM.USERNAMES table

AUTHID LINKNAME Result

Name Name If NEWAUTHID is specified,
AUTHID is translated to
NEWAUTHID for the specified
LINKNAME.

Name Blank If NEWAUTHID is specified,
AUTHID is translated to
NEWAUTHID for all
LINKNAMEs.

Blank Name If NEWAUTHID is specified, it
is substituted for AUTHID for
the specified LINKNAME.

Blank Blank Unavailable resource
message (SQLCODE -904) is
returned.

How do you associate inbound IDs with secondary IDs?: Your decisions on
the previous questions determine what value is used for the primary authorization

186 Administration Guide

ID on an attachment request. They also determine whether those requests are next
treated as connection requests or as sign-on requests. That means that the remote
request next goes through the same processing as a local request, and that you
have the opportunity to associate the primary ID with a list of secondary IDs in the
same way you do for local requests. For more information about processing
connections and sign-ons, see “Processing connections” on page 170 and
“Processing sign-ons” on page 173.

Controlling inbound connections that use TCP/IP protocols
DRDA connections that use TCP/IP have fewer security controls than do
connections that use SNA protocols. When planning to control inbound TCP/IP
connections, consider the following issues:

Do you permit access by TCP/IP? If the serving DB2 for OS/390 and z/OS
subsystem has a DRDA port and resynchronization port specified in the BSDS, DB2
is enabled for TCP/IP connections.

Do you manage inbound IDs through DB2 or RACF? All IDs must be passed to
RACF or Kerberos for processing. No option exists to handle incoming IDs through
DB2.

Do you trust the partner? TCP/IP does not verify partner LUs as SNA does. If
your requesters support mutual authentication, use Kerberos to handle this on the
requester side.

If you use passwords, are they encrypted? Passwords can be encrypted
through:

v RACF using PassTickets, described in “Sending RACF PassTickets” on
page 197.

v DRDA password encryption support. DB2 for OS/390 and z/OS as a server
supports DRDA encrypted passwords and encrypted user IDs with encrypted
passwords. See “Sending encrypted passwords from a workstation” on page 198
for more information.

If you use Kerberos, are users authenticated? If your distributed environment
uses Kerberos to manage users and perform user authentication, DB2 for OS/390
and z/OS can use Kerberos security services to authenticate remote users. See
“Establishing Kerberos authentication through RACF” on page 212.

Do you translate inbound IDs? Inbound IDs are not translated when you use
TCP/IP.

How do you associate inbound IDs with secondary IDs? To associate an
inbound ID with secondary IDs, modify the default connection exit routine
(DSN3@ATH). TCP/IP requests do not use the sign-on exit routine.

Steps, tools, and decisions
See Figure 18 on page 188 for an overview of how incoming requests are handled.
See “Detecting authorization failures (EXTENDED SECURITY)” on page 177 for
information about security diagnostics.

1. You must first decide whether you want incoming requests to have
authentication information, such as RACF passwords, RACF PassTickets, and
Kerberos tickets, passed along with the authorization ID.

To indicate that you require this authentication information, specify NO on the
TCP/IP ALREADY VERIFIED field of installation panel DSNTIP5, which is the

Chapter 12. Controlling access to a DB2 subsystem 187

|
|
|
|

|
|
|
|

default option. If you do not specify NO, all incoming TCP/IP requests can
connect to DB2 without any authentication.

2. If you require authentication, ensure that the security subsystem at your server
is properly configured to handle the authentication information that is passed to
it.

v For requests that use RACF passwords or PassTickets, enter the following
RACF command to indicate which user IDs that use TCP/IP are authorized to
access DDF (the distributed data facility address space):
PERMIT ssnm.DIST CLASS(DSNR) ID(yyy) ACCESS(READ)

WHEN(APPCPORT(TCPIP))

Details of steps: These notes explain the steps shown in Figure 18.

1. DB2 checks to see if an authentication token (RACF encrypted password,
RACF PassTicket, DRDA encrypted password, or Kerberos ticket) accompanies
the remote request.

Activity at the DB2 server

TCP/IP request from remote user

Verify remote connections

Step 1:
Is authentication
information present?

Yes

No
Step 2:
Does the serving
subsystem accept
remote requests
without verification?

TCPALVER=YES

TCPALVER=NO Reject
request.

Check ID for connections

Step 3:
Verify identity by RACF or Kerberos.

Not authorized;
reject request.

Connection processing

Step 4:
Verify by RACF that the ID can access DB2.

Not authorized;
reject request.

Step 5:
Run the connection exit routine (DSN3@ATH).

Step 6:
Check local privilege at the server.

Figure 18. Steps in accepting a request from TCP/IP.

188 Administration Guide

2. If no authentication token is supplied, DB2 checks the TCPALVER subsystem
parameter to see if DB2 accepts IDs without authentication information. If
TCPALVER=NO, authentication information must accompany all requests, and
DB2 rejects the request. If TCPALVER=YES, DB2 accepts the request without
authentication.

3. The identity is a RACF ID that is authenticated by RACF if a password or
PassTicket is provided, or the identity is a Kerberos principal that is validated by
Kerberos Security Server, if a Kerberos ticket is provided. Ensure that the ID is
defined to RACF in all cases. When Kerberos tickets are used, the RACF ID is
derived from the Kerberos principal identity. To use Kerberos tickets, ensure that
you map Kerberos principal names with RACF IDs, as described in
“Establishing Kerberos authentication through RACF” on page 212.

In addition, depending on your RACF environment, the following RACF checks
may also be performed:

a. If the RACF APPL class is active, RACF verifies that the ID has access to
the DB2 APPL. The APPL resource that is checked is the LU name that the
requester used when the attachment request was issued. This is either the
local DB2 LU name or the generic LU name.

b. If the RACF APPCPORT class is active, RACF verifies that the ID is
authorized access to MVS from the port of entry (POE). The POE that is
used in the verify call is the string 'TCPIP'.

If this is a request to change a password, the password is changed.

4. The remote request is now treated like a local connection request (using the
DIST environment for the DSNR resource class). DB2 calls RACF to check the
ID’s authorization against the ssnm.DIST resource.

5. DB2 invokes the connection exit routine. The parameter list that is passed to the
routine describes where the remote request originated.

6. The remote request has a primary authorization ID, possibly one or more
secondary IDs, and an SQL ID. (The SQL ID cannot be translated.) The plan or
package owner ID also accompanies the request. Privileges and authorities that
are granted to those IDs at the DB2 server govern the actions that the request
can take.

Planning to send remote requests
If you are planning to send requests to another DB2 subsystem, consider that the
security administrator of that subsystem might have chosen any of the options
described in “Controlling requests from remote applications” on page 176. You need
to know what those choices are and make entries in your CDB to correspond to
them. You can also choose some things independently of what the other subsystem
requires.

If you are planning to send remote requests to a DBMS that is not DB2 for OS/390
and z/OS, you need to satisfy the requirements of that system. You probably need
documentation for the particular type of system; some of the choices that are
described in this section might not apply.

Network protocols and authentication tokens: DB2 chooses how to send
authentication tokens based on the network protocols that are used (SNA or
TCP/IP). If the request is sent using SNA, the authentication tokens are sent in the
SNA attachment request (FMH5), unless you are using Kerberos. If you use
Kerberos, authentication tokens are sent with DRDA security commands.

Chapter 12. Controlling access to a DB2 subsystem 189

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

If the request uses TCP/IP, the authentication tokens are always sent using DRDA
security commands.

The communications database for the requester
The information in this section, up to “What IDs you send” on page 193, is
General-use Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1095.

The communications database (CDB) is a set of DB2 catalog tables that let you
control aspects of remote requests. This section concentrates on the columns of the
communications database that pertain to security issues related to the requesting
system.

Columns used in SYSIBM.LUNAMES
This table is used only for requests that use SNA protocols.

LUNAME CHAR(8)
The LUNAME of the remote system. A blank value identifies a default row
that serves requests from any system that is not specifically listed
elsewhere in the column.

SECURITY_OUT (CHAR 1)
Indicates the security option that is used when local DB2 SQL applications
connect to any remote server that is associated with the corresponding
LUNAME.

A The option is “already verified”, the default. With A, outbound
connection requests contain an authorization ID and no
authentication token. The value that is used for an outbound
request is either the DB2 user's authorization ID or a translated ID,
depending on the value in the USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection requests
contain a user ID and a RACF PassTicket. The LUNAME column is
used as the RACF PassTicket application name.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value in
the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The option is “password”. Outbound connection requests contain an
authorization ID and a password. The password is obtained from
RACF if ENCRYPTPSWDS=Y, or from SYSIBM.USERNAMES if
ENCRYPTPSWDS=N. If you get the password from
SYSIBM.USERNAMES, the USERNAMES column of
SYSIBM.LUNAMES must contain B or O. The value that is used for
an outbound request is the translated ID.

ENCRYPTPSWDS CHAR(1)
Indicates whether passwords received from and sent to the corresponding
LUNAME are encrypted. This column only applies to DB2 for OS/390 and
z/OS and DB2 for MVS/ESA partners when passwords are used as
authentication tokens.
Y Yes, passwords are encrypted. For outbound requests, the

encrypted password is extracted from RACF and sent to the server.
For inbound requests, the password is treated as encrypted.

190 Administration Guide

|
|

N No, passwords are not encrypted. This is the default; any character
but Y is treated as N.

Recommendation: When you connect to a DB2 for OS/390 and z/OS
partner that is at Version 5 or a subsequent release, use RACF PassTickets
(SECURITY_OUT=’R’) instead of encrypting passwords.

USERNAMES CHAR(1)
Indicates whether an ID accompanying a remote attachment request, which
is received from or sent to the corresponding LUNAME, is subject to
translation and “come from” checking. When you specify I, O, or B, use the
SYSIBM.USERNAMES table to perform the translation.
I An inbound ID is subject to translation.
O An outbound ID, sent to the corresponding LUNAME, is subject to

translation.
B Both inbound and outbound IDs are subject to translation.
blank No IDs are translated.

Columns used in SYSIBM.IPNAMES
This table is used only for requests that use TCP/IP protocols.

LINKNAME CHAR(8)
The name used in the LINKNAME column of SYSIBM.LOCATIONS to
identify the remote system.

SECURITY_OUT
Indicates the DRDA security option that is used when local DB2 SQL
applications connect to any remote server that is associated with this
TCP/IP host.

A The option is “already verified”, the default. Outbound connection
requests contain an authorization ID and no password. The value
that is used for an outbound request is either the DB2 user's
authorization ID or a translated ID, depending on the value in the
USERNAMES column.

R The option is “RACF PassTicket”. Outbound connection requests
contain a user ID and a RACF PassTicket. The LINKNAME column
must contain the server's LU name, which is used as the RACF
PassTicket application name to generate the PassTicket.

The value that is used for an outbound request is either the DB2
user's authorization ID or a translated ID, depending on the value in
the USERNAMES column. The translated ID is used to build the
RACF PassTicket. Do not specify R for CONNECT statements with
a USER parameter.

P The option is “password”. Outbound connection requests contain an
authorization ID and a password. The password is obtained from
the SYSIBM.USERNAMES table.

If you specify P, the USERNAMES column must contain O.

USERNAMES CHAR(1)
This column indicates whether an outbound request translates the
authorization ID. When you specify O, use the SYSIBM.USERNAMES table
to perform the translation.
O An outbound ID, sent to the corresponding LUNAME, is subject to

translation.
blank No translation is done.

Chapter 12. Controlling access to a DB2 subsystem 191

|
|

Columns used in SYSIBM.USERNAMES
This table is used by both SNA and TCP/IP connections.

TYPE CHAR(1)
Indicates whether the row is used for inbound or outbound translation:
I The row applies to inbound IDs.
O The row applies to outbound IDs.

The field should contain only I or O. Any other character, including blank,
causes the row to be ignored.

AUTHID CHAR(8)
An authorization ID that is permitted and perhaps translated. If blank, any
authorization ID is permitted with the corresponding LINKNAME, and all
authorization IDs are translated in the same way.

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following
situations must be true:

v A row exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

NEWAUTHID CHAR(8)
The translated authorization ID. If blank, no translation occurs.

PASSWORD CHAR(8)
A password that is sent with outbound requests. This password is not
provided by RACF and cannot be encrypted.

Columns used in SYSIBM.LOCATIONS
This table controls which locations can access DB2. If you use DB2 private protocol
access, the remote location name must be specified in this table. This check is only
supported for connections using private protocols.

LOCATION CHAR(16)

LINKNAME CHAR(8)
Identifies the VTAM or TCP/IP network locations that are associated with
this row. A blank value in this column indicates that this name translation
rule applies to any TCP/IP or SNA partner.

If you specify a nonblank value for this column, one or both of the following
situations must be true:

v A row exists in table SYSIBM.LUNAMES that has an LUNAME value that
matches the LINKNAME value that appears in this column.

v A row exists in table SYSIBM.IPNAMES that has a LINKNAME value that
matches the LINKNAME value that appears in this column.

PORT CHAR(32)
TCP/IP is used for outbound DRDA connections when the following
statement is true:

v A row exists in SYSIBM.IPNAMES, where the LINKNAME column
matches the value specified in the SYSIBM.LOCATIONS LINKNAME
column.

192 Administration Guide

|
|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

If the above-mentioned row is found, the value of the PORT column is
interpreted as follows:

v If PORT is blank, the default DRDA port (446)is used.

v If PORT is nonblank, the value specified for PORT can take one of two
forms:

– If the value in PORT is left justified with 1-5 numeric characters, the
value is assumed to be the TCP/IP port number of the remote
database server.

– Any other value is assumed to be a TCP/IP service name, which can
be converted to a TCP/IP port number using the TCP/IP
getservbyname socket all. TCP/IP service names are not
case-sensitive.

TPN VARCHAR(64)
Used only when the local DB2 begins an SNA conversation with another
server. When used, TPN indicates the SNA LU 6.2 transaction program
name (TPN) that will allocate the conversation. A length of zero for the
column indicates the default TPN. For DRDA conversations, this is the
DRDA default, which is X'07F6C4C2'.

For DB2 private protocol conversations, this column is not used. For an
SQL/DS server, TPN should contain the resource ID of the SQL/DS
machine.

What IDs you send
At least one authorization ID is always sent to the server to be used for
authentication. That ID is one of the following values:

v The primary authorization ID of the process.

v If you connect to the server using a CONNECT statement with the USER
keyword, the ID that you specify as the USER ID.

However, other IDs can accompany some requests. You need to understand what
other IDs are sent, because they are subject to translation. You must include these
other IDs in table SYSIBM.USERNAMES to avoid an error when you use outbound
translation. Table 54 shows what other IDs you send for the different situations that
can occur.

Table 54. IDs that accompany the primary ID on a remote request

In this situation: You send this ID also:

An SQL query, using DB2 private-protocol
access

The plan owner.

A remote BIND, COPY, or REBIND
PACKAGE command

The package owner.

Chapter 12. Controlling access to a DB2 subsystem 193

|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

Details of steps in sending a request from DB2: These notes explain the steps
in Figure 19.

1. The DB2 subsystem that sends the request checks whether the primary
authorization ID has the privilege to execute the plan or package.

DB2 determines what value in column LINKNAME of table
SYSIBM.LOCATIONS matches either column LUNAME of table

Activity at the DB2 Sending System

Step 1:
Check local privilege.

Check SYSIBM.LUNAMES
or SYSIBM.IPNAMES

Step 2:
Is outbound translation specified?

Translate remote primary ID using
NEWAUTHID column of SYSIBM.USERNAMES.

Yes No

Remote primary ID is the same
as the local primary ID.

Step 3:
Check SECURITY_OUT column of
SYSIBM.LUNAMES or SYSIBM.IPNAMES.

Step 4:
Obtain authentication information.

A R P:
Are passwords
encrypted (possible
only with SNA)?

No
password
is sent.

Get
PassTicket
from RACF.

Yes No

Get password
from RACF.

Get password from
SYSIBM.USERNAMES.

Step 5:
Send request.

Figure 19. Steps in sending a request from a DB2 subsystem

194 Administration Guide

SYSIBM.LUNAMES or column LINKNAME of table SYSIBM.IPNAMES. This
check determines whether SNA or TCP/IP protocols are used to carry the DRDA
request. (Statements that use DB2 private protocol, not DRDA, always use
SNA.)

2. When executing a plan, the plan owner is also sent with the authorization ID;
when binding a package, the authorization ID of the package owner is also sent.
If the USERNAMES column of table SYSIBM.LUNAMES contains O or B, or if
the USERNAMES column of table SYSIBM.IPNAMES contains O, both IDs are
subject to translation under control of the SYSIBM.USERNAMES table. Ensure
that these IDs are included in SYSIBM.USERNAMES, or SQLCODE -904 is
issued. DB2 translates the ID as follows:

v If a nonblank value of NEWAUTHID is in the row, that value becomes the
new ID.

v If NEWAUTHID is blank, the ID is not changed.

If table SYSIBM.USERNAMES does not contain a new authorization ID to which
the primary authorization ID is translated, the request is rejected with a
SQLCODE -904.

If column USERNAMES does not contain O or B, the IDs are not translated.

3. SECURITY_OUT is checked for outbound security options, as follows:

A Already verified. No password is sent with the authorization ID. This
option is valid only if the server accepts already verified requests.

For SNA, the server must have specified A in the SECURITY_IN
column of the SYSIBM.LUNAMES table.
For TCP/IP, the server must have specified YES in the TCP/IP
ALREADY VERIFIED field of installation panel DSNTIP5.

R RACF PassTicket. If the primary authorization ID was translated, that
translated ID is sent with the PassTicket. See “Sending RACF
PassTickets” on page 197 for information about setting up PassTickets.

P Password. The outbound request must be accompanied by a password:
If the requester is a DB2 for OS/390 and z/OS and uses SNA
protocols, passwords can be encrypted if you specify Y in the
ENCRYPTPSWDS column of SYSIBM.LUNAMES. If passwords are
not encrypted, the password is obtained from the PASSWORD
column of table SYSIBM.USERNAMES.

Recommendation: Use RACF PassTickets to avoid flowing
unencrypted passwords over the network.
If the requester uses TCP/IP protocols, you cannot encrypt the
password; therefore, the password is always obtained from RACF.

4. Send the request. See Table 54 on page 193 to determine which IDs
accompany the primary authorization ID.

Translating outbound IDs
One reason for translating outbound IDs is that an ID on your system duplicates an
ID on the remote system. Or, you might want to change some IDs to others that are
accepted by the remote system.

To indicate that you want to translate outbound user IDs:

1. Specify an O in the USERNAMES column of table SYSIBM.IPNAMES or
SYSIBM.LUNAMES.

Chapter 12. Controlling access to a DB2 subsystem 195

2. Use the NEWAUTHID column of SYSIBM.USERNAMES to specify the ID to
which the outbound ID is translated.

Example 1: Suppose that the remote system accepts from you only the IDs
XXGALE, GROUP1, and HOMER.

1. To specify that outbound translation is in effect for the remote system, LUXXX,
you need the following values in table SYSIBM.LUNAMES:

LUNAME USERNAMES
LUXXX O

If your row for LUXXX already has I for column USERNAMES (because you
translate inbound IDs that come from LUXXX), change I to B (for both inbound
and outbound translation.

2. Translate the ID GALE to XXGALE on all outbound requests to LUXXX. You
need these values in table SYSIBM.USERNAMES:

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD
O GALE LUXXX XXGALE GALEPASS

3. Translate EVAN and FRED to GROUP1 on all outbound requests to LUXXX.
You need these values in table SYSIBM.USERNAMES:

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD
O EVAN LUXXX GROUP1 GRP1PASS
O FRED LUXXX GROUP1 GRP1PASS

4. Do not translate the ID HOMER on outbound requests to LUXXX. (HOMER is
assumed to be an ID on your DB2, and on LUXXX.) You need these values in
table SYSIBM.USERNAMES:

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD
O HOMER LUXXX blank HOMERSPW

5. Reject any requests from BASIL to LUXXX before they are sent. For that, you
need nothing in table SYSIBM.USERNAMES. If no row indicates what to do
with the ID BASIL on an outbound request to LUXXX, the request is rejected.

Example 2: If you send requests to another LU, such as LUYYY, you generally
need another set of rows to indicate how your IDs are to be translated on outbound
requests to LUYYY.

However, you can use a single row to specify a translation that is to be in effect on
requests to all other LUs. For example, if HOMER is to be sent untranslated
everywhere, and DOROTHY is to be translated to GROUP1 everywhere, you can
use these values in table SYSIBM.USERNAMES:

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD
O HOMER blank blank HOMERSPW
O DOROTHY blank GROUP1 GRP1PASS

You can also use a single row to specify that all IDs that accompany requests to a
single remote system must be translated. For example, if every one of your IDs is
to be translated to THEIRS on requests to LUYYY, you can use the following values
in table SYSIBM.USERNAMES:

196 Administration Guide

TYPE AUTHID LINKNAME NEWAUTHID PASSWORD
O blank LUYYY THEIRS THEPASS

Sending passwords
Recommendation: For the tightest security, do not send passwords through the
network. Instead, use one of the following security mechanisms:

v RACF encrypted passwords, described in “Sending RACF encrypted passwords”

v RACF PassTickets, described in “Sending RACF PassTickets”

v Kerberos tickets, described in “Establishing Kerberos authentication through
RACF” on page 212

v DRDA encrypted passwords or DRDA encrypted user IDs with encrypted
passwords, described in “Sending encrypted passwords from a workstation” on
page 198

If you want to send passwords, you can put the password for an ID in the
PASSWORD column of SYSIBM.USERNAMES. If you do this, pay special
attention to the security of the SYSIBM.USERNAMES table. We strongly
recommend that you use an edit routine (EDITPROC) to encrypt the passwords and
authorization IDs in SYSIBM.USERNAMES. For instructions on writing an edit
routine and creating a table that uses it, see “Edit routines” on page 921.

DB2 for OS/390 and z/OS allows the use of RACF encrypted passwords or RACF
PassTickets. However, workstations, such as Windows NT®, do not support these
security mechanisms. RACF encrypted passwords are not a secure mechanism,
because they can be replayed.

Recommendation: Do not use RACF encrypted passwords unless you are
connecting to a previous release of DB2 for OS/390 and z/OS.

Sending RACF encrypted passwords
A method available only to DB2 subsystems that communicate with each other
using SNA protocols is to specify password encryption in SYSIBM.LUNAMES as
follows:

LUNAME USERNAMES ENCRYPTPSWDS
LUXXX O Y

The partner DB2 must also specify password encryption in its SYSIBM.LUNAMES
table. Both partners must register each ID and its password with RACF. Then, for
every request to LUXXX, your DB2 calls RACF to supply an encrypted password to
accompany the ID. With password encryption, you do not use the PASSWORD
column of SYSIBM.USERNAMES, so the security of that table becomes less
critical.

Sending RACF PassTickets
To send RACF PassTickets with your remote requests to a particular remote
system, enter R in the SECURITY_OUT column of the SYSIBM.IPNAMES or
SYSIBM.LUNAMES table for that system.

To set up RACF to generate PassTickets, define and activate a RACF PassTicket
data class (PTKTDATA). This class must contain a RACF profile for each remote
DB2 subsystem to which you send requests.

1. Activate the RACF PTKTDATA class by issuing the following RACF commands:

Chapter 12. Controlling access to a DB2 subsystem 197

|
|
|

SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)

2. Define profiles for the remote systems by entering the name of each remote
system as it appears in the LINKNAME column of table SYSIBM.LOCATIONS.
For example, the following command defines a profile for a remote system,
DB2A, in the RACF PTKTDATA class:
RDEFINE PTKTDATA DB2A SSIGNON(KEYMASKED(E001193519561977))

3. Refresh the RACF PTKTDATA definition with the new profile by issuing the
following command:
SETROPTS RACLIST(PTKTDATA) REFRESH

See OS/390 Security Server (RACF) Security Administrator's Guide for more
information about RACF PassTickets.

Sending encrypted passwords from a workstation
Depending on the DRDA level, clients can encrypt passwords or user IDs and
passwords when they send them to a DB2 for OS/390 and z/OS server. This
support uses the Diffie-Hellman key distribution algorithm.6

To enable DB2 Connect to flow encrypted passwords, database connection services
(DCS) authentication must be set to DCS_ENCRYPT in the DCS directory entry.
When the workstation application issues an SQL CONNECT, the workstation
negotiates this support with the database server. If supported, a shared private key
is generated by the client and server using the Diffie-Hellman public key technology
and the password is encrypted using 56-bit DES with the shared private key. The
encrypted password is non-replayable, and the shared private key is generated on
every connection. If the server does not support password encryption, the
application receives SQLCODE -30073 (DRDA security manager level 6 is not
supported).

Establishing RACF protection for DB2
For purposes of illustration, suppose that the system of RACF IDs that is shown in
Figure 20 on page 199 is used to control DB2 usage.

6. Diffie-Hellman is one of the first standard public key algorithms. It results in exchanging a connection key which is used by client
and server to generate a shared private key. The 56-bit Data Encryption Standards (DES) algorithm is used for encrypting and
decrypting of the password using the shared private key.

198 Administration Guide

Figure 20 shows some of the relationships among the following names:

Table 55. RACF Relationships

RACF ID Use

SYS1 Major RACF group ID

DB2 DB2 group

DB2OWNER Owner of the DB2 group

DSNC710 Group to control databases and recovery logs

DSN710 Group to control installation data sets

DB2USER Group of all DB2 users

SYSADM ID with DB2 installation SYSADM authority

SYSOPR ID with DB2 installation SYSOPR authority

DB2SYS, GROUP1, GROUP2 RACF group names

SYSDSP RACF user ID for DB2 started tasks

USER1, USER2, USER3
Note: These RACF group
names and user IDs do not
appear in the figure; they are
listed in Table 56 on page 204.

RACF user IDs

To establish RACF protection for DB2, perform the steps described in the following
two sections. Some are required and some are optional, depending on your
circumstances. All presume that RACF is already installed. The steps do not need
to be taken strictly in the order shown here; they are grouped under two major
objectives:

v “Defining DB2 resources to RACF” on page 200 includes steps that tell RACF
what to protect.

v “Permitting RACF access” on page 202 includes steps that make the protected
resources available to processes.

SYS1 The major RACF group for the site

DB2 The DB2 group ...Other groups...

DB2OWNER
This ID owns, and is
connected to, group DB2

DSNC 0nn DSN 0nn ...Other aliases... DB2USER
The group of
all DB2 IDs

DB2 groups (aliases to integrated catalog facility catalogs)

RACF group names DB2SYS GROUP1 GROUP2

SYSADM SYSOPR SYSDSP USER2 USER3 USER4

Figure 20. Sample DB2–RACF environment

Chapter 12. Controlling access to a DB2 subsystem 199

For a more thorough description of RACF facilities, see OS/390 Security Server
(RACF) System Programmer's Guide.

Defining DB2 resources to RACF
To define DB2 resources to the RACF system, perform the following required steps
in any order:

v “Define the names of protected access profiles”

v “Add entries to the RACF router table” on page 201

v “Enable RACF checking for the DSNR and SERVER classes” on page 202

No one can access the DB2 subsystem until you instruct RACF to permit access.

Other tasks you might want to perform include:

v Controlling whether two DBMSs using VTAM LU 6.2 can establish sessions with
each other, as described in “Enable partner-LU verification” on page 202.

v Ensure that IDs that are associated with stored procedures address spaces are
authorized to run the appropriate attachment facility, as described in “Step 1:
Control access by using the attachment facilities (required)” on page 209.

v If you are using TCP/IP, ensure that the ID that is associated with the DDF
address space is authorized to use OS/390 UNIX (formerly called
OpenEdition®n) services, as described in “Establishing RACF protection for
TCP/IP” on page 212.

Define the names of protected access profiles
The RACF resource class for DB2 is DSNR, and that class is contained in the
RACF descriptor table. Among the resources in that class are profiles for access to
a DB2 subsystem from one of these environments—IMS, CICS, the distributed data
facility (DDF), TSO, CAF, or batch. Those profiles allow you to control access to a
DB2 subsystem from a particular environment.

Each profile has a name of the form subsystem.environment, where:

v subsystem is the name of a DB2 subsystem, of one to four characters; for
example, DSN or DB2T.

v environment denotes the environment, by one of the following terms:

– MASS for IMS (including MPP, BMP, Fast Path, and DL/I batch).

– SASS for CICS.

– DIST for DDF.

– RRSAF for Recoverable Resource Manager Services attachment facility.
Stored procedures use RRSAF in WLM-established address spaces.

– BATCH for all others, including TSO, CAF, batch, all utility jobs,
DB2-established stored procedures address space, and requests that come
through the call attachment facility.

To control access, you need to define a profile name, as a member of class DSNR,
for every combination of subsystem and environment you want to use. For example,
suppose you want to access:
v Subsystem DSN from TSO and DDF
v Subsystem DB2P from TSO, DDF, IMS, and RRSAF
v Subsystem DB2T from TSO, DDF, CICS, and RRSAF

Then define the following profile names:

200 Administration Guide

DSN.BATCH DSN.DIST
DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF
DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF

You can do that with a single RACF command, which also names an owner for the
resources:
RDEFINE DSNR (DSN.BATCH DSN.DIST DB2P.BATCH DB2P.DIST DB2P.MASS DB2P.RRSAF

DB2T.BATCH DB2T.DIST DB2T.SASS DB2T.RRSAF) OWNER(DB2OWNER)

Those profiles are the ones that you later permit access to, as shown under “Permit
access for users and groups” on page 207. After you define an entry for your DB2
subsystem in the RACF router table, the only users that can access the system are
those who are permitted access to a profile. If you do not want to limit access to
particular users or groups, you can give universal access to a profile with a
command like this:
RDEFINE DSNR (DSN.BATCH) OWNER(DB2OWNER) UACC(READ)

When you have added an entry for an DB2 subsystem to the RACF router table,
you must remove the entry for that subsystem from the router table to deactivate
RACF checking.

Add entries to the RACF router table
You need to add an entry for each DB2 subsystem to the RACF router table,
because they are not included in the default router table that is distributed by RACF.
Figure 21 on page 202 shows the ICHRFRTB macros to generate entries in the
RACF router table (ICHRFR01) for the DB2 subsystems DSN, DB2P, and DB2T.
This table controls the action that is taken when DB2 invokes the RACROUTE
macro. (Refer to OS/390 Security Server (RACF) System Programmer's Guide for a
description of how to generate the RACF router table and the RACROUTE macro).
If you do not have an entry in the router table for a particular DB2 subsystem, any
user who tries to access that subsystem from any environment is accepted.

If you later decide not to use RACF checking for any or all of these resources, use
the RACF RDELETE command to delete the resources you do not want checked.
Then reassemble the RACF router table without them.

Finally, perform an IPL of the MVS system to cause it to use the new router table.
Alternatively, you can delay the IPL until you have reassembled the RACF started
procedures table in the next set of steps and, therefore, do it only once.

Tip: The macro ICHRFRTB that is used in the job sends a message to warn that
the class name DSNR does not contain a digit or national character in the first four
characters. You can ignore the message.

As a result of the job, RACF (ACTION=RACF) receives the requests of those
subsystems, in class DSNR with requester IDENTIFY, for connection checking.

Chapter 12. Controlling access to a DB2 subsystem 201

Enable RACF checking for the DSNR and SERVER classes
To enable RACF access checking for resources in the DSNR resource class, issue
this RACF command:
SETROPTS CLASSACT(DSNR)

Only users with the SPECIAL attribute can issue the command.

If you are using stored procedures in a WLM-established address space, you might
also need to enable RACF checking for the SERVER class. See “Step 2: Control
access to WLM (optional)” on page 210.

Enable partner-LU verification
With RACF 1.9, VTAM 3.3, and later releases of either product, you can control
whether two LUs that use LU 6.2 can connect to each other.

Each member of a connecting pair must establish a profile for the other member.
For example, if LUAAA and LUBBB are to connect and know each other by those
LUNAMES, issue RACF commands similar to these:

At LUAAA: RDEFINE APPCLU netid.LUAAA.LUBBB UACC(NONE) ...
At LUBBB: RDEFINE APPCLU netid.LUBBB.LUAAA UACC(NONE) ...

Here, netid is the network ID, given by the VTAM start option NETID.

When you create those profiles with RACF, use the SESSION operand to supply:
v The VTAM password as a session key (SESSKEY suboperand)
v The maximum number of days between changes of the session key (INTERVAL

suboperand)
v An indication of whether the LU pair is locked (LOCK suboperand)

For details, see OS/390 Security Server (RACF) Security Administrator's Guide.

Finally, to enable RACF checking for the new APPCLU resources, issue this RACF
command at both LUAAA and LUBBB:
SETROPTS CLASSACT(APPCLU)

Permitting RACF access
To let processes use the protected resources, take the steps described in the
following sections:
1. “Define RACF user IDs for DB2 started tasks” on page 203
2. “Add RACF groups” on page 206
3. “Permit access for users and groups” on page 207

*
* REASSEMBLE AND LINKEDIT THE INSTALLATION-PROVIDED
* ROUTER TABLE ICHRFR01 TO INCLUDE DB2 SUBSYSTEMS IN THE
* DSNR RESOURCE CLASS.
*
* PROVIDE ONE ROUTER ENTRY FOR EACH DB2 SUBSYSTEM NAME.
* THE REQUESTOR-NAME MUST ALWAYS BE "IDENTIFY".

ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DSN,ACTION=RACF
ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DB2P,ACTION=RACF
ICHRFRTB CLASS=DSNR,REQSTOR=IDENTIFY,SUBSYS=DB2T,ACTION=RACF

Figure 21. Router table in RACF

202 Administration Guide

The sections that follow provide detailed suggestions.

Define RACF user IDs for DB2 started tasks
A DB2 subsystem has the following started-task address spaces:
v ssnmDBM1 for database services
v ssnmMSTR for system services
v ssnmDIST for the distributed data facility
v ssnmSPAS for the DB2-established stored procedures address space
v Names for your WLM-established address spaces for stored procedures

You must associate each of these address spaces with a RACF user ID. Each of
them can also be assigned a RACF group name. The DB2 address spaces cannot
be started with batch jobs.

If you have IMS or CICS applications issuing DB2 SQL requests, you must
associate RACF user IDs, and can associate group names, with:

v The IMS control region

v The CICS address space

v The four DB2 address spaces

If the IMS and CICS address spaces are started as batch jobs, provide their RACF
IDs and group names with the USER and GROUP parameters on the JOB
statement. If they are started as started tasks, assign the IDs and group names as
you do for the DB2 address spaces, by changing the RACF started procedures
table.

Stored procedures: Entries for stored procedures address spaces are required in
the RACF started procedures table. The associated RACF user ID and group name
do not need to match those that are used for the DB2 address spaces, but they
must be authorized to run the call attachment facility (for the DB2-established
stored procedures address space) or Recoverable Resource Manager Services
attachment facility (for WLM-established stored procedures address spaces). Note:
WLM-established stored procedures started tasks IDs require an OMVS segment.

Changing the RACF started-procedures table: To change the RACF
started-procedures table (ICHRIN03), change, reassemble, and link edit the
resulting object code to MVS. Figure 22 on page 204 shows the sample entries for
three DB2 subsystems and optional entries for CICS and IMS. (Refer to OS/390
Security Server (RACF) System Programmer's Guide for a description of how to
code a RACF started-procedures table.) The example provides the DB2 started
tasks for each of three DB2 subsystems, named DSN, DB2T, and DB2P, and for
CICS and an IMS control region.

The IDs and group names associated with the address spaces are shown in
Table 56 on page 204.

Chapter 12. Controlling access to a DB2 subsystem 203

|
|
|
|
|
|
|

Table 56. DB2 address space IDs and associated RACF user IDs and group names
Address Space RACF User ID RACF Group Name
DSNMSTR SYSDSP DB2SYS
DSNDBM1 SYSDSP DB2SYS
DSNDIST SYSDSP DB2SYS
DSNSPAS SYSDSP DB2SYS
DSNWLM SYSDSP DB2SYS
DB2TMSTR SYSDSPT DB2TEST
DB2TDBM1 SYSDSPT DB2TEST
DB2TDIST SYSDSPT DB2TEST
DB2TSPAS SYSDSPT DB2TEST
DB2PMSTR SYSDSPD DB2PROD
DB2PDBM1 SYSDSPD DB2PROD
DB2PDIST SYSDSPD DB2PROD
DB2PSPAS SYSDSPD DB2PROD
CICSSYS CICS CICSGRP
IMSCNTL IMS IMSGRP

//*
//* REASSEMBLE AND LINKEDIT THE RACF STARTED-PROCEDURES
//* TABLE ICHRIN03 TO INCLUDE USERIDS AND GROUP NAMES
//* FOR EACH DB2 CATALOGED PROCEDURE. OPTIONALLY, ENTRIES
//* FOR AN IMS OR CICS SYSTEM MIGHT BE INCLUDED.
//*
//* AN IPL WITH A CLPA (OR AN MLPA SPECIFYING THE LOAD
//* MODULE) IS REQUIRED FOR THESE CHANGES TO TAKE EFFECT.
//*

ENTCOUNT DC AL2(((ENDTABLE-BEGTABLE)/ENTLNGTH)+32768)
* NUMBER OF ENTRIES AND INDICATE RACF FORMAT
*
* PROVIDE FOUR ENTRIES FOR EACH DB2 SUBSYSTEM NAME.
*

Figure 22. Sample job to reassemble the RACF started-procedures table (Part 1 of 5)

204 Administration Guide

BEGTABLE DS 0H
* ENTRIES FOR SUBSYSTEM NAME "DSN"

DC CL8'DSNMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

ENTLNGTH EQU *-BEGTABLE CALCULATE LENGTH OF EACH ENTRY
DC CL8'DSNDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DSNDIST' DDF PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DSNSPAS' STORED PROCEDURES PROCEDURE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DSNWLM' WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

Figure 22. Sample job to reassemble the RACF started-procedures table (Part 2 of 5)

* ENTRIES FOR SUBSYSTEM NAME "DB2T"
DC CL8'DB2TMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2TDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2TDIST' DDF PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2TSPAS' STORED PROCEDURES PROCEDURE
DC CL8'SYSDSPT' USERID
DC CL8'DB2TEST' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

Figure 22. Sample job to reassemble the RACF started-procedures table (Part 3 of 5)

Chapter 12. Controlling access to a DB2 subsystem 205

Add RACF groups
The details of this step depend on the groups you have defined. To add the user
DB2OWNER, issue the following RACF command:
ADDUSER DB2OWNER CLAUTH(DSNR USER) UACC(NONE)

That gives class authorization to DB2OWNER for DSNR and USER. DB2OWNER
can add users to RACF and issue the RDEFINE command to define resources in
class DSNR. DB2OWNER has control over and responsibility for the entire DB2
security plan in RACF.

The RACF group SYS1 already exists. To add group DB2 and make DB2OWNER
its owner, issue the following RACF command:
ADDGROUP DB2 SUPGROUP(SYS1) OWNER(DB2OWNER)

To connect DB2OWNER to group DB2 with the authority to create new subgroups,
add users, and manipulate profiles, issue the following RACF command:
CONNECT DB2OWNER GROUP(DB2) AUTHORITY(JOIN) UACC(NONE)

* ENTRIES FOR SUBSYSTEM NAME "DB2P"
DC CL8'DB2PMSTR' SYSTEM SERVICES PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2PDBM1' DATABASE SERVICES PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2PDIST' DDF PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'DB2PSPAS' STORED PROCEDURES PROCEDURE
DC CL8'SYSDSPD' USERID
DC CL8'DB2PROD' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

Figure 22. Sample job to reassemble the RACF started-procedures table (Part 4 of 5)

* OPTIONAL ENTRIES FOR CICS AND IMS CONTROL REGION
DC CL8'CICSSYS' CICS PROCEDURE NAME
DC CL8'CICS' USERID
DC CL8'CICSGRP' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES
DC CL8'IMSCNTL' IMS CONTROL REGION PROCEDURE
DC CL8'IMS' USERID
DC CL8'IMSGRP' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES

ENDTABLE DS 0D
END

Figure 22. Sample job to reassemble the RACF started-procedures table (Part 5 of 5)

206 Administration Guide

To make DB2 the default group for commands issued by DB2OWNER, issue the
following RACF command:
ALTUSER DB2OWNER DFLTGRP(DB2)

To create the group DB2USER and add five users to it, issue the following RACF
commands:
ADDGROUP DB2USER SUPGROUP(DB2)
ADDUSER (USER1 USER2 USER3 USER4 USER5) DFLTGRP(DB2USER)

To define a user to RACF, use the RACF ADDUSER command. That invalidates the
current password. You can then log on as a TSO user to change the password.

DB2 considerations when using RACF groups:

v When a user is newly connected to, or disconnected from, a RACF group, the
change is not effective until the next logon. Therefore, before using a new group
name as a secondary authorization ID, a TSO user must log off and log on, or a
CICS or IMS user must sign on again.

v A user with the SPECIAL, JOIN, or GROUP-SPECIAL RACF attribute can define
new groups with any name that RACF accepts and can connect any user to
them. Because the group name can become a secondary authorization ID, you
should control the use of those RACF attributes.

v Existing RACF group names can duplicate existing DB2 authorization IDs. That is
unlikely, because a group name cannot be the same as a user name, and
authorization IDs that are known to DB2 are usually user IDs that are known to
RACF. However, if you create a table with an owner name that happens to be a
RACF group name, and you use the IBM-supplied sample connection exit
routine, any TSO user with the group name as a secondary ID has ownership
privileges on the table. You can prevent that situation by designing the
connection exit routine to stop unwanted group names from being passed to
DB2. For example, in CICS, if the RCT specifies AUTH=TXID, ensure that the
transaction identifier is not a RACF group; if it is, any user that is connected to
the group has the same privileges as the transaction code.

Permit access for users and groups
In this scenario, DB2OWNER is authorized for class DSNR, owns the profiles, and
has the right to change them. The next commands let users that are members of
the group DB2USER, and the system administrators and operators, to be TSO
users, run batch jobs, and run DB2 utilities on the three systems: DSN, DB2P, and
DB2T. The ACCESS(READ) operand allows use of DB2 without the ability to
manipulate profiles.
PERMIT DSN.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2P.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)
PERMIT DB2T.BATCH CLASS(DSNR) ID(DB2USER) ACCESS(READ)

IMS and CICS: You want the IDs for attaching systems to use the appropriate
access profile. For example, to let the IMS user ID use the access profile for IMS
on system DB2P, issue the following RACF command:
PERMIT DB2P.MASS CLASS(DSNR) ID(IMS) ACCESS(READ)

To let the CICS group ID use the access profile for CICS on system DB2T, issue
the following RACF command:
PERMIT DB2T.SASS CLASS(DSNR) ID(CICSGRP) ACCESS(READ)

Default IDs for installation authorities: When DB2 is installed, IDs are named to
have special authorities—one or two IDs for SYSADM and one or two IDs for

Chapter 12. Controlling access to a DB2 subsystem 207

SYSOPR. Those IDs can be connected to the group DB2USER; if they are not, you
need to give them access. The next command permits the default IDs for the
SYSADM and SYSOPR authorities to use subsystem DSN through TSO:
PERMIT DSN.BATCH CLASS(DSNR) ID(SYSADM,SYSOPR) ACCESS(READ)

IDs also can be group names.

Secondary IDs: You can use secondary authorization IDs to define a RACF group.
After you define the RACF group, you can assign privileges to it that are shared by
multiple primary IDs. For example, suppose that DB2OWNER wants to create a
group GROUP1 and give the ID USER1 administrative authority over it. USER1
should be able to connect other existing users to the group. To create the group,
DB2OWNER issues this RACF command:
ADDGROUP GROUP1 OWNER(USER1) DATA('GROUP FOR DEPT. G1')

To let the group connect to the DSN system through TSO, DB2OWNER issues this
RACF command:
PERMIT DSN.BATCH CLASS(DSNR) ID(GROUP1) ACCESS(READ)

USER1 can now connect other existing IDs to the group GROUP1, using RACF
CONNECT commands like this:
CONNECT (USER2 EPSILON1 EPSILON2) GROUP(GROUP1)

If you add or update secondary IDs for CICS transactions, you must start and stop
the CICS attachment facility to ensure that all threads sign on and get the correct
security information.

Allowing users to create data sets: “Chapter 14. Auditing” on page 219
recommends using RACF to protect the data sets that store DB2 data. If you use
that method, then when you create a new group of DB2 users, you might want to
connect it to a group that can create data sets. Looking ahead to the methods of
the next chapter, to allow USER1 to create and control data sets, DB2OWNER
creates a generic profile and permits complete control to USER1, and also to DB2
(through SYSDSP) and to the four administrators.
ADDSD 'DSNC710.DSNDBC.ST*' UACC(NONE)

PERMIT 'DSNC710.DSNDBC.ST*'
ID(USER1 SYSDSP SYSAD1 SYSAD2 SYSOP1 SYSOP2) ACCESS(ALTER)

Allowing access from remote requesters: The recommended way of controlling
access from remote requesters is to use the DSNR RACF class with a PERMIT
command to access the distributed data address space (such as DSN.DIST). For
example, the following RACF commands let the users in the group DB2USER to
access DDF on the DSN subsystem. These DDF requests can originate from any
partner in the network.
PERMIT DSN.DIST CLASS(DSNR) ID(DB2USER) ACCESS(READ)

If you want to ensure that a specific user be allowed access only when the request
originates from a specific LU name, you can use WHEN(APPCPORT) on the
PERMIT command. For example, to permit access to DB2 distributed processing on
subsystem DSN when the request comes from USER5 at LUNAME equal to
NEWYORK, issue the following RACF command:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(NEWYORK))

208 Administration Guide

For connections coming in through TCP/IP, you must use TCPIP as the APPCPORT
name, as shown here:
PERMIT DSN.DIST CLASS(DSNR) ID(USER5) ACCESS(READ) +

WHEN(APPCPORT(TCPIP))

If the RACF APPCPORT class is active on your system, and a resource profile for
the requesting LU name already exists, you must permit READ access to the
APPCPORT resource profile for the user IDs that DB2 uses, even when you are
using the DSNR resource class. Similarly, if you are using the RACF APPL class
and that class is restricting access to the local DB2 LU name or generic LU name,
you must permit READ access to the APPL resource for the user IDs that DB2
uses.

Establishing RACF protection for stored procedures
This section summarizes the procedures that you can follow for establishing RACF
protection for stored procedures that run on your DB2 subsystem.

This section contains the following procedures:

v “Step 1: Control access by using the attachment facilities (required)”

v “Step 2: Control access to WLM (optional)” on page 210

v “Step 3: Control access to non-DB2 resources (optional)” on page 211.

Step 1: Control access by using the attachment facilities
(required)
The user ID that is associated with the DB2-established address space must be
authorized to run the DB2 call attachment facility. It must be associated with the
ssnm.BATCH profile, as described in “Define the names of protected access
profiles” on page 200.

The user ID that is associated with the WLM-established stored procedures address
space must be authorized to run Recoverable Resource Manager Services
attachment facility (RRSAF) and is associated with the ssnm.RRSAF profile.

Control access to the DB2 subsystem through RRSAF by performing the following
steps:

1. If you have not already established a profile for controlling access from the RRS
attachment as described in “Define the names of protected access profiles” on
page 200, define ssnm.RRSAF in the DSNR resource class with a universal
access authority of NONE, as shown in the following command:
RDEFINE DSNR (DB2P.RRSAF DB2T.RRSAF) UACC(NONE)

2. Activate the resource class; use the following command:
SETROPTS RACLIST(DSNR) REFRESH

3. Add user IDs that are associated with the stored procedures address spaces to
the RACF Started Procedures Table, as shown in this example:
...

DC CL8'DSNWLM' WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8'SYSDSP' USERID
DC CL8'DB2SYS' GROUP NAME
DC X'00' NO PRIVILEGED ATTRIBUTE
DC XL7'00' RESERVED BYTES...

4. Allow read access to ssnm.RRSAF to the user ID that is associated with the
stored procedures address space:

Chapter 12. Controlling access to a DB2 subsystem 209

PERMIT DB2P.RRSAF CLASS(DSNR) ID(SYSDSP) ACCESS(READ)

Step 2: Control access to WLM (optional)
Optionally, you can control which address spaces can be WLM-established server
address spaces that run stored procedures. To do this, use the server resource
class, which WLM uses to identify valid address spaces to which work can be sent.
If the server class is not defined or activated, any address space is allowed to
connect to WLM as a server address space and to identify itself as a server
address space that runs stored procedures.

To use the server resource class, perform the following steps:

1. Run a version of RACF in which the resource class SERVER is included as part
of the predefined resource classes (RACF Version 2 Release 2 and subsequent
releases).

2. Define a RACF profile for resource class SERVER, as follows:
RDEFINE SERVER (DB2.ssnm.applenv)

where applenv is the name of the application environment that is associated
with the stored procedure. See “Assigning procedures and functions to WLM
application environments” on page 875 for more information about application
environments.

Assume you want to define the following profile names:

v DB2.DB2T.TESTPROC

v DB2.DB2P.PAYROLL

v DB2.DB2P.QUERY

Use the following RACF command:
RDEFINE SERVER (DB2.DB2T.TESTPROC DB2.DB2P.PAYROLL DB2.DB2P.QUERY)

3. Activate the SERVER resource class:
SETROPTS RACLIST(SERVER) REFRESH

4. Permit read access to the server resource name to the user IDs that are
associated with the stored procedures address space.
PERMIT DB2.DB2T.TESTPROC CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.PAYROLL CLASS(SERVER) ID(SYSDSP) ACCESS(READ)
PERMIT DB2.DB2P.QUERY CLASS(SERVER) ID(SYSDSP) ACCESS(READ)

Control of stored procedures in a WLM environment: Programs can be
grouped together and isolated in different WLM environments based on application
security requirements. For example, payroll applications might be isolated in one
WLM environment, because they contain sensitive data, such as employee salaries.

To prevent users from creating a stored procedure in a sensitive WLM environment,
DB2 invokes RACF to determine if the user is allowed to create stored procedures
in the specified WLM environment. The WLM ENVIRONMENT keyword on the
CREATE PROCEDURE statement identifies the WLM environment to use for
running a given stored procedure. Attempts to create a procedure fail if the user is
not properly authorized.

DB2 performs a resource authorization check using the DSNR RACF class as
follows:

v In a DB2 data sharing environment, DB2 uses the following RACF resource
name:
db2_groupname.WLMENV.wlm_environment

210 Administration Guide

v In a non-data sharing environment, DB2 checks the following RACF resource
name:
db2_subsytem_id.WLMENV.wlm_environment

You can use the RACF RDEFINE command to create RACF profiles that prevent
users from creating stored procedures and user-defined functions in sensitive WLM
environments. For example, you can prevent all users on DB2 subsystem DB2A
(non-data sharing) from creating a stored procedure or user-defined function in the
WLM environment named PAYROLL; to do this, use the following command:
RDEFINE DSNR (DB2A.WLMENV.PAYROLL) UACC(NONE)

The RACF PERMIT command authorizes a user to create a stored procedure or
user-defined function in a WLM environment. For example, you can authorize a
DB2 user (DB2USER1) to create stored procedures on DB2 subsystem DB2A
(non-data sharing) in the WLM environment named PAYROLL:
PERMIT DB2A.WLMENV.PAYROLL CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Control of stored procedures in a DB2-established stored procedures address
space: DB2 invokes RACF to determine if a user is allowed to create a stored
procedures in a DB2-established stored procedures address space. The NO WLM
ENVIRONMENT keyword on the CREATE PROCEDURE statement indicates that a
given stored procedure will run in a DB2-established stored procedures address
space. Attempts to create a procedure fail if the user is not authorized, or if there is
no DB2-established stored procedures address space.

The RACF PERMIT command authorizes a user to create a stored procedure in a
DB2-established stored procedures address space. For example, you can authorize
a DB2 user (DB2USER1) to create stored procedures on DB2 subsystem DB2A in
the stored procedures address space named DB2ASPAS:
PERMIT DB2A.WLMENV.DB2ASPAS CLASS(DSNR) ID(DB2USER1) ACCESS(READ)

Step 3: Control access to non-DB2 resources (optional)
With stored procedures that run in a DB2-established address space, the user ID of
the stored procedures address space (from the started procedures table of RACF)
is used to access non-DB2 resources such as IMS or CICS transactions,
MVS/APPC conversations, or VSAM files.

With WLM-established address spaces, you can specify that access to non-DB2
resources is controlled by the authorization ID of the caller rather than that of the
stored procedures address space. To do this, specify U in the
EXTERNAL_SECURITY column of table SYSIBM.SYSROUTINES for the stored
procedure.

When you specify U for EXTERNAL_SECURITY, a separate RACF environment is
established for that stored procedure. Use EXTERNAL_SECURITY=U only when
the caller must access resources outside of DB2. Figure 23 shows the user ID that
is associated with each part of a stored procedure.

Chapter 12. Controlling access to a DB2 subsystem 211

For WLM-established stored procedures address spaces, enable the RACF check
for the caller's ID when accessing non-DB2 resources by performing the following
steps:

1. Update the row for the stored procedure in table SYSIBM.SYSROUTINES with
EXTERNAL_SECURITY=U.

2. Ensure that the ID of the stored procedure's caller has RACF authority to the
resources.

3. For the best performance, cache the RACF profiles in the virtual look-aside
facility (VLF) of MVS. Do this by specifying the following keywords in the
COFVLFxx member of library SYS1.PARMLIB.
CLASS NAME(IRRACEE)
EMAJ(ACEE)

Establishing RACF protection for TCP/IP
The ID that is associated with DB2's distributed address space must be authorized
to use OS/390 UNIX services if your DB2 subsystem is going to send or accept any
requests over TCP/IP. To do this, you must create an OMVS segment in the RACF
user profile, as follows:
ALTUSER (SYSDSP) OMVS(UID(0))

To give root authority to the DDF address space, you must specify a UID of 0.

Establishing Kerberos authentication through RACF
Kerberos security is a network security technology developed at the Massachusetts
Institute of Technology. DB2 for OS/390 and z/OS can use Kerberos security
services to authenticate remote users. With Kerberos security services, remote end
users access DB2 for OS/390 and z/OS when they issue their Kerberos name and
password. This same name and password is used for access throughout the
network, so a separate MVS password to access DB2 for OS/390 and z/OS is not
necessary.

..

.

User ID=yyyy

User ID=xxxx

User ID=zzzz

WLM-established
stored procedure
address space

DB2 server

Client program A

User ID=yyyy

User ID=zzzz

User ID=yyyy User ID=xxxx

..

.

EXEC SQL
CALL B

EXEC SQL
CREATE PROCEDURE B

Package
A

(CALL B)

Package
B

Program
B

ssnmWLM

EXTERNAL_SECURITY=U

EXTERNAL_SECURITY=D

EXTERNAL_SECURITY=C

Other MVS
resource

Figure 23. Accessing non-DB2 resources from a stored procedure

212 Administration Guide

|

|
|
|
|
|
|
|

The Kerberos security technology does not require passwords to flow in readable
text, making it secure even for client/server environments. This flexibility is possible
because Kerberos uses an authentication technology that uses encrypted tickets
that contain authentication information for the end user.

DB2 for OS/390 and z/OS support for Kerberos security requires the OS/390
SecureWay Security Server (formerly known as RACF) and the Security Server
Network Authentication and Privacy Service, or the functional equivalent. The
Network Authentication and Privacy Service provides Kerberos support and relies
on a security product, such as RACF, to provide registry support. The OS/390
Security Server allows administrators who are already familiar with RACF
commands and RACF ISPF panels to define Kerberos configuration and principal
information. For more information about using Kerberos security, see the OS/390
SecureWay Security Server Network Authentication and Privacy Service
Administration Guide, OS/390 Security Server (RACF) Security Administrator's
Guide and OS/390 Security Server (RACF) Command Language Reference.

Each remote user who is authenticated to DB2 by means of Kerberos
authentication must be registered in RACF profiles.

1. Define the Kerberos realm to RACF. The name of the local realm must be
supplied in the definition. You must also supply a Kerberos password for RACF
to grant Kerberos ticket-granting tickets. Define a Kerberos realm with the
following command:
RDEFINE REALM KERBDFLT KERB(KERBNAME(localrealm) PASSWORD(mykerpw)

2. Define local principals to RACF. The RACF passwords must be changed before
the principals become active Kerberos users. Define a Kerberos principal with
the following commands:
AU RONTOMS KERB(KERBNAME(rontoms))
ALU RONTOMS PASSWORD(new1pw) NOEXPIRE

3. Map foreign Kerberos principals by defining KERBLINK profiles to RACF with a
command similar to the following command:
RDEFINE KERBLINK /.../KERB390.ENDICOTT.IBM.COM/RWH APPLDATA('RONTOMS')

You must also define a principal name for the user ID used in the ssnmDIST
started task address space. This step is required because the ssnmDIST
address space must have the RACF authority to use its SAF ticket parsing
service.
ALU SYSDSP PASSWORD(pw) NOEXPIRE KERB(KERBNAME(SYSDSP))

In this example, the user ID that is used for the ssnmDIST started task address
space is SYSDSP. See “Define RACF user IDs for DB2 started tasks” on
page 203 for more information, including how to determine the user ID for the
ssnmDIST started task.

4. Define foreign Kerberos authentication servers to the local Kerberos
authentication server using REALM profiles. You must supply a password for the
key to be generated. REALM profiles define the trust relationship between the
local realm and the foreign Kerberos authentication servers. PASSWORD is a
required keyword, so all REALM profiles have a KERB segment. The command
is similar to the following command:
RDEFINE REALM /.../KERB390.ENDICOTT.IBM.COM/KRBTGT/KER2000.ENDICOTT.IBM.COM +
KERB(PASSWORD(realm0pw))

The OS/390 SecureWay Kerberos Security Server rejects ticket requests from users
with revoked or expired passwords, so plan password resets that use a method

Chapter 12. Controlling access to a DB2 subsystem 213

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

avoiding a password change at a subsequent logon. For example, use the TSO
logon panel the PASSWORD command without the ID operand specified, or the
ALTUSER command with NOEXPIRE specified.

Data sharing environment: Data sharing Sysplex environments that use Kerberos
security must have a Kerberos Security Server instance running on each system in
the Sysplex. The instances must either be in the same realm and share the same
RACF database, or have different RACF databases and be in different realms.

Other methods of controlling access
You can also help control access to DB2 from within IMS or CICS.

v IMS security

IMS terminal security lets you limit the entry of a transaction code to a particular
logical terminal (LTERM) or group of LTERMs in the system. To protect a
particular program, you can authorize a transaction code to be entered only from
any terminal on a list of LTERMs. Alternatively, you can associate each LTERM
with a list of the transaction codes that a user can enter from that LTERM. IMS
then passes the validated LTERM name to DB2 as the initial primary
authorization ID.

v CICS security

CICS transaction code security works with RACF to control the transactions and
programs that can access DB2. Within DB2, you can use the ENABLE and
DISABLE options of the bind operation to limit access to specific CICS
subsystems.

214 Administration Guide

|
|
|

|
|
|
|

Chapter 13. Protecting data sets

To fully protect the data in DB2, you must take steps to ensure that no other
process has access to the data sets in which DB2 data resides.

Recommendation: Use RACF, or a similar external security system, to control
access to the data sets just as it controls access to the DB2 subsystem.
“Controlling data sets through RACF” explains how to create RACF profiles for data
sets and allow their use through DB2.

Controlling data sets through RACF
Assume that the RACF groups DB2 and DB2USER, and the RACF user ID
DB2OWNER, have been set up for DB2 IDs, as described under “Defining DB2
resources to RACF” on page 200 (and shown in Figure 20 on page 199). Given that
setting, the examples that follow show you how to:

v Add RACF groups to control data sets that use the default DB2 qualifiers

v Create generic profiles for different types of DB2 data sets and permit their use
by DB2 started tasks

v Permit use of the profiles by specific IDs

v Allow certain IDs to create data sets.

Adding groups to control DB2 data sets
The default high-level qualifier for data sets containing DB2 databases and recovery
logs is DSNC710; for distribution, target, SMP, and other installation data sets, it is
DSN710. DB2OWNER can create groups that control those data sets, by issuing
the following commands:
ADDGROUP DSNC710 SUPGROUP(DB2) OWNER(DB2OWNER)
ADDGROUP DSN710 SUPGROUP(DB2) OWNER(DB2OWNER)

Creating generic profiles for data sets
DB2 uses specific names to identify data sets for special purposes. In “Define
RACF user IDs for DB2 started tasks” on page 203, SYSDSP is the RACF user ID
for DB2 started tasks. DB2OWNER can issue the following commands to create
generic profiles for the data set names and give complete control over the data sets
to DB2 started tasks:

v For active logs, issue the following commands:
ADDSD 'DSNC710.LOGCOPY*' UACC(NONE)
PERMIT 'DSNC710.LOGCOPY*' ID(SYSDSP) ACCESS(ALTER)

v For archive logs, issue the following commands:
ADDSD 'DSNC710.ARCHLOG*' UACC(NONE)
PERMIT 'DSNC710.ARCHLOG*' ID(SYSDSP) ACCESS(ALTER)

v For bootstrap data sets, issue the following commands:
ADDSD 'DSNC710.BSDS*' UACC(NONE)
PERMIT 'DSNC710.BSDS*' ID(SYSDSP) ACCESS(ALTER)

v For table spaces and index spaces, issue the following commands:
ADDSD 'DSNC710.DSNDBC.*' UACC(NONE)
PERMIT 'DSNC710.DSNDBC.*' ID(SYSDSP) ACCESS(ALTER)

v For installation libraries, issue the following commands:
ADDSD 'DSN710.*' UACC(READ)

© Copyright IBM Corp. 1982, 2001 215

Started tasks do not need control.

v For other general data sets, issue the following commands:
ADDSD 'DSNC710.*' UACC(NONE)
PERMIT 'DSNC710.*' ID(SYSDSP) ACCESS(ALTER)

Although all of those commands are not absolutely necessary, the sample shows
how you can create generic profiles for different types of data sets. Some
parameters, such as universal access, could vary among the types. In the example,
installation data sets (DSN710.*) are universally available for read access.

If you use generic profiles, specify NO on installation panel DSNTIPP for ARCHIVE
LOG RACF, or you might get an MVS error when DB2 tries to create the archive
log data set. If you specify YES, DB2 asks RACF to create a separate profile for
each archive log that is created, which means you cannot use generic profiles for
these data sets.

To protect VSAM data sets, use the cluster name. You do not need to protect the
data component names, because the cluster name is used for RACF checking.

Access by stand-alone DB2 utilities: The following DB2 utilities access objects
outside of DB2 control:

v DSN1COPY and DSN1PRNT: table space and index space data sets

v DSN1LOGP: active logs, archive logs, and bootstrap data sets

v DSN1CHKR: DB2 directory and catalog table spaces

v Change Log Inventory (DSNJU003) and Print Log Map (DSNJU004): bootstrap
data sets

The Change Log Inventory and Print Log Map are batch jobs that are protected by
the USER and PASSWORD options on the JOB statement. To provide a value for
the USER option, for example SVCAID, issue the following commands:

v For DSN1COPY:
PERMIT 'DSNC710.*' ID(SVCAID) ACCESS(CONTROL)

v For DSN1PRNT:
PERMIT 'DSNC710.*' ID(SVCAID) ACCESS(READ)

v For DSN1LOGP:
PERMIT 'DSNC710.LOGCOPY*' ID(SVCAID) ACCESS(READ)
PERMIT 'DSNC710.ARCHLOG*' ID(SVCAID) ACCESS(READ)
PERMIT 'DSNC710.BSDS*' ID(SVCAID) ACCESS(READ)

v For DSN1CHKR:
PERMIT 'DSNC710.DSNDBDC.*' ID(SVCAID) ACCESS(READ)

v For change log inventory:
PERMIT 'DSNC710.BSDS*' ID(SVCAID) ACCESS(CONTROL)

v For print log map:
PERMIT 'DSNC710.BSDS*' ID(SVCAID) ACCESS(READ)

The level of access depends on the intended use, not on the type of data set
(VSAM KSDS, VSAM linear, or sequential). For update operations,
ACCESS(CONTROL) is required; for read-only operations, ACCESS(READ) is
sufficient.

You can use RACF to permit programs, rather than user IDs, to access objects.
When you use RACF in this manner, IDs that are not authorized to access the log

216 Administration Guide

data sets might be able to do so by running the DSN1LOGP utility. Permit access to
database data sets through DSN1PRNT or DSN1COPY.

Permitting DB2 authorization IDs to use the profiles
Authorization IDs with installation SYSADM or installation SYSOPR authority need
access to most DB2 data sets. (For a list of the privileges that go with those
authorities, see “Explicit privileges and authorities” on page 104.) The following
command adds the two default IDs that have the SYSADM and SYSOPR
authorities if no other IDs are named when DB2 is installed:
ADDUSER (SYSADM SYSOPR)

The next two commands connect those IDs to the groups that control data sets,
with the authority to create new RACF database profiles. The ID that has
Installation SYSOPR authority (SYSOPR) does not need that authority for the
installation data sets.
CONNECT (SYSADM SYSOPR) GROUP(DSNC710) AUTHORITY(CREATE) UACC(NONE)
CONNECT (SYSADM) GROUP(DSN710) AUTHORITY(CREATE) UACC(NONE)

The next set of commands gives the IDs complete control over DSNC710 data sets.
The system administrator IDs also have complete control over the installation
libraries. Additionally, you can give the system programmer IDs the same control.
PERMIT 'DSNC710.LOGCOPY*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC710.ARCHLOG*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC710.BSDS*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC710.DSNDBC.*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSNC710.*' ID(SYSADM SYSOPR) ACCESS(ALTER)
PERMIT 'DSN710.*' ID(SYSADM) ACCESS(ALTER)

Allowing DB2 authorization IDs to create data sets
The next command connects several IDs, which are already connected to the
DB2USER group, to group DSNC710 with CREATE authority:
CONNECT (USER1 USER2 USER3 USER4 USER5)

GROUP(DSNC710) AUTHORITY(CREATE) UACC(NONE)

Those IDs can now explicitly create data sets whose names have DSNC710 as the
high-level qualifier. Any such data sets that are created by DB2 or by these RACF
user IDs are protected by RACF. Other RACF user IDs are prevented by RACF
from creating such data sets.

If no option is supplied for PASSWORD on the ADDUSER command that adds
those IDs, the first password for the new IDs is the name of the default group,
DB2USER. The first time that the IDs sign on, they all use that password, but must
change it during their first session.

Chapter 13. Protecting data sets 217

218 Administration Guide

Chapter 14. Auditing

This chapter provides answers to some fundamental auditing questions. Foremost
among them are these:
1. Who is privileged to access what objects?
2. Who has actually accessed the data?

Answers to the first question are found in the DB2 catalog, which is a primary audit
trail for the DB2 subsystem. Most of the catalog tables describe the DB2 objects,
such as tables, views, table spaces, packages, and plans. Several other tables
(every one with the characters “AUTH” in its name) hold records of every grant of a
privilege or authority on different types of object. Every record of a grant contains
the name of the object, the ID that received the privilege, the ID that granted it, the
time of the grant, and other information.

You can retrieve data from catalog tables by writing SQL queries. For examples,
see “Finding catalog information about privileges” on page 152.

Answers to the second question are revealed by the audit trace, another primary
audit trail for DB2. The trace can record changes in authorization IDs for a security
audit and changes that are made to the structure of data (such as dropping a table)
or data values (such as updating or inserting records) for an audit of data access.
The trace can also audit access attempts by unauthorized IDs, the results of
GRANT and REVOKE statements, the mapping of Kerberos security tickets to
RACF IDs, and other activities of interest to auditors.

This chapter also answers these auditing questions:
“Other sources of audit information” on page 225
“What security measures are in force?” on page 225
“What helps ensure data accuracy and consistency?” on page 226
“How can I tell that data is consistent?” on page 229
“How can DB2 recover data after failures?” on page 231
“How can I protect the software?” on page 232
“How can I ensure efficient usage of resources?” on page 232.

How can I tell who has accessed the data?
The information in this section, up to “Other sources of audit information” on
page 225 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

The DB2 audit trace can tell who has accessed data. When started, the audit trace
creates records of actions of certain types and sends them to a named destination.
As with other DB2 traces, you can choose, by options of the audit trace:
v Categories of events to trace
v Particular authorization IDs or plan IDs to audit
v Ways to start and stop the trace
v Destinations for audit records

You can also choose whether to audit a table, by specifying an option of the
CREATE and ALTER statements.

© Copyright IBM Corp. 1982, 2001 219

|
|
|

Options of the audit trace
You specify most TRACE options when you issue the commands START TRACE
and STOP TRACE.

The role of authorization IDs
In general, audit trace records identify a process by its primary authorization ID.
The value is recorded both before and after invocation of an authorization exit
routine; therefore, you can identify a change. The exception to this is if a primary ID
has been translated many times. For example, the translated ID at the requesting
site might be unknown to the server. In that case, you cannot use the primary ID to
gather all audit records for a user that accesses remote data. The AUTHCHG
record also shows the values of all secondary authorization IDs that are established
by an exit routine. See “Audit class descriptions”, Audit Class 7, for a description of
the AUTHCHG record.

With the trace, you can also determine which primary ID is responsible for the
action of a secondary ID, when that information might not appear in the catalog. For
example, suppose that the user with primary ID SMITHJ sets the current SQL ID to
TESTGRP, in order to grant privileges over the table TESTGRP.TABLE01 to another
user. The DB2 catalog records the grantor of the privileges as TESTGRP; the audit
trace, however, shows that the grant statement was issued by SMITHJ.

Use of exit routines: Because the trace identifies a process by its primary ID,
consider carefully the consequences of altering that ID by an exit routine. If the
primary ID identifies a unique user, individual accountability is possible. However, if
several users share the same primary ID, say a RACF group name, then you
cannot tell which of them issued a particular GRANT statement or ran a particular
application plan.

Auditing classes of events
The audit trace does not record everything. The actual changed data is not
recorded (it is recorded in the log). If an agent or transaction accesses a table more
than once in a single unit of recovery, only the first access is recorded, and then
only if the audit trace is started for the appropriate class of events.

Some utilities are not audited. The first access of a table by LOAD is audited, but
access by COPY, RECOVER, and REPAIR is not. Access by stand-alone utilities,
such as DSN1CHKR and DSN1PRNT, is not audited.

This auditing coverage is consistent with the goal of providing a moderate volume
of data with a low impact on performance. However, when you choose classes of
events to audit, consider that you might ask for more data than you care to process.

Audit class descriptions
When you start the trace, you choose events to audit by giving one or more
numbers, to identify classes of events. The trace records are limited to 5000 bytes,
so descriptions that contain long SQL statements might be truncated. The available
classes and the events they include are as follows:

Audit Class events traced

1 Access attempts that DB2 denies because of inadequate authorization. This
class is the default.

2 Explicit GRANT and REVOKE statements and their results. The class does
not include implicit grants and revokes.

3 CREATE, ALTER, and DROP operations affecting audited tables, and their

220 Administration Guide

results. The class includes the dropping of a table caused by DROP
TABLESPACE or DROP DATABASE and the creation of a table with AUDIT
CHANGES or AUDIT ALL. ALTER TABLE statements are audited only when
they change the AUDIT option for the table.

4 Changes to audited tables. Only the first attempt to change a table, within a
unit of recovery, is recorded. (If the agent or the transaction issues more
than one COMMIT statement, the number of audit records increases
accordingly.) The changed data is not recorded, only the attempt to make a
change. If the change is not successful and is rolled back, the audit record
remains; it is not deleted. This class includes access by the LOAD utility.

Accesses to a dependent table that are caused by attempted deletions from
a parent table are also audited. The audit record is written even if the delete
rule is RESTRICT, which prevents the deletion from the parent table. The
audit record is also written when the rule is CASCADE or SET NULL, which
can result in deletions cascading to the dependent table.

5 All read accesses to tables that are identified as AUDIT ALL. As in class 4,
only the first access within a DB2 unit of recovery is recorded, and
references to a parent table are audited.

6 The bind of static and dynamic SQL statements of the following types:

v INSERT, UPDATE, DELETE, CREATE VIEW, and LOCK TABLE
statements for audited tables. Except for the values of host variables, the
entire SQL statement is contained in the audit record.

v SELECT statements to tables that are identified as AUDIT ALL. Except
for the values of host variables, the entire SQL statement is contained in
the audit record.

7 Assignment or change of an authorization ID, through an exit routine
(default or user-written) or a SET CURRENT SQLID statement, through
either an outbound or inbound authorization ID translation, or because the
ID is being mapped to a RACF ID from a Kerberos security ticket.

8 The start of a utility job, and the end of each phase of the utility.

9 Various types of records that are written to IFCID 0146 by the IFI WRITE
function.

Auditing specific IDs
As with other DB2 traces, you can start an audit trace for a particular plan name, a
particular primary authorization ID, or a combination of the two. For examples, see
“DB2 trace” on page 1033. Having audit traces on at all times can be useful for IDs
with SYSADM authority, for example, because they have complete access to every
table. If you have a network of DB2 subsystems, you might need to trace multiple
authorization IDs for those users whose primary authorization ID are translated
several times.

Starting and stopping the audit trace
You can cause an audit trace to start automatically whenever DB2 is started by
making a choice on the panel DSNTIPN when DB2 is installed. Set AUDIT TRACE
to NO, YES, or a list of audit trace classes.

v Use * (an asterisk) to provide a complete audit trace.

v Use NO, the default, if you do not want an audit trace to start automatically.

v Use YES to start a trace automatically for the default class (class 1: access
denials) and the default destination (the SMF data set).

Chapter 14. Auditing 221

|
|
|
|

v Use a list of audit trace classes (for example, 1,3,5) to start a trace automatically
for those classes. It uses the default destination.

The START TRACE command: As with other DB2 traces, you can start an audit
trace at any time with the -START TRACE command. You can choose the audit
classes to trace and the destination for trace records. You can also include an
identifying comment. For example, this command starts an audit trace for classes 4
and 6 with distributed activity:
-START TRACE (AUDIT) CLASS (4,6) DEST (GTF) LOCATION (*)

COMMENT ('Trace data changes; include text of dynamic DML statements.')

The STOP TRACE command: You can have several different traces running at the
same time, including more than one audit trace. One way to stop a particular trace
is to issue the -STOP TRACE command with the same options that were used for
-START TRACE (or enough of them to identify a particular trace). For example, this
command stops the trace that the last example started:
-STOP TRACE (AUDIT) CLASS (4,6) DEST (GTF)

If you have not saved the text of the command, it might be simpler to find out the
identifying trace number and stop the trace by number. Use -DISPLAY TRACE to
find the number. For example, -DISPLAY TRACE (AUDIT) might return a message
something like this:
TNO TYPE CLASS DEST QUAL
01 AUDIT 01 SMF NO
02 AUDIT 04,06 GTF YES

The message indicates that two audit traces are active. Trace 1 traces events in
class 1 and sends records to the SMF data set; it can be a trace that starts
automatically whenever DB2 is started. Trace 2 traces events in classes 4 and 6
and sends records to GTF; the trace that the last example started can be identified
like that.

You can stop either trace by its identifying number (TNO). Use commands like
these:
-STOP TRACE AUDIT TNO(1)
-STOP TRACE AUDIT TNO(2)

Considerations for distributed data
The DB2 audit trace audits any access to your data, whether the request is from a
remote location or your local DB2. The authorization ID on a trace record for a
remote request is the ID that is the final result of any outbound translation, inbound
translation, or activity of an authorization exit routine; that is, it is the same ID to
which you have granted access privileges for your data.

Requests from your location to a remote DB2 are audited only if an audit trace is
active at the remote location. The output from the trace appears only in the records
at that location.

Auditing a specific table
The auditing described in this chapter takes place only when the audit trace is on
and, where it relates to tables, only for tables you specifically choose to audit.
Access to auxiliary tables cannot be audited. You do not create catalog tables and
cannot alter them; therefore, you cannot audit the catalog tables.

222 Administration Guide

To choose to audit a table, use the AUDIT clause in the CREATE TABLE or ALTER
TABLE statement. For example, the department table is audited whenever the audit
trace is on, if you create it with this statement:
CREATE TABLE DSN8710.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION (CHAR16) ,
PRIMARY KEY (DEPTNO))

IN DSN8D71A.DSN8S71D
AUDIT CHANGES;

That example changes the one under “Department table (DSN8710.DEPT)” on
page 884 only by adding the last line. The option CHANGES causes the table to be
audited for accesses that would insert, update, or delete data (trace class 4).

To cause the table to be audited for read accesses also (class 5), issue the
following statement:
ALTER TABLE DSN8710.DEPT

AUDIT ALL;

The statement is effective regardless of whether the table had been chosen for
auditing before.

To prevent all auditing of the table, issue the following statement:
ALTER TABLE DSN8710.DEPT

AUDIT NONE;

For CREATE TABLE, the default audit option is NONE. For ALTER TABLE, no
default exists; if you do not use the AUDIT clause in an ALTER TABLE statement,
the audit option for the table is unchanged.

When CREATE TABLE or ALTER TABLE statements affect the auditing of a table,
those statements can themselves be audited; but the results of those operations are
in audit class 3, not in class 4 or 5. Use audit class 3 to determine whether auditing
was turned off for some table for an interval of time.

If an ALTER TABLE statement turns auditing on or off for a specific table, plans and
packages that use the table are invalidated and must be rebound. Changing the
auditing status does not affect plans, packages, or dynamic SQL statements that
are currently running. The change is effective only for plans, packages, or dynamic
SQL statements that begin running after the ALTER TABLE statement has
completed.

Using audit records
Considerations for preparing the System Management Facility (SMF) or Generalized
Trace Facility (GTF) for accepting audit trace records are the same as for
performance or accounting trace records. See “Recording SMF trace data” on
page 1037 and “Recording GTF trace data” on page 1039 for information. The
records are of SMF type 102, as are performance trace records.

All DB2 trace records are identified by IFCIDs. For instructions on interpreting trace
output and mapping records for the IFCIDs, see “Appendix D. Interpreting DB2
trace output” on page 981. The IFCIDs for each trace class are listed with the
description of the START TRACE command in Chapter 2 of DB2 Command
Reference.

Chapter 14. Auditing 223

If you send trace records to SMF (the default), data might be lost in the following
circumstances:

v SMF fails while DB2 continues running.

v An unexpected abend (such as a TSO interrupt) occurs while DB2 is transferring
records to SMF.

In those circumstances, SMF records the number of records that are lost. MVS
provides an option to stop the system rather than to lose SMF data.

Reporting the records
Among other things, the audit trace records can indicate:

v The ID that initiated the activity

v The LOCATION of the ID that initiated the activity (if the access was initiated
from a remote location)

v The type of activity and the time the activity occurred

v The DB2 objects that were affected

v Whether access was denied

v Who owns a particular plan and package

To extract, format, and print the records, you can use any of the following methods:

v Use DB2 PM. See “DB2 Performance Monitor (DB2 PM)” on page 1039 for more
information.

v Write your own application program to access the SMF data.

v Use the instrumentation facility interface (IFI) as an online resource to pull audit
records. For more information on using the IFI, see “Appendix E. Programming
for the Instrumentation Facility Interface (IFI)” on page 997.

Suggestions for reports
If you regularly start the audit trace for all classes, you accumulate data from which
to draw reports like these:

v Usage of sensitive data

You should probably define tables that contain sensitive data, such as employee
salary records, with the AUDIT ALL option. You can report usage by table and by
authorization ID,7 to look for access by unusual IDs, at unusual times, or of
unexpected types. You should also record any ALTER or DROP operations that
affect the data. Use audit classes 3, 4, and 5.

v Grants of critical privileges

Carefully monitor IDs with special authorities, such as SYSADM and DBADM,
and with explicit privileges over sensitive data, such as an update privilege on
records of accounts payable. A query of the DB2 catalog can show who holds
such a privilege at a particular time. The audit records can reveal whether the
privilege was granted and then revoked in a period of time. Use audit class 2.

v Unsuccessful access attempts

Investigate all unsuccessful access attempts; some of those are only user errors,
but others can be attempts to violate security. If you have sensitive data, always
use trace audit class 1. You can report by table or by authorization ID.7

7. For embedded SQL, the audited ID is the primary authorization ID of the person who bound the plan or package. For dynamic
SQL, the audited ID is the primary authorization ID.

224 Administration Guide

Other sources of audit information
As well as the audit trace, other DB2 traces are also available. You can read about
the accounting, statistics, and performance traces in “DB2 trace” on page 1033.
DB2PM is useful to print reports of those traces, too; see “DB2 Performance
Monitor (DB2 PM)” on page 1039.

Although the recovery log is not an all-purpose log, it can be useful for auditing.
Information from the log can be printed using the DSN1LOGP utility. For example,
the summary report can show which table spaces were updated within the range of
the log that was scanned. The REPORT utility can indicate what log information is
available and where it is located. For information on running DSN1LOGP and
REPORT, see DB2 Utility Guide and Reference.

Image copies of table spaces are generated during typical recovery procedures.
You can inspect those copies, or use them with the RECOVER utility to recover a
table space to a particular point in time, which can help you narrow the time period
in which a particular change was made. For guidance in using COPY and
RECOVER, see “Chapter 21. Backing up and recovering databases” on page 373.

The MVS console log contains messages about exceptional conditions encountered
during DB2 operation. Inspect it for symptoms of problems.

What security measures are in force?
As an auditor, you are interested in the privileges and authorities that are
associated with IDs in the DB2 subsystem. Read “Chapter 10. Controlling access to
DB2 objects” on page 103.

A first step might be to see that DB2 authorization checking is actually in
operation—it can be disabled. Follow the instructions for changing DB2 installation
parameters that are given in “The Update Process” in Part 2 of DB2 Installation
Guide. Without changing anything, look at panel DSNTIPP. If the value of USE
PROTECTION is YES, DB2 checks privileges and authorities before permitting any
activity.

To see what IDs hold particular privileges, look at the DB2 catalog. You can write
appropriate SQL queries. Instructions are given in “Finding catalog information
about privileges” on page 152.

The audit trace, described above, should be running to check access attempts on
sensitive data. To see that the trace is running, display the status of the trace by the
command DISPLAY TRACE(AUDIT).

Some authorization IDs you encounter are probably group IDs, to which many
individual IDs can be connected. To see what IDs are connected to a group, you
need a report from RACF, or from whatever external security system you are using.
Similar reports can tell you what IDs have the required privileges to use DB2 data
sets and other resources. For instructions on obtaining such reports, you need the
documentation from the external security system; such as, OS/390 Security Server
(RACF) System Programmer's Guide.

Data definition control is another security measure that provides additional
constraints to existing authorization checks. With it, you control how specific plans
or collections of packages can use SQL data definition (DDL) statements. Read
“Chapter 11. Controlling access through a closed application” on page 157 for a

Chapter 14. Auditing 225

description of this function. To determine if the control is active, look at option 1 on
panel DSNTIPZ. To determine how DDL statements are controlled, see installation
panel DSNTIPZ in Part 2 of DB2 Installation Guide.

What helps ensure data accuracy and consistency?
DB2 provides many controls that can be applied to data entry and update. Some of
the controls are automatic, some optional. All prohibit certain operations and provide
error or warning messages if those operations are attempted. The following sections
relate the operations to typical auditing concerns.

The set of techniques in this section is not exhaustive. Other combinations of
techniques are possible; for example, you can use table check constraints or a view
with the check option to ensure that data values are members of a certain set,
rather than set up a master table and define referential constraints. In all cases, you
can enforce the controls through application programs, and restrict the INSERT and
UPDATE privileges only to those programs.

Is required data present? Is it of the required type?
To ensure that required data is present, define columns with the NOT NULL clause.

The assignment of column data types and lengths also provides some control on
the type of data. Alphabetic data cannot be entered into a column with one of the
numeric data types, data entered into a DATE or TIME column must have an
acceptable format, and so on.

For suggestions about assigning column data types and the NOT NULL attribute,
see DB2 SQL Reference.

Are data values unique where required?
The preferred control is to create a unique index on the column or set of columns in
question. The same method completes the definition of a primary key for a table.
See An Introduction to DB2 for OS/390 for suggestions about indexes.

Has data a required pattern? Is it in a specific range?
Triggers and table check constraints enhance the ability to control data integrity.

Triggers are very powerful for defining and enforcing rules that involve different
states of DB2 data. For example, a rule prevents a salary column from being
increased by more than ten percent. A trigger can enforce this rule and provide the
value of the salary before and after the increase for comparison. See Chapter 5 of
DB2 SQL Reference for information using the CREATE TRIGGER statement to
create a trigger.

A check constraint designates the values that specific columns of a base table can
contain. Written in SQL, it can express not only simple constraints such as a
required pattern or a specific range, but also rules that refer to other columns of the
same table.

As an auditor, you might check that required constraints on column values are
expressed as table check constraints in the table definition. For a full description of
the rules for those constraints, see CREATE TABLE in Chapter 5 of DB2 SQL
Reference.

226 Administration Guide

General-use Programming Interface

An alternative technique is to create a view with the check option, and then insert or
update values only through that view. For example, suppose that, in table T, data in
column C1 must be a number between 10 and 20, and data in column C2 is an
alphanumeric code that must begin with A or B. Create the view V1 with the
following statement:
CREATE VIEW V1 AS

SELECT * FROM T
WHERE C1 BETWEEN 10 AND 20
AND (C2 LIKE 'A%' OR C2 LIKE 'B%')

WITH CHECK OPTION;

Only data that satisfies the WHERE clause can be entered through V1. See An
Introduction to DB2 for OS/390 for information on creating and using views.

End of General-use Programming Interface

A view cannot be used with the LOAD utility, but that restriction does not apply to
user-written exit routines. Several types of user-written routines are pertinent here:

Validation routines are expected to be used for validating data values. They
access an entire row of data, can check the current plan name, and return a
nonzero code to DB2 to indicate an invalid row.

Edit routines have the same access, and can also change the row that is to be
inserted. They are typically used to encrypt data, substitute codes for lengthy
fields, and the like; but they can also validate data and return nonzero codes.

Field procedures access data that is intended for a single column; they apply
only to short-string columns. However, they accept input parameters, so
generalized procedures are possible. A column that is defined with a field
procedure can be compared only to another column that uses the same
procedure.

See “Appendix B. Writing exit routines” on page 901 for information about using exit
routines.

Is new data in a specific set? Is it consistent with other tables?
These question are answered by referential integrity, a key feature of DB2. When
you define primary and foreign keys, DB2 automatically enforces the rule that every
value of a foreign key in a dependent table must be a value of the primary key of
the appropriate parent table. For information about the means, implications, and
limitations of enforcing referential integrity, see DB2 Application Programming and
SQL Guide.

You can use this method to ensure that data in a column takes on only specific
values. Set up a master table of allowable values and define its primary key. Define
foreign keys in other tables that must have matching values in their columns; a
delete rule of SET NULL is often appropriate.

DB2 does not enforce referential constraints across subsystems.

What ensures that updates are tracked?
Triggers offer an efficient means of maintaining an audit trail. A triggering operation
can be a DELETE, INSERT, or UPDATE that names the SQL data change
operation for which the trigger is activated.

Chapter 14. Auditing 227

For example, you can qualify a trigger UPDATE operation by providing a list of
column names. The trigger is only activated when one of the named columns is
updated. A trigger that performs validation for changes that are made in an
UPDATE operation must access column values both before and after the update.
Transition variables (only available to row triggers) contain the column values of the
affected row for which a trigger was activated. The old column values prior to the
triggering operation and the new column values after the triggering operation are
both available.

See DB2 SQL Reference for information about when to use triggers.

What ensures that concurrent users access consistent data?
If you do not use uncommitted read (UR) isolation, DB2 automatically controls
access using locks. You can trade locking resources among concurrent users, but
you cannot violate the basic principle of locking control. No program can access
data that another program changed but not yet committed.

However, if you use uncommitted read (UR) isolation, you can violate that basic
principle of locking. Uncommitted read (UR) isolation lets users to see uncommitted
data. Although the data is physically consistent, a number of logical inconsistencies
can occur, or the data could be wrong. The question for auditors then becomes,
“How can I tell what applications use UR isolation?” For static SQL, the question
can be answered by querying the catalog.

Use the following query to determine which plans use UR isolation:
SELECT DISTINCT Y.PLNAME

FROM SYSIBM.SYSPLAN X, SYSIBM.SYSSTMT Y
WHERE (X.NAME = Y.PLNAME AND X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'
ORDER BY Y.PLNAME;

Use the following query to determine which packages use UR isolation:
SELECT DISTINCT Y.COLLID, Y.NAME, Y.VERSION

FROM SYSIBM.SYSPACKAGE X, SYSIBM.SYSPACKSTMT Y
WHERE (X.LOCATION = Y.LOCATION AND

X.LOCATION = ' ' AND
X.COLLID = Y.COLLID AND
X.NAME = Y.NAME AND
X.VERSION = Y.VERSION AND
X.ISOLATION = 'U')

OR Y.ISOLATION = 'U'
ORDER BY Y.COLLID, Y.NAME, Y.VERSION;

For dynamic SQL statements, turn on performance trace class 3.

Consistency between systems: Where an application program writes data to both
DB2 and IMS, or DB2 and CICS, the subsystems prevent concurrent use of data
until the program declares a point of consistency. For a detailed description of how
data is kept consistent between systems, see “Consistency with other systems” on
page 359.

Have any transactions been lost or left incomplete?
Database balancing is a technique that helps to warn of such an occurrence. An
application program that uses database balancing asks, for each set of data,
whether the opening balance and the control totals plus the processed transactions
equal the closing balance and control totals.

228 Administration Guide

DB2 has no automatic mechanism to calculate control totals and column balances
and compare them with transaction counts and field totals. To use database
balancing, you must design these calculations into the application program. For
example, you can have the program maintain a control table that contains
information to balance the control totals and field balances for update transactions
against a user's view. The control table might contain these columns:

v View name

v Authorization ID

v Number of logical rows in the view (not the same as the number of physical rows
in the table)

v Number of insert and update transactions

v Opening balances

v Totals of insert and update transaction amounts

v Relevant audit trail information such as date, time, terminal ID, and job name

The program updates the transaction counts and amounts in the control table each
time it completes an insert or update to the view, and commits the work only after
updating the control table, to maintain coordination during recovery. After processing
all transactions, the application writes a report that verifies control total and
balancing information.

How can I tell that data is consistent?
Controlling data entry is not enough; you must also verify the results. The
suggestions that follow can help to uncover errors or problems. Additionally, the
DSN1CHKR utility verifies the integrity of the DB2 catalog and directory table
spaces by scanning the specified table space for broken links, damaged hash
chains, or orphan entries. For more information see Part 3 of DB2 Utility Guide and
Reference.

SQL queries

General-use Programming Interface

One relevant feature of DB2 is the ease of writing an SQL query to search for a
specific type of error. For example, consider the view that is created on page 227; it
is designed to allow an insert or update to table T1 only if the value in column C1 is
between 10 and 20 and the value in C2 begins with A or B. To check that the
control has not been bypassed, issue this statement:
SELECT * FROM T1

WHERE NOT (C1 BETWEEN 10 AND 20
AND (C2 LIKE 'A%' OR C2 LIKE 'B%'));

Ideally, no rows are returned.

You can also use SQL statements to get information from the DB2 catalog about
referential constraints that exist. For several examples, see DB2 SQL Reference.

End of General-use Programming Interface

Data modifications
Whenever an operation is performed that changes the contents of a data page or
an index page, DB2 checks to verify that the modifications do not produce
inconsistent data.

Chapter 14. Auditing 229

CHECK utility
The CHECK utility also helps ensure data consistency in the following ways:

v CHECK INDEX checks the consistency of indexes with the data that the indexes
must point to: Does each pointer point to a data row with the same value of the
index key? Does each index key point to the correct LOB?

v CHECK DATA checks referential constraints: Is each foreign key value in each
row actually a value of the primary key in the appropriate parent table?

v CHECK DATA checks table check constraints and checks the consistency
between a base table space and its associated LOB table spaces: Is each value
in a row within the range that was specified for that column when the table was
created?

v CHECK LOB checks the consistency of a LOB table space: Are any LOBs in the
LOB table space invalid?

See DB2 Utility Guide and Reference for more information on CHECK.

DISPLAY DATABASE command
If a table is loaded without enforcing referential constraints on its foreign key
columns, it can contain data that violates the constraints. The table space
containing the table is placed in the check-pending status. You can determine which
table spaces are in that status by using the DISPLAY DATABASE command with
the RESTRICT option. You can also display table spaces with invalid LOBs. See
Chapter 2 of DB2 Command Reference for information about using this command.

REPORT utility
You might want to determine which table spaces contain a set of tables that are
interconnected by referential constraints or which LOB table spaces are associated
with which base tables. See DB2 Utility Guide and Reference for information about
using the REPORT utility.

Operation log
An operation log verifies that DB2 is operated reliably or reveals unauthorized
operation and overrides. It consists of an automated log of DB2 operator commands
(such as starting or stopping the subsystem or its databases) and any abend of
DB2. The recorded information includes: command or condition type, date, time,
authorization ID of the person issuing the command, and database condition code.

You can obtain this information from the system log (SYSLOG), the SMF data set,
or the automated job scheduling system, using SMF reporting, job scheduler
reporting, or a user-developed program. You should review the log report daily and
keep a history file for comparison. Because abnormal DB2 termination can indicate
integrity problems, an immediate notification procedure should be in place to alert
the appropriate personnel (DBA, systems supervisor, and so on).

Internal integrity reports
For application programs: Standardized procedures should exist to record any
DB2 return codes that are received that indicate possible data integrity
problems—inconsistency between index and table information, physical errors on
database disk, and so on. All programs must check the SQLCODE or the
SQLSTATE for the return code that is issued after an SQL statement is run. DB2
records, on SMF, the occurrence (but not the cause) of physical disk errors and
application program abends. The program can retrieve and reported this

230 Administration Guide

information; the system log (SYSLOG) and the DB2 job output listing also have this
information. However, in some cases, only the program can provide enough detail
to identify the exact nature of problem.

You can incorporate the standardized procedure into application programs or it can
exist separately as part of an interface. The procedure records the incident in a
history file and writes a message to the operator's console, a database
administrator's TSO terminal, or a dedicated printer for certain codes. The recorded
information includes the date, time, authorization ID, terminal ID or job name,
application, view or table affected, error code, and error description. You should
daily review reports by time and by authorization ID.

For utilities: When a DB2 utility reorganizes or reconstructs data in the database, it
produces statistics to verify record counts and report errors. The LOAD and
REORG utilities produce data record counts and index counts to verify that no
records were lost. In addition to that, keep a history log of any DB2 utility that
updates data, particularly REPAIR. Regularly produce and review these reports,
which you can obtain through SMF customized reporting or a user-developed
program.

How can DB2 recover data after failures?
DB2 provides extensive methods of recovering data after a subsystem, media, or
program failure. If a subsystem fails, a restart of DB2 automatically restores the
integrity of the data by backing out uncommitted changes and completing the
processing of committed changes. If a media failure occurs (such as physical
damage to a data storage device), the RECOVER utility can recover data to the
current point. If a program error occurs, the RECOVER utility can recover data to a
specific log record or to a specific image copy. For detailed information and
recommendations, see “Recovering page sets and data sets” on page 393.

The recovery methods require adequate image copies of table spaces that are to
be recovered and the integrity of the log data sets. A database administrator might
need to develop and use queries against the SYSIBM.SYSCOPY table to verify that
image copies were made appropriately. The REPORT utility can also provide some
of that information.

The bootstrap data set (BSDS) maintains an inventory of all archive log data sets,
including the time and date the log was created, the data set name, its status, and
other information. The print log map utility can list the log data set inventory from
the BSDS. Run and review the print log map utility daily ensure that archive data
sets have been created properly and that they are readily available for use in
recovery.

In the event that a program failure affects a COMMIT operation, a user-written
program can read the DB2 log to determine exactly what change was made (except
for LOB data in LOB table spaces that are LOG NO).

If IMS, CICS, or a remote DBMS is that is attached to DB2 when a failure occurs,
DB2 coordinates restart with the other subsystem, keeping data consistent across
all subsystems.

Chapter 14. Auditing 231

How can I protect the software?
Whenever you install a new version, release, or maintenance of DB2, an automatic
record provides an audit trail. The new release number is recorded by System
Modification Program/Extended (SMP/E) when the DB2 subsystem programs and
libraries are loaded. Each major component subsystem of DB2 has a function
module identifier, which uniquely qualifies that subsystem to SMP/E. As part of the
installation verification procedure, SMP/E records it in a history file along with a
date and time, and can produce a report for management review. The audit trail
aids in determining whether the changes are appropriate and whether they are
made by authorized personnel and can also aid in investigation of
application-related problems.

DB2 load modules need the same protection as those for any system program. For
ways of protecting the system, refer to the appropriate MVS publication. The DB2
subsystem initialization load module (typically DSNZPARM) deserves special
consideration, for it contains the IDs that hold the broad authorities of installation
SYSADM and installation SYSOPR.

How can I ensure efficient usage of resources?
The DB2 tools that can help you make efficient use of your resources are described
in “Chapter 28. Improving resource utilization” on page 579. The following tools can
be particularly useful:

v The resource limit facility (governor) limits the amount of time a dynamically
issued query can use. The governor records these limits in a resource limit
specification table (RLST). For details, see “Resource limit facility (governor)” on
page 581 .

v The accounting trace is similar to the audit trace that is described in this chapter.
Use it to collect start and stop times, numbers of commits, counts of the use of
certain SQL statements, and CPU times. For details, see “DB2 trace” on
page 1033.

v The performance trace is also pertinent. It can provide an enormous amount of
detail, and is usually used for investigating particular problems. For more
information, see “DB2 trace” on page 1033.

232 Administration Guide

Chapter 15. A sample security plan for employee data

This chapter shows one approach to enforcing a security plan by using
authorization IDs, implicit privileges, granted privileges and authorities, and the audit
trace. For example, suppose that the sample enterprise, the Spiffy Computer
Company, decides on a list of objectives for the security of employee data. The list
is a compromise between two basic motivations:

v Employees should not be able to browse the employee table to find out the
salary, bonus, or commission that is paid to other employees. They definitely
should not be able to update those values, for themselves or others.

v Managers have legitimate reasons for knowing the compensations that are paid
to people who report to them. And someone must be able to make changes to
salary data.

The Spiffy management derives the detailed list of objectives that follows. Do not
view it as a model security plan; it is only a sample, chosen to illustrate various
possibilities and expose certain problem areas. Your own security plans will be
different.

The security objectives: The security objectives for Spiffy's security plan are:

v Managers can see, but not update, all the employee data for members of their
own departments. Managers of managers can see all the data for employees of
departments under them.

v The employee table resides at a central location. Managers at remote locations
can query the data in that table.

v Changes to the employee table are made by a Payroll Operations department. (It
is not listed in the sample department table.) Department members can update
any column of the employee table except for salary, bonus, and commission, and
any row except those for members of their own department. Changes to the table
are made only from the central location; hence, payroll operations are not
affected by distributed access.

v Changes to salary, bonus, and commission amounts are made through another
table. The table lists an employee ID and a salary update, for example; the row
can be inserted by a member of Payroll Operations. When a list of changes is
complete, it must be verified by another group, Payroll Management, who can
then transfer the changes to the employee table.

v No one else can see the employee data. (This objective cannot actually be fully
achieved. At the very least, some ID must occasionally exercise powers that are
reserved to SYSADM authority, and at that time that ID can retrieve any data in
the system. The security plan uses the trace facility to monitor the use of that
power.)

Managers’ access
Managers can retrieve, but not change, all information in the employee table for
members of their own departments. Managers of managers have the same
privileges for their own departments and the departments immediately under them.
Those restrictions can most easily be implemented by views.

For example, you can create a view of employee data for every employee reporting
to a manager—even if more than one department are involved. Such a view
requires altering department table DSN8410.DEPT by adding a column to contain
managers’ IDs:

© Copyright IBM Corp. 1982, 2001 233

ALTER TABLE DSN8710.DEPT
ADD MGRID CHAR(8) FOR SBCS DATA NOT NULL WITH DEFAULT;

Every manager should have the SELECT privilege on a view that is created as
follows:
CREATE VIEW DEPTMGR AS

SELECT * FROM DSN8710.EMP, DSN8710.DEPT
WHERE WORKDEPT = DEPTNO
AND MGRID = USER;

To what ID is the SELECT privilege granted?
Assuming that nearly every employee of the Spiffy Computer Company has a TSO
logon ID and a password, and can access DB2I or QMF. The security planners can
take one of two approaches to granting privileges:

v Grant privileges to individual IDs and revoke them if the user of the ID leaves the
company or transfers to another position. This is called the individual approach.

v Create RACF groups and grant privileges to the group IDs, with the intention of
never revoking them. When a individual ID needs those privileges, connect it to
the group; disconnect it when its user leaves or transfers. This is called the
functional approach. Another example of grouping is when many authorization
IDs are translated into a single outbound ID.

The functional approach is probably more convenient in the following situations:

v Many different privileges are required, and when they are revoked from one
individual, they must be granted to another. In that case, the set of privileges
probably constitutes a function of the enterprise, which must persist even though
the individual now performing it leaves or transfers.

v Several users need the same set of privileges. Again, the set probably
constitutes a business function.

v The privileges are given with the grant option, or they let users create objects
that must persist after their original owners leave or transfer. In both cases,
revoking the privileges might not be appropriate. The revokes cascade to other
users, and to change ownership, you might need to drop objects and re-create
them.

What about the managers’ views of their own departments? In theory, the privilege
of selecting from the view is part of the function of managing. If a manager
transfers, another is appointed. That suggests the functional approach.

However, in this case, one privilege is needed—SELECT on a particular view. The
privilege does not carry the grant option, and it does not allow creating new objects.
So the individual approach might be just as convenient.

Actually, Spiffy Computer does not need to make a permanent choice immediately.
Which approach to use is a matter of convenience; where both produce the same
results, either can be used. Both approaches can also be used simultaneously;
some departments could be represented by their managers’ individual IDs, others
could be represented by group IDs, and the company could change gradually from
one approach to the other.

So the security plan starts out by using the individual approach, with the intent of
re-examining the system later. Initially, all managers are given the SELECT privilege
on the views for their departments by statements like this one:
GRANT SELECT ON DEPTMGR TO EMP0060;

234 Administration Guide

That assumes that EMP0060 is the individual ID of employee 000060, who is the
manager of one or more departments.

Allowing distributed access
The security plan envisions that managers at remote locations will query data in the
employee table at a central, serving location. The restrictions on the data they are
allowed to query can most easily be implemented by views, just like the view for
managers who use the central DB2 location directly. The remaining questions are:

v What IDs should have privileges on those views?

v How is responsibility for those IDs divided between the central location and the
remote locations?

Spiffy's security plan answers those questions as follows. Again, this plan is not a
recommendation for your own security needs—it is merely an example of what is
possible.

v Privileges on views for departments at remote locations are given to IDs that are
managed at the central location. For example, the ID MGRD11 has the SELECT
privilege on the view DEPTD11.

v If the manager of Department D11 uses a remote system, the ID there must be
translated to MGRD11 before a request is sent to the central system. All other
IDs are translated to CLERK before they are sent to the central system.

v The translated IDs, like MGRD11, are managed through the communications
database.

v An ID from a remote system must be authenticated on any request to the central
system.

The means of implementing these decisions are described in the following sections:
“Actions at the central server location” and
“Actions at remote locations” on page 236.

Actions at the central server location
To implement the provisions of the security plan, the central DB2 system must take
the following actions:

v Authenticate every incoming ID with RACF.

v For SNA connections, provide an entry in table SYSIBM.LUNAMES, in the CDB,
for the LUNAME of every remote location. The entry must specify that
connections must be verified. Table 57 shows what one such entry might look
like.

Table 57. The SYSIBM.LUNAMES table at the central location
LUNAME USERNAMES SECURITY_IN ENCRYPTPSWDS
LUREMOTE blank V N

(The security plan treats all remote locations alike, so it does not require
encrypting passwords. That option is available only between two DB2
subsystems that use SNA connections.)

v For TCP/IP connections, make sure the TCP/IP ALREADY VERIFIED field of
installation panel DSNTIP5 is NO. This ensures that incoming requests that use
TCP/IP are not accepted without authentication.

v Grant all privileges and authorities that are required by the manager of
Department D11 to the ID MGRD11.

Chapter 15. A sample security plan for employee data 235

Actions at remote locations
To implement the provisions of the security plan, a remote DB2 subsystem must
take the actions described below. (For a system other than DB2 for OS/390 and
z/OS, the actions might be somewhat different; check the documentation for the
product you are using. The remote system must satisfy the requirements that are
already imposed by the central system.)

v For SNA connections, provide an entry in table SYSIBM.LUNAMES for the
LUNAME of the central location. The entry must specify outbound ID translation
for attachment requests to that location. Table 58 shows what such an entry
might look like.

Table 58. The SYSIBM.LUNAMES table at the remote location
LUNAME USERNAMES SECURITY_OUT
LUCENTRAL O R

v For TCP/IP connections, provide an entry in table SYSIBM.IPNAMES for the
LUNAME that is used by the central location. (The LUNAME is used to generate
RACF PassTickets.) The entry must specify outbound ID translation for requests
to that location. Table 59 shows what such an entry might look like.

Table 59. The SYSIBM.IPNAMES table at the remote location
LINKNAME USERNAMES SECURITY_OUT IPADDR
LUCENTRAL O R central.vnet.ibm.com

v Provide entries in table SYSIBM.USERNAMES to translate outbound IDs. In this
example, MEL1234 is translated to MGRD11 before it is sent to the LU name
that is specified in the LINKNAME column. All other IDs are translated to CLERK
before they are sent to that LU. Table 60 shows what such an entry might look
like.

Table 60. The SYSIBM.USERNAMES table at the remote location
TYPE AUTHID LINKNAME NEWAUTHID
O MEL1234 LUCENTRAL MGRD11
O blank LUCENTRAL CLERK

Auditing managers’ use
The payroll data is extremely sensitive; therefore, the security plan calls for
automatically starting the audit trace for all classes whenever DB2 is started. The
employee table is to be created with AUDIT ALL, so an audit record exists for every
access to the table. Every week, the records are scanned to report the number of
accesses by each manager.

The report highlights any number outside an expected range. The system operator
makes a summary of the reports every two months, and scans it for unusual
patterns of access. A large number of accesses or an unusual pattern might reveal
use of a manager's logon ID by another, unauthorized employee.

Payroll operations
To satisfy the stated security objectives for members of Payroll Operations, the
security plan again uses a view. The view shows all the columns of the table except
those for job, salary, bonus, and commission; the view also shows all rows except
those for members of the Payroll Operations department. Members of Payroll

236 Administration Guide

Operations have SELECT, INSERT, UPDATE, and DELETE privileges on the view;
and the privileges are granted WITH CHECK OPTION, so that they cannot insert
values that exceed the limits of the view.

A second, similar view gives Payroll Management the privilege of retrieving and
updating any record, including those of Payroll Operations. Neither view, though,
allows updates of compensation amounts. When a row is inserted for a new
employee, the compensation amounts are left null, to be changed later by an
update.

Both views are created and owned by, and privileges are granted by, the owner of
the employee table.

Salary updates
The plan does not allow members of Payroll Operations to update compensation
amounts directly. Instead, another table exists, the “payroll update table”, containing
only the employee ID, job, salary, bonus, and commission. Members of Payroll
Operations make all job, salary, and bonus changes to the payroll update table,
except those for their own department. After the prospective changes are verified,
the manager of Payroll Operations runs an application program that reads the
payroll update table and makes the corresponding changes to the employee table.
Only that program, the “payroll update program”, has the privilege of updating job,
salary, and bonus in the employee table.

Calculating commission amounts at Spiffy Computer Company are handled
separately. Commissions are calculated by a complicated arithmetic formula that
considers the employee's job, department, years of service with the company, and
responsibilities for various projects and project activities. The formula is embodied
in an application plan, the “commission program”, which is run regularly to insert
new commission amounts in the payroll update table. The plan owner must have
the SELECT privilege on the employee table and other tables.

Additional controls
The separation of potential salary changes into the payroll update table allows them
to be verified before they go into effect; at Spiffy Computer Company, the changes
are checked against a written change request that is signed by a required level of
management. That is considered the most important control on salary updates, but
the plan also includes these other controls:

v The employee ID in the payroll update table is a foreign key column that refers to
the employee ID in the employee table. Enforcing the referential constraint
prevents assigning a change to an invalid employee ID.

v The employee ID in the payroll update table is also a primary key for that table,
so its values are unique. Because of that, in any one operating period (such as a
week) all the changes for any one employee must appear in the same row of the
table. No two rows can carry conflicting changes.

v The plan documents an allowable range of salaries, bonuses, and commissions
for each job level. The security planners considered the following ways to ensure
that updates would stay within those ranges:

– Keep the ranges in a DB2 table and, as one step in verifying the updates,
query the payroll update table and the table of ranges, retrieving any rows for
which the planned update is outside the allowed range.

– Build the ranges into a validation routine, and apply it to the payroll update
table to automatically reject any insert or update that is outside its allowed
range.

Chapter 15. A sample security plan for employee data 237

– Embody the ranges in a view of the payroll table, using WITH CHECK
OPTION, and make all updates to the view. The ID that owns the employee
table also owns the view.

– Create a trigger to prevent salaries, bonuses, and commissions from being
increased by more than the percent allowed for each job level. See DB2 SQL
Reference for more information about using triggers.

– Create the table with table check constraints for the salaries, bonuses, and
commissions. The planners chose this approach because it is both simple and
easy to control. See Part 1 of DB2 Application Programming and SQL Guide
for information about using table check constraints.

To what ID are privileges granted?
The plan for the Payroll Operations department strongly suggests the functional
approach, for these reasons:

v Several privileges are needed—the privileges on the views and probably also the
EXECUTE privilege on the application plan for the commission program.

v Several members of the department must all have the same set of privileges.

v If members of the department leave, others are hired or transfer in.

Therefore, the security plan calls for creating a RACF group for Payroll Operations.
All required privileges are granted to the group ID, with the intent not to revoke
them. The primary IDs of new members of the department are connected to the
group ID, which becomes a secondary ID for each of them. The primary IDs of
members who leave the department are disconnected from the group.

DB2USER can define the group, as described in “Add RACF groups” on page 206.
DB2USER could retain ownership of the group, or it could assign the ownership to
an ID that is used by Payroll Management. The privileges that the group needs can
be granted by the owner of the employee table.

Auditing use by payroll operations and payroll management
Like the employee table, the payroll update table is created with AUDIT ALL. For
both tables, the numbers of accesses by the payroll operations and payroll
management groups are reported. A summary of accesses of the employee table by
the payroll update program is also reported. Like the reports of managers’
accesses, the reports of payroll accesses are scanned for large numbers or unusual
patterns of access.

Others who have access
In addition to the privileges of managers, and of members of the Payroll Operations
and Payroll Management groups, the security plan considers the privileges of
database administrators, system administrators, and owners of tables, views,
packages, and application plans.

IDs with database administrative authority
An ID with DBADM authority over database DSN8D71A, which holds the employee
table, can select from, insert into, delete from, update, or alter any table in the
database, and create and drop indexes on the tables. The security planners did not
need to grant that authority to any ID. Regular operations require no more than an
ID with DBCTRL authority. That ID could copy tables, recover any table space, run
the CHECK utility, and generally support the continued availability of the database
without actually being able to retrieve or change the data.

238 Administration Guide

However, database DSN8D71A contains several other tables (which are all
described in “Appendix A. DB2 sample tables” on page 883). The planners
considered putting the payroll tables into another database. That way, those with
access to DSN8D71A could not access them.

Planners decided to have an administrative ID that could access those fully,
functional approach to privileges. Although the authorities that DB2 provides, like
DBADM, are convenient collections of privileges for many purposes, they are not
the only collections that can be needed. The security plan called for a RACF group
that had:

1. DBCTRL authority over DSN8D71A

2. The INDEX privilege on all tables in the database except the employee and
payroll update tables

3. The SELECT, INSERT, UPDATE, and DELETE privileges on selected tables

The privileges are to be granted to the group ID by an ID with SYSADM authority.

IDs with system administrative authority
An ID with SYSADM authority can access sensitive data that is not only in the
employee and payroll update tables, but also in any other table in the entire DB2
subsystem. However, that authority can be needed only intermittently and for
relatively short periods.

Because such sweeping authority must be controlled at the highest level, the
security plan calls for giving it to DB2OWNER, the ID that is responsible for DB2
security. That does not mean that only IDs that are connected to DB2OWNER can
exercise all that authority, grant privileges on every plan and package,and initiate
every use of the STOSPACE utility. Instead, DB2OWNER can grant privileges to a
group, connect other IDs to the group as needed, and later disconnect them.

Also, DB2OWNER can grant SYSCTRL authority to selected IDs. IDs with
SYSCTRL authority can exercise most of the privileges of SYSADM authority and
can assume much of the day-to-day work. Those IDs cannot access data directly or
run plans, unless the privileges for those actions are explicitly granted to them; but
they can run utilities and examine the output data sets, or grant privileges that
would allow other IDs to access data. Thus, accessing sensitive data is somewhat
inconvenient, but not impossible.

Grants of the BINDAGENT privilege can also relieve the need to have SYSADM
authority continuously available. IDs with the BINDAGENT privilege can bind plans
and packages on behalf of another ID, but they cannot run the plans they bind
without being explicitly granted the EXECUTE privilege.

The employee table owner
Spiffy Computer Company can never fully achieve its stated objective that only a
manager can retrieve an employee’s data record. In planning the necessary views
and GRANT statements, the security planners must consider the ID that owns the
views and grants the privileges. That ID implicitly has the SELECT privilege on the
employee table.

The activities that are planned for the Payroll Operations and Payroll Management
departments require a new table and several new views. The security plan calls for
all of those to be owned by the owner of the employee table.

Chapter 15. A sample security plan for employee data 239

The planned activities also use these programs, whose owners must also have
certain privileges.

v The owner of the payroll update program must have the SELECT privilege on the
payroll update table and the UPDATE privilege on the employee table.

v The owner of the commission program must have the UPDATE privilege on the
payroll update table and the SELECT privilege on the employee table.

v Several other payroll programs do the usual payroll processing—printing payroll
checks, writing summary reports, and so on.

At this point, the security planners adopt an additional objective for the plan: to limit
the number of IDs that have any privileges on the employee table or the payroll
update table to the smallest convenient value. To meet that objective, they decide
that all the CREATE VIEW and GRANT statements are to be issued by the owner
of the employee table. Hence, the security plan for employee data assigns several
key activities to that ID. The security plan considers the need to:

v Revoke and grant the SELECT privilege on a manager's view whenever a
department's manager is changed

v Drop and create managers’ views whenever a reorganization of responsibilities
changes the list of department identifiers

v Maintain the view through which the employee table is updated

The privileges for those activities are implicit in ownership of the employee table
and the views on it. The same ID must also:

v Own the application plans and packages for the payroll program, the payroll
update program, and the commission program

v Occasionally acquire ownership of new application plans and packages

For those activities, the ID requires the BIND or BINDADD privileges. For example,
an ID in Payroll Management can, through the SELECT privilege on the employee
table, write an SQL query to retrieve average salaries by department, for all
departments. To create an application plan that contains the query requires the
BINDADD privilege.

Again, the list of privileges suggests the functional approach. The owner of the
employee table is to be a RACF group ID.

Auditing for other users
Any access to the employee or payroll update tables by anyone other than the
department managers, the Payroll Operations and Payroll Management groups, and
the payroll update program, is considered an exception. Those exceptions are listed
in full, and each is checked to see that it was a planned operation by the users with
SYSADM or DBADM authority, or the tables’ owner.

Denials of access to the table are also listed. Those represent attempts by
unauthorized IDs to use the tables. Some are possibly accidental; others can be
attempts to break the security system.

After running the periodic reports, the audit records are archived. They provide a
complete audit trail of access to the employee data through DB2.

240 Administration Guide

Part 4. Operation and recovery

Chapter 16. Basic operation 249
Entering commands . 249

DB2 operator commands. 250
Where DB2 commands are entered 252
Where command responses go 254

Authorities for DB2 commands 255
Starting and stopping DB2 . 256

Starting DB2 . 256
Messages at start . 256
Options at start . 257
Restricting access to data 257
Wait state at start . 257
Starting after an abend 258

Stopping DB2 . 258
Submitting work to be processed 259

Using DB2I (DB2 Interactive) 259
Running TSO application programs 259
Running IMS application programs 260
Running CICS application programs 261
Running batch application programs 261
Running application programs using CAF. 262
Running application programs using RRSAF 263

Receiving messages . 263
Receiving unsolicited DB2 messages 264
Determining operational control 264

Chapter 17. Monitoring and controlling DB2 and its connections 267
Controlling DB2 databases and buffer pools 267

Starting databases . 268
Starting an object with a specific status 268
Starting a table space or index space that has restrictions 268

Monitoring databases . 269
Obtaining information about application programs. 271
Obtaining information about pages in error 272

Stopping databases. 274
Altering buffer pools . 276
Monitoring buffer pools . 276

Controlling user-defined functions 277
Starting user-defined functions. 277
Monitoring user-defined functions. 277
Stopping user-defined functions 278

Controlling DB2 utilities . 278
Starting online utilities . 278
Monitoring online utilities . 278
Stand-alone utilities . 279

Controlling the IRLM . 280
Starting the IRLM . 281
Modifying the IRLM . 281
Monitoring the IRLM connection 281
Stopping the IRLM . 282

Monitoring threads . 283
Display thread output . 283

Controlling TSO connections 284

© Copyright IBM Corp. 1982, 2001 241

##

Connecting to DB2 from TSO 284
Monitoring TSO and CAF connections 285
Disconnecting from DB2 while under TSO 286

Controlling CICS connections 287
Connecting from CICS . 288

Messages . 288
Restarting CICS . 288
Displaying indoubt units of recovery. 289
Recovering indoubt units of recovery manually 289
Displaying postponed units of recovery 289

Controlling CICS application connections 289
Defining CICS threads. 290
Monitoring the threads. 290
Changing connection parameters. 293
Disconnecting applications 293

Disconnecting from CICS 294
Orderly termination . 294
Forced termination . 294

Controlling IMS connections 295
Connecting to the IMS control region 295

Thread attachment . 296
Thread termination . 297
Displaying indoubt units of recovery. 298
Recovering indoubt units of recovery 298
Displaying postponed units of recovery 299
Duplicate correlation IDs 299
Resolving residual recovery entries 300

Controlling IMS dependent region connections 300
Connecting from dependent regions. 300
Monitoring the activity on connections 301
Disconnecting from dependent regions. 303

Disconnecting from IMS . 303
Controlling OS/390 RRS connections 304

Connecting to OS/390 RRS using RRSAF 305
Restarting DB2 and OS/390 RRS 305
Displaying indoubt units of recovery. 305
Recovering indoubt units of recovery manually 305
Displaying postponed units of recovery 306

Monitoring RRSAF connections 306
Disconnecting applications from DB2 307

Controlling connections to remote systems 307
Starting DDF . 308
Suspending and resuming DDF server activity 308
Monitoring connections to other systems 309

The command DISPLAY DDF 309
The command DISPLAY LOCATION 311
The command DISPLAY THREAD 312
The command CANCEL THREAD 317
Using VTAM commands to cancel threads 319

Monitoring and controlling stored procedures 320
Displaying information about stored procedures and their environment 320
Refreshing the environment for stored procedures or user-defined

functions . 322
Obtaining diagnostic information about stored procedures. 323

Using NetView® to monitor errors in the network 323
Stopping DDF . 325

242 Administration Guide

||

Controlling traces . 326
Controlling the DB2 trace 326
Diagnostic traces for the attachment facilities 327
Diagnostic trace for the IRLM 328

Controlling the resource limit facility (governor). 328
Changing subsystem parameter values 329

Chapter 18. Managing the log and the bootstrap data set 331
How database changes are made 331

Units of recovery. 331
Rolling back work . 332

Establishing the logging environment 333
Creation of log records . 333
Retrieval of log records . 333
Writing the active log . 333
Writing the archive log (offloading) 334

Triggering offload . 334
The offloading process 334
Archive log data sets . 336

Controlling the log . 337
Archiving the log . 337
Changing the checkpoint frequency dynamically 340
Setting limits for archive log tape units 340
Displaying log information 340

Managing the bootstrap data set (BSDS) 341
BSDS copies with archive log data sets 342
Changing the BSDS log inventory 342

Discarding archive log records. 343
Deleting archive log data sets or tapes automatically 343
Locating archive log data sets to delete 343

Chapter 19. Restarting DB2 after termination 347
Termination . 347

Normal termination . 347
Abends . 348

Normal restart and recovery 348
Phase 1: Log initialization 349
Phase 2: Current status rebuild 350
Phase 3: Forward log recovery 351
Phase 4: Backward log recovery 352
Restarting automatically . 353

Deferring restart processing. 354
Restarting with conditions . 355

Resolving postponed units of recovery 355
Errors encountered during RECOVER POSTPONED processing 356
Output from RECOVER POSTPONED processing 356

Recovery operations you can choose for conditional restart 357
Records associated with conditional restart 357

Chapter 20. Maintaining consistency across multiple systems 359
Consistency with other systems 359

The two-phase commit process: coordinator and participant 359
Illustration of two-phase commit 360
Maintaining consistency after termination or failure 361
Termination . 362
Normal restart and recovery 362

Part 4. Operation and recovery 243

||

Phase 1: Log initialization 362
Phase 2: Current status rebuild 362
Phase 3: Forward log recovery 362
Phase 4: Backward log recovery 363

Restarting with conditions 363
Resolving indoubt units of recovery 363

Resolution of indoubt units of recovery from IMS 364
Resolution of indoubt units of recovery from CICS 364
Resolution of indoubt units of recovery between DB2 and a remote system 365

Making heuristic decisions 366
Methods for determining the coordinator’s commit or abort decision 366
Displaying information on indoubt threads 366
Recovering indoubt threads 367
Resetting the status of an indoubt thread 367

Resolution of indoubt units of recovery from OS/390 RRS 367
Consistency across more than two systems 368

Commit coordinator and multiple participants 368
Illustration of multi-site update 370

Chapter 21. Backing up and recovering databases 373
Planning for backup and recovery 373

Considerations for recovering distributed data 374
Extended recovery facility (XRF) toleration 374
Considerations for recovering indexes 375
Preparing for recovery. 375
What happens during recovery 376

Complete recovery cycles 377
A recovery cycle example 378
How DFSMShsm affects your recovery environment. 378

Making backup and recovery plans that maximize availability 379
How to find recovery information 382

Where recovery information resides 382
Reporting recovery information 382

Preparing to recover to a prior point of consistency 383
Step 1: Resetting exception status 383
Step 2: Copying the data. 383
Step 3: Establishing a point of consistency 384

Preparing to recover the entire DB2 subsystem to a prior point in time 384
Preparing for disaster recovery 385

System-wide points of consistency 386
Essential disaster recovery elements 386

Ensuring more effective recovery from inconsistency problems 388
Actions to take . 388
Actions to avoid . 389

Running RECOVER in parallel. 390
Using fast log apply during RECOVER. 390
Reading the log without RECOVER 391

Copying page sets and data sets. 391
Recovering page sets and data sets 393

Recovering the work file database 394
Problem with user-defined work file data sets 394
Problem with DB2-managed work file data sets 394
Recovering error ranges for a work file table space 395

Recovering the catalog and directory 395
Recovering data to a prior point of consistency 396

Restoring data by using DSN1COPY 399

244 Administration Guide

Backing up and restoring data with non-DB2 dump and restore 400
Using RECOVER to restore data to a previous point in time 400

Recovery of dropped objects 403
Avoiding the problem . 403
Procedures for recovery . 403
Recovery of an accidentally dropped table 403
Recovery of an accidentally dropped table space 405

User-managed data sets 405
DB2-managed data sets 406

Discarding SYSCOPY and SYSLGRNX records 407

Chapter 22. Recovery scenarios 409
IRLM failure . 409
MVS or power failure . 410
Disk failure . 410
Application program error . 412
IMS-related failures . 413

IMS control region (CTL) failure 414
Resolution of indoubt units of recovery. 414

Problem 1 . 414
Problem 2 . 415

IMS application failure . 416
Problem 1 . 416
Problem 2 . 416

CICS-related failures . 417
CICS application failure . 417
CICS is not operational . 417
CICS cannot connect to DB2 418
Manually recovering CICS indoubt units of recovery 419
CICS attachment facility failure 422

Subsystem termination . 422
DB2 system resource failures 423

Active log failure . 423
Problem 1 - Out of space in active logs 423
Problem 2 - Write I/O error on active log data set. 424
Problem 3 - Dual logging is lost 425
Problem 4 - I/O errors while reading the active log 425

Archive log failure . 427
Problem 1 - Allocation problems 427
Problem 2 - Write I/O errors during archive log offload 427
Problem 3 - Read I/O errors on archive data set during recover 428
Problem 4 - Insufficient disk space for offload processing 428

Temporary resource failure 429
BSDS failure . 429

Problem 1 - An I/O error occurs 430
Problem 2 - An error occurs while opening 430
Problem 3 - Unequal timestamps exist 430

Recovering the BSDS from a backup copy 431
DB2 database failures . 434
Recovery from down-level page sets 435
Procedure for recovering invalid LOBs 436
Table space input/output errors 437
DB2 catalog or directory input/output errors 438
Integrated catalog facility catalog VSAM volume data set failures 439

VSAM volume data set (VVDS) destroyed 439
Out of disk space or extent limit reached 440

Part 4. Operation and recovery 245

Violations of referential constraints 443
Failures related to the distributed data facility 444

Conversation failure . 444
Communications database failure 445

Problem 1 . 445
Problem 2 . 446

Failure of a database access thread 446
VTAM failure . 447
TCP/IP failure . 447
Failure of a remote logical unit. 447
Indefinite wait conditions for distributed threads 448
Security failures for database access threads 448

Remote site recovery from disaster at a local site. 449
Using a tracker site for disaster recovery 459

Characteristics of a tracker site 460
Setting up a tracker site . 460
Establishing a recovery cycle at the tracker site 461

What to do about DSNDB01.SYSUTILX 463
Media failures during LOGONLY recovery 463

Maintaining the tracker site 464
The disaster happens: making the tracker site the takeover site 464

Resolving indoubt threads . 465
Description of the environment 466

Configuration . 466
Applications . 466
Threads . 466

Communication failure between two systems 467
Making a heuristic decision 468
IMS outage that results in an IMS cold start 469
DB2 outage at a requester results in a DB2 cold start 469
DB2 outage at a server results in a DB2 cold start 472
Correcting a heuristic decision 473

Chapter 23. Recovery from BSDS or log failure during restart 475
Failure during log initialization or current status rebuild 477

Description of failure during log initialization 478
Description of failure during current status rebuild 479
Restart by truncating the log 479

Step 1: Find the log RBA after the inaccessible part of the log 479
Step 2: Identify lost work and inconsistent data 482
Step 3: Determine what status information has been lost 485
Step 4: Truncate the log at the point of error 485
Step 5: Start DB2 . 486
Step 6: Resolve data inconsistency problems 486

Failure during forward log recovery 486
Starting DB2 by limiting restart processing 487

Step 1: Find the log RBA after the inaccessible part of the log 487
Step 2: Identify incomplete units of recovery and inconsistent page sets 490
Step 3: Restrict restart processing to the part of the log after the damage 490
Step 4: Start DB2 . 491
Step 5: Resolve inconsistent data problems 491

Failure during backward log recovery 491
Bypassing backout before restarting 492

Failure during a log RBA read request 493
Unresolvable BSDS or log data set problem during restart 494

Preparing for recovery of restart 495

246 Administration Guide

Performing the fall back to a prior shutdown point 495
Failure resulting from total or excessive loss of log data 496

Total loss of log . 497
Excessive loss of data in the active log 498

Resolving inconsistencies resulting from conditional restart 500
Inconsistencies in a distributed environment. 500
Procedures for resolving inconsistencies 500
Method 1. Recover to a prior point of consistency 501
Method 2. Re-create the table space 501
Method 3. Use the REPAIR utility on the data 502

Part 4. Operation and recovery 247

248 Administration Guide

Chapter 16. Basic operation

The information under this heading, up to “Running IMS application programs” on
page 260, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

The simplest elements of operation for DB2 for OS/390 and z/OS are described in
this chapter; they include:

“Entering commands”
“Starting and stopping DB2” on page 256
“Submitting work to be processed” on page 259
“Receiving messages” on page 263

Normal operation also requires more complex tasks. They are described in:

v “Chapter 17. Monitoring and controlling DB2 and its connections” on page 267,
which considers the control of connections to IRLM, to TSO, to IMS, and to
CICS, as well as connections to other database management systems.

v “Chapter 18. Managing the log and the bootstrap data set” on page 331, which
describes the roles of the log and the bootstrap data set in preparing for restart
and recovery.

v “Chapter 19. Restarting DB2 after termination” on page 347, which tells what
happens when DB2 terminates normally or abnormally and how to restart it while
maintaining data integrity.

v “Chapter 20. Maintaining consistency across multiple systems” on page 359,
which explains the two-phase commit process and the resolution of indoubt units
of recovery.

v “Chapter 21. Backing up and recovering databases” on page 373, which explains
how to prepare for recovery as well as how to recover.

Recovery after various types of failure is described in:

v “Chapter 22. Recovery scenarios” on page 409

v “Chapter 23. Recovery from BSDS or log failure during restart” on page 475

Operating a data sharing group: Although many of the commands and
operational procedures described here are the same in a data sharing environment,
some special considerations are described in Chapter 5 of DB2 Data Sharing:
Planning and Administration. In particular, consider the following issues when you
are operating a data sharing group:
v New commands used for data sharing, and the concept of command scope
v Logging and recovery operations
v Restart after an abnormal termination
v Disaster recovery procedures
v Recovery procedures for coupling facility resources

Entering commands
You can control most of the operational environment by using DB2 commands. You
might need to use other types of commands, including:

v IMS commands that control IMS connections

v CICS commands that control CICS connections

v IMS and CICS commands that allow you to start and stop connections to DB2
and display activity on the connections

© Copyright IBM Corp. 1982, 2001 249

v MVS commands that allow you to start, stop, and change the internal resource
lock manager (IRLM)

Using these commands is described in “Chapter 17. Monitoring and controlling DB2
and its connections” on page 267. For a full description of the commands available,
see Chapter 2 of DB2 Command Reference.

DB2 operator commands
The DB2 commands, as well as their functions, are:

ALTER BUFFERPOOL
Sets or alters buffer pool size while DB2 is online.

ALTER GROUPBUFFERPOOL
Alters attributes of group buffer pools, which are used in a data sharing
environment.

ALTER UTILITY
Changes parameter values of the REORG utility while REORG is running.

ARCHIVE LOG
Archives (offloads) the current active log.

CANCEL THREAD
Cancels processing for specific local or distributed threads. It can be used
for parallel task threads.

DISPLAY ARCHIVE
Displays information about the specifications for archive parameters, status
of allocated dedicated tape units, volume and data set names associated
with all active tape units, and correlation ID of the requester.

DISPLAY BUFFERPOOL
Displays buffer pool information while DB2 is online.

DISPLAY DATABASE
Displays the status of a database.

DISPLAY DDF
Displays information about the status and configuration of the distributed
data facility (DDF), and about the connections or threads controlled by DDF.

DISPLAY FUNCTION SPECIFIC
Displays the statistics about external user-defined functions accessed by
DB2 applications.

DISPLAY GROUP
Displays information about the data sharing group to which a DB2
subsystem belongs.

DISPLAY GROUPBUFFERPOOL
Displays status and statistical information about DB2 group buffer pools,
which are used in a data sharing environment.

DISPLAY LOCATION
Displays statistics about threads and conversations between remote DB2
subsystem and the local subsystem.

DISPLAY LOG
Displays the current checkpoint frequency (CHKFREQ) value, information
about the current active log data sets, and the status of the offload task.

250 Administration Guide

|
|
|

|
|

DISPLAY PROCEDURE
Displays statistics about stored procedures accessed by DB2 applications.

DISPLAY RLIMIT
Displays the status of the resource limit facility (governor).

DISPLAY THREAD
Displays information about DB2, distributed subsystem connections, and
parallel tasks.

DISPLAY TRACE
Displays the status of DB2 traces.

DISPLAY UTILITY
Displays the status of a utility.

MODIFY TRACE
Changes the trace events (IFCIDs) being traced for a specified active trace.

RECOVER BSDS
Reestablishes dual bootstrap data sets.

RECOVER INDOUBT
Recovers threads left indoubt after DB2 is restarted.

RECOVER POSTPONED
Completes backout processing for units of recovery (URs) whose backout
was postponed during an earlier restart, or cancels backout processing of
the postponed URs if the CANCEL option is used.

RESET INDOUBT
Purges DB2 information about indoubt threads.

SET ARCHIVE
Controls or sets the limits for the allocation and the deallocation time of the
tape units for archive log processing.

SET LOG
Modifies the checkpoint frequency (CHKFREQ) value dynamically without
changing the value in the subsystem parameter load module.

SET SYSPARM
Loads the subsystem parameter module specified in the command.

START DATABASE
Starts a list of databases or table spaces and index spaces.

START DB2
Initializes the DB2 subsystem.

START DDF
Starts the distributed data facility

START FUNCTION SPECIFIC
Activates an external function that is stopped.

START PROCEDURE
Starts a stored procedure that is stopped.

START RLIMIT
Starts the resource limit facility (governor).

START TRACE
Starts DB2 traces.

Chapter 16. Basic operation 251

|
|

|
|

|
|

STOP DATABASE
Stops a list of databases or table spaces and index spaces.

STOP DB2
Stops the DB2 subsystem.

STOP DDF
Stops or suspends the distributed data facility.

STOP FUNCTION SPECIFIC
Prevents DB2 from accepting SQL statements with invocations of the
specified functions.

STOP PROCEDURE
Prevents DB2 from accepting SQL CALL statements for a stored procedure.

STOP RLIMIT
Stops the resource limit facility (governor).

STOP TRACE
Stops traces.

TERM UTILITY
Terminates execution of a utility.

Where DB2 commands are entered
You can enter commands from the following sources:
v An MVS console or MVS application program
v An IMS terminal or program
v A CICS terminal
v A TSO terminal
v An APF-authorized program
v An IFI application program

From an MVS console or MVS application program: You can enter all DB2
commands from an MVS console or MVS application program. The START DB2
command can be entered only from the MVS console. The command group
authorization level must be SYS.

More than one DB2 subsystem can run under MVS. You prefix a DB2 command
with special characters that identify which subsystem to direct the command to. The
1- to 8-character prefix is called the command prefix. Specify the command prefix
on installation panel DSNTIPM. The default character for the command prefix is
-DSN1. Most examples in this book use the old default, the hyphen (-).

From an IMS terminal or program: You can enter all DB2 commands except
-START DB2 from either an IMS terminal or program. The terminal or program must
be authorized to enter the /SSR command.

An IMS subsystem can attach to more than one DB2 subsystem, so you must prefix
a command that is directed from IMS to DB2 with a special character that tells
which subsystem to direct the command to. That character is called the command
recognition character (CRC); specify it when you define DB2 to IMS, in the
subsystem member entry in IMS.PROCLIB. (For details, see Part 2 of DB2
Installation Guide.)

If it is possible in your configuration, it can be less confusing if you make the CRC
and the command prefix the same character for the same DB2 subsystem. If you
are using a command prefix of more than one character, this is not possible.

252 Administration Guide

The examples in this book assume that both the command prefix and the CRC are
the hyphen (-). But if you can attach to more than one DB2 subsystem, you must
prefix your commands with the appropriate CRC. In the following example, the CRC
is a question mark character:

You enter:
/SSR ?DISPLAY THREAD

and DB2 returns the following messages:
DFS058 SSR COMMAND COMPLETED
DSNV401I ? DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ? ACTIVE THREADS -...

From a CICS terminal: You can enter all DB2 commands except START DB2 from
a CICS terminal authorized to enter the DSNC transaction code.

For example, you enter:
DSNC -DISPLAY THREAD

and DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...

CICS can attach to only one DB2 subsystem at a time; therefore CICS does not
use the DB2 command prefix. Instead, each command entered through the CICS
attachment facility must be preceded by a hyphen (-), as in the example above. The
CICS attachment facility routes the commands to the connected DB2 subsystem
and obtains the command responses.

From a TSO terminal: You can enter all DB2 commands except -START DB2 from
a DSN session.

For example, the system displays:
READY

You enter:
DSN SYSTEM (subsystem-name)

The system displays:
DSN

You enter:
-DISPLAY THREAD

and DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...

A TSO session can attach to only one DB2 subsystem at a time; therefore TSO
does not use the DB2 command prefix. Instead, each command entered through

Chapter 16. Basic operation 253

the TSO attachment facility must be preceded by a hyphen (-), as in the example
above. The TSO attachment facility routes the command to DB2 and obtains the
command response.

All DB2 commands except START DB2 can also be entered from a DB2I panel
using option 7, DB2 Commands. For more information on using DB2I, see “Using
DB2I (DB2 Interactive)” on page 259.

From an APF-authorized program: As with IMS, DB2 commands can be passed
from an APF-authorized program to multiple DB2 subsystems by the MGCR (SVC
34) MVS service. Thus, the value of the command prefix identifies the particular
subsystem to which the command is directed. The subsystem command prefix is
specified, as in IMS, when DB2 is installed (in the SYS1.PARMLIB member
IEFSSNxx). DB2 supports the MVS WTO Command And Response Token (CART)
to route individual DB2 command response messages back to the invoking
application program. Use of the CART token is necessary if multiple DB2
commands are issued from a single application program.

For example, to issue DISPLAY THREAD to the default DB2 subsystem from an
APF-authorized program run as a batch job, code:
MODESUPV DS 0H

MODESET MODE=SUP,KEY=ZERO
SVC34 SR 0,0

MGCR CMDPARM
EJECT

CMDPARM DS 0F
CMDFLG1 DC X'00'
CMDLENG DC AL1(CMDEND-CMDPARM)
CMDFLG2 DC X'0000'
CMDDATA DC C'-DISPLAY THREAD'
CMDEND DS 0C

and DB2 returns the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -...

DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

From an IFI application program: An application program can issue DB2
commands using the instrumentation facility interface (IFI). The IFI application
program protocols are available through the IMS, CICS, TSO, and call attachment
facility (CAF) attaches, and the Recoverable Resource Manager Services
attachment facility. For an example in which the DB2 START TRACE command for
monitor class 1 is issued, see “COMMAND: Syntax and usage” on page 1000.

Where command responses go
In most cases, DB2 command responses are returned to the entering terminal or,
for batch jobs, appear in the printed listing.

In CICS, you can direct command responses to another terminal. Name the other
terminal as the destination (dest) in this command:
DSNC dest -START DATABASE

If a DB2 command is entered from an IMS or CICS terminal, the response
messages can be directed to different terminals. If the response includes more than
one message, the following cases are possible:

254 Administration Guide

v If the messages are issued in a set, the entire set of messages is sent to the
IMS or CICS terminal that entered the command. For example, DISPLAY
THREAD issues a set of messages.

v If the messages are issued one after another, and not in a set, only the first
message is sent to the terminal that entered the command. Later messages are
routed to one or more MVS consoles via the WTO function. For example, START
DATABASE issues several messages one after another.

You can choose alternate consoles to receive the subsequent messages by
assigning them the routing codes placed in the DSNZPxxx module when DB2 is
installed. If you want to have all of the messages available to the person who
sent the command, route the output to a console near the IMS or CICS master
terminal.

For APF-authorized programs that run in batch jobs, command responses are
returned to the master console and to the system log if hard copy logging is
available. Hard copy logging is controlled by the MVS system command VARY. See
OS/390 MVS System Commands for more information.

Authorities for DB2 commands
The ability to issue DB2 commands, such as STOP DB2, and to use most other
DB2 functions, requires the appropriate privilege or authority. Privileges and
authorities can be granted to authorization IDs in many combinations and can also
be revoked.

The individual authorities are listed in Figure 8 on page 109. Each administrative
authority has the individual authorities shown in its box, and the individual
authorities for all the levels beneath it. For example, DBADM has ALTER, DELETE,
INDEX, INSERT, SELECT, and UPDATE authorities as well as those listed for
DBCTRL and DBMAINT.

Any user with the STOPALL privilege can issue the STOP DB2 command. Besides
those who have been granted STOPALL explicitly, the privilege belongs implicitly to
anyone with SYSOPR authority or higher. When installing DB2, you can choose:
v One or two authorization IDs with installation SYSADM authority
v Zero, one, or two authorization IDs with installation SYSOPR authority

The IDs with those authorizations are contained in the load module for subsystem
parameters (DSNZPxxx).

The START DB2 command can be entered only at an MVS console authorized to
enter MVS system commands. The command group authorization level must be
SYS.

DB2 commands entered from an MVS console are not associated with any
secondary authorization IDs. The authorization ID associated with an MVS console
is SYSOPR, which carries the authority to issue all DB2 commands except:
v RECOVER BSDS
v START DATABASE
v STOP DATABASE
v ARCHIVE LOG

APF-authorized programs that issue commands via MGCR (SVC 34) have
SYSOPR authority. The authority to start or stop any particular database must be

Chapter 16. Basic operation 255

specifically granted to an ID with SYSOPR authority. Likewise, an ID with SYSOPR
authority must be granted specific authority to issue the RECOVER BSDS and
ARCHIVE LOG commands.

The SQL GRANT statement can be used to grant SYSOPR authority to other user
IDs such as the /SIGN user ID or the LTERM of the IMS master terminal.

For information about other DB2 authorization levels, see “Establishing RACF
protection for DB2” on page 198. DB2 Command Reference also has authorization
level information for specific commands.

Starting and stopping DB2
Starting and stopping DB2 is a simple process, and one that you will probably not
have to do often. Before DB2 is stopped, the system takes a shutdown checkpoint.
This checkpoint and the recovery log give DB2 the information it needs to restart.

This section describes the START DB2 and STOP DB2 commands, explains how
you can limit access to data at startup, and contains a brief overview of startup after
an abend.

Starting DB2
When installed, DB2 is defined as a formal MVS subsystem. Afterward, the
following message appears during any IPL of MVS:
DSN3100I - DSN3UR00 - SUBSYSTEM ssnm READY FOR -START COMMAND

where ssnm is the DB2 subsystem name. At that point, you can start DB2 from an
MVS console that has been authorized to issue system control commands (MVS
command group SYS), by entering the command START DB2. The command must
be entered from the authorized console and not submitted through JES or TSO.

It is not possible to start DB2 by a JES batch job or an MVS START command. The
attempt is likely to start an address space for DB2 that then abends, probably with
reason code X'00E8000F'.

You can also start DB2 from an APF-authorized program by passing a START DB2
command to the MGCR (SVC 34) MVS service.

Messages at start
The system responds with some or all of the following messages depending on
which parameters you chose:
$HASP373 xxxxMSTR STARTED
DSNZ002I - SUBSYS ssnm SYSTEM PARAMETERS

LOAD MODULE NAME IS dsnzparm-name
DSNY001I - SUBSYSTEM STARTING
DSNJ127I - SYSTEM TIMESTAMP FOR BSDS=87.267 14:24:30.6
DSNJ001I - csect CURRENT COPY n ACTIVE LOG DATA

SET IS DSNAME=...,
STARTRBA=...,ENDRBA=...

DSNJ099I - LOG RECORDING TO COMMENCE WITH
STARTRBA = xxxxxxxxxxxx

$HASP373 xxxxDBM1 STARTED
DSNR001I - RESTART INITIATED
DSNR003I - RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx
DSNR004I - RESTART...UR STATUS COUNTS...

IN COMMIT=nnnn, INDOUBT=nnnn, INFLIGHT=nnnn,
IN ABORT=nnnn, POSTPONED ABORT=nnnn

DSNR005I - RESTART...COUNTS AFTER FORWARD RECOVERY

256 Administration Guide

|
|

IN COMMIT=nnnn, INDOUBT=nnnn
DSNR006I - RESTART...COUNTS AFTER BACKWARD RECOVERY

INFLIGHT=nnnn, IN ABORT=nnnn, POSTPONED ABORT=nnnn
DSNR002I - RESTART COMPLETED
DSN9002I - DSNYASCP 'START DB2' NORMAL COMPLETION
DSNV434I - DSNVRP NO POSTPONED ABORT THREADS FOUND
DSN9022I - DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION

If any of the nnnn values in message DSNR004I are not zero, message DSNR007I
is issued to provide the restart status table.

The START DB2 command starts the system services address space, the database
services address space, and, depending upon specifications in the load module for
subsystem parameters (DSNZPARM by default), the distributed data facility address
space and the DB2-established stored procedures address space. Optionally,
another address space, the internal resource lock manager (IRLM), can be started
automatically.

Options at start
Starting invokes the load module for subsystem parameters. This load module
contains information specified when DB2 was installed. For example, the module
contains the name of the IRLM to connect to. In addition, it indicates whether the
distributed data facility (DDF) is available and, if it is, whether it should be
automatically started when DB2 is started. For information about using a command
to start DDF, see “Starting DDF” on page 308. You can specify PARM
(module-name) on the START DB2 command to provide a parameter module other
than the one specified at installation.

There is a conditional restart operation, but there are no parameters to indicate
normal or conditional restart on the START DB2 command. For information on
conditional restart, see “Restarting with conditions” on page 355.

Restricting access to data
You can restrict access to data with another option of the START DB2 command.
Use:

ACCESS(MAINT)
To limit access to users who have installation SYSADM or installation
SYSOPR authority.

Users with those authorities can do maintenance operations such as
recovering a database or taking image copies. To restore access to all
users, stop DB2 and then restart it. Either omit the ACCESS keyword or
use:

ACCESS(*)
To allow all authorized users to connect to DB2.

Wait state at start
If a JCL error, such as device allocation or region size, occurs while trying to start
the database services address space, DB2 goes into wait status. To end the wait,
cancel the system services address space and the distributed data facility address
space from the console. After DB2 stops, check the start procedures of all three
DB2 address spaces for correct JCL syntax. See Data Sharing: Planning and
Administration for more information.

To accomplish the check, compare the expanded JCL in the SYSOUT output
against the correct JCL provided in OS/390 MVS JCL User's Guide or OS/390 MVS
JCL Reference. Then, take the member name of the erroneous JCL procedure also

Chapter 16. Basic operation 257

|
|
|
|

provided in the SYSOUT to the system programmer who maintains your procedure
libraries. After finding out which proclib contains the JCL in question, locate the
procedure and correct it.

Starting after an abend
Starting DB2 after it abends is different from starting it after the command STOP
DB2 has been issued. After STOP DB2, the system finishes its work in an orderly
way and takes a shutdown checkpoint before stopping. When DB2 is restarted, it
uses information from the system checkpoint and recovery log to determine the
system status at shutdown.

When a power failure occurs, DB2 abends without being able to finish its work or
take a shutdown checkpoint. When DB2 is restarted after an abend, it refreshes its
knowledge of its status at termination using information on the recovery log and
notifies the operator of the status of various units of recovery.

You can indicate that you want DB2 to postpone some of the backout work
traditionally performed during system restart. You can delay the backout of long
running units of recovery (URs) using installation options LIMIT BACKOUT and
BACKOUT DURATION on panel DSNTIPN. For a description of these installation
parameters, see Chapter 2 of DB2 Installation Guide.

Normally, the restart process resolves all inconsistent states. In some cases, you
have to take specific steps to resolve inconsistencies. There are steps you can take
to prepare for those actions. For example, you can limit the list of table spaces that
are recovered automatically when DB2 is started. For an explanation of the causes
of database inconsistencies and how you can prepare to recover from them, see
“Chapter 19. Restarting DB2 after termination” on page 347.

Stopping DB2
Before stopping, all DB2-related write to operator with reply (WTOR) messages
must receive replies. Then one of the following commands terminates the
subsystem:
-STOP DB2 MODE(QUIESCE)

-STOP DB2 MODE(FORCE)

For the effects of the QUIESCE and FORCE options, see “Normal termination” on
page 347. In a data sharing environment, see Data Sharing: Planning and
Administration.

The following messages are returned:
DSNY002I - SUBSYSTEM STOPPING
DSN9022I - DSNYASCP '-STOP DB2' NORMAL COMPLETION
DSN3104I - DSN3EC00 - TERMINATION COMPLETE

Before DB2 can be restarted, the following message must also be returned to the
MVS console that is authorized to enter the START DB2 command:
DSN3100I - DSN3EC00 - SUBSYSTEM ssnm READY FOR -START COMMAND

If the STOP DB2 command is not issued from an MVS console, messages
DSNY002I and DSN9022I are not sent to the IMS or CICS master terminal
operator. They are routed only to the MVS console that issued the START DB2
command.

258 Administration Guide

|
|

Submitting work to be processed
An application program running under TSO, IMS, or CICS can make use of DB2
resources by executing embedded SQL statements. How to run application
programs from those environments is explained under:

“Running TSO application programs” on page 259
“Running IMS application programs” on page 260
“Running CICS application programs” on page 261
“Running batch application programs” on page 261
“Running application programs using CAF” on page 262
“Running application programs using RRSAF” on page 263

In each case, there are some conditions that the application program must meet to
embed SQL statements and to authorize the use of DB2 resources and data.

All application programming defaults, including the subsystem name that the
programming attachments discussed here use, are in the DSNHDECP load module.
Make sure your JCL specifies the proper set of program libraries.

Using DB2I (DB2 Interactive)
Using the interactive program DB2I, you can run application programs and perform
many DB2 operations by entering values on panels. DB2I runs under TSO using
ISPF (Interactive System Productivity Facility) services. To use it, follow your local
procedures for logging on to TSO, and enter ISPF. The DB2I menu is shown in Part
1 of DB2 Application Programming and SQL Guide.

You control each operation by entering the parameters that describe it on the
panels provided. DB2 also provides help panels to:

v Explain how to use each operation

v Provide the syntax for and examples of DSN subcommands, DB2 operator
commands, and DB2 utility control statements

To access the help panels, press the HELP PF key. (The key can be set locally, but
typically is PF1.)

Running TSO application programs
To run TSO application programs:
1. Log on.
2. Enter the DSN command.
3. Respond to the prompt by entering the RUN subcommand.

The following example runs application program DSN8BC3. The program is in
library prefix.RUNLIB.LOAD, the name assigned to the load module library.
DSN SYSTEM (subsystem-name)
RUN PROGRAM (DSN8BC3) PLAN(DSN8BH71) LIB ('prefix.RUNLIB.LOAD')
END

A TSO application program that you run in a DSN session must be link-edited with
the TSO language interface program (DSNELI). The program cannot include IMS
DL/I calls because that requires the IMS language interface module (DFSLI000).

The terminal monitor program (TMP) attaches the DB2-supplied DSN command
processor, which in turn attaches the application program.

The DSN command starts a DSN session, which in turn provides a variety of
subcommands and other functions. The DSN subcommands are:

Chapter 16. Basic operation 259

ABEND
Causes the DSN session to terminate with a DB2 X'04E' abend completion
code and with a DB2 abend reason code of X'00C50101'

BIND PACKAGE
Generates an application package

BIND PLAN
Generates an application plan

DCLGEN
Produces SQL and host language declarations

END Ends the DB2 connection and returns to TSO

FREE PACKAGE
Deletes a specific version of a package

FREE PLAN
Deletes an application plan

REBIND PACKAGE
Regenerates an existing package

REBIND PLAN
Regenerates an existing plan

RUN Executes a user application program

SPUFI Invokes a DB2I facility for executing SQL statements not embedded in an
application program

You can also issue the following DB2 and TSO commands from a DSN session:
v Any TSO command except TIME, TEST, FREE, and RUN.
v Any DB2 command except START DB2. For a list of those commands, see “DB2

operator commands” on page 250.

DB2 uses the following sources to find an authorization for access by the
application program. DB2 checks the first source listed; if it is unavailable, it checks
the second source, and so on.
1. RACF USER parameter supplied at logon
2. TSO logon user ID
3. Site-chosen default authorization ID
4. IBM-supplied default authorization ID

Either the RACF USER parameter or the TSO user ID can be modified by a locally
defined authorization exit routine.

Running IMS application programs
To run IMS application programs, enter transactions from IMS terminals.

Application programs that contain SQL statements run in message processing
program (MPP), batch message processing (BMP), Fast Path regions, or IMS batch
regions.

The program must be link-edited with the IMS language interface module
(DFSLI000). It can write to and read from other database management systems
using the distributed data facility, in addition to accessing DL/I and Fast Path
resources.

260 Administration Guide

DB2 checks whether the authorization ID provided by IMS is valid. For
message-driven regions, IMS uses the SIGNON-ID or LTERM as the authorization
ID. For non-message-driven regions and batch regions, IMS uses the ASXBUSER
field (if RACF or another security package is active). The ASXBUSER field is
defined by MVS as 7 characters. If the ASXBUSER field contains binary zeros or
blanks (RACF or another security package is not active), IMS uses the PSB name
instead. See “Chapter 12. Controlling access to a DB2 subsystem” on page 169 for
more information about DB2 authorization IDs.

An IMS terminal operator probably notices few differences between application
programs that access DB2 data and programs that access DL/I data because no
messages relating to DB2 are sent to a terminal operator by IMS. However, your
program can signal DB2 error conditions with a message of your choice. For
example, at the program’s first SQL statement, it receives an SQL error code if the
resources to run the program are not available or if the operator is not authorized to
use the resources. The program can interpret the code and issue an appropriate
message to the operator.

Running IMS batch work: You can run batch DL/I jobs to access DB2 resources;
DB2-DL/I batch support uses the IMS attach package.

See Part 5 of DB2 Application Programming and SQL Guide for more information
about application programs and DL/I batch. See IMS Application Programming:
Design Guide for more information about recovery and DL/I batch.

Running CICS application programs
To run CICS applications, enter transactions from CICS terminals. You can also
invoke CICS transactions by using the CICS transaction-invocation stored
procedure. For information about this stored procedure, see “The CICS transaction
invocation stored procedure (DSNACICS)” on page 1087.

CICS transactions that issue SQL statements must be link-edited with the CICS
attachment facility language interface module, DSNCLI, and the CICS command
language interface module. CICS application programs can issue SQL, DL/I, or
CICS commands. After CICS has connected to DB2, any authorized CICS
transaction can issue SQL requests that can write to and read from multiple DB2
instances using the distributed data facility. The application programs run as CICS
applications.

DB2 checks an authorization ID related to the transaction against a plan assigned
to it. The authorization ID for the transaction can be the operator ID, terminal ID,
transaction ID, RACF-authenticated USERID, or another identifier explicitly provided
by the resource control table (RCT). See “Chapter 12. Controlling access to a DB2
subsystem” on page 169 for more information about DB2 authorization IDs.

Running batch application programs
Batch DB2 work can run in background under the TSO terminal monitor program
(TMP) or in an IMS batch message processing (BMP) region. IMS batch regions
can issue SQL statements.

Batch work is run in the TSO background under the TSO terminal monitor program
(TMP). The input stream can invoke TSO command processors, particularly the
DSN command processor for DB2, and can include DSN subcommands such as
RUN. The following is an example of a TMP job:

Chapter 16. Basic operation 261

#
#
#
#

//jobname JOB USER=SYSOPR ...
//GO EXEC PGM=IKJEFT01,DYNAMNBR=20
.
user DD statements
.
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM (ssid)
.
subcommand (for example, RUN)
.
END
/*

In the example,

v IKJEFT01 identifies an entry point for TSO TMP invocation. Alternate entry points
defined by TSO are also available to provide additional return code and ABEND
termination processing options. These options permit the user to select the
actions to be taken by the TMP upon completion of command or program
execution.

Because invocation of the TSO TMP using the IKJEFT01 entry point might not be
suitable for all user environments, refer to the TSO publications to determine
which TMP entry point provides the termination processing options best suited to
your batch execution environment.

v USER=SYSOPR identifies the user ID (SYSOPR in this case) for authorization
checks.

v DYNAMNBR=20 indicates the maximum number of data sets (20 in this case)
that can be dynamically allocated concurrently.

v MVS checkpoint and restart facilities do not support the execution of SQL
statements in batch programs invoked by RUN. If batch programs stop because
of errors, DB2 backs out any changes made since the last commit point. For
information on backup and recovery, see “Chapter 21. Backing up and recovering
databases” on page 373. For an explanation of backing out changes to data
when a batch program run in the TSO background abends, see Part 5 of DB2
Application Programming and SQL Guide.

v (ssid) is the subsystem name or group attachment name.

Running application programs using CAF

General-use Programming Interface

The call attachment facility (CAF) allows you to customize and control your
execution environments more extensively than the TSO, CICS, or IMS attachment
facilities. Programs executing in TSO foreground or TSO background can use either
the DSN session or CAF; each has advantages and disadvantages. MVS batch and
started task programs can use only CAF.

It is also possible for IMS batch applications to access DB2 databases through
CAF, though this method does not coordinate the commitment of work between the
IMS and DB2 systems. We highly recommend that you use the DB2 DL/I batch
support for IMS batch applications.

In order to use CAF, you must first make available a load module known as the call
attachment language interface or DSNALI. When the language interface is
available, your program can use CAF in two ways:

262 Administration Guide

v Implicitly, by including SQL statements or IFI calls in your program just as you
would any program

v Explicitly, by writing CALL DSNALI statements

For an explanation of CAF’s capabilities and how to use it, see Part 6 of DB2
Application Programming and SQL Guide.

End of General-use Programming Interface

Running application programs using RRSAF

General-use Programming Interface

The Recoverable Resource Manager Services attachment facility (RRSAF) is a DB2
attachment facility that relies on an OS/390 component called OS/390 Transaction
Management and Recoverable Resource Manager Services (OS/390 RRS). OS/390
RRS provides system-wide services for coordinating two-phase commit operations
across MVS products.

Before you can run an RRSAF application, OS/390 RRS must be started. OS/390
RRS runs in its own address space and can be started and stopped independently
of DB2.

Applications that use RRSAF must:

v Call DSNRLI to invoke RRSAF functions. Those functions establish a connection
between DB2 and OS/390 RRS and allocate DB2 resources.

v Link-edit or load the RRSAF language interface module, DSNRLI.

See “Controlling OS/390 RRS connections” on page 304 for a description of how
applications connect to DB2 using RRSAF. For an explanation of RRSAF’s
capabilities and how to use it, see Part 6 of DB2 Application Programming and SQL
Guide.

End of General-use Programming Interface

Receiving messages
DB2 message identifiers have the form DSNcxxxt, where:

DSN Is the unique DB2 message prefix.

c Is a 1-character code identifying the DB2 subcomponent that issued the
message. For example:
M IMS attachment facility
U Utilities

xxx Is the message number

t Is the message type, with these values and meanings:
A Immediate action
D Immediate decision
E Eventual action
I Information only

See DB2 Messages and Codes for an expanded description of message types.

Chapter 16. Basic operation 263

A command prefix, identifying the DB2 subsystem, follows the message identifier,
except in messages from the CICS and IMS attachment facilities (subcomponents C
for CICS Version 3 and below, 2 for CICS Version 4 and above, or M for IMS).
CICS attachment facility messages identify the sending CICS subsystem and are
sent to the MVS console, the CICS terminal, or the CICS transient data destination
specified in the resource control table (RCT).

The IMS attachment facility issues messages that are identified as SSNMxxxx and
as DFSxxxx. The DFSxxxx messages are produced by IMS, under which the IMS
attachment facility operates.

Receiving unsolicited DB2 messages
Unsolicited subsystem messages are sent to the MVS console issuing the START
DB2 command, or to consoles assigned the routing codes that were listed in the
DSNZPxxx module when installing DB2. But the following messages from the IMS
and the CICS attachment facilities are exceptions to that rule:

v Specific IMS attachment facility messages are sent to the IMS master terminal.

v Unsolicited CICS messages are sent to the transient data entries specified in the
RCT (ERRDEST).

v CICS statistics messages that are issued because of shutdown are sent to the
transient data entry specified in the RCT (SHDDEST).

Some DB2 messages sent to the MVS console are defined as critical using the
MVS/WTO descriptor code (11). This code signifies “critical eventual action
requested” by DB2. Preceded by an at sign (@) or an asterisk (*), critical DB2
messages remain on the screen until specifically deleted. This prevents them from
being missed by the operator, who is required to take a specific action.

Determining operational control
Table 61 summarizes the operational control that is available at the operator
console or terminal.

Table 61. Operational control summary

Type of
Operation

MVS
Console

TSO
Terminal

IMS
Master
Terminal

Authorized
CICS
Terminal

Issue DB2
commands and
receive replies

Yes Yes1 Yes1 Yes1

Receive DB2
unsolicited output

Yes No No No

Issue IMS
commands

Yes2 No Yes No

Receive IMS
attachment
facility unsolicited
output

No3 No Yes No

Issue CICS
commands

Yes4 No No Yes

Receive CICS
attachment
facility unsolicited
output

No3 No No Yes5

264 Administration Guide

Table 61. Operational control summary (continued)

Type of
Operation

MVS
Console

TSO
Terminal

IMS
Master
Terminal

Authorized
CICS
Terminal

Notes:

1. Except START DB2. Commands issued from IMS must have the prefix /SSR. Commands
issued from CICS must have the prefix DSNC.

2. Using outstanding WTOR.

3. “Attachment facility unsolicited output” does not include “DB2 unsolicited output”; for the
latter, see “Receiving unsolicited DB2 messages” on page 264.

4. Use the MVS command MODIFY jobname, CICS command. The MVS console must
already be defined as a CICS terminal.

5. Specify the output destination for the unsolicited output of the CICS attachment facility in
the RCT.

Chapter 16. Basic operation 265

266 Administration Guide

Chapter 17. Monitoring and controlling DB2 and its
connections

The information under this heading, up to “Controlling IMS connections” on
page 295, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

“Chapter 16. Basic operation” on page 249 tells you how to start DB2, submit work
to be processed, and stop DB2. The following operations, described in this chapter,
require more understanding of what DB2 is doing:

“Controlling DB2 databases and buffer pools”
“Controlling user-defined functions” on page 277
“Controlling DB2 utilities” on page 278
“Controlling the IRLM” on page 280

This chapter also introduces the concept of a thread, a DB2 structure that makes
the connection between another subsystem and DB2. A thread describes an
application’s connection, traces its progress, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute under a thread structure. The
use of threads in making, monitoring, and breaking connections is described in the
following sections:

“Monitoring threads” on page 283
“Controlling TSO connections” on page 284
“Controlling CICS connections” on page 287
“Controlling IMS connections” on page 295
“Controlling OS/390 RRS connections” on page 304
“Controlling connections to remote systems” on page 307

“Controlling traces” on page 326, tells you how to start and stop traces, and points
to other books for help in analyzing their results.

“Controlling the resource limit facility (governor)” on page 328, tells how to start and
stop the governor, and how to display its current status.

A final section, “Changing subsystem parameter values” on page 329, tells how to
change subsystem parameters dynamically even when DB2 is running.

Important: Examples of commands in this chapter do not necessarily illustrate all
the available options. For the complete syntax of any command or utility, see DB2
Command Reference or DB2 Utility Guide and Reference. For data sharing
considerations, see DB2 Data Sharing: Planning and Administration.

Controlling DB2 databases and buffer pools
DB2 databases are controlled by the following commands:

START DATABASE
Makes a database, or individual partitions, available. Also removes pages
from the logical page list (LPL). For its use, see “Starting databases” on
page 268.

DISPLAY DATABASE
Displays status, user, and locking information for a database. For its use,
see “Monitoring databases” on page 269.

© Copyright IBM Corp. 1982, 2001 267

STOP DATABASE
Makes a database, or individual partitions, unavailable after existing users
have quiesced. DB2 also closes and deallocates the data sets. For its use,
see “Stopping databases” on page 274.

The START and STOP DATABASE commands can be used with the SPACENAM
and PART options to control table spaces, index spaces, or partitions. For example,
the following command starts two partitions of table space DSN8S71E in the
database DSN8D71A:
-START DATABASE (DSN8D71A) SPACENAM (DSN8S71E) PART (1,2)

Starting databases
The command START DATABASE (*) starts all databases for which you have the
STARTDB privilege. The privilege can be explicitly granted, or can belong implicitly
to a level of authority (DBMAINT and above, as shown in Figure 8 on page 109).
The command starts the database, but not necessarily all the objects it contains.
Any table spaces or index spaces in a restricted mode remain in a restricted mode
and are not started.

START DATABASE (*) does not start the DB2 directory (DSNDB01), the DB2
catalog (DSNDB06), or the DB2 work file database (called DSNDB07, except in a
data sharing environment). These databases have to be started explicitly using the
SPACENAM option. Also, START DATABASE (*) does not start table spaces or
index spaces that have been explicitly stopped by the STOP DATABASE command.

The PART keyword of the command START DATABASE can be used to start
individual partitions of a table space. It can also be used to start individual partitions
of a partitioning index or logical partitions of a nonpartitioning index. The started or
stopped state of other partitions is unchanged.

Starting an object with a specific status
A database, table space, or an index space can be started with a specific status
that limits access to it.

Status Provides this access
RW Read-write. This is the default value.
RO Read only. You cannot change the data.
UT Utility only. The object is available only to the DB2 utilities.

Databases, table spaces, and index spaces are started with RW status when they
are created. You can make any of them unavailable by using the command STOP
DATABASE. DB2 can also make them unavailable when it detects an error.

In cases when the object was explicitly stopped, you can make them available
again using the command START DATABASE. For example, the following command
starts all table spaces and index spaces in database DSN8D71A for read-only
access:
-START DATABASE (DSN8D71A) SPACENAM(*) ACCESS(RO)

The system responds with this message:
DSN9022I - DSNTDDIS '-START DATABASE' NORMAL COMPLETION

Starting a table space or index space that has restrictions
DB2 can make an object unavailable for a variety of reasons. Typically, in those
cases, the data is unreliable and the object needs some attention before it can be

268 Administration Guide

started. An example of such a restriction is when the table space is placed in copy
pending status. That status makes a table space or partition unavailable until an
image copy has been made of it.

These restrictions are a necessary part of protecting the integrity of the data. If you
start an object that has restrictions, the data in the object might not be
reliable.

However, in certain circumstances, it might be reasonable to force availability. For
example, a table might contain test data whose consistency is not critical. In those
cases, the objects can be started by using the ACCESS(FORCE) option of START
DATABASE. For example:
-START DATABASE (DSN8D71A) SPACENAM (DSN8S71E) ACCESS(FORCE)

The command releases most restrictions for the named objects. These objects must
be explicitly named in a list following the SPACENAM option.

DB2 cannot process the START DATABASE ACCESS(FORCE) request if
postponed abort or indoubt URs exist. The restart pending (RESTP) status and the
advisory restart pending (AREST) status remain in effect until either automatic
backout processing completes or until you perform one of the following actions:

v Issue the RECOVER POSTPONED command to complete backout activity.

v Issue the RECOVER POSTPONED CANCEL command to cancel all of the
postponed abort units of recovery.

v Conditionally restart or cold start DB2.

For more information on resolving postponed units of recovery, see “Resolving
postponed units of recovery” on page 355.

Monitoring databases
You can use the command DISPLAY DATABASE to obtain information about the
status of databases and the table spaces and index spaces within each database. If
applicable, the output also includes information about physical I/O errors for those
objects. Use DISPLAY DATABASE as follows:
-DISPLAY DATABASE (dbname)

This results in the following messages:

Chapter 17. Monitoring and controlling DB2 and its connections 269

|
|
|
|

|

|
|

|

|
|

In the preceding messages:

v Report_type_list indicates which options were included when the DISPLAY
DATABASE command was issued. See Chapter 2 of DB2 Command Reference
for detailed descriptions of options.

v dbname is an 8-byte character string indicating the database name. The
pattern-matching character, *, is allowed at the beginning, middle, and end of
dbname.

v STATUS is a combination of one or more status codes delimited by a comma.
The maximum length of the string is 18 characters. If the status exceeds 18
characters, those characters are wrapped onto the next status line. Anything that
exceeds 18 characters on the second status line is truncated. See Chapter 2 of
DB2 Command Reference for a list of status codes and their descriptions.

You can use the pattern-matching character, *, in the commands DISPLAY
DATABASE, START DATABASE, and STOP DATABASE. The pattern-matching
character can be used in the beginning, middle, and end of the database and table
space names. The keyword ONLY can be added to the command DISPLAY
DATABASE. When ONLY is specified with the DATABASE keyword but not the
SPACENAM keyword, all other keywords except RESTRICT, LIMIT, and AFTER are
ignored. Use DISPLAY DATABASE as follows:
-DISPLAY DATABASE (*S*DB*) ONLY

This results in the following messages:

In the preceding messages:

11:44:32 DSNT360I - **
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * report_type_list
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = dbname STATUS = xx

DBD LENGTH = yyyy

11:44:32 DSNT397I -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ---------------- --------- -------- -------- -----
D1 TS RW,UTRO
D2 TS RW
D3 TS STOP
D4 IX RO
D5 IX STOP
D6 IX UT
LOB1 LS RW
******* DISPLAY OF DATABASE dbname ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

11:44:32 DSNT360I - **
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = DSNDB01 STATUS = RW

DBD LENGTH = 8066
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = DSNDB04 STATUS = RW

DBD LENGTH = 21294
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = DSNDB06 STATUS = RW

DBD LENGTH = 32985
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

270 Administration Guide

v DATABASE (*S*DB*) displays databases that begin with any letter, have the
letter S followed by any letters, then the letters DB followed by any letters.

v ONLY restricts the display to databases names that fit the criteria.

See Chapter 2 of DB2 Command Reference for detailed descriptions of these and
other options on the DISPLAY DATABASE command.

You can use the RESTRICT(REFP) option of the DISPLAY DATABASE command to
limit the display to a table space or partition in refresh pending (REFP) status. For
information about resetting a restrictive status, see Appendix C of DB2 Utility Guide
and Reference.

You can use the ADVISORY option on the DISPLAY DATABASE command to limit
the display to table spaces or indexes that require some corrective action. Use the
DISPLAY DATABASE ADVISORY command without the RESTRICT option to
determine when:

v An index space is in the informational copy pending (ICOPY) advisory status

v A base table space is in the auxiliary warning (AUXW) advisory status

For information about resetting an advisory status, see Appendix C of DB2 Utility
Guide and Reference.

Obtaining information about application programs
You can obtain various kinds of information about application programs using
particular databases or table or index spaces with the DISPLAY DATABASE
command. This section describes how you can identify who or what is using the
object and what locks are being held on the objects.

Who and what is using the object? You can obtain the following information:

v The names of the application programs currently using the database or space

v The authorization IDs of the users of these application programs

v The logical unit of work IDs of the database access threads accessing data on
behalf of the remote locations specified.

To obtain this information, issue a command, for example, that names partitions 2,
3, and 4 in table space TPAUGF01 in database DBAUGF01:
-DISPLAY DATABASE (DBAUGF01) SPACENAM (TPAUGF01) PART (2,3,4) USE

DB2 returns a list similar to this one:

DSNT360I : ***********************************
DSNT361I : * DISPLAY DATABASE SUMMARY

* GLOBAL USE
DSNT360I : ***********************************
DSNT362I : DATABASE = DBAUGF01 STATUS = RW

DBD LENGTH = 8066
DSNT397I :
NAME TYPE PART STATUS CONNID CORRID USERID
-------- ---- ---- ------------------ -------- ------------ --------
TPAUGF01 TS 002 RW BATCH S3341209 ADMF001

- MEMBER NAME V61A
TPAUGF01 TS 003 RW BATCH S3341209 ADMF001

- MEMBER NAME V61A
TPAUGF01 TS 004 RW BATCH S3341209 ADMF001

- MEMBER NAME V61A
******* DISPLAY OF DATABASE DBAUGF01 ENDED **********************
DSN9022I : DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

Chapter 17. Monitoring and controlling DB2 and its connections 271

|
|
|
|

Which programs are holding locks on the objects? To determine which
application programs are currently holding locks on the database or space, issue a
command like the following, which names table space TSPART in database DB01:
-DISPLAY DATABASE(DB01) SPACENAM(TSPART) LOCKS

DB2 returns a list similar to this one:

For an explanation of the field LOCKINFO, see message DSNT396I in Part 2 of
DB2 Messages and Codes.

Use the LOCKS ONLY keywords on the DISPLAY DATABASE command to display
only spaces that have locks. The LOCKS keyword can be substituted with USE,
CLAIMERS, LPL, or WEPR to display only databases that fit the criteria. Use
DISPLAY DATABASE as follows:
-DISPLAY DATABASE (DSNDB06) SPACENAM(*) LOCKS ONLY

This results in the following messages:

See Chapter 2 of DB2 Command Reference for detailed descriptions of these and
other options of the DISPLAY DATABASE command.

Obtaining information about pages in error
There are two ways that pages can be in error:

v A page is logically in error if its problem can be fixed without redefining new disk
tracks or volumes. For example, if DB2 cannot write a page to disk because of a
connectivity problem, the page is logically in error. DB2 inserts entries for pages
that are logically in error in a logical page list (LPL).

v A page is physically in error if there are physical errors, such as device errors.
Such errors appear on the write error page range (WEPR). The range has a low
and high page, which are the same if only one page has errors.

17:45:42 DSNT360I - **
17:45:42 DSNT361I - * DISPLAY DATABASE SUMMARY
17:45:42 * GLOBAL LOCKS
17:45:42 DSNT360I - **
17:45:42 DSNT362I - DATABASE = DB01 STATUS = RW
17:45:42 DBD LENGTH = yyyy
17:45:42 DSNT397I -
NAME TYPE PART STATUS CONNID CORRID LOCKINFO
-------- ---- ---- ------------------ -------- ------------ ---------
TSPART TS 01 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 02 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 03 RW LSS001 DSN2SQL H-IX,P,C
TSPART TS 04 RW LSS001 DSN2SQL H-IX,P,C
******* DISPLAY OF DATABASE DB01 ENDED **********************
17:45:44 DSN9022I . DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

11:44:32 DSNT360I - **
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL LOCKS
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = DSNDB06 STATUS = RW

DBD LENGTH = 60560
11:44:32 DSNT397I -
NAME TYPE PART STATUS CONNID CORRID LOCKINFO
-------- ---- ---- ------------------ -------- ------------ ---------
SYSDBASE TS RW DSN 020.DBCMD 06 H-IS,S,C
******* DISPLAY OF DATABASE DSNDB06 ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

272 Administration Guide

If the cause of the problem is undetermined, the error is first recorded in the LPL. If
recovery from the LPL is unsuccessful, the error is then recorded on the error page
range.

Write errors for large object data type (LOB) table spaces defined with LOG NO
cause the unit of work to be rolled back. Because the pages are written during
normal deferred write processing, they can appear in the LPL and WEPR. The LOB
data pages for a LOB table space with the LOG NO attribute are not written to LPL
or WEPR. The space map pages are written during normal deferred write
processing and can appear in the LPL and WEPR.

A program that tries to read data from a page listed on the LPL or WEPR receives
an SQLCODE for “resource unavailable”. To access the page (or pages in the error
range), you must first recover the data from the existing database copy and the log.

Displaying the logical page list: You can check the existence of LPL entries by
issuing the DISPLAY DATABASE command with the LPL option. The ONLY option
restricts the output to objects that have LPL pages. For example:
-DISPLAY DATABASE(DBFW8401) SPACENAM(*) LPL ONLY

Output similar to the following is produced:
DSNT360I = ***
DSNT361I = * DISPLAY DATABASE SUMMARY

* GLOBAL LPL
DSNT360I = ***
DSNT362I = DATABASE = DBFW8401 STATUS = RW,LPL

DBD LENGTH = 8066
DSNT397I =
NAME TYPE PART STATUS LPL PAGES
-------- ---- ---- ------------------ ------------------
TPFW8401 TS 01 RW,LPL 000000-000004
ICFW8401 IX 01 RW,LPL 000000,000003
IXFW8402 IX RW,LPL 000000,000003-000005
---- 000007,000008-00000B
---- 000080-000090
******* DISPLAY OF DATABASE DBFW8401 ENDED **********************
DSN9022I = DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

The display indicates that the pages listed in the LPL PAGES column are
unavailable for access. For the syntax and description of DISPLAY DATABASE, see
Chapter 2 of DB2 Command Reference.

Removing pages from the LPL: When an object has pages on the LPL, there are
several ways to remove those pages and make them available for access when
DB2 is running:

v Start the object with access (RW) or (RO). That command is valid even if the
table space is already started.

When you issue the command START DATABASE, you see message DSNI006I,
indicating that LPL recovery has begun. Message DSNI022I is issued periodically
to give you the progress of the recovery. When recovery is complete, you see
DSNI021I.

When you issue the command START DATABASE for a LOB table space that is
defined as LOG NO, and DB2 detects log records required for LPL recovery are
missing due to the LOG NO attribute, the LOB table space is placed in AUXW
status and the LOB is invalidated.

v Run the RECOVER or REBUILD INDEX utility on the object.

Chapter 17. Monitoring and controlling DB2 and its connections 273

|
|
|
|

The only exception to this is when a logical partition of a nonpartitioned index
has both LPL and RECP status. If you want to recover the logical partition using
REBUILD INDEX with the PART keyword, you must first use the command
START DATABASE to clear the LPL pages.

v Run the LOAD utility with the REPLACE option on the object.

v Issue an SQL DROP statement for the object.

Only the following utilities can be run on an object with pages in the LPL:
LOAD with the REPLACE option
MERGECOPY
REBUILD INDEX
RECOVER, except:

RECOVER...PAGE
RECOVER...ERROR RANGE

REPAIR with the SET statement
REPORT

Displaying a write error page range: Use DISPLAY DATABASE to display the
range of error pages. For example, this command:
-DISPLAY DATABASE (DBPARTS) SPACENAM (TSPART01) WEPR

might display a list such as this:

In the previous messages:

v PHYERRLO and PHYERRHI identify the range of pages that were being read
when the I/O errors occurred. PHYERRLO is an 8-digit hexadecimal number
representing the lowest page found in error, while PHYERRHI represents the
highest page found in error.

v PIECE, a 3-digit integer, is a unique identifier for the data set supporting the
page set that contains physical I/O errors.

For additional information about this list, see the description of message DSNT392I
in Part 2 of DB2 Messages and Codes.

Stopping databases
Databases, table spaces, and index spaces can be made unavailable with the
STOP DATABASE command. You can also use STOP DATABASE with the PART
option to stop the following types of partitions:

v Physical partitions within a table space

11:44:32 DSNT360I - **
11:44:32 DSNT361I - * DISPLAY DATABASE SUMMARY
11:44:32 * GLOBAL WEPR
11:44:32 DSNT360I - **
11:44:32 DSNT362I - DATABASE = DBPARTS STATUS = RW

DBD LENGTH = yyyy
11:44:32 DSNT397I -

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE
-------- ---- ---- ---------------- -------- -------- -------- -----
TSPART01 TS 001 RW,UTRO 00000002 00000004 DSNCAT 000
TSPART01 TS 002 RW,UTRO 00000009 00000013 DSNCAT 001
TSPART01 TS 003 RO
TSPART01 TS 004 STOP
TSPART01 TS 005 UT
******* DISPLAY OF DATABASE DBPARTS ENDED **********************
11:45:15 DSN9022I - DSNTDDIS 'DISPLAY DATABASE' NORMAL COMPLETION

274 Administration Guide

v Physical partitions within an index space

v Logical partitions within a nonpartitioning index associated with a partitioned table
space.

This prevents access to individual partitions within a table or index space while
allowing access to the others. When you specify the PART option with STOP
DATABASE on physically partitioned spaces, the data sets supporting the given
physical partitions are closed and do not affect the remaining partitions. However,
STOP DATABASE with the PART option does not close data sets associated with
logically partitioned spaces. To close these data sets, you must execute STOP
DATABASE without the PART option.

The AT(COMMIT) option of STOP DATABASE stops objects quickly. The
AT(COMMIT) option interrupts threads that are bound with
RELEASE(DEALLOCATE) and is useful when thread reuse is high.

If you specify AT(COMMIT), DB2 takes over access to an object when all jobs
release their claims on it and when all utilities release their drain locks on it. If you
do not specify AT(COMMIT), the objects are not stopped until all existing
applications have deallocated. New transactions continue to be scheduled, but they
receive SQLCODE -904 SQLSTATE '57011' (resource unavailable) on the first SQL
statement that references the object or when the plan is prepared for execution.
STOP DATABASE waits for a lock on an object that it is attempting to stop. If the
wait time limit for locks (15 timeouts) is exceeded, then the STOP DATABASE
command terminates abnormally and leaves the object in stop pending status
(STOPP).

Database DSNDB01 and table spaces DSNDB01.DBD01 and
DSNDB01.SYSLGRNX must be started before stopping user-defined databases or
the work file database. A DSNI003I message tells you that the command was
unable to stop an object. You must resolve the problem indicated by this message
and run the job again. If an object is in STOPP status, you must first issue the
START DATABASE command to remove the STOPP status and then issue the
STOP DATABASE command.

DB2 subsystem databases (catalog, directory, work file) can also be stopped. After
the directory is stopped, installation SYSADM authority is required to restart it.

The following examples illustrate ways to use the command:

-STOP DATABASE (*)
Stops all databases for which you have STOPDB authorization, except the
DB2 directory (DSNDB01), the DB2 catalog (DSNDB06), or the DB2 work
file database (called DSNDB07, except in a data sharing environment), all
of which must be stopped explicitly.

-STOP DATABASE (dbname)
Stops a database, and closes all of the data sets of the table spaces and
index spaces in the database.

-STOP DATABASE (dbname, ...)
Stops the named databases and closes all of the table spaces and index
spaces in the databases. If DSNDB01 is named in the database list, it
should be last on the list because stopping the other databases requires
that DSNDB01 be available.

Chapter 17. Monitoring and controlling DB2 and its connections 275

-STOP DATABASE (dbname) SPACENAM (*)
Stops and closes all of the data sets of the table spaces and index spaces
in the database. The status of the named database does not change.

-STOP DATABASE (dbname) SPACENAM (space-name, ...)
Stops and closes the data sets of the named table space or index space.
The status of the named database does not change.

-STOP DATABASE (dbname) SPACENAM (space-name, ...) PART(integer)
Stops and closes the specified partition of the named table space or index
space. The status of the named database does not change. If the named
index space is nonpartitioned, DB2 cannot close the specified logical
partition.

The data sets containing a table space are closed and deallocated by the
commands listed above.

Altering buffer pools
DB2 maintains the buffer pool attributes that were defined during installation, such
as buffer pool and hiperpool sizes, in the DB2 bootstrap data set. These attributes
are the same each time DB2 starts.

You can use the ALTER BUFFERPOOL command to alter buffer pool attributes,
including the buffer pool sizes, sequential steal thresholds, deferred write
thresholds, parallel sequential thresholds, and hiperpool CASTOUT attributes for
active or inactive buffer pools. Altered buffer pool values are stored and used until
altered again.

See Chapter 2 of DB2 Command Reference for descriptions of the options you can
use with this command. See “Tuning database buffer pools” on page 549 for
guidance on using buffer pools and examples of ALTER BUFFERPOOL.

Monitoring buffer pools
Use the DISPLAY BUFFERPOOL command to display the current status for one or
more active or inactive buffer pools. You can request a summary or detail report.

For example, the following command:
-DISPLAY BUFFERPOOL(BP0)

might produce a summary report such as this:
-DIS BUFFERPOOL(BP0)
DSNB401I ! BUFFERPOOL NAME BP0, BUFFERPOOL ID 0, USE COUNT 27
DSNB402I ! VIRTUAL BUFFERPOOL SIZE = 100 BUFFERS

ALLOCATED = 500 TO BE DELETED = 0
IN-USE/UPDATED = 0

DSNB406I ! CURRENT VIRTUAL BUFFERPOOL TYPE = PRIMARY
PENDING VIRTUAL BUFFERPOOL TYPE = DATASPACE
PAGE STEALING METHOD = LRU

DSNB403I ! HIPERPOOL SIZE = 1000 BUFFERS, CASTOUT = YES
ALLOCATED = 0 TO BE DELETED = 0
BACKED BY ES = 0

DSNB404I ! THRESHOLDS -
VP SEQUENTIAL = 80 HP SEQUENTIAL = 75
DEFERRED WRITE = 85 VERTICAL DEFERRED WRT = 10,15
PARALLEL SEQUENTIAL = 50 ASSISTING PARALLEL SEQT= 0

DSN9022I ! DSNB1CMD '-DIS BUFFERPOOL' NORMAL COMPLETION

276 Administration Guide

See Chapter 2 of DB2 Command Reference for descriptions of the options you can
use with this command and the information you find in the summary and detail
reports.

Controlling user-defined functions
User-defined functions are extensions to the SQL language. You can invoke
user-defined functions in an SQL statement wherever you can use expressions or
built-in functions. User-defined functions, like stored procedures, run in
WLM-established address spaces. For information on creating, defining and
invoking user-defined functions, see DB2 SQL Reference. For information about
working with WLM-established address spaces, see “Monitoring and controlling
stored procedures” on page 320.

DB2 user-defined functions are controlled by the following commands described in
Chapter 2 of DB2 Command Reference:
START FUNCTION SPECIFIC

Activates an external function that is stopped.
DISPLAY FUNCTION SPECIFIC

Displays statistics about external user-defined functions accessed by DB2
applications.

STOP FUNCTION SPECIFIC
Prevents DB2 from accepting SQL statements with invocations of the
specified functions.

Starting user-defined functions
The DB2 command START FUNCTION SPECIFIC activates an external function
that is stopped. Built-in functions or user-defined functions that are sourced on
another function cannot be started.

Use the START FUNCTION SPECIFIC command to activate all or a specific set of
stopped external functions. For example, issue a command like the following, which
starts functions USERFN1 and USERFN2 in the PAYROLL schema:
START FUNCTION SPECIFIC(PAYROLL.USERFN1,PAYROLL.USERFN2)

Output similar to the following is produced:
DSNX973I START FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN1
DSNX973I START FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN2

Monitoring user-defined functions
The DB2 command DISPLAY FUNCTION SPECIFIC displays statistics about
external user-defined functions accessed by DB2 applications. This command
displays one output line for each function that has been accessed by a DB2
application. Information returned by this command reflect a dynamic status. By the
time DB2 displays the information, it is possible that the status might have changed.
Built-in functions or user-defined functions that are sourced on another function are
not applicable to this command.

Use the DISPLAY FUNCTION SPECIFIC command to list the range of functions
that are stopped because of a STOP FUNCTION SPECIFIC command. For
example, issue a command like the following, which displays information about
functions in the PAYROLL schema and the HRPROD schema:
DISPLAY FUNCTION SPECIFIC(PAYROLL.*,HRPROD.*)

Output similar to the following is produced:

Chapter 17. Monitoring and controlling DB2 and its connections 277

DSNX975I DSNX9DIS - DISPLAY FUNCTION SPECIFIC REPORT FOLLOWS-

------ SCHEMA=PAYROLL
FUNCTION STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
PAYRFNC1 STARTED 0 0 1 0 PAYROLL
PAYRFNC2 STOPQUE 0 5 5 3 PAYROLL
PAYRFNC3 STARTED 2 0 6 0 PAYROLL
USERFNC4 STOPREJ 0 0 1 0 SANDBOX

------ SCHEMA=HRPROD
FUNCTION STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
HRFNC1 STARTED 0 0 1 0 HRFUNCS
HRFNC2 STOPREJ 0 0 1 0 HRFUNCS

DSNX9DIS DISPLAY FUNCTION SPECIFIC REPORT COMPLETE

Stopping user-defined functions
The DB2 command STOP FUNCTION SPECIFIC prevents DB2 from accepting
SQL statements with invocations of the specified functions. This command does not
prevent SQL statements with invocations of the functions from running if they have
already been queued or scheduled by DB2. You cannot stop built-in functions or
user-defined functions that are sourced on another function. While the STOP
FUNCTION SPECIFIC command is in effect, attempts to execute the stopped
functions are queued.

Use the STOP FUNCTION SPECIFIC command to stop access to all or a specific
set of external functions. For example, issue a command like the following, which
stops functions USERFN1 and USERFN3 in the PAYROLL schema:
STOP FUNCTION SPECIFIC(PAYROLL.USERFN1,PAYROLL.USERFN3)

Output similar to the following is produced:
DSNX974I STOP FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN1
DSNX974I STOP FUNCTION SPECIFIC SUCCESSFUL FOR PAYROLL.USERFN3

Controlling DB2 utilities
You can run DB2 utilities against databases, table spaces, indexes, index spaces,
and partitions.

DB2 utilities are classified into two groups: online and stand-alone. The online
utilities require DB2 to be running and can be invoked in several different ways. The
stand-alone utilities do not require DB2 to be up, and they can be invoked only by
means of MVS JCL. The online utilities are described in Part 2 of DB2 Utility Guide
and Reference, and the stand-alone utilities are described in Part 3 of DB2 Utility
Guide and Reference.

Starting online utilities
To start a DB2 utility, prepare an appropriate set of JCL statements for a utility job
and include DB2 utility control statements in the input stream for that job. DB2
utilities can dynamically create object lists from a pattern-matching expression and
can dynamically allocate the data sets required to process those objects.

Monitoring online utilities
The following commands for monitoring and changing DB2 utility jobs are described
in Chapter 2 of DB2 Command Reference.

278 Administration Guide

|
|
|

ALTER UTILITY
Alters parameter values of an active REORG utility.

DISPLAY UTILITY
Displays the status of utility jobs.

TERM UTILITY
Terminates a utility job before its normal completion.

If a utility is not running, you need to determine whether the type of utility access
is allowed on an object of a specific status. Table 62 shows the compatibility of
utility types and object status.

Table 62. Compatibility of utility types and object status

Utility types ... Can access objects started as ...

Read-only RO

All RW1

DB2 UT

Note 1: RW is the default access type for an object.

To change the status of an object, use the ACCESS option of the START
DATABASE command to start the object with a new status. For example:
-START DATABASE (DSN8D61A) ACCESS(RO)

For more information on concurrency and compatibility of individual online utilities,
see Part 2 of DB2 Utility Guide and Reference. For a general discussion controlling
concurrency for utilities, see Part 5 (Volume 2) of DB2 Administration Guide.

Stand-alone utilities
The following stand-alone utilities can be run only by means of MVS JCL:

DSN1CHKR
DSN1COPY
DSN1COMP
DSN1PRNT
DSN1SDMP
DSN1LOGP
DSNJLOGF
DSNJU003 (change log inventory)
DSNJU004 (print log map)

Most of the stand-alone utilities can be used while DB2 is running. However, for
consistency of output, the table spaces and index spaces must be stopped first
because these utilities do not have access to the DB2 buffer pools. In some cases,
DB2 must be running or stopped before you invoke the utility. See Part 3 of DB2
Utility Guide and Reference for detailed environmental information about these
utilities.

Stand-alone utility job streams require that you code specific data set names in the
JCL. To determine the fifth qualifier in the data set name, you need to query the
DB2 catalog tables SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART to
determine the IPREFIX column that corresponds to the required data set.

The change log inventory utility (DSNJU003) enables you to change the contents of
the bootstrap data set (BSDS). This utility cannot be run while DB2 is running

Chapter 17. Monitoring and controlling DB2 and its connections 279

|
|
|
|

because inconsistencies could result. Use STOP DB2 MODE(QUIESCE) to stop the
DB2 subsystem, run the utility, and then restart DB2 with the START DB2
command.

The print log map utility (DSNJU004) enables you to print the the bootstrap data set
contents. The utility can be run when DB2 is active or inactive; however, when it is
run with DB2 active, the user’s JCL and the DB2 started task must both specify
DISP=SHR for the BSDS data sets.

Controlling the IRLM
The internal resource lock manager (IRLM) subsystem manages DB2 locks. The
particular IRLM to which DB2 is connected is specified in DB2’s load module for
subsystem parameters. It is also identified as an MVS subsystem in the
SYS1.PARMLIB member IEFSSNxx. That name is used as the IRLM procedure
name (irlmproc) in MVS commands.

IMS and DB2 must use separate instances of IRLM.

Data sharing: In a data sharing environment, the IRLM handles global locking, and
each DB2 member has its own corresponding IRLM. See DB2 Data Sharing:
Planning and Administration for more information about configuring IRLM in a data
sharing environment.

You can use the following MVS commands to control the IRLM. irlmproc is the
IRLM procedure name, and irlmnm is the IRLM subsystem name. See Chapter 2 of
DB2 Command Reference for more information about these commands.

MODIFY irlmproc,ABEND,DUMP
Abends the IRLM and generates a dump.

MODIFY irlmproc,ABEND,NODUMP
Abends the IRLM but does not generate a dump.

MODIFY irlmproc,DIAG
Initiates diagnostic dumps for IRLM subsystems in a data sharing group
when there is a delay.

MODIFY irlmproc,SET
Sets the maximum amount of CSA storage or the number of trace buffers
used for this IRLM.

MODIFY irlmproc,STATUS
Displays the status for the subsystems on this IRLM.

START irlmproc
Starts the IRLM.

STOP irlmproc
Stops the IRLM normally.

TRACE CT,OFF,COMP=irlmnm
Stops IRLM tracing.

TRACE CT,ON,COMP=irlmnm
Starts IRLM tracing for all subtypes (DBM,SLM,XIT,XCF).

TRACE CT,ON,COMP=irlmnm,SUB=(subname)
Starts IRLM tracing for a single subtype.

280 Administration Guide

Starting the IRLM
The IRLM must be available when DB2 starts or when DB2 abends with reason
code X'00E30079'.

When DB2 is installed, you normally specify that the IRLM be started automatically.
Then, if the IRLM is not available when DB2 is started, DB2 starts it, and
periodically checks whether it is up before attempting to connect. If the attempt to
start the IRLM fails, DB2 terminates.

If an automatic IRLM start has not been specified, start the IRLM before starting
DB2, using the MVS START irlmproc command.

When started, the IRLM issues this message to the MVS console:
DXR117I irlmnm INITIALIZATION COMPLETE

Consider starting the IRLM manually if you are having problems starting DB2 for
either of these reasons:
v An IDENTIFY or CONNECT to a data sharing group fails.
v DB2 experiences a failure that involves the IRLM.

When you start the IRLM manually, you can generate a dump to collect diagnostic
information because IRLM does not stop automatically.

Modifying the IRLM
You can use the following MVS commands to modify the IRLM. See Chapter 2 of
DB2 Command Reference for more information about these commands.

MODIFY irlmproc,SET,CSA=nnn
Sets the maximum amount of CSA storage that this IRLM can use for lock
control structures.

MODIFY irlmproc,SET,DEADLOCK=nnnn
Sets the time for the local deadlock detection cycle.

MODIFY irlmproc,SET,LTE=nnnn
Sets the number of LOCK HASH entries that this IRLM can use on the next
connect to the XCF LOCK structure. Use only for data sharing.

MODIFY irlmproc,SET,TIMEOUT=nnnn,subsystem-name
Sets the timeout value for the specified DB2 subsystem. Display the
subsystem-name by using MODIFY irlmproc,STATUS.

MODIFY irlmproc,SET,TRACE=nnn
Sets the maximum number of trace buffers used for this IRLM.

Monitoring the IRLM connection
You can use the following MVS commands to monitor the IRLM connection. See
Chapter 2 of DB2 Command Reference for more information about these
commands.

MODIFY irlmproc,STATUS,irlmnm
Displays the status of a specific IRLM.

MODIFY irlmproc,STATUS,ALLD
Displays the status of all subsystems known to this IRLM in the data
sharing group.

Chapter 17. Monitoring and controlling DB2 and its connections 281

#

#
#

#
#
#

#
#

|
|
|

|
|
|

#
#

#

MODIFY irlmproc,STATUS,ALLI
Displays the status of all IRLMs known to this IRLM in the data sharing
group.

MODIFY irlmproc,STATUS,MAINT
Displays the maintenance levels of IRLM load module CSECTs for the
specified IRLM instance.

MODIFY irlmproc,STATUS,STOR
Displays the current and high water allocation for CSA and ECSA storage.

MODIFY irlmproc,STATUS,TRACE
Displays information about trace types of IRLM subcomponents.

Stopping the IRLM
If the IRLM is started automatically by DB2, it stops automatically when DB2 is
stopped. If the IRLM is not started automatically, you must stop it after DB2 stops.

If you try to stop the IRLM while DB2 or IMS is still using it, you get the following
message:
DXR105E irlmnm STOP COMMAND REJECTED. AN IDENTIFIED SUBSYSTEM
IS STILL ACTIVE

If that happens, issue the STOP irlmproc command again, when the subsystems
are finished with the IRLM.

Or, if you must stop the IRLM immediately, enter the following command to force
the stop:
MODIFY irlmproc,ABEND,NODUMP

The system responds with this message:
DXR165I KRLM TERMINATED VIA IRLM MODIFY COMMAND.
DXR121I KRLM END-OF-TASK CLEANUP SUCCESSFUL - HI-CSA 335K
- HI-ACCT-CSA 0K

DB2 abends. An IMS subsystem using the IRLM does not abend and can be
reconnected.

IRLM uses the MVS Automatic Restart Manager (ARM) services. However, it
de-registers from ARM for normal shutdowns. IRLM registers with ARM during
initialization and provides ARM with an event exit. The event exit must be in the link
list. It is part of the IRLM DXRRL183 load module. The event exit will make sure
that the IRLM name is defined to MVS when ARM restarts IRLM on a target MVS
that is different from the failing MVS. The IRLM element name used for the ARM
registration depends on the IRLM mode. For local mode IRLM, the element name is
a concatenation of the IRLM subsystem name and the IRLM ID. For global mode
IRLM, the element name is a concatenation of the IRLM data sharing group name,
IRLM subsystem name, and the IRLM ID.

IRLM de-registers from ARM when one of the following events occurs:

v PURGE irlmproc is issued.

v MODIFY irlmproc,ABEND,NODUMP is issued.

v DB2 automatically stops IRLM.

The command MODIFY irlmproc,ABEND,NODUMP specifies that IRLM de-register
from ARM before terminating, which prevents ARM from restarting IRLM. However,

282 Administration Guide

#
#
#

it does not prevent ARM from restarting DB2, and, if you set the automatic restart
manager to restart IRLM, DB2 automatically starts IRLM.

Monitoring threads
The DB2 command DISPLAY THREAD displays current information about the
status of threads, including information about:
v Threads that are processing locally
v Threads that are processing distributed requests
v Stored procedures or user-defined functions if the thread is executing one of

those
v Parallel tasks

Threads can be active or inactive:

v An active allied thread is a thread that is connected to DB2 from TSO, BATCH,
IMS, CICS, CAF or RRSAF.

v An active database access thread is one connected through a network with
another system and performing work on behalf of that system.

v An inactive database access thread is one that is connected through a network
to another system and is idle, waiting for a new unit of work to begin from that
system. Inactive threads hold no database locks.

The output of the command DISPLAY THREAD can also indicate that a system
quiesce is in effect as a result of the ARCHIVE LOG command. For more
information, see “Archiving the log” on page 337.

The command DISPLAY THREAD allows you to select which type of information
you wish to include in the display using one or more of the following standards:
v Active, indoubt, postponed abort, or inactive threads
v Allied threads associated with the address spaces whose connection-names are

specified
v Allied threads
v Distributed threads
v Distributed threads associated with a specific remote location
v Detailed information about connections with remote locations
v A specific logical unit of work ID (LUWID).

The information returned by the DISPLAY THREAD command reflects a dynamic
status. By the time the information is displayed, it is possible that the status could
have changed. Moreover, the information is consistent only within one address
space and is not necessarily consistent across all address spaces.

To use the TYPE, LOCATION, DETAIL, and LUWID keywords, you must have
SYSOPR authority or higher. For detailed information, see Chapter 2 of DB2
Command Reference.

Display thread output
DISPLAY THREAD shows active and inactive threads in a format like this:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS:
DSNV402I - ACTIVE THREADS:

NAME ST A REQ ID AUTHID PLAN ASID TOKEN
conn-name s * req-ct corr-id auth-id pname asid token
conn-name s * req-ct corr-id auth-id pname asid token
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - module_name '-DISPLAY THREAD' NORMAL COMPLETION

Chapter 17. Monitoring and controlling DB2 and its connections 283

DISPLAY THREAD shows indoubt threads in a format like this:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID
coordinator-name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

DISPLAY THREAD shows postponed aborted threads in a format like this:
DSNV401I ! DISPLAY THREAD REPORT FOLLOWS -
DSNV431I ! POSTPONED ABORT THREADS -
COORDINATOR STATUS RESET URID AUTHID
coordinator-name ABORT-P urid authid
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I ! DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

More information about how to interpret this output can be found in the sections
describing the individual connections and in the description of message DSNV408I
in Part 2 of DB2 Messages and Codes.

Controlling TSO connections
MVS provides no commands for controlling or monitoring a connection to DB2. The
connection is monitored instead by the DB2 command -DISPLAY THREAD, which
displays information about connections to DB2 (from other subsystems as well as
from MVS).

The command is generally entered from an MVS console or an administrator’s TSO
session. See “Monitoring threads” on page 283 for more examples of its use.

Connecting to DB2 from TSO
The MVS operator is not involved in starting and stopping TSO connections. Those
connections are made through the DSN command processor, which is invoked
either
v Explicitly, by the DSN command, or
v Implicitly, through DB2I (DB2 Interactive)

When a DSN session is active, you can enter DSN subcommands, DB2 commands,
and TSO commands, as described under “Running TSO application programs” on
page 259.

The DSN command can be given in the foreground or background, when running
under the TSO terminal monitor program (TMP). The full syntax of the command is:
DSN SYSTEM (subsystemid) RETRY (n1) TEST (n2)

The parameters are optional, and have the following meanings:

subsystemid
Is the subsystem ID of the DB2 subsystem to be connected

n1 Is the number of times to attempt the connection if DB2 is not running (one
attempt every 30 seconds)

n2 Is the DSN tracing system control that can be used if a problem is
suspected

284 Administration Guide

For example, this invokes a DSN session, requesting 5 retries at 30-second
intervals:
DSN SYSTEM (DB2) RETRY (5)

DB2I invokes a DSN session when you select any of these operations:
v SQL statements using SPUFI
v DCLGEN
v BIND/REBIND/FREE
v RUN
v DB2 commands
v Program preparation and execution

In carrying out those operations, the DB2I panels invoke CLISTs, which start the
DSN session and invoke appropriate subcommands.

Monitoring TSO and CAF connections
To display information about connections that use the TSO attach facility and call
attach facility (CAF), issue the command DISPLAY THREAD. Table 63 summarizes
how DISPLAY THREAD output differs for a TSO online application, a TSO batch
application, a QMF session, and a call attach facility application.

Table 63. Differences in display thread information for TSO and batch

Connection Name AUTHID Corr-ID1 Plan1

DSN (TSO
Online)

TSO Logon ID Logon ID RUN .. Plan(x)

DSN (TSO
Batch)

BATCH Job USER= Job Name RUN .. Plan(x)

QMF DB2CALL Logon ID Logon ID 'QMFvr0'

CAF DB2CALL Logon ID Logon ID OPEN parm

Note:

1. After the application has connected to DB2 but before a plan has been allocated, this
field is blank.

The name of the connection can have one of the following values:

Name Connection to
TSO Program running in TSO foreground
BATCH

Program running in TSO background
DB2CALL

Program using the call attachment facility and running in the same address
space as a program using the TSO attachment facility

The correlation ID, corr-id, is either the foreground authorization ID or the
background job name. For a complete description of the -DISPLAY THREAD status
information displayed, see the description of message DSNV404I in Part 2 of DB2
Messages and Codes.

The following command displays information about TSO and CAF threads, including
those processing requests to or from remote locations:
-DISPLAY THREAD(BATCH,TSO,DB2CALL)

Chapter 17. Monitoring and controlling DB2 and its connections 285

Detailed information for assisting the console operator in identifying threads
involved in distributed processing can be found in “Monitoring threads” on page 283.

Disconnecting from DB2 while under TSO
The connection to DB2 ends, and the thread is terminated, when:
v You enter the END subcommand.
v You enter DSN again. (A new connection is established immediately.)
v You enter the CANCEL THREAD command.
v You press the attention key (PA1).
v Any of the following operations end:

– SQL statements using SPUFI
– DCLGEN
– BIND/REBIND/FREE
– RUN

v You are using any of the above operations and you enter END or RETURN.

A simple session: For example, the following command and subcommands
establish a connection to DB2, run a program, and terminate the connection:

TSO displays:
READY

You enter:
DSN SYSTEM (DSN)

DSN displays:
DSN

DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV402I = ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
�1�BATCH T * 2997 TEP2 SYSADM DSNTEP41 0019 18818
�2�BATCH RA * 1246 BINETEP2 SYSADM DSNTEP44 0022 20556
V445-DB2NET.LUND1.AB0C8FB44C4D=20556 ACCESSING DATA FOR SAN_JOSE
�3�TSO T 12 SYSADM SYSADM DSNESPRR 0028 5570
�4�DB2CALL T * 18472 CAFCOB2 SYSADM CAFCOB2 001A 24979
�5�BATCH T * 1 PUPPY SYSADM DSNTEP51 0025 20499
�6� PT * 641 PUPPY SYSADM DSNTEP51 002D 20500
�7� PT * 592 PUPPY SYSADM DSNTEP51 002D 20501
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I = DSNVDT '-DIS THREAD' NORMAL COMPLETION

Key:

�1� This is a TSO batch application.

�2� This is a TSO batch application running at a remote location and accessing
tables at this location.

�3� This is a TSO online application.

�4� This is a call attachment facility application.

�5� This is an originating thread for a TSO batch application.

�6� This is a parallel thread for the originating TSO batch application thread.

�7� This is a parallel thread for the originating TSO batch application thread.

Figure 24. Display thread showing TSO and CAF connections

286 Administration Guide

You enter:
RUN PROGRAM (MYPROG)

DSN displays:
DSN

You enter:
END

TSO displays:
READY

Controlling CICS connections
The following CICS attachment facility commands can be entered from a CICS
terminal to control and monitor connections between CICS and DB2:

DSNC DISCONNECT
Terminates threads using a specific DB2 plan

DSNC DISPLAY
Displays thread information or statistics

DSNC MODIFY
Modifies the maximum number of threads for a transaction or group, or the
DFHDCT DESTID entry associated with the RCT ERRDEST parameter

DSNC STOP
Disconnects CICS from DB2

DSNC STRT
Starts the CICS attachment facility

CICS command responses are sent to the terminal from which the corresponding
command was entered, unless the DSNC DISPLAY command or a DB2 command
specified an alternative destination. The DSNC STOP and DSNC STRT commands
cause the output to be sent to the error message transient data queue defined in
the DSNCRCT TYPE=INIT macro. For details on specifying alternate destinations
for output, see the descriptions of the DB2 command or the DSNC command in
Chapter 2 of DB2 Command Reference.

Authorization for the DSNC transaction code is controlled through use of:

v The AUTH= parameter on the DSNCRCT macro

v The EXTSEC= and TRANSEC= parameters on the CICS transaction entry for
DSNC

v The DB2 SYSOPR authority, which a user must have in order to use DB2
commands

For details on the DSNCRCT macro, see Part 2 of DB2 Installation Guide. For
details on the CICS transaction entry parameters, see CICS for MVS/ESA Resource
Definition Guide. For details on the DB2 SYSOPR authority, see “Chapter 10.
Controlling access to DB2 objects” on page 103.

Chapter 17. Monitoring and controlling DB2 and its connections 287

Connecting from CICS
A connection to DB2 can be started or restarted at any time after CICS initialization.
The CICS attachment facility is a set of modules DB2 provides that are loaded into
the CICS address space. Use the following command to start the attachment
facility:
DSNC STRT xx,ssid

x or xx names a particular resource control table suffix (DSNCRCTx or DSN2CTxx).
You can also specify a DB2 subsystem ID (ssid) on the command. This overrides
the subsystem ID specified in the CICS INITPARM or DSNCRCT TYPE=INIT
macro.

You can also start the attachment facility automatically at CICS initialization using a
program list table (PLT). For details, see Part 2 of DB2 Installation Guide.

Messages
For information about messages that appear during connection, see Part 2 of DB2
Messages and Codes. Those messages begin with “DSN2”.

Restarting CICS
One function of the CICS attachment facility is to keep data in synchronization
between the two systems. If DB2 completes phase 1 but does not start phase 2 of
the commit process, the units of recovery being committed are termed indoubt. An
indoubt unit of recovery might occur if DB2 terminates abnormally after completing
phase 1 of the commit process. CICS might commit or roll back work without DB2's
knowledge.

DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
changes made to DB2 resources) until the connection to CICS is restarted. This
means that CICS should always be auto-started (START=AUTO in the DFHSIT
table) to get all necessary information for indoubt thread resolution available from its
log. Avoid cold starting. The START option can be specified in the DFHSIT table, as
described in CICS for MVS/ESA Resource Definition Guide.

In releases after CICS 4.1, the CICS attachment facility enables the INDOUBTWAIT
function to resolve indoubt units of recovery automatically. See CICS for MVS/ESA
Customization Guide for more information.

If there are CICS requests active in DB2 when a DB2 connection terminates, the
corresponding CICS tasks might remain suspended even after CICS is reconnected
to DB2. You should purge those tasks from CICS using a CICS-supplied transaction
such as:
CEMT SET TASK(nn) FORCE

See CICS for MVS/ESA CICS-Supplied Transactions for more information on
CICS-supplied transactions.

If any unit of work is indoubt when the failure occurs, the CICS attachment facility
automatically attempts to resolve the unit of work when CICS is reconnected to
DB2. Under some circumstances, however, CICS cannot resolve indoubt units of
recovery. When this happens, message DSN2001I, DSN2034I, DSN2035I, or
DSN2036I is sent to the user-named CICS destination that is specified in the
resource control table (RCT). You must recover manually these indoubt units of
recovery (see “Recovering indoubt units of recovery manually” on page 289 for
more information).

288 Administration Guide

Displaying indoubt units of recovery
To display a list of indoubt units of recovery, give the command:
-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

The command produces messages similar to these:
DSNV407I -STR INDOUBT THREADS - 480
COORDINATOR STATUS RESET URID AUTHID
CICS41 INDOUBT 00019B8ADE9E ADMF001
V449-HAS NID= CICS41.AACC9B739F125184 AND ID=GT00LE39
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV408I
in Part 2 of DB2 Messages and Codes.

Recovering indoubt units of recovery manually
To recover an indoubt unit of recovery, issue the following command:
-RECOVER INDOUBT (connection-name) ACTION (COMMIT) ID (correlation-id)
or
-RECOVER INDOUBT (connection-name) ACTION (ABORT) ID (correlation-id)

The default value for connection-name is the connection name from which you
entered the command. Correlation-id is the correlation ID of the thread to be
recovered. It can be determined by issuing the command DISPLAY THREAD. Your
choice for the ACTION parameter tells whether to commit or roll back the
associated unit of recovery. For more details, see “Resolving indoubt units of
recovery” on page 363.

The following messages can occur after using the RECOVER command:
DSNV414I - THREAD correlation-id COMMIT SCHEDULED
or
DSNV415I - THREAD correlation-id ABORT SCHEDULED

For more information about manually resolving indoubt units of recovery, see
“Manually recovering CICS indoubt units of recovery” on page 419. For information
on the two-phase commit process, as well as indoubt units of recovery, see
“Consistency with other systems” on page 359.

Displaying postponed units of recovery
To display a list of postponed units of recovery, issue the command:
-DISPLAY THREAD (connection-name) TYPE (POSTPONED)

The command produces messages similar to these:
DSNV431I -POSTPONED ABORT THREADS - 480
COORDINATOR STATUS RESET URID AUTHID
CICS41 P-ABORT 00019B8ADE9E ADMF001
V449-HAS NID= CICS41.AACC9B739F125184 AND ID=GT00LE39
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV408I
in Part 2 of DB2 Messages and Codes.

Controlling CICS application connections
This section describes how CICS threads are defined, how you can monitor those
threads, and ways you can disconnect those threads.

Chapter 17. Monitoring and controlling DB2 and its connections 289

Defining CICS threads
Every CICS transaction that accesses DB2 requires a thread to service the DB2
requests. Each thread uses one MVS subtask to execute DB2 code for the CICS
application.

When the DSNC STRT command is processed, a limited number of subtasks are
attached and connected to DB2 as specified in the resource control table (RCT).
Additional subtasks can be created and connected during execution.

Threads are created at the first DB2 request from the application if there is not one
already available for the specific DB2 plan.

The THRDS parameter for an RCT entry establishes the following:
v The number of MVS subtasks to start when the attachment facility comes up
v The number of protected threads for the entry

Both of these numbers have an impact on performance, as described in
“Recommendations for RCT definitions” on page 637. For more information on
specifying the THRDS parameter, see Part 2 of DB2 Installation Guide.

At any time during execution, thread subtasks can be created. If the following
message is displayed:
DSN2017I ATTACHMENT OF A THREAD SUBTASK FAILED

it could mean that:

v The maximum allowable number of threads specified was reached. The RCT
parameter, THRDMAX, specifies the maximum allowable number of threads;
when THRDMAX-2 is reached, the attachment facility begins to purge unused
subtasks.

v Not enough storage space was provided for subtask creation. See Part 2 of DB2
Installation Guide for more information about how to define storage for subtask
creation.

Monitoring the threads
No operator intervention is required for connecting applications; CICS handles the
threads dynamically. You can monitor threads using CICS attachment facility
commands or DB2 commands.

Using CICS attachment facility commands: Any authorized CICS user can
monitor the threads and change the connection parameters as needed. Operators
can use the following CICS attachment facility commands to monitor the threads:
DSNC DISPLAY PLAN plan-name destination
or
DSNC DISPLAY TRANSACTION transaction-id destination

These commands display the threads that the resource or transaction is using. The
following information is provided for each created thread:

v Authorization ID for the plan associated with the transaction (8 characters).

v PLAN/TRAN name (8 characters).

v A or I (1 character).

If A is displayed, the thread is within a unit of work. If I is displayed, the thread is
waiting for a unit of work, and the authorization ID is blank.

The following CICS attachment facility command is used to monitor the RCT:
DSNC DISPLAY STATISTICS destination

290 Administration Guide

This is an example of the output for the DSNC DISPLAY STATISTICS command:

The DSNC DISPLAY STATISTICS command displays the following information for
each entry in the RCT:

Item Description

TRAN Transaction name. For group entries, this is the name of the first transaction
defined in the group. DSNC shows the statistics for the TYPE=COMD RCT
entry. POOL shows statistics for the TYPE=POOL entry, unless the
TYPE=POOL entry contains the parameter TXID=x.

PLAN The plan name associated with this entry. Eight asterisks in this field
indicates that this transaction is using dynamic plan allocation. The
command processor transaction DSNC does not have a plan associated
with it because it uses a command processor.

CALLS
The total number of SQL statements issued by transactions associated with
this entry.

AUTHS
The total number of sign-on invocations for transactions associated with this
entry. A sign-on does not indicate whether a new thread is created or an
existing thread is reused. If the thread is reused, a sign-on occurs only if
the authorization ID or transaction ID has changed.

W/P The number of times that all available threads for this entry were busy. This
value depends on the value of TWAIT for the entry.

If TWAIT was set to POOL in the RCT, W/P indicates the number of times
the transaction overflowed to the pool. An overflow to the pool shows up in
the transaction statistics only and is not reflected in the pool statistics.

If TWAIT was set to YES, this reflects the number of times that the thread
both had to wait, and could not attach a new subtask (number of started
tasks has reached THRDA).

The only time W/P is updated for the pool is when a transaction had to wait
for a pool thread and a new subtask could not be attached for the pool. The
W/P statistic is useful for determining if there are enough threads defined
for the entry.

Under normal conditions, you can see a W/P value greater than 0 when the
HIGH value has not exceeded the THRDA value. A W/P value greater than
0 occurs because the thread release is asynchronous to the new work
coming in and the current high count is decremented before the thread has
been marked available when there is no work on the queue.

HIGH The maximum number of threads required by transactions associated with

DSN2014I STATISTICS REPORT FOR 'DSNCRCTC' FOLLOWS
-----COMMITS-----

TRAN PLAN CALLS AUTHS W/P HIGH ABORTS 1-PHASE 2-PHASE
DSNC 1 1 1 1 0 0 0
POOL POOL 0 0 0 0 0 0 0
XC01 DSNXC01 22 1 11 2 0 7 5
XC02 DSNXC02 0 0 0 0 0 0 0
XA81 DSNA81 0 0 0 0 0 0 0
XCD4 DSNCED4 0 0 0 0 0 0 0
XP03 DSNTP03 1 1 0 1 0 1 0
XA20 DSNTA20 1 1 0 1 0 0 1
XA88 ******** 0 0 0 0 0 0 0
DSN2020I THE DISPLAY COMMAND IS COMPLETE

Chapter 17. Monitoring and controlling DB2 and its connections 291

this entry at any time since the connection was started. This number
includes the transactions that were forced to wait or diverted to the pool. It
provides a basis for setting the maximum number of threads for the entry.

ABORTS
The total number of units of recovery which were rolled back. It includes
both abends and SYNCPOINT ROLLBACKS, including SYNCPOINT
ROLLBACKS generated by -911 SQL codes.

COMMITS
One of the following two fields is incremented each time a DB2 transaction
associated with this entry has a real or implied (such as EOT) syncpoint.
Units of recovery that do not process SQL calls are not reflected here.

1-PHASE
The total number of single phase commits for transactions associated with
this entry. This total does not include any 2-phase commits (see the
explanation for 2-PHASE below). This total does include read-only commits
as well as single phase commits for units of recovery which have performed
updates. A 2-phase commit is needed only when CICS is the recovery
coordinator for more than one resource manager.

2-PHASE
The total number of 2-phase commits for transactions associated with this
entry. This number does not include 1-phase commit transactions.

Using the DB2 command DISPLAY THREAD: The DB2 command DISPLAY
THREAD can be used to display CICS attachment facility threads. Some of this
information differs depending on whether the connection to CICS is under a control
TCB or a transaction TCB.

Table 64 summarizes these differences.

Table 64. Differences in DISPLAY THREAD information by CICS TCB type

Connection Name AUTHID2 ID1,2 Plan1,2

Control TCB APPLID N/A N/A N/A

Transaction TCB APPLID AUTH= on RCT THRD#TRANID PLAN= or
PLNPGME= on
RCT

Notes:

1. After the application has connected to DB2 but before sign-on processing has completed,
this field is blank.

2. After sign-on processing has completed but before a plan has been allocated, this field is
blank.

The following command displays information about CICS threads, including those
accessing data at remote locations:
-DISPLAY THREAD(applid)

292 Administration Guide

Changing connection parameters
You can use the DSNC MODIFY command to change:

v The destination entry for sending unsolicited messages, as given in the RCT.
DSNC MODIFY DESTINATION old new

v The actual maximum number of threads for the named transaction (THRDA).
DSNC MODIFY TRANSACTION transaction-id integer

The upper limit for this change is the THRDM specified in RCT. integer is a new
maximum value.

Disconnecting applications
There is no way to disconnect a particular CICS transaction from DB2 without
abending the transaction. Two ways to disconnect an application are described
here:

DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV402I = ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
�1�CICS41 N 3 SYSADM 001B 0
�2�CICS41 T * 9 PC00DSNC SYSADM 001B 89
�3�CICS41 N 5 PT01XP11 SYSADM 001B 0
�4�CICS41 N 0 001B 0

CICS41 N 0 001B 0
�5�CICS41 T 4 GT00XP05 SYSADM TESTP05 001B 171

CICS41 N 0 001B 0
CICS41 N 0 001B 0
CICS41 N 0 001B 0
CICS41 N 0 001B 0
CICS41 N 0 001B 0

�6�CICS41 TR 4 GT01XP05 SYSADM TESTP05 001B 235
V444-DB2NET.LUND0.AA8007132465=16 ACCESSING DATA AT
V446-SAN_JOSE:LUND1

�7�CICS41 T * 3 GC00DSNC SYSADM 001B 254
DISPLAY ACTIVE REPORT COMPLETE

Key:

�1� This is the control TCB.

�2� This is a pool connection (first letter ″P″) space executing a command
(second letter ″C″). ″*″ in the status column indicates that the thread is
processing in DB2.

�3� This is a pool connection that last ran transaction XP11 but the thread has
terminated.

�4� This is a connection created by THRDS>0 but has not been used yet.

�5� This is an active entry connection (first letter ″G″) in the CICS address
space running transaction XP05.

�6� This is an active entry connection running transaction XP05 with remote
activity.

�7� This is an active TYPE=COMD connection executing a command. ″*″ in the
status column indicates that the thread is processing in DB2.

Figure 25. DISPLAY THREAD output showing CICS connections

Chapter 17. Monitoring and controlling DB2 and its connections 293

v The DB2 command CANCEL THREAD can be used to cancel a particular thread.
CANCEL THREAD requires that you know the token for any thread you want to
cancel. Enter the following command to cancel the thread identified by the token
indicated in the display output:
-CANCEL THREAD(46)

When you issue CANCEL THREAD for a thread, that thread is scheduled to be
terminated in DB2.

v The command DSNC DISCONNECT terminates the threads allocated to a plan
ID, but it does not prevent new threads from being created. This command frees
DB2 resources shared by the CICS transactions and allows exclusive access to
them for special-purpose processes such as utilities or data definition statements.

To guarantee that no new threads are created for a plan ID, all CICS-related
transactions must be disabled before users enter DSNC DISCONNECT. All
transactions in a group have the same plan ID, unless dynamic plan selection is
specified in the RCT entry for the group. If dynamic plan selection is used, the
plan associated with a transaction is determined at execution time.

The thread is not canceled until the application releases it for reuse, either at
SYNCPOINT or end-of-task.

Disconnecting from CICS
This section describes how to do both an orderly and forced disconnection of the
attachment to CICS.

Orderly termination
It is recommended that you do orderly termination whenever possible. An orderly
termination of the connection allows each CICS transaction to terminate before
thread subtasks are detached. This means there should be no indoubt units of
recovery at reconnection time. An orderly termination occurs when you:

v Enter the DSNC STOP QUIESCE command. CICS and DB2 remain active.

v Enter the CICS command CEMT PERFORM SHUTDOWN, and the CICS
attachment facility is also named to shut down during program list table (PLT)
processing. DB2 remains active. For information about the CEMT PERFORM
SHUTDOWN command, see CICS for MVS/ESA CICS-Supplied Transactions.

v Enter the DB2 command STOP DB2 MODE (QUIESCE). CICS remains active.

v Enter the DB2 command CANCEL THREAD. The thread is abended.

The following example stops the DB2 subsystem (QUIESCE), allows the currently
identified tasks to continue normal execution, and does not allow new tasks to
identify themselves to DB2:
-STOP DB2 MODE (QUIESCE)

This message appears when the stop process starts and frees the entering terminal
(option QUIESCE):
DSNC012I THE ATTACHMENT FACILITY STOP QUIESCE IS PROCEEDING

When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:
DSNC025I THE ATTACHMENT FACILITY IS INACTIVE

Forced termination
Although it is not recommended, there might be times when it is necessary to force
the connection to end. A forced termination of the connection can abend CICS

294 Administration Guide

transactions connected to DB2. Therefore, indoubt units of recovery can exist at
reconnect. A forced termination occurs in the following situations:

v You enter the DSNC STOP FORCE command. This command waits 15 seconds
before detaching the thread subtasks, and, in some cases, can achieve an
orderly termination. DB2 and CICS remain active.

v You enter the CICS command CEMT PERFORM SHUTDOWN IMMEDIATE. For
information about this command, see CICS for MVS/ESA CICS-Supplied
Transactions. DB2 remains active.

v You enter the DB2 command STOP DB2 MODE (FORCE). CICS remains active.

v A DB2 abend occurs. CICS remains active.

v CICS abend occurs. DB2 remains active.

v STOP is issued to the DB2 or CICS attachment facility, and the CICS transaction
overflows to the pool. The transaction issues an intermediate commit. The thread
is terminated at commit time, and further DB2 access is not allowed.

This message appears when the stop process starts and frees the entering terminal
(option FORCE):
DSNC022I THE ATTACHMENT FACILITY STOP FORCE IS PROCEEDING

When the stop process ends and the connection is terminated, this message is
added to the output from the CICS job:
DSNC025I THE ATTACHMENT FACILITY IS INACTIVE

Controlling IMS connections
IMS provides these operator commands for controlling and monitoring the
connection to DB2:
/START SUBSYS

Connects the IMS control region to a DB2 subsystem
/TRACE

Controls the IMS trace
/DISPLAY SUBSYS

Displays connection status and thread activity
/DISPLAY OASN SUBSYS

Displays outstanding units of recovery
/CHANGE SUBSYS

Deletes an indoubt unit of recovery from IMS
/STOP SUBSYS

Disconnects IMS from a DB2 subsystem

For more information about those commands, please refer, in the DB2 library, to
Chapter 2 of DB2 Command Reference or, in the IMS library, to IMS Command
Reference.

IMS command responses are sent to the terminal from which the corresponding
command was entered. Authorization to enter IMS commands is based on IMS
security.

Connecting to the IMS control region
IMS makes one connection to its control region from each DB2 subsystem. IMS can
make the connection either:

v Automatically during IMS cold start initialization or at warm start of IMS if a DB2
connection was active when IMS is shut down

Chapter 17. Monitoring and controlling DB2 and its connections 295

v In response to the command /START SUBSYS ssid, where ssid is the DB2
subsystem identifier

The command causes the following message to be displayed at the logical
terminal (LTERM):
DFS058 START COMMAND COMPLETED

The message is issued regardless of whether DB2 is active and does not imply
that the connection is established.

The order of starting IMS and DB2 is not vital. If IMS is started first, then when DB2
comes up, it posts the control region modify task, and IMS again tries to reconnect.

If DB2 is stopped by the STOP DB2 command, the /STOP SUBSYS command, or a
DB2 abend, then IMS cannot reconnect automatically. You must make the
connection by using the /START command.

The following messages can be produced when IMS attempts to connect a DB2
subsystem:

v If DB2 is active, these messages are sent:

– To the MVS console:
DFS3613I ESS TCB INITIALIZATION COMPLETE

– To the IMS master terminal:
DSNM001I IMS/VS imsid CONNECTED TO SUBSYSTEM ssnm

v If DB2 is not active, this message is sent to the master terminal:
DSNM003I IMS/VS imsid FAILED TO CONNECT TO SUBSYSTEM ssnm

RC=00 imsid

imsid is the IMS connection name. RC=00 means that a notify request has been
queued. When DB2 starts, IMS is also notified.

No message goes to the MVS console.

Thread attachment
Execution of the program’s first SQL statement causes the IMS attachment facility
to create a thread and allocate a plan, whose name is associated with the IMS
application program module name. DB2 sets up control blocks for the thread and
loads the plan.

Using the DB2 command DISPLAY THREAD: The DB2 command DISPLAY
THREAD can be used to display IMS attachment facility threads.

DISPLAY THREAD output for DB2 connections to IMS differs depending on whether
DB2 is connected to a DL/I batch program, a control region, a message-driven
program, or a nonmessage-driven program. Table 65 summarizes these differences.

Table 65. Differences in DISPLAY THREAD information for IMS connections

Connection Name AUTHID2 ID1,2 Plan1,2

DL/I Batch DDITV02
statement

JOBUSER= Job Name DDITV02
statement

Control Region IMSID N/A N/A N/A

Message Driven IMSID Signon ID or
ltermid

PST+ PSB RTT or program

296 Administration Guide

Table 65. Differences in DISPLAY THREAD information for IMS connections (continued)

Connection Name AUTHID2 ID1,2 Plan1,2

Non-message
Driven

IMSID AXBUSER or
PSBNAME

PST+ PSB RTT or program

Notes:

1. After the application has connected to DB2 but before sign-on processing has completed,
this field is blank.

2. After sign-on processing has completed but before a plan has been allocated, this field is
blank.

The following command displays information about IMS threads, including those
accessing data at remote locations:
-DISPLAY THREAD(imsid)

Thread termination
When an application terminates, IMS invokes an exit routine to disconnect the
application from DB2. There is no way to terminate a thread without abending the
IMS application with which it is associated. Two ways of terminating an IMS
application are described here:

v Termination of the application

The IMS commands /STOP REGION reg# ABDUMP or /STOP REGION reg#
CANCEL can be used to terminate an application running in an online
environment. For an application running in the DL/I batch environment, the MVS
command CANCEL can be used. See IMS Command Reference for more
information on terminating IMS applications.

v Use of the DB2 command CANCEL THREAD

CANCEL THREAD can be used to cancel a particular thread or set of threads.
CANCEL THREAD requires that you know the token for any thread you want to
cancel. Enter the following command to cancel the thread identified by a token in
the display output:
-CANCEL THREAD(46)

When you issue CANCEL THREAD for a thread, that thread is scheduled to be
terminated in DB2.

DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV402I -STR ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
�1�SYS3 T * 3 0002BMP255 ADMF001 PROGHR1 0019 99

SYS3 T * 4 0001BMP255 ADMF001 PROGHR2 0018 97
�2�SYS3 N 5 SYSADM 0065 0
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

Key:

�1� This is a message-driven BMP.

�2� This thread has completed sign-on processing, but a DB2 plan has not
been allocated.

Figure 26. DISPLAY THREAD output showing IMS connections

Chapter 17. Monitoring and controlling DB2 and its connections 297

Displaying indoubt units of recovery

General-use Programming Interface

One function of the thread connecting DB2 to IMS is to keep data in
synchronization between the two systems. If the application program requires it, a
change to IMS data must also be made to DB2 data. If DB2 abends while
connected to IMS, it is possible for IMS to commit or back out work without DB2
being aware of it. When DB2 restarts, that work is termed indoubt. Typically, some
decision must be made about the status of the work.

The subject of indoubt units of recovery is treated in detail in “Chapter 19.
Restarting DB2 after termination” on page 347.

To display a list of indoubt units of recovery, give the command:
-DISPLAY THREAD (imsid) TYPE (INDOUBT)

The command produces messages similar to these:
DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV406I -STR POSTPONED ABORTT THREADS - 920
COORDINATOR STATUS RESET URID AUTHID
SYS3 P-ABORT 00017854FF6B ADMF001
V449-HAS NID= SYS3.400000000 AND ID= 0001BMP255
BATCH P-ABORT 00017854A8A0 ADMF001
V449-HAS NID= DSN:0001.0 AND ID= RUNP10
BATCH P-ABORT 00017854AA2E ADMF001
V449-HAS NID= DSN:0002.0 AND ID= RUNP90
BATCH P-ABORT 0001785CD711 ADMF001
V449-HAS NID= DSN:0004.0 AND ID= RUNP12
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of message DSNV408I
in Part 2 of DB2 Messages and Codes.

End of General-use Programming Interface

Recovering indoubt units of recovery

General-use Programming Interface

To recover an indoubt unit, issue the following command:
-RECOVER INDOUBT (imsid) ACTION (COMMIT) ID (pst#.psbname)
or
-RECOVER INDOUBT (imsid) ACTION (ABORT) ID (pst#.psbname)

Here imsid is the connection name and pst#.psbname is the correlation ID listed by
the command DISPLAY THREAD. Your choice of the ACTION parameter tells
whether to commit or roll back the associated unit of recovery. For more details,
see “Resolving indoubt units of recovery” on page 363.

The following messages can occur after using the RECOVER command:
DSNV414I - THREAD pst#.psbname COMMIT SCHEDULED
or
DSNV415I - THREAD pst#.psbname ABORT SCHEDULED

End of General-use Programming Interface

298 Administration Guide

Displaying postponed units of recovery

General-use Programming Interface

The subject of postponed units of recovery is treated in detail in “Chapter 19.
Restarting DB2 after termination” on page 347. This chapter describes the
operational steps used to list and recover postponed units in relatively simple
cases.

To display a list of postponed units of recovery, give the command:
-DISPLAY THREAD (imsid) TYPE (POSTPONED)

The command produces messages similar to these:
DSNV401I -STR DISPLAY THREAD REPORT FOLLOWS -
DSNV406I -STR POSTPONED ABORTT THREADS - 920
COORDINATOR STATUS RESET URID AUTHID
SYS3 P-ABORT 00017854FF6B ADMF001
V449-HAS NID= SYS3.400000000 AND ID= 0001BMP255
BATCH P-ABORT 00017854A8A0 ADMF001
V449-HAS NID= DSN:0001.0 AND ID= RUNP10
BATCH P-ABORT 00017854AA2E ADMF001
V449-HAS NID= DSN:0002.0 AND ID= RUNP90
BATCH P-ABORT 0001785CD711 ADMF001
V449-HAS NID= DSN:0004.0 AND ID= RUNP12
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I -STR DSNVDT '-DIS THD' NORMAL COMPLETION

For an explanation of the list displayed, see the description of messages in Part 2
of DB2 Messages and Codes.

End of General-use Programming Interface

Duplicate correlation IDs

General-use Programming Interface

It is possible for two threads to have the same correlation ID (pst#.psbname) if all of
these conditions occur:
v Connections have been broken several times.
v Indoubt units of recovery were not recovered.
v Applications were subsequently scheduled in the same region.

To uniquely identify threads which have the same correlation ID (pst#.psbname)
requires that you be able to identify and understand the network ID (NID). For
connections with IMS, you should also be able to identify and understand the IMS
originating sequence number (OASN).

The NID is shown in a condensed form on the messages issued by the DB2
DISPLAY THREAD command processor. The IMS subsystem name (imsid) is
displayed as the net_node. The net_node is followed by the 8-byte OASN,
displayed in hexadecimal format (16 characters), with all leading zeros omitted. The
net_node and the OASN are separated by a period.

For example, if the net_node is IMSA, and the OASN is 0003CA670000006E, the
NID is displayed as IMSA.3CA670000006E on the DB2 DISPLAY THREAD
command output.

Chapter 17. Monitoring and controlling DB2 and its connections 299

If two threads have the same corr-id, use the NID instead of corr-id on the
RECOVER INDOUBT command. The NID uniquely identifies the work unit.

The OASN is a 4-byte number that represents the number of IMS scheduling since
the last IMS cold start. The OASN is occasionally found in an 8-byte format, where
the first four bytes contain the scheduling number, and the last four bytes contain
the number of IMS sync points (commits) during this schedule. The OASN is part of
the NID.

The NID is a 16-byte network ID that originates from IMS. The NID contains the
4-byte IMS subsystem name, followed by four bytes of blanks, followed by the
8-byte version of the OASN. In communications between IMS and DB2, the NID
serves as the recovery token.

End of General-use Programming Interface

Resolving residual recovery entries
At given times, IMS builds a list of residual recovery entries (RREs). RREs are units
of recovery about which DB2 could be in doubt. They arise in several situations:

v If DB2 is not operational, IMS has RREs that cannot be resolved until DB2 is
operational. Those are not a problem.

v If DB2 is operational and connected to IMS, and if IMS rolled back the work that
DB2 has committed, the IMS attachment facility issues message DSNM005I. If
the data in the two systems must be consistent, this is a problem situation. Its
resolution is discussed in “Resolution of indoubt units of recovery” on page 414.

v If DB2 is operational and connected to IMS, RREs can still exist, even though no
messages have informed you of this problem. The only way to recognize this
problem is to issue the IMS /DISPLAY OASN SUBSYS command after the DB2
connection to IMS has been established.

To display the RRE information, give the command:
/DISPLAY OASN SUBSYS subsystem-name

To purge the RRE, give one of these commands:
/CHANGE SUBSYS subsystem-name RESET
/CHANGE SUBSYS subsystem-name RESET OASN nnnn

where nnnn is the originating application sequence number listed in the display.
That is the schedule number of the program instance, telling its place in the
sequence of invocations of that program since the last cold start of IMS. IMS
cannot have two indoubt units of recovery with the same schedule number.

Those commands reset the status of IMS; they do not result in any
communication with DB2.

Controlling IMS dependent region connections
Controlling IMS dependent region connections involves three activities:
v Connecting from dependent regions
v Monitoring the activity on connections
v Disconnecting from dependent regions

Connecting from dependent regions
The IMS attachment facility used in the control region is also loaded into dependent
regions. A connection is made from each dependent region to DB2. This connection
is used to pass SQL statements and to coordinate the commitment of DB2 and IMS
work. The following process is used by IMS to initialize and connect.

300 Administration Guide

1. Read the SSM from IMS.PROCLIB.

A subsystem member can be specified on the dependent region EXEC
parameter. If it is not specified, the control region SSM is used. If the region will
never connect to DB2, specify a member with no entries to avoid loading the
attachment facility.

2. Load the DB2 attachment facility from prefix.SDSNLOAD

For a batch message processing (BMP) program, the load is not done until the
application issues its first SQL statement. At that time, IMS attempts to make
the connection.

For a message processing program (MPP) region or IMS Fast Path (IFP)
region, the connection is made when the IMS region is initialized, and an IMS
transaction is available for scheduling in that region.

An IMS dependent region establishes two connections to DB2: a region
connection and an application connection, which occurs at execution of the first
SQL statement.

If DB2 is not active, or if resources are not available when the first SQL statement
is issued from an application program, the action taken depends on the error option
specified on the SSM user entry. The options are:

Option Action

R The appropriate return code is sent to the application, and the SQL code is
returned.

Q The application is abended. This is a PSTOP transaction type; the input
transaction is re-queued for processing and new transactions are queued.

A The application is abended. This is a STOP transaction type; the input
transaction is discarded and new transactions are not queued.

The region error option can be overridden at the program level via the resource
translation table (RTT). See Part 2 of DB2 Installation Guide for further details.

Monitoring the activity on connections
The information under this heading, up to “Disconnecting from dependent regions”
on page 303, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

A thread is established from a dependent region when an application makes its first
successful DB2 request. Information on connections and the applications currently
using them can be displayed by issuing one of these commands:
From DB2:

-DISPLAY THREAD (imsid)
From IMS:

/SSR -DISPLAY THREAD (imsid)

Either command produces the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
conn-name s * req-ct corr-id auth-id pname asid token
conn-name s * req-ct corr-id auth-id pname asid token
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

For an explanation of the -DISPLAY THREAD status information displayed, see the
description of message DSNV404I in Part 2 of DB2 Messages and Codes. More

Chapter 17. Monitoring and controlling DB2 and its connections 301

detailed information regarding use of this command and the reports it produces is
available in “The command DISPLAY THREAD” on page 312.

IMS provides a display command to monitor the connection to DB2. In addition to
showing which program is active on each dependent region connection, the display
also shows the LTERM user name and gives the control region connection status.
The command is:
/DISPLAY SUBSYS subsystem-name

The status of the connection between IMS and DB2 is shown as one of the
following:
CONNECTED
NOT CONNECTED
CONNECT IN PROGRESS
STOPPED
STOP IN PROGRESS
INVALID SUBSYSTEM NAME=name
SUBSYSTEM name NOT DEFINED BUT RECOVERY OUTSTANDING

The thread status from each dependent region is:
CONN
CONN, ACTIVE (includes LTERM of user)

The following four examples show the output that might be generated when an IMS
/DISPLAY SUBSYS command is issued.

0000 15.49.57 R 45,/DIS SUBSYS NEW
0000 15.49.57 IEE600I REPLY TO 45 IS;/DIS SUBSYS END
0000 15.49.57 JOB 56 DFS000I DSNM003I IMS/TM V1 SYS3 FAILED TO CONNECT TO SUBSYSTEM DSN RC=00 SYS3
0000 15.49.57 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.49.57 JOB 56 DFS000I DSN : NON CONN SYS3
0000 15.49.57 JOB 56 DFS000I *83228/154957* SYS3
0000 15.49.57 JOB 56 *46 DFS996I *IMS READY* SYS3

Figure 27. Example of output from IMS /DISPLAY SUBSYS processing for a DSN subsystem that is not yet
connected. Message DSNM003I is issued by the IMS attachment facility.

0000 15.58.59 R 46,/DIS SUBSYS ALL
0000 15.58.59 IEE600I REPLY TO 46 IS;/DIS SUBSYS ALL
0000 15.59.01 JOB 56 DFS551I MESSAGE REGION MPP1 STARTED ID=0001 TIME=1551 CLASS=001,002,003,004
0000 15.59.01 JOB 56 DFS000I DSNM001I IMS/TM=V1 SYS3 CONNECTED TO SUBSYSTEM DSN SYS3
0000 15.59.01 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.59.01 JOB 56 DFS000I DSN : CONN SYS3
0000 15.59.01 JOB 56 DFS000I *83228/155900* SYS3
0000 15.59.01 JOB 56 *47 DFS996I *IMS READY* SYS3

Figure 28. Example of output from IMS /DISPLAY SUBSYS processing for a DSN subsystem that is connected.
Message DSNM001I is issued by the IMS attachment facility.

302 Administration Guide

Disconnecting from dependent regions
Usually, IMS master terminal operators do not want to disconnect a dependent
region explicitly. However, they might want to change values in the SSM member of
IMS.PROCLIB. To do that, they can issue /STOP REGION, update the SSM
member, and issue /START REGION.

Disconnecting from IMS
The connection is ended when either IMS or DB2 terminates. Alternatively, the IMS
master terminal operator can explicitly break the connection by entering this
command:
/STOP SUBSYS subsystem-name

That command sends the following message to the terminal that entered it, usually
the master terminal operator (MTO):
DFS058I STOP COMMAND IN PROGRESS

The /START SUBSYS subsystem-name command is required to reestablish the
connection.

In implicit or explicit disconnect, this message is sent to the IMS master terminal:
DSNM002I IMS/TM imsid DISCONNECTED FROM SUBSYSTEM subsystem-name - RC=z

That message uses the following reason codes (RC):

Code Meaning

A IMS/TM is terminating normally (for instance, /CHE
FREEZE³DUMPQ³PURGE). Connected threads complete.

0000 15.59.28 R 47,/STO SUBSYS ALL
0000 15.59.28 IEE600I REPLY TO 47 IS;/STO SUBSYS ALL
0000 15.59.37 JOB 56 DFS058I 15:59:37 STOP COMMAND IN PROGRESS SYS3
0000 15.59.37 JOB 56 *48 DFS996I *IMS READY* SYS3
0000 15.59.44 R 48,/DIS SUBSYS ALL
0000 15.59.44 IEE600I REPLY TO 48 IS;/DIS SUBSYS ALL
0000 15.59.45 JOB 56 DFS000I DSNM002I IMS/TM V1 SYS3 DISCONNECTED FROM SUBSYSTEM DSN RC = E. SYS3
0000 15.59.45 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 15.59.45 JOB 56 DFS000I DSN : STOPPED SYS3
0000 15.59.45 JOB 56 DFS000I *83228/155945* SYS3
0000 15.59.45 JOB 56 *49 DFS996I *IMS READY* SYS3

Figure 29. Example of output from IMS /STOP SUBSYS and IMS /DISPLAY SUBSYS commands. The output that is
displayed in response to /DISPLAY SUBSYS shows a stopped status. Message DSNM002I is issued by the IMS
attachment facility.

0000 16.09.35 JOB 56 R 59,/DIS SUBSYS ALL
0000 16.09.35 JOB 56 IEE600I REPLY TO 59 IS;/DIS SUBSYS ALL
0000 16.09.38 JOB 56 DFS000I SUBSYS CRC REGID PROGRAM LTERM STATUS SYS3
0000 16.09.38 JOB 56 DFS000I DSN : CONN SYS3
0000 16.09.38 JOB 56 DFS000I 1 CONN SYS3
0000 16.09.38 JOB 56 DFS000I *83228/160938* SYS3
0000 16.09.38 JOB 56 *60 DFS996I *IMS READY* SYS3
0000 16.09.38 JOB 56

Figure 30. Example of output from IMS /DISPLAY SUBSYS processing for a DSN subsystem that is connected and
the region ID (1) that is included. Use the REGID(pst#) and the PROGRAM(pstname) values to correlate the output of
the command to the LTERM involved.

Chapter 17. Monitoring and controlling DB2 and its connections 303

B IMS is abending. Connected threads are rolled back. DB2 data is backed
out now; DL/I data is backed out on IMS restart.

C DB2 is terminating normally after a -STOP DB2 MODE (QUIESCE)
command. Connected threads complete.

D DB2 is terminating normally after a -STOP DB2 MODE (FORCE) command,
or DB2 is abending. Connected threads are rolled back. DL/I data is backed
out now. DB2 data is backed out now if DB2 terminated normally;
otherwise, at restart.

E IMS is ending the connection because of a /STOP SUBSYS
subsystem-name command. Connected threads complete.

If an application attempts to access DB2 after the connection ended and before a
thread is established, the attempt is handled according to the region error option
specification (R, Q, or A).

Controlling OS/390 RRS connections

General-use Programming Interface

Application programs can use the following Recoverable Resource Manager
Services attachment facility (RRSAF) functions to control connections to DB2:

IDENTIFY
Establishes the task (TCB) as a user of the named DB2 subsystem. When
the first task within an address space issues a connection request, the
address space is initialized as a user of DB2.

SIGNON
Provides a user ID and optionally, one or more secondary authorization IDs
to be associated with the connection. Invokes the sign-on exit routine.
Optionally, lets a thread join a global transaction. See “Recommendations
for application design” on page 648 for more information about global
transactions.

AUTH SIGNON
Provides a user ID, an ACEE, and optionally, one or more secondary
authorization IDs to be associated with the connection. Invokes the sign-on
exit.

CREATE THREAD
Allocates a plan. If you provide a plan name, DB2 allocates that plan. If you
provide a collection name, DB2 allocates a special plan named ?RRSAF
and a package list that contains the collection name.

After CREATE THREAD completes, DB2 can execute SQL statements.

TERMINATE THREAD
Deallocates the plan.

TERMINATE IDENTIFY
Removes the task as a user of DB2. If this is the last or only task in the
address space with a DB2 connection, TERMINATE IDENTIFY terminates
the address space connection to DB2.

TRANSLATE
Returns an SQL code and printable text, in the SQLCA, that describes a
DB2 error reason code.

304 Administration Guide

End of General-use Programming Interface

For more information on those functions, see Part 6 of DB2 Application
Programming and SQL Guide.

Connecting to OS/390 RRS using RRSAF
The information under this heading up to “Controlling connections to remote
systems” on page 307 is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page 1095.

An RRSAF connection can be started or restarted at any time after OS/390 RRS is
started. If OS/390 RRS is not started, an IDENTIFY request fails with reason code
X'00F30091'.

Restarting DB2 and OS/390 RRS
If DB2 abnormally terminates but OS/390 RRS remains active, OS/390 RRS might
commit or roll back work without DB2's knowledge. In a similar manner, if OS/390
RRS abnormally terminates after DB2 has completed phase 1 of commit processing
for an application, then DB2 does not know whether to commit or roll back the
work. In either case, when DB2 restarts, that work is termed indoubt.

DB2 cannot resolve those indoubt units of recovery (that is, commit or roll back the
changes made to DB2 resources) until DB2 restarts with OS/390 RRS.

If any unit of work is indoubt when a failure occurs, DB2 and OS/390 RRS
automatically resolve the unit of work when DB2 restarts with OS/390 RRS.

Displaying indoubt units of recovery
To display a list of indoubt units of recovery, issue the command:
-DISPLAY THREAD (RRSAF) TYPE (INDOUBT)

The command produces output similar to this:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID
RRSAF INDOUBT 00019B8ADE9E ADMF001
V449-HAS NID= AD64101C7EED90000000000101010000 AND ID= ST47653RRS
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

For RRSAF connections, a network ID is the OS/390 RRS Unit of Recovery ID
(URID) that uniquely identifies a unit of work. An OS/390 RRS URID is a 32
character number. For an explanation of the output, see the description of message
DSNV408I in Part 2 of DB2 Messages and Codes.

Recovering indoubt units of recovery manually
Manual recovery of an indoubt unit of recovery might be required if the OS/390
RRS log is lost. When that happens, message DSN3011I is displayed on the MVS
console.

To recover an indoubt unit of recovery, issue one of the following commands:
-RECOVER INDOUBT (RRSAF) ACTION (COMMIT) ID (correlation-id)

or
-RECOVER INDOUBT (RRSAF) ACTION (ABORT) ID (correlation-id)

Chapter 17. Monitoring and controlling DB2 and its connections 305

correlation-id is the correlation ID of the thread to be recovered. You can determine
the correlation ID by issuing the command DISPLAY THREAD.

The ACTION parameter indicates whether to commit or roll back the associated unit
of recovery. For more details, see “Resolving indoubt units of recovery” on
page 363.

If you recover a thread that is part of a global transaction, all threads in the global
transaction are recovered.

The following messages can occur when you issue the RECOVER INDOUBT
command:
DSNV414I - THREAD correlation-id COMMIT SCHEDULED

DSNV415I - THREAD correlation-id ABORT SCHEDULED

If the following DSNV418I message is issued:
DSNV418I - RECOVER INDOUBT REJECTED FOR ID=correlation-id

the NID option of RECOVER INDOUBT, as shown below, must be used.
-RECOVER INDOUBT(RRSAF) ACTION(action) NID(nid)

where nid is the 32 character field displayed in the DSNV449I message.

For information on the two-phase commit process, as well as indoubt units of
recovery, see “Consistency with other systems” on page 359.

Displaying postponed units of recovery
To display a list of postponed units of recovery, issue the command:
-DISPLAY THREAD (RRSAF) TYPE (POSTPONED)

The command produces output similar to this:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - POSTPONED ABORT THREADS -
COORDINATOR STATUS RESET URID AUTHID
RRSAF P-ABORT 00019B8ADE9E ADMF001
V449-HAS NID= AD64101C7EED90000000000101010000 AND ID= ST47653RRS
DISPLAY POSTPONED ABORT REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

For RRSAF connections, a network ID is the OS/390 RRS Unit of Recovery ID
(URID) that uniquely identifies a unit of work. An OS/390 RRS URID is a 32
character number. For an explanation of the output, see the description of message
DSNV408I in Part 2 of DB2 Messages and Codes.

Monitoring RRSAF connections
RRSAF allows an application or application monitor to disassociate a DB2 thread
from a TCB and later associate the thread with the same or different TCB within the
same address space. RRSAF uses the OS/390 RRS Switch Context (CTXSWCH)
service to do this. Only authorized programs can execute CTXSWCH.

DB2 stores information in an OS/390 RRS CONTEXT about an RRSAF thread so
that DB2 can locate the thread later. An application or application monitor can then
invoke CTXSWCH to dissociate the CONTEXT from the current TCB and then
associate the CONTEXT with the same TCB or a different TCB.

306 Administration Guide

The following command displays information about RRSAF threads, including those
that access data at remote locations:
-DISPLAY THREAD(RRSAF)

Disconnecting applications from DB2
You cannot disconnect an RRSAF transaction from DB2 without abending the
transaction. You can use the DB2 command CANCEL THREAD to cancel a
particular thread. CANCEL THREAD requires that you know the token for any
thread that you want to cancel. Issue the command DISPLAY THREAD to obtain
the token number, then enter the following command to cancel the thread:
-CANCEL THREAD(token)

When you issue CANCEL THREAD, DB2 schedules the thread for termination.

Controlling connections to remote systems
The information under this heading, up to “Using NetView® to monitor errors in the
network” on page 323, is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page 1095.

You can control connections to remote systems, which use distributed data, by
controlling the threads. Two types of threads are involved with connecting to other
systems, allied threads and database access threads. An allied thread is a thread
that is connected locally to your DB2 subsystem, that is from TSO, CICS, IMS, or a
stored procedures address space. A database access thread is a thread initiated by
a remote DBMS to your DB2 subsystem. The following topics are covered here:

“Starting DDF” on page 308
“Suspending and resuming DDF server activity” on page 308
“Monitoring connections to other systems” on page 309, which describes the use
of the following commands:
– DISPLAY DDF

DSNV401I = DISPLAY THREAD REPORT FOLLOWS -
DSNV402I = ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
�1�RRSAF T 4 RRSTEST2-111 ADMF001 ?RRSAF 0024 13
�2�RRSAF T 6 RRSCDBTEST01 USRT001 TESTDBD 0024 63
�3�RRSAF DI 3 RRSTEST2-100 USRT002 ?RRSAF 001B 99
�4�RRSAF TR 9 GT01XP05 SYSADM TESTP05 001B 235

V444-DB2NET.LUND0.AA8007132465=16 ACCESSING DATA AT
V446-SAN_JOSE:LUND1

DISPLAY ACTIVE REPORT COMPLETE

Key:

�1� This is an application that used CREATE THREAD to allocate the special
plan used by RRSAF (plan name = ?RRSAF).

�2� This is an application that connected to DB2 and allocated a plan with the
name TESTDBD.

�3� This is an application that is currently not connected to a TCB (shown by
status DI).

�4� This is an active connection that is running plan TESTP05. The thread is
accessing data at a remote site.

Figure 31. DISPLAY THREAD output showing RRSAF connections

Chapter 17. Monitoring and controlling DB2 and its connections 307

– DISPLAY LOCATION
– DISPLAY THREAD
– CANCEL THREAD
– VARY NET,TERM (VTAM command)
“Monitoring and controlling stored procedures” on page 320
“Using NetView® to monitor errors in the network” on page 323
“Stopping DDF” on page 325

Related information: The following topics in this book contain information about
distributed connections:

“Resolving indoubt units of recovery” on page 363
“Failure of a database access thread” on page 446
“Chapter 35. Tuning and monitoring in a distributed environment” on page 857

Starting DDF
To start the distributed data facility (DDF), if it has not already been started, use the
following command:
-START DDF

When DDF is started and is responsible for indoubt thread resolution with remote
partners, one or both of messages DSNL432I and DSNL433I is generated. These
messages summarize DDF’s responsibility for indoubt thread resolution with remote
partners. See “Chapter 20. Maintaining consistency across multiple systems” on
page 359 for information about resolving indoubt threads.

Using the START DDF command requires authority of SYSOPR or higher. The
following messages are associated with this command:
DSNL003I - DDF IS STARTING

DSNL004I - DDF START COMPLETE LOCATION locname
LU netname.luname

GENERICLU netname.gluname
DOMAIN domain
TCPPORT tcpport
RESPORT resport

If the distributed data facility has not been properly installed, the START DDF
command fails, and message DSN9032I, - REQUESTED FUNCTION IS NOT
AVAILABLE is issued. If the distributed data facility has already been started, the
START DDF command fails, and message DSNL001I, - DDF IS ALREADY
STARTED is issued. Use the DISPLAY DDF command to display the status of DDF.

When you install DB2, you can request that the distributed data facility start
automatically when DB2 starts. For information on starting the distributed data
facility automatically, see Part 2 of DB2 Installation Guide.

Suspending and resuming DDF server activity
You can use the STOP DDF MODE(SUSPEND) command to suspend DDF server
threads temporarily. Suspending DDF server threads frees all resources held by the
server threads and lets the following operations complete:

v CREATE

v ALTER

v DROP

v GRANT

308 Administration Guide

|

v REVOKE

When you issue STOP DDF MODE(SUSPEND), DB2 waits for all active DDF
database access threads to become inactive or terminate. Two optional keywords
on this command, WAIT and CANCEL, let you control how long DB2 waits and
what action DB2 takes after a specified time period. To resume suspended DDF
server threads, issue the START DDF command. For more detailed information
about the STOP DDF MODE(SUSPEND) command, see Chapter 2 of DB2
Command Reference.

Monitoring connections to other systems
The following DB2 commands give you information about distributed threads:

DISPLAY DDF
Displays information about the status and configuration of the distributed
data facility (DDF), and about the connections or threads controlled by DDF.
For its use, see “The command DISPLAY DDF”.

DISPLAY LOCATION
Displays statistics about threads and conversations between remote DB2
subsystem and the local subsystem. For its use, see “The command
DISPLAY LOCATION” on page 311.

DISPLAY THREAD
Displays information about DB2, distributed subsystem connections, and
parallel tasks. For its use, see “The command DISPLAY THREAD” on
page 312 .

The command DISPLAY DDF
The command DISPLAY DDF displays information regarding the status of DDF and,
in addition, any information that is displayed when DDF is started, such as the
location name, the LU name, the IP address, and domain names. Using the DETAIL
keyword provides additional configuration and statistical information.

To issue the DISPLAY DDF command, you must have SYSOPR authority or higher.
To issue the command, enter the following:
-DISPLAY DDF

DB2 returns output similar to this sample when DDF has not yet been started:
DSNL080I - DSNLTDDF DISPLAY DDF REPORT FOLLOWS-
DSNL081I STATUS=STOPDQ
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I SVL650A -NONE.SYEC650A -NONE
DSNL084I IPADDR TCPPORT RESPORT
DSNL085I -NONE 447 5002
DSNL086I SQL DOMAIN=-NONE
DSNL086I RESYNC DOMAIN=-NONE
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

DB2 returns output similar to this sample when DDF has been started:
DSNL080I - DSNLTDDF DISPLAY DDF REPORT FOLLOWS-
DSNL081I STATUS=STARTD
DSNL082I LOCATION LUNAME GENERICLU
DSNL083I SVL650A USIBMSY.SYEC650A -NONE
DSNL084I IPADDR TCPPORT RESPORT
DSNL085I 8.110.115.106 447 5002
DSNL086I SQL DOMAIN=v7ic111.svl.ibm.com
DSNL086I RESYNC DOMAIN=v7ic111.svl.ibm.com
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

Chapter 17. Monitoring and controlling DB2 and its connections 309

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

The DISPLAY DDF command displays the following information:

v The status of the distributed data facility (DDF)

v The location name of DDF defined in the BSDS

v The fully qualified LU name for DDF (that is, the network ID and LUNAME)

v The fully qualified generic LU name for DDF

v The IP address of DDF

v The SQL listener TCP/IP port number

v The two-phase commit resynchronization (resync) listener TCP/IP port number

v The SQL and RESYNC domain names:
– The SQL domain type accepts inbound SQL requests from remote partners.
– The RESYNC domain type accepts inbound two-phase commit

resynchronization requests.

To use the DETAIL option, enter the following:
-DISPLAY DDF DETAIL

DB2 returns additional lines of output:
DSNL080I - DSNLTDDF DISPLAY DDF REPORT FOLLOWS-
DSNL081I STATUS=STARTD
...
DSNL090I DT=A CONDBAT= 64 MDBAT= 64
DSNL092I ADBAT= 1 QUEDBAT= 0 IN1DBAT= 0 CONQUED= 0
DSNL093I DSCDBAT= 0 IN2CONS= 0
DSNL099I DSNLTDDF DISPLAY DDF REPORT COMPLETE

The DISPLAY DDF DETAIL command displays this additional information:

v The DDF thread value (DT) of either A or I:
– The DDF is configured with DDF THREADS ACTIVE.
– The DDF is configured with DDF THREADS INACTIVE.

v The maximum number of inbound connections for database access threads
(CONDBAT)

v The maximum number of concurrent active DBATs that could potentially be
executing SQL (MDBAT)

v The current number of active database access threads (ADBAT)

v The current number of queued database access threads (QUEDBAT)

v The current number of Type 1 inactive threads (IN1DBAT)

v The current number of connection requests that have been queued and are
waiting (CONQUED)

v The current number of disconnected database access threads (DSCDBAT)

v The current number of Type 2 inactive connections (IN2CONS)

For more DISPLAY DDF message information, see Part 2 of DB2 Messages and
Codes.

The DISPLAY DDF DETAIL command is especially useful because it reflects the
presence of new inbound connections that are not reflected by other commands.
For example, if DDF is configured with inactive support, as denoted by a DT value
of I in the DSNL090I message, and if DDF is stopped suspended or the maximum
number of active data base access threads has been reached, then new inbound
connections are not yet reflected in the DISPLAY THREAD report. However, the
presence of these new connections is reflected in the DISPLAY DDF DETAIL report,
although specific details regarding the origin of the connections, such as the client

310 Administration Guide

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|
|
|
|
|
|
|
|

system IP address or LU name, are not available until the connections are actually
associated with a database access thread.

The command DISPLAY LOCATION
The command DISPLAY LOCATION displays summary information about
connections with other locations and can be used to display detailed information
about DB2 system conversations. System conversations are used either for DB2
private protocol access or for supporting functions with DRDA access. Location
names, SNA LU names or IP addresses, can be specified, and the DETAIL keyword
is supported. To issue the DISPLAY LOCATION command, you must have
SYSOPR authority or higher. To issue the command, enter the following:
-DISPLAY LOCATION(*)

DB2 returns output similar to this sample:
DSNL200I - DISPLAY LOCATION REPORT FOLLOWS-
LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS
USIBMSTODB22 DSN05010 LUND0 1 0 3
USIBMSTODB23 DSN04010 LUND1 0 0 0
DRDALOC SQL03030 124.63.51.17 3 0 3
124.63.51.17 SQL03030 124.63.51.17 0 15 15
DISPLAY LOCATION REPORT COMPLETE

You can use an asterisk (*) in place of the end characters of a location name. For
example, use -DISPLAY LOCATION(SAN*) to display information about all active
connections between your DB2 and a remote location that begins with “SAN”. This
includes the number of conversations and the role for each non-system
conversation, requester or server.

When DB2 connects with a remote location, information about that location,
including LOCATION, PRDID and LINKNAME (LUNAME or IP address), persists in
the report even if no active connections exist.

The DISPLAY LOCATION command displays the following types of information for
each DBMS that has active threads, except for the local subsystem:

v The location name (or RDB_NAME) of the other connected system. If the
RDBNAME is not known, the LOCATION column contains one of the following:

– A VTAM LU name in this format: ’<luname>’.

– A dotted decimal IP address in this format: ’nnn.nnn.nnn.nnn’.

v The PRDID, which identifies the database product at the location in the form
nnnvvrrm:
– nnn - identifies the database product
– vv - product version
– rr - product release
– m - product modification level.

v The corresponding LUNAME or IP address of the system.

v The number of threads at the local system that are requesting data from the
remote system.

v The number of threads at the local system that are acting as a server to the
remote system.

v The total number of conversations in use between the local system and the
remote system. For USIBMSTODB23, in the sample output above, the locations
are connected and system conversations have been allocated, but currently there
are no active threads between the two sites.

Chapter 17. Monitoring and controlling DB2 and its connections 311

|
|

DB2 does not receive a location name from non-DB2 requesting DBMSs that are
connected to DB2. In this case, it displays instead the LUNAME of the requesting
DBMS, enclosed in less-than (<) and greater-than (>) symbols.

For example, suppose there are two threads at location USIBMSTODB21. One is a
distributed access thread from a non-DB2 DBMS, and the other is an allied thread
going from USIBMSTODB21 to the non-DB2 DBMS. The DISPLAY LOCATION
command issued at USIBMSTODB21 would display output similar to the following:
DSNL200I - DISPLAY LOCATION REPORT FOLLOWS -
LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS
NONDB2DBMS LUND1 1 0 1
<LULA> DSN04010 LULA 0 1 1
DISPLAY LOCATION REPORT COMPLETE

The output below shows the result of a DISPLAY LOCATION(*) command when
DB2 is connected to the following DRDA partners:

v DB2A is connected to this DB2, using TCP/IP for DRDA connections and SNA for
DB2 private protocol connections.

v DB2SERV is connected to this DB2 using only SNA.
DSNL200I - DISPLAY LOCATION REPORT FOLLOWS -
LOCATION PRDID LINKNAME REQUESTERS SERVERS CONVS
DB2A DSN05010 LUDB2A 3 4 9
DB2A DSN05010 124.38.54.16 2 1 3
DB2SERV DSN04010 LULA 1 1 3
DISPLAY LOCATION REPORT COMPLETE

The DISPLAY LOCATION command displays information for each remote location
that currently is, or once was, in contact with DB2. If a location is displayed with
zero conversations, this indicates one of the following:

v Sessions currently exist with the partner location but there are currently no active
conversations allocated to any of the sessions.

v Sessions no longer exist with the partner because contact with the partner has
been lost.

If you use the DETAIL parameter, each line is followed by information about
conversations owned by DB2 system threads, including those used for
resynchronization of indoubt units of work.

The command DISPLAY THREAD
Displaying information by location: Use the LOCATION keyword, followed by a
list of location names, to display thread information for particular locations.

You can use an asterisk (*) after the THD and LOCATION keywords just as in the
DISPLAY LOCATION command previously described. For example, enter:
-DISPLAY THREAD(*) LOCATION(*) DETAIL

DB2 returns messages like these:

312 Administration Guide

For distributed server threads using DRDA access, the NAME column contains
SERVER, and the PLAN column contains DISTSERV for all requesters that are not
DB2 for MVS Version 3 or later.

For more information about this sample output and connection status codes, see
message DSNV404I, DSNV444I, and DSNV446I, in Part 2 of DB2 Messages and
Codes.

Displaying information for non-DB2 locations: Because DB2 does not receive a
location name from non-DB2 locations, you must enter the LUNAME or IP address
of the location for which you want to display information. The LUNAME is enclosed
by the less-than (<) and greater-than (>) symbols. The IP address is in the dotted
decimal format. For example, if you wanted to display information about a non-DB2
DBMS with the LUNAME of LUSFOS2, you would enter the following command:
-DISPLAY THREAD (*) LOCATION (<LUSFOS2>)

DB2 uses the <LUNAME> notation or dotted decimal format in messages displaying
information about non-DB2 requesters.

Displaying conversation-level information on threads: Use the DETAIL keyword
with the LOCATION keyword to give you information about conversation activity
when distribution information is displayed for active threads. This keyword has no

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -

NAME ST�1�A�2� REQ ID AUTHID PLAN ASID TOKEN
SERVER RA * 2923 DB2BP ADMF001 DISTSERV 0036 20�3�
V437-WORKSTATION=ARRAKIS, USERID=ADMF001,

APPLICATION NAME=DB2BP
V436-PGM=NULLID.SQLC27A4, SEC=201, STMNT=210
V445-09707265.01BE.889C28200037=20�3� ACCESSING DATA FOR 9.112.12.101
V447-LOCATION SESSID A ST TIME
V448-9.112.12.101�4� 446:1300�5� W S2 9802812045091

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

Key:

�1� The ST (status) column contains characters that indicate the connection
status of the local site. The TR indicates that an allied, distributed thread
has been established. The RA indicates that a distributed thread has been
established and is in receive mode. The RD indicates that a distributed
thread is performing a remote access on behalf of another location (R) and
is performing an operation involving DCE services (D). Currently, DB2
supports the optional use of DCE services to authenticate remote users.

�2� The A (active) column contains an asterisk indicating that the thread is
active within DB2. It is blank when the thread is inactive within DB2 (active
or waiting within the application).

�3� This LUWID is unique across all connected systems. This thread has a
token of 20 (it appears in two places in the display output).

�4� This is the location of the data that the local application is accessing. If the
RDBNAME is not known, the location column contains either a VTAM
LUNAME or a dotted decimal IP address.

�5� If the connection uses TCP/IP, the sessid column contains ″local:remote″,
where ″local″ specifies DB2’s TCP/IP port number and ″remote″ specifies
the partner’s TCP/IP port number.

Chapter 17. Monitoring and controlling DB2 and its connections 313

effect on the display of indoubt threads. See Chapter 2 of DB2 Command
Reference for more information on the DETAIL keyword.

For example, issue:
-DISPLAY THREAD(*) LOCATION(*) DETAIL

DB2 returns the following message, indicating that the local site application is
waiting for a conversation to be allocated in DB2, and a DB2 server that is
accessed by a DRDA client using TCP/IP.

For more DISPLAY THREAD message information, see messages DSNV447I and
DSNV448I, Part 2 of DB2 Messages and Codes.

Monitoring all DBMSs in a transaction: The DETAIL keyword of the command
DISPLAY THREAD allows you to monitor all of the requesting and serving DBMSs
involved in a transaction.

For example, you could monitor an application running at USIBMSTODB21
requesting information from USIBMSTODB22, which must establish conversations
with secondary servers USIBMSTODB23 and USIBMSTODB24 to provide the

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -

NAME ST A REQ ID AUTHID PLAN ASID TOKEN
TSO TR * 3 SYSADM SYSADM DSNESPRR 002E 2
V436-PGM=DSNESPRR.DSNESM68, SEC=1, STMNT=116
V444-DB2NET.LUND0.A238216C2FAE=2 ACCESSING DATA AT
V446-USIBMSTODB22:LUND1
V447--LOCATION SESSID �1�A ST TIME
V448--USIBMSTODB22 0000000000000000 V A1�2� 9015816504776

TSO RA * 11 SYSADM SYSADM DSNESPRR 001A 15
V445-STLDRIV.SSLU.A23555366A29=15 ACCESSING DATA FOR 123.34.101.98
V447--LOCATION SESSID A ST TIME
V448--123.34.101.98 446:3171 �3� S2 9015611253108

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

Key:

�1� The information on this line is part of message DSNV447I. The
conversation A (active) column for the server is useful in determining when
a DB2 thread is hung and whether processing is waiting in VTAM or in DB2.
A value of W indicates that the thread is suspended in DB2 and is waiting
for notification from VTAM that the event has completed. A value ofV
indicates that control of the conversation is in VTAM.

�2� The information on this line is part of message DSNV448I. The A in the
conversation ST (status) column for a serving site indicates a conversation
is being allocated in DB2. The 1 indicates that the thread uses DB2 private
protocol access. A 2 would indicate DRDA access. An R in the status
column would indicate that the conversation is receiving or waiting to
receive a request or reply. An S in this column for a server indicates that
the application is sending or preparing to send a request or reply.

�3� The information on this line is part of message DSNV448I. The SESSID
column has changed as follows. If the connection uses VTAM, the SESSID
column contains a VTAM session identifier. If the connection uses TCP/IP,
the sessid column contains ″local:remote″, where ″local″ specifies DB2’s
TCP/IP port number, and ″remote″ specifies the partner’s TCP/IP port
number.

314 Administration Guide

requested information. See Figure 32. In the example, USIBMSTODB21 is
considered to be upstream from USIBMSTODB22. Similarly, USIBMSTODB22 is
considered to be upstream from USIBMSTODB23. Conversely, USIBMSTODB23
and USIBMSTODB22 are downstream from USIBMSTODB22 and USIBMSTODB21
respectively.

The application running at USIBMSTODB21 is connected to a server at
USIBMSTODB22, using DRDA access. If you enter the DISPLAY THREAD
command with the DETAIL keyword from USIBMSTODB21, you receive output
similar to the following:

This output indicates that the application is waiting for data to be returned by the
server at USIBMSTODB22.

The server at USIBMSTODB22 is running a package on behalf of the application at
USIBMSTODB21, in order to access data at USIBMSTODB23 and
USIBMSTODB24 by DB2 private protocol access. If you enter the DISPLAY
THREAD command with the DETAIL keyword from USIBMSTODB22, you receive
output similar to the following:

USIBMSTODB23

USIBMSTODB24

SDA

SDA

USIBMSTODB22ADAUSIBMSTODB21

Figure 32. Example of a DB2 transaction involving four sites. ADA refers to DRDA access,
SDA to DB2 private protocol access

-DIS THD(*) LOC(*) DET
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH TR * 6 BKH2C SYSADM YW1019C 0009 2
V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4
V444-USIBMSY.SSLU.A23555366A29=2 ACCESSING DATA AT
V446-USIBMSTODB22:SSURLU
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB22 0000000300000004 V R2 9015611253116
DISPLAY ACTIVE REPORT COMPLETE
11:26:23 DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

Chapter 17. Monitoring and controlling DB2 and its connections 315

This output indicates that the server at USIBMSTODB22 is waiting for data to be
returned by the secondary server at USIBMSTODB24.

The secondary server at USIBMSTODB23 is accessing data for the primary server
at USIBMSTODB22. If you enter the DISPLAY THREAD command with the DETAIL
keyword from USIBMSTODB23, you receive output similar to the following:

This output indicates that the secondary server at USIBMSTODB23 is not currently
active.

The secondary server at USIBMSTODB24 is also accessing data for the primary
server at USIBMSTODB22. If you enter the DISPLAY THREAD command with the
DETAIL keyword from USIBMSTODB24, you receive output similar to the following:

This output indicates that the secondary server at USIBMSTODB24 is currently
active.

It is possible that the conversation status might not change for a long time. The
conversation could be hung, or the processing could just be taking a long time. To
see whether the conversation is hung, issue DISPLAY THREAD again and compare

-DIS THD(*) LOC(*) DET
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 0 BKH2C SYSADM YW1019C 0008 2
V436-PGM=BKH2C.BKH2C, SEC=1, STMNT=4
V445-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA FOR

USIBMSTODB21:SSLU
V444-STLDRIV.SSLU.A23555366A29=2 ACCESSING DATA AT
V446-USIBMSTODB23:OSSLU USIBMSTODB24:OSSURLU
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB21 0000000300000004 S2 9015611253108
V448--USIBMSTODB23 0000000600000002 S1 9015611253077
V448--USIBMSTODB24 0000000900000005 V R1 9015611253907
DISPLAY ACTIVE REPORT COMPLETE
11:26:34 DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

-DIS THD(*) LOC(*) DET
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 2 BKH2C SYSADM YW1019C 0006 1
V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR

USIBMSTODB22:SSURLU
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB22 0000000600000002 W R1 9015611252369
DISPLAY ACTIVE REPORT COMPLETE
11:27:25 DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

-DIS THD(*) LOC(*) DET
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH RA * 2 BKH2C SYSADM YW1019C 0006 1
V436-PGM=*.BKH2C, SEC=1, STMNT=1
V445-STLDRIV.SSLU.A23555366A29=1 ACCESSING DATA FOR

USIBMSTODB22:SSURLU
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB22 0000000900000005 S1 9015611253075
DISPLAY ACTIVE REPORT COMPLETE
11:27:32 DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

316 Administration Guide

the new timestamp to the timestamps from previous output messages. If the
timestamp is changing, but the status is not, the job is still processing. If it becomes
necessary to terminate a distributed job, perhaps because it is hung and has been
holding database locks for a long period of time, you can use the CANCEL DDF
THREAD command if the thread is in DB2 (whether active or suspended) or the
VARY NET TERM command if the thread is within VTAM. See “The command
CANCEL THREAD”.

Displaying threads by LUWIDs: Use the LUWID optional keyword, which is only
valid when DDF has been started, to display threads by logical unit of work
identifiers. The LUWIDs are assigned to the thread by the site that originated the
thread.

You can use an asterisk (*) in an LUWID as in a LOCATION name. For example,
use -DISPLAY THREAD TYPE(INDOUBT) LUWID(NET1.*) to display all the indoubt
threads whose LUWID has a network name of NET1. The command DISPLAY
THREAD TYPE(INDOUBT) LUWID(IBM.NEW*) displays all indoubt threads whose
LUWID has a network name of ″IBM″ and whose LUNAME begins with ″NEW.″

The DETAIL keyword can also be used with the DISPLAY THREAD LUWID
command to show the status of every conversation connected to each thread
displayed and to indicate whether a conversation is using DRDA access or DB2
private protocol access.

To issue this command enter:
-DIS THD(*) LUWID (luwid) DETAIL

DB2 returns the following message and output similar to the sample output
provided:

The command CANCEL THREAD
You can use the command CANCEL THREAD to terminate threads that are active
or suspended in DB2. The command has no effect if the thread is not active or

-DIS THD(*) LUWID (luwid) DET
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH TR 5 TC3923S0 SYSADM TC392 000D 2
V436-PGM=*.TC3923S0, SEC=1, STMNT=116
V444-DB2NET.LUNSITE0.A11A7D7B2057=2 �1�ACCESSING DATA AT
V446-USIBMSTODB22:LUNSITE1
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB22 00C3F4228C5A244C S2�2� 8929612225354

DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

Key:

�1� In the display output above, you can see that the LUWID has been
assigned a token of 2. You can use this token instead of the long version of
the LUWID to cancel or display the given thread. For example:
-DIS THD(*) LUWID(2) DET

�2� In addition, the status column for the serving site contains a value of S2.
The S means that this thread can send a request or response, and the 2
means that this is an DRDA access conversation.

Chapter 17. Monitoring and controlling DB2 and its connections 317

suspended in DB2. If the thread is suspended in VTAM, you can use VTAM
commands to terminate the conversations, as described in “Using VTAM commands
to cancel threads” on page 319.

A database access thread can also be in the prepared state waiting for the commit
decision from the coordinator. When you issue CANCEL THREAD for a database
access thread in the prepared state, the thread is converted from active to indoubt.
The conversation with the coordinator, and all conversations with downstream
participants, are terminated and message DSNL450I is returned. The resources
held by the thread are not released until the indoubt state is resolved. This is
accomplished automatically by the coordinator or by using the command RECOVER
INDOUBT. See “Resolving indoubt units of recovery” on page 363 for more
information.

DISPLAY THREAD can be used to determine if a thread is hung in DB2 or VTAM. If
in VTAM, there is no reason to use the CANCEL command.

Using CANCEL THREAD requires SYSOPR authority or higher.

When the command is entered at the DB2 system that has a database access
thread servicing requests from a DB2 system that owns the allied thread, the
database access thread is terminated. Any active SQL request, and all later
requests, from the allied thread result in a ″resource not available″ return code.

To issue this command enter:
-CANCEL THREAD (token)

Or, if you like, you can use the following version of the command with either the
token or LUW ID:
-CANCEL DDF THREAD (token or luwid)

The token is a 1- to 5-character number that identifies the thread. When DB2
schedules the thread for termination, you will see one of the following messages:
DSNL010I - DDF THREAD token or luwid HAS BEEN CANCELED

for a distributed thread, or
DSNV426I - csect THREAD token HAS BEEN CANCELED

for a non-distributed thread.

For more information about CANCEL THREAD, see Chapter 2 of DB2 Command
Reference.

Diagnostic dumps: CANCEL THREAD allows you to specify that a diagnostic
dump be taken.

For more detailed information about diagnosing DDF failures see Part 3 of DB2
Diagnosis Guide and Reference.

Messages: As a result of entering CANCEL THREAD, the following messages can
be displayed:

DSNL009I
DSNL010I
DSNL022I

318 Administration Guide

Using VTAM commands to cancel threads
If the command CANCEL THREAD does not terminate the thread, it is possible that
it is hung up in VTAM, not in DB2. Use the VTAM VARY NET,TERM command to
cancel the thread’s VTAM sessions. The VTAM commands only work with SNA
VTAM connections, not TCP/IP connections.

To do this, you need to know the VTAM session IDs that correspond to the thread.
Follow these steps:

1. Issue the DB2 command DISPLAY THREAD(nnnn) LOC(*) DETAIL.

This gives you the VTAM session IDs that must be canceled. As is shown in the
DISPLAY THREAD output in Figure 33, these sessions are identified by the
column header SESSID.

2. Record positions 3 through 16 of SESSID for the threads to be canceled. (In the
DISPLAY THREAD output above, the values are D3590EA1E89701 and
D3590EA1E89822.)

3. Issue the VTAM command DISPLAY NET to display the VTAM session IDs
(SIDs). The ones you want to cancel match the SESSIDs in positions 3 through
16. In figure Figure 34, the corresponding session IDs are shown in bold.

-DIS THD LOC(*) DETAIL

DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH TR * 5 BKH2C SYSADM BKH2 000D 123
V436-PGM=*.BKH2C, SEC, STMNT=116
V445-DB2NET.LUND0.9F6D9F459E92=123 ACCESSING DATA FOR

USIBMSTODB21:LUND1
V447--LOCATION SESSID A ST TIME
V448--USIBMSTODB21 v 00D3590EA1E89701 S1 8832108460302
V448--USIBMSTODB21 00D3590EA1E89822 V R1 8832108460431
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DIS THD' NORMAL COMPLETION

Figure 33. Sample DISPLAY THREAD output

D NET,ID=LUND0,SCOPE=ACT

IST097I DISPLAY ACCEPTED
IST075I NAME = LUND0, TYPE = APPL
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV

IST171I ACTIVE SESSIONS = 0000000010, SESSION REQUESTS = 0000
IST206I SESSIONS:
IST634I NAME STATUS SID SEND RECV
IST635I LUND1 ACTIV-S D24B171032B76E65 0051 0043
IST635I LUND1 ACTIV-S D24B171032B32545 0051 0043
IST635I LUND1 ACTIV-S D24B171032144565 0051 0043
IST635I LUND1 ACTIV-S D24B171032B73465 0051 0043
IST635I LUND1 ACTIV-S D24B171032B88865 0051 0043
IST635I LUND1 ACTIV-R D2D3590EA1E89701 0022 0031
IST635I LUND1 ACTIV-R D2D3590EA1E89802 0022 0031
IST635I LUND1 ACTIV-R D2D3590EA1E89809 0022 0031
IST635I LUND1 ACTIV-R D2D3590EA1E89821 0022 0031
IST635I LUND1 ACTIV-R D2D3590EA1E89822 0022 0031
IST314I END

Figure 34. Sample output for VTAM DISPLAY NET command

Chapter 17. Monitoring and controlling DB2 and its connections 319

4. Issue the VTAM command VARY NET,TERM SID= for each of the VTAM SIDs
associated with the DB2 thread. For more information about VTAM commands,
see VTAM for MVS/ESA Operation.

Monitoring and controlling stored procedures
Stored procedures are user-written SQL programs that run at a DB2 server. Stored
procedures can run in DB2-established or WLM-established address spaces. To
monitor and control stored procedures in WLM-established address spaces, you
might need to use WLM commands, rather than DB2 commands. When you
execute a WLM command on an MVS system that is part of a Sysplex, the scope
of that command is the Sysplex.

This section discusses the following topics:
v “Displaying information about stored procedures and their environment”
v “Refreshing the environment for stored procedures or user-defined functions” on

page 322
v “Obtaining diagnostic information about stored procedures” on page 323

For more information about stored procedures, see Part 6 of DB2 Application
Programming and SQL Guide.

Displaying information about stored procedures and their
environment
Use the DB2 commands DISPLAY PROCEDURE and DISPLAY THREAD to obtain
information about a stored procedure while it is running. In the WLM-established
environment, use the MVS command DISPLAY WLM to obtain information about
the application environment in which a stored procedure runs.

The DB2 command DISPLAY PROCEDURE: This command can display the
following information about stored procedures:

v Status (started, stop-queue, stop-reject, stop-abend)

v Number of requests currently running and queued

v Maximum number of threads running a stored procedure load module and
queued

v Count of timed-out SQL CALLs

The following command displays information about all stored procedures in all
schemas that have been accessed by DB2 applications:
-DISPLAY PROCEDURE

DSNX940I csect - DISPLAY PROCEDURE REPORT FOLLOWS-

------ SCHEMA=PAYROLL
PROCEDURE STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
PAYRPRC1 STARTED 0 0 1 0 PAYROLL
PAYRPRC2 STOPQUE 0 5 5 3 PAYROLL
PAYRPRC3 STARTED 2 0 6 0 PAYROLL
USERPRC4 STOPREJ 0 0 1 0 SANDBOX

------ SCHEMA=HRPROD
PROCEDURE STATUS ACTIVE QUEUED MAXQUE TIMEOUT WLM_ENV
HRPRC1 STARTED 0 0 1 0 HRPROCS
HRPRC2 STOPREJ 0 0 1 0 HRPROCS
DISPLAY PROCEDURE REPORT COMPLETE

320 Administration Guide

In this example there are two schemas (PAYROLL and HRPROD) that have been
accessed by DB2 applications. You can also display information about specific
stored procedures.

The DB2 command DISPLAY THREAD: This command tells whether:
v A thread is waiting for a stored procedure to be scheduled
v A thread is executing within a stored procedure

Here is an example of DISPLAY THREAD output that shows a thread that is
executing a stored procedure:
!display thread(*) det
DSNV401I ! DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ! ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH SP 3 CALLWLM SYSADM PLNAPPLX 0022 5

V436-PGM=*.MYPROG, SEC=2, STMNT=1
V429 CALLING PROCEDURE=SYSADM .WLMSP ,

PROC=V61AWLM1, ASID=0085, WLM_ENV=WLMENV1
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I ! DSNVDT '-DIS THD' NORMAL COMPLETION

The SP status indicates that the thread is executing within the stored procedure. An
SW status indicates that the thread is waiting for the stored procedure to be
scheduled.

Here is an example of DISPLAY THREAD output that shows a thread that is
executing a user-defined function:
!display thd(*) det
DSNV401I ! DISPLAY THREAD REPORT FOLLOWS -
DSNV402I ! ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH SP 27 LI33FN1 SYSADM DSNTEP3 0021 4
V436-PGM=*.MYPROG, SEC=2, STMNT=1
V429 CALLING FUNCTION =SYSADM .FUNC1 ,

PROC=V61AWLM1, ASID=0085, WLM_ENV=WLMENV1
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I ! DSNVDT '-DISPLAY THD' NORMAL COMPLETION

The MVS command DISPLAY WLM: Use the command DISPLAY WLM to
determine the status of an application environment in which a stored procedure
runs. The output from DISPLAY WLM lets you determine whether a stored
procedure can be scheduled in an application environment.

For example, you can issue this command to determine the status of application
environment WLMENV1:
D WLM,APPLENV=WLMENV1

You might get results like this:
IWM029I 15.22.22 WLM DISPLAY
APPLICATION ENVIRONMENT NAME STATE STATE DATA
WLMENV1 AVAILABLE
ATTRIBUTES: PROC=DSNWLM1 SUBSYSTEM TYPE: DB2

The output tells you that WLMENV1 is available, so WLM can schedule stored
procedures for execution in that environment.

Chapter 17. Monitoring and controlling DB2 and its connections 321

Refreshing the environment for stored procedures or
user-defined functions
Depending on what has changed in a stored procedures environment, you might
need to perform one or more of these tasks:

v Refresh Language Environment®.

Do this when someone has modified a load module for a stored procedure, and
that load module is cached in a stored procedures address space. When you
refresh Language Environment, the cached load module is purged. On the next
invocation of the stored procedure, the new load module is loaded.

v Restart a stored procedures address space.

You might stop and then start a stored procedures address space because you
need to make a change to the startup JCL for a stored procedures address
space. You might need to start a stored procedures address space because the
address space has abnormally terminated.

The method that you use to perform these tasks for stored procedures depends on
whether you are using WLM-established or DB2-established address spaces.

For DB2-established address spaces: Use the DB2 commands -START
PROCEDURE and -STOP PROCEDURE to perform all of these tasks.

For WLM-established address spaces: If WLM is operating in goal mode:

v Use the MVS command
VARY WLM,APPLENV=name,REFRESH

to refresh Language Environment when you need to load a new version of a
stored procedure. name is the name of a WLM application environment
associated with a group of stored procedures. This means that when you execute
this command, you affect all stored procedures associated with the application
environment.

v Use the MVS command
VARY WLM,APPLENV=name,QUIESCE

to stop all stored procedures address spaces associated with WLM application
environment name.

v Use the MVS command
VARY WLM,APPLENV=name,RESUME

to start all stored procedures address spaces associated with WLM application
environment name.

You also need to use the VARY WLM command with the RESUME option when
WLM puts an application environment in the unavailable state. An application
environment in which stored procedures run becomes unavailable when WLM
detects 5 abnormal terminations within 10 minutes. When an application
environment is in the unavailable state, WLM does not schedule stored
procedures for execution in it.

See OS/390 MVS Planning: Workload Management for more information on the
command VARY WLM.

If WLM is operating in compatibility mode:

v Use the MVS command
CANCEL address-space-name

322 Administration Guide

to stop a WLM-established stored procedures address space.

v Use the MVS command
START address-space-name

to start a WLM-established stored procedures address space.

In compatibility mode, you must stop and start stored procedures address spaces
when you need to refresh Language Environment.

Obtaining diagnostic information about stored procedures
If the startup procedures for your stored procedures address spaces contain a DD
statement for CEEDUMP, Language Environment writes a small diagnostic dump to
CEEDUMP when a stored procedure terminates abnormally. The output waits to
print until the stored procedures address space terminates.

You can obtain the dump information by stopping the stored procedures address
space in which the stored procedure is running. See “Refreshing the environment
for stored procedures or user-defined functions” on page 322 for information on how
to stop and start stored procedures address spaces in the DB2-established and
WLM-established environments.

Using NetView® to monitor errors in the network
The NetView program lets you have a single focal point from which to view
problems in the network. DDF sends an alert to NetView when a remote location is
either involved in the cause of the failure or affected by the failure. The following
major events generate alerts:
v Conversation failures
v Distributed security failures
v DDF abends
v DDM protocol errors
v Database access thread abends
v Distributed allied thread abends

Alerts for DDF are displayed on NetView’s Hardware Monitor panels and are logged
in the hardware monitor database. Figure 35 on page 324 is an example of the
Alerts-Static panel in NetView.

Chapter 17. Monitoring and controlling DB2 and its connections 323

To see the recommended action for solving a particular problem, enter the selection
number, then press ENTER. This displays the Recommended Action for Selected
Event panel shown in Figure 36.

Key:

�1� The system reporting the error. The system reporting the error is always on
the left side of the panel. That system’s name appears first in the
messages. Depending on who is reporting the error, either the LUNAME or
the location name is used.

N E T V I E W SESSION DOMAIN: CNM01 OPER2 11/03/89 10:29:55
NPDA-30B * ALERTS-STATIC *

SEL# DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE
(1) CNM01 AS *RQST 09:58 SOFTWARE PROGRAM ERROR:COMM/REMOTE NODE
(2) CNM01 AR *SRVR 09:58 SOFTWARE PROGRAM ERROR:SNA COMMUNICATIONS
(3) CNM01 P13008 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(4) CNM01 P13008 CTRL 12:11 RLSD OFF DETECTED:OUTBOUND LINE
(5) CNM01 P13008 CTRL 12:11 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(6) CNM01 P13008 CTRL 12:11 LINK ERROR:INBOUND LINE +
(7) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(8) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(9) CNM01 P13008 CTRL 12:10 LINK ERROR:INBOUND LINE +
(10) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(11) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(12) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(13) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(14) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
(15) CNM01 P13008 CTRL 12:10 LINK ERROR:REMOTE DCE INTERFACE CABLE +
PRESS ENTER KEY TO VIEW ALERTS-DYNAMIC OR ENTER A TO VIEW ALERTS-HISTORY
ENTER SEL# (ACTION),OR SEL# PLUS M (MOST RECENT), P (PROBLEM), DEL (DELETE)

Figure 35. Alerts-static panel in NetView. DDF errors are denoted by the resource name AS
(server) and AR (requester). For DB2-only connections, the resource names would be RS
(server) and RQ (requester).

N E T V I E W SESSION DOMAIN: CNM01 OPER2 11/03/89 10:30:06
NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
CNM01 AR �1� AS �2�

+--------+ +--------+
DOMAIN ³ RQST ³---³ SRVR ³

+--------+ +--------+

USER CAUSED - NONE

INSTALL CAUSED - NONE

FAILURE CAUSED - SNA COMMUNICATIONS ERROR:
RCPRI=0008 RCSEC=0001 �1�

FAILURE OCCURRED ON RELATIONAL DATA BASE USIBMSTODB21
ACTIONS - I008 - PERFORM PROBLEM DETERMINATION PROCEDURE FOR REASON

CODE �3�00D31029 �2�
I168 - FOR RELATIONAL DATA BASE USIBMSTODB22
REPORT THE FOLLOWING LOGICAL UNIT OF WORK IDENTIFIER
DB2NET.LUND0.A1283FFB0476.0001

ENTER DM (DETAIL MENU) OR D (EVENT DETAIL)

Figure 36. Recommended action for selected event panel in NetView. In this example, the AR
(USIBMSTODB21) is reporting the problem, which is affecting the AS (USIBMSTODB22).

324 Administration Guide

�2� The system affected by the error. The system affected by the error is
always displayed to the right of the system reporting the error. The affected
system’s name appears second in the messages. Depending on what type
of system is reporting the error, either the LUNAME or the location name is
used.

If no other system is affected by the error, then this system will not appear
on the panel.

�3� DB2 reason code. For information about DB2 reason codes, see Part 3 of
DB2 Messages and Codes. For diagnostic information, see Part 3 of DB2
Diagnosis Guide and Reference.

For more information about using NetView, see NetView User's Guide.

Stopping DDF

General-use Programming Interface

You need SYSOPR authority or higher to stop the distributed data facility. Use one
of the following commands:
-STOP DDF MODE (QUIESCE)
-STOP DDF MODE (FORCE)

Use the QUIESCE option whenever possible; it is the default. With QUIESCE, the
STOP DDF command does not complete until all VTAM or TCP/IP requests have
completed. In this case, no resynchronization work is necessary when you restart
DDF. If there are indoubt units of work that require resynchronization, the QUIESCE
option produces message DSNL035I. Use the FORCE option only when you must
stop DDF quickly. Restart times are longer if you use FORCE.

When DDF is stopped with the FORCE option, and DDF has indoubt thread
responsibilities with remote partners, one or both of messages DSNL432I and
DSNL433I is generated.

DSNL432I shows the number of threads that DDF has coordination responsibility
over with remote participants who could have indoubt threads. At these participants,
database resources that are unavailable because of the indoubt threads remain
unavailable until DDF is started and resolution occurs.

DSNL433I shows the number of threads that are indoubt locally and need resolution
from remote coordinators. At the DDF location, database resources are unavailable
because the indoubt threads remain unavailable until DDF is started and resolution
occurs.

To force the completion of outstanding VTAM or TCP/IP requests, use the FORCE
option, which cancels the threads associated with distributed requests.

When the FORCE option is specified with STOP DDF, database access threads in
the prepared state that are waiting for the commit or abort decision from the
coordinator are logically converted to the indoubt state. The conversation with the
coordinator is terminated. If the thread is also a coordinator of downstream
participants, these conversations are terminated. Automatic indoubt resolution is
initiated when DDF is restarted. See “Resolving indoubt units of recovery” on
page 363 for more information on this topic.

The STOP DDF command causes the following messages to appear:

Chapter 17. Monitoring and controlling DB2 and its connections 325

DSNL005I - DDF IS STOPPING
DSNL006I - DDF STOP COMPLETE

If the distributed data facility has already been stopped, the STOP DDF command
fails and message DSNL002I - DDF IS ALREADY STOPPED appears.

Stopping DDF using VTAM commands: Another way to force DDF to stop is to
issue the VTAM VARY NET,INACT command. This command makes VTAM
unavailable and terminates DDF. VTAM forces the completion of any outstanding
VTAM requests immediately.

The syntax for the command is as follows:
VARY NET,INACT,ID=db2lu,FORCE

where db2lu is the VTAM LU name for the local DB2 system.

When DDF has stopped, the following command must be issued before -START
DDF can be attempted:
VARY NET,ACT,ID=db2lu

End of General-use Programming Interface

Controlling traces
These traces can be used for problem determination:

DB2 trace
IMS attachment facility trace
CICS trace
Three TSO attachment facility traces
CAF trace stream
OS/390 RRS trace stream
MVS component trace used for IRLM

Controlling the DB2 trace

General-use Programming Interface

DB2 trace allows you to trace and record subsystem data and events. There are
five different types of trace. For classes of events traced by each type see the
description of the START TRACE command in Chapter 2 of DB2 Command
Reference. For more information about the trace output produced, see “Appendix D.
Interpreting DB2 trace output” on page 981. In brief, DB2 records the following
types of data:

Statistics
Data that allows you to conduct DB2 capacity planning and to tune the
entire set of DB2 programs.

Accounting
Data that allows you to assign DB2 costs to individual authorization IDs and
to tune individual programs.

Performance
Data about subsystem events, which can be used to do program, resource,
user, and subsystem-related tuning.

326 Administration Guide

Audit Data that can be used to monitor DB2 security and access to data.

Monitor
Data that is available for use by DB2 monitor application programs.

DB2 provides commands for controlling the collection of this data. To use the trace
commands you must have one of the following types of authority:
v SYSADM or SYSOPR authority
v Authorization to issue start and stop trace commands (the TRACE privilege)
v Authorization to issue the display trace command (the DISPLAY privilege).

The trace commands include:

START TRACE
Invokes one or more different types of trace.

DISPLAY TRACE
Displays the trace options that are in effect.

STOP TRACE
Stops any trace that was started by either the START TRACE command or
the parameters specified when installing or migrating.

MODIFY TRACE
Changes the trace events (IFCIDs) being traced for a specified active trace.

Several parameters can be specified to further qualify the scope of a trace. Specific
events within a trace type can be traced as well as events within specific DB2
plans, authorization IDs, resource manager IDs and location. The destination to
which trace data is sent can also be controlled. For a discussion of trace
commands, see Chapter 2 of DB2 Command Reference.

When you install DB2, you can request that any trace type and class start
automatically when DB2 starts. For information on starting traces automatically, see
Part 2 of DB2 Installation Guide.

End of General-use Programming Interface

Diagnostic traces for the attachment facilities
The following trace facilities are for diagnostic purposes only:

v IMS provides a trace facility that shows the flow of requests across the
connections from the control and dependent regions to DB2. The trace is
recorded on the IMS log if the appropriate options are specified, and then it is
printed with DFSERA10 plus a formatting exit module. For more information
about this trace facility, see IMS Utilities Reference: System.

In addition, the IMS attachment facility of DB2 provides an internal wrap-around
trace table that is always active. When certain unusual error conditions occur,
these trace entries are externalized on the IMS log.

v You can use the CICS trace facility to trace the CICS attachment facility.

Use the transaction CETR to control the CICS trace facility. CETR gives you a
series of menus that you can use to set CICS trace options. For CICS 4.1 and
later, to trace the CICS attachment facility, set these values in the Component
Trace Options panel:
– For CICS 4.1, specify the value 2 in the FC field.
– For later releases, specify the value 2 in the RI field.

Chapter 17. Monitoring and controlling DB2 and its connections 327

For information about using the CETR transaction to control CICS tracing, see
CICS for MVS/ESA CICS-Supplied Transactions.

v The TSO attachment facility provides three tracing mechanisms:
The DSN trace stream
The CLIST trace facility
The SPUFI trace stream

v The call attachment facility trace stream uses the same ddname as the TSO
DSN trace stream, but is independent of TSO.

v The RRSAF trace stream uses the same ddname as the TSO DSN trace stream,
but is independent of TSO. An RRSAF internal trace will be included in any
ABEND dump produced by RRSAF. This tracing facility provides a history of
RRSAF usage that can aid in diagnosing errors in RRSAF.

Diagnostic trace for the IRLM
The following MVS commands control diagnostic traces for the IRLM:

MODIFY irlmproc,SET,TRACE
Sets dynamically the maximum number of trace buffers for each trace type.
This value is used only when the external component trace writer is not
activated.

MODIFY irlmproc,STATUS,TRACE
Displays the status of traces and the number of trace buffers used for each
trace type. Also displays whether or not the external component trace writer
is active for the trace.

START irlmproc,TRACE=YES
Captures traces in wrap-around IRLM buffers at IRLM startup.

TRACE CT
Starts, stops, or modifies a diagnostic trace for IRLM. The TRACE CT
command does not know about traces that are started automatically during
IRLM startup.

Recommendations:

v Do not use the external component trace writer to write traces to the data set.

v Activate all traces during IRLM startup. Use the command START
irlmproc,TRACE=YES to activate all traces.

See Chapter 2 of DB2 Command Reference for detailed information.

Controlling the resource limit facility (governor)

General-use Programming Interface

The governor allows the system administrator to limit the amount of time permitted
for the execution of the SELECT, UPDATE, DELETE, and INSERT dynamic SQL
statements.

DB2 provides these commands for controlling the governor:

START RLIMIT
Starts the governor and identifies a resource limit specification table. You
can also use START RLIMIT to switch resource limit specification tables.

328 Administration Guide

DISPLAY RLIMIT
Displays the current status of the governor. If the governor has been
started, it also identifies the resource limit specification table.

STOP RLIMIT
Stops the governor and removes any set limits.

The limits are defined in resource limit specification tables and can vary for different
users. One resource limit specification table is used for each invocation of the
governor and is identified on the START RLIMIT command.

See “Resource limit facility (governor)” on page 581 for more information about the
governor.

End of General-use Programming Interface

When you install DB2, you can request that the governor start automatically when
DB2 starts. For information on starting the governor automatically, see Part 2 of
DB2 Installation Guide.

Changing subsystem parameter values
You can modify the values of subsystem parameters dynamically even while DB2 is
running by following these steps:

1. Run the installation process in UPDATE mode, specifying any new parameter
values. This process produces a new DSNTIJUZ job with the new values; it also
saves these values in the file specified as the output member name on panel
DSNTIPA1.

2. Assemble and link-edit the DSNTIJUZ job produced in Step 1, and then submit
the job to create the new load module with the new subsystem parameter
values.

3. Issue the SET SYSPARM command to change the subsystem parameters
dynamically:
SET SYSPARM LOAD(load-module-name)

where you specify the load-module-name to be the same as the output member
name in Step 1.

If you specify the load module name that was used during installation, you can
issue this command:
SET SYSPARM RELOAD

For further information, see Part 2 of DB2 Installation Guide and Chapter 2 of
DB2 Command Reference.

Chapter 17. Monitoring and controlling DB2 and its connections 329

|

|
|

|
|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|

330 Administration Guide

Chapter 18. Managing the log and the bootstrap data set

The DB2 log registers data changes and significant events as they occur. The
bootstrap data set (BSDS) is a repository of information about the data sets that
contain the log.

DB2 writes each log record to a disk data set called the active log. When the active
log is full, DB2 copies its contents to a disk or tape data set called the archive log.
That process is called offloading. This chapter describes:

“How database changes are made”
“Establishing the logging environment” on page 333
“Managing the bootstrap data set (BSDS)” on page 341
“Discarding archive log records” on page 343

For information about the physical and logical records that make up the log, see
“Appendix C. Reading log records” on page 957. That appendix also contains
information about how to write a program to read log records.

How database changes are made
Before you can fully understand how logging works, you need to be familiar with
how database changes are made to ensure consistency. In this section, we discuss
units of recovery and rollbacks.

Units of recovery
A unit of recovery is the work, done by a single DB2 DBMS for an application, that
changes DB2 data from one point of consistency to another. A point of consistency
(also, sync point or commit point) is a time when all recoverable data that an
application program accesses is consistent with other data. (For an explanation of
maintaining consistency between DB2 and another subsystem such as IMS or
CICS, see “Consistency with other systems” on page 359.)

A unit of recovery begins with the first change to the data after the beginning of the
job or following the last point of consistency and ends at a later point of
consistency. An example of units of recovery within an application program is shown
in Figure 37.

Application process

Unit of recovery

SQL transaction 1 SQL transaction 2

Time
line

Application
process
begins

SQLT1
begins

SQLT1
ends

SQLT2
begins

SQLT2
ends

Commit
(point of

consistency)

Application
process

ends

Figure 37. A unit of recovery within an application process

© Copyright IBM Corp. 1982, 2001 331

|

|
|
|

|

In this example, the application process makes changes to databases at SQL
transaction 1 and 2. The application process can include a number of units of
recovery or just one, but any complete unit of recovery ends with a commit point.

For example, a bank transaction might transfer funds from account A to account B.
First, the program subtracts the amount from account A. Next, it adds the amount to
account B. After subtracting the amount from account A, the two accounts are
inconsistent. These accounts are inconsistent until the amount is added to account
B. When both steps are complete, the program can announce a point of
consistency and thereby make the changes visible to other application programs.

Normal termination of an application program automatically causes a point of
consistency. The SQL COMMIT statement causes a point of consistency during
program execution under TSO. A sync point causes a point of consistency in CICS
and IMS programs.

Rolling back work
If failure occurs within a unit of recovery, DB2 backs out any changes to data,
returning the data to its state at the start of the unit of recovery; that is, DB2 undoes
the work. The events are shown in Figure 38. The SQL ROLLBACK statement, and
deadlocks and timeouts (reported as SQLCODE -911, SQLSTATE 40001), cause
the same events.

The effects of inserts, updates, and deletes to large object (LOB) values are backed
out along with all the other changes made during the unit of work being rolled back,
even if the LOB values that were changed reside in a LOB table space with the
LOG NO attribute.

An operator or an application can issue the CANCEL THREAD command with the
NOBACKOUT option to cancel long running threads without backing out data
changes. As a result, DB2 does not read the log records and does not write or
apply the compensation log records. After CANCEL THREAD NOBACKOUT
processing, DB2 marks all objects associated with the thread as refresh pending
(REFP) and puts the objects in a logical page list (LPL). For information about how
to reset the REFP status, see DB2 Utility Guide and Reference.

The NOBACKOUT request might fail for either of the following two reasons:

v DB2 does not completely back out updates of the catalog or directory (message
DSNI032I with reason 00C900CC).

v The thread is part of a global transaction (message DSNV439I).

Point of
consistency

New point of
consistency

One unit of recovery

Time
line Database updates Back out updates

Begin unit
of recovery

Begin
rollback

Data is returned to
its initial state; end

unit of recovery

Figure 38. Unit of recovery (rollback)

332 Administration Guide

|
|
|
|
|
|
|

|

|
|

|

Establishing the logging environment
The DB2 logging environment is established by using installation panels to specify
options, such as whether to have dual active logs (strongly recommended), what
media to use for archive log volumes, and how many log buffers to have. For
details of the installation process, see Part 2 of DB2 Installation Guide.

Creation of log records
Log records typically go through the following cycle:

1. DB2 registers changes to data and significant events in recovery log records.

2. DB2 processes recovery log records and breaks them into segments if
necessary.

3. Log records are placed sequentially in output log buffers, which are formatted
as VSAM control intervals (CIs). Each log record is identified by a continuously
increasing RBA in the range 0 to 248-1, where 248 represents 2 to the 48th
power. (In a data sharing environment, a log record sequence number (LRSN)
is used to identify log records. See DB2 Data Sharing: Planning and
Administration for more information.)

4. The CIs are written to a set of predefined disk active log data sets, which are
used sequentially and recycled.

5. As each active log data set becomes full, its contents are automatically
offloaded to a new archive log data set.

If you change or create data that is compressed, the data logged is also
compressed. Changes to compressed rows like inserts, updates, and deletes are
also logged as compressed data.

Retrieval of log records
Log records are retrieved through the following events:

1. A log record is requested using its RBA.

2. DB2 searches for the log record in the locations listed below, in the order given:

a. The log buffers.

b. The active logs. The bootstrap data set registers which log RBAs apply to
each active or archive log data set. If the record is in an active log, DB2
dynamically acquires a buffer, reads one or more CIs, and returns one
record for each request.

c. The archive logs. DB2 determines which archive volume contains the CIs,
dynamically allocates the archive volume, acquires a buffer, and reads the
CIs.

Writing the active log
The log buffers are written to an active log data set when they become full, when
the write threshold is reached (as specified on the DSNTIPL panel), or, more often,
when the DB2 subsystem forces the log buffer to be written (such as, at commit
time). In the last case, the same control interval can be written several times to the
same location. The use of dual active logs increases the reliability of recovery.

When DB2 is initialized, the active log data sets named in the BSDS are
dynamically allocated for exclusive use by DB2 and remain allocated exclusively to
DB2 (the data sets were allocated as DISP=OLD) until DB2 terminates. Those
active log data sets cannot be replaced, nor can new ones be added, without

Chapter 18. Managing the log and the bootstrap data set 333

terminating and restarting DB2. The size and number of log data sets is indicated
by what was specified by installation panel DSNTIPL.

Writing the archive log (offloading)
The process of copying active logs to archive logs is called offloading. The relation
of offloading to other logging events is shown schematically in Figure 39.

Triggering offload
An offload of an active log to an archive log can be triggered by several events. The
most common are when:
v An active log data set is full
v Starting DB2 and an active log data set is full
v The command ARCHIVE LOG is issued

An offload is also triggered by two uncommon events:

v An error occurring while writing to an active log data set. The data set is
truncated before the point of failure, and the record that failed to write becomes
the first record of the next data set. An offload is triggered for the truncated data
set as in normal end-of-file. If there are dual active logs, both copies are
truncated so the two copies remain synchronized.

v Filling of the last unarchived active log data set. Message DSNJ110E is issued,
stating the percentage of its capacity in use; IFCID trace record 0330 is also
issued if statistics class 3 is active. If all active logs become full, DB2 stops
processing until offloading occurs and issues this message:
DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

The offloading process
During the process, DB2 determines which data set to offload. Using the last log
RBA offloaded, as registered in the BSDS, DB2 calculates the log RBA at which to
start. DB2 also determines the log RBA at which to end, from the RBA of the last
log record in the data set, and registers that RBA in the BSDS.

When all active logs become full, the DB2 subsystem runs an offload and halts
processing until the offload is completed. If the offload processing fails when the
active logs are full, then DB2 cannot continue doing any work that requires writing
to the log. For additional information, see “Active log failure” on page 423.

Write to
active log

Triggering
event

Off-load
process

Write to
archive log

Record on
BSDS

Figure 39. The offloading process

334 Administration Guide

When an active log is ready to be offloaded, a request can be sent to the MVS
console operator to mount a tape or prepare a disk unit. The value of the field
WRITE TO OPER of the DSNTIPA installation panel determines whether the
request is received. If the value is YES, the request is preceded by a WTOR
(message number DSNJ008E) informing the operator to prepare an archive log
data set for allocating.

The operator need not respond to message DSNJ008E immediately. However,
delaying the response delays the offload process. It does not affect DB2
performance unless the operator delays response for so long that DB2 runs out of
active logs.

The operator can respond by canceling the offload. In that case, if the allocation is
for the first copy of dual archive data sets, the offload is merely delayed until the
next active log data set becomes full. If the allocation is for the second copy, the
archive process switches to single copy mode, but for the one data set only.

Messages returned during offloading: The following messages are sent to the
MVS console by DB2 and the offload process. With the exception of the DSNJ139I
message, these messages can be used to find the RBA ranges in the various log
data sets.
v The following message appears during DB2 initialization when the current active

log data set is found, and after a data set switch. During initialization, the
STARTRBA value in the message does not refer to the beginning of the data set,
but to the position in the log where logging will begin.
DSNJ001I - csect-name CURRENT COPY n ACTIVE LOG DATA SET IS

DSNAME=..., STARTRBA=..., ENDRBA=...
v The following message appears when an active data set is full:

DSNJ002I - FULL ACTIVE LOG DATA SET DSNAME=...,
STARTRBA=..., ENDRBA=...

v The following message appears when offload reaches end-of-volume or
end-of-data-set in an archive log data set:

Non-data sharing version is:
DSNJ003I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

STARTTIME=..., ENDTIME=..., UNIT=..., COPYnVOL=...,
VOLSPAN=..., CATLG=...

Data sharing version is:
DSNJ003I - FULL ARCHIVE LOG VOLUME DSNAME=..., STARTRBA=..., ENDRBA=...,

STARTLRSN=..., ENDLRSN=..., UNIT=..., COPYnVOL=...,
VOLSPAN=..., CATLG=...

v The following message appears when one data set of the next pair of active logs
is not available because of a delay in offloading, and logging continues on one
copy only:
DSNJ004I - ACTIVE LOG COPY n INACTIVE, LOG IN SINGLE MODE,

ENDRBA=...
v The following message appears when dual active logging resumes after logging

has been carried on with one copy only:
DSNJ005I - ACTIVE LOG COPY n IS ACTIVE, LOG IN DUAL MODE,

STARTRBA=...
v The following message indicates that the offload task has ended:

DSNJ139I LOG OFFLOAD TASK ENDED

Interruptions and errors while offloading: Here is how DB2 handles the following
interruptions in the offloading process:

v The command STOP DB2 does not take effect until offloading is finished.

Chapter 18. Managing the log and the bootstrap data set 335

v A DB2 failure during offload causes offload to begin again from the previous start
RBA when DB2 is restarted.

v Offload handling of read I/O errors on the active log is described under “Active
log failure” on page 423, or write I/O errors on the archive log, under “Archive log
failure” on page 427.

v An unknown problem that causes the offload task to hang means that DB2
cannot continue processing the log. This problem might be resolved by retrying
the offload, which you can do by using the option CANCEL OFFLOAD of the
command ARCHIVE LOG, described in “Canceling log off-loads” on page 340.

Archive log data sets
Archive log data sets can be placed on standard label tapes or disks and can be
managed by DFSMShsm (Data Facility Hierarchical Storage Manager). They are
always written by QSAM. Archive logs on tape are read by BSAM; those on disk
are read by BDAM. Each MVS logical record in an archive log data set is a VSAM
CI from the active log data set. The block size is a multiple of 4 KB. (For more
information, see installation panel DSNTIPA in Part 2 of DB2 Installation Guide.)

Output archive log data sets are dynamically allocated, with names chosen by DB2.
The data set name prefix, block size, unit name, and disk sizes needed for
allocation are specified when DB2 is installed, and recorded in the DSNZPxxx
module. You can also choose, at installation time, to have DB2 add a date and time
to the archive log data set name. See installation panel DSNTIPH in Part 2 of DB2
Installation Guide for more information.

It is not possible to specify specific volumes for new archive logs. If allocation errors
occur, offloading is postponed until the next time offloading is triggered.

Using dual archive logging: If you specify dual archive logs at installation time,
each log CI retrieved from the active log is written to two archive log data sets. The
log records that are contained on a pair of dual archive log data sets are identical,
but end-of-volumes are not synchronized for multivolume data sets.

Archiving to disk offers faster recoverability but is more expensive than archiving to
tape. If you use dual logging, you can specify on installation panel DSNTIPA that
the primary copy of the archive log go to disk and the secondary copy go to tape.

This feature increases recovery speed without using as much disk. The second
tape is intended as a backup or can be sent to a remote site in preparation for
disaster recovery. To make recovering from the COPY2 archive tape faster at the
remote site, use the new installation parameter, ARC2FRST, to specify that COPY2
archive log should be read first. Otherwise, DB2 always attempts to read the
primary copy of the archive log data set first.

Archiving to tape: If the unit name reflects a tape device, DB2 can extend to a
maximum of twenty volumes. DB2 passes a file sequence number of 1 on the
catalog request for the first file on the next volume. Though that might appear to be
an error in the integrated catalog facility catalog, it causes no problems in DB2
processing.

If you choose to offload to tape, consider adjusting the size of your active log data
sets such that each set contains the amount of space that can be stored on a
nearly full tape volume. That adjustment minimizes tape handling and volume
mounts and maximizes the use of tape resources. However, such an adjustment is
not always necessary.

336 Administration Guide

If you want the active log data set to fit on one tape volume, consider placing a
copy of the BSDS on the same tape volume as the copy of the active log data set.
Adjust the size of the active log data set downward to offset the space required for
the BSDS.

Archiving to disk volumes: All archive log data sets allocated on disk must be
cataloged. If you choose to archive to disk, then the field CATALOG DATA of
installation panel DSNTIPA must contain YES. If this field contains NO, and you
decide to place archive log data sets on disk, you receive message DSNJ072E
each time an archive log data set is allocated, although the DB2 subsystem still
catalogs the data set.

If you use disk storage, be sure that the primary and secondary space quantities
and block size and allocation unit are large enough so that the disk archive log data
set does not attempt to extend beyond 15 volumes. That minimizes the possibility of
unwanted MVS B37 or E37 abends during the offload process. Primary space
allocation is set with the PRIMARY QUANTITY field of the DSNTIPA installation
panel. The primary space quantity must be less than 64K tracks because of the
DFSMS Direct Access Device Space Management limit of 64K tracks on a single
volume when allocating a sequential disk data set.

Using SMS to archive log data sets: If you have DFSMS/MVS (Data Facility
Storage Management Subsystem) installed, it is possible to write an ACS user exit
filter for your archive log data sets. Such a filter, for example, can route your output
to a disk data set, which in turn can be managed by DFSMS. Be careful using an
ACS filter in this manner with archive log data sets to be managed by SMS.
Because SMS requires disk data sets to be cataloged, you must make sure the
field CATALOG DATA on installation panel DSNTIPA contains YES. Even if it does
not, message DSNJ072E is returned and the data set is forced to be cataloged by
DB2.

DB2 uses the basic direct access method (BDAM) to read archive logs from disk.
DFSMS/MVS does not support reading of compressed data sets using BDAM. You
should not, therefore, use DFSMS/MVS hardware compression on your archive log
data sets.

Ensure that DFSMS/MVS does not alter the LRECL or BLKSIZE of the archive log
data sets. Altering these attributes could result in read errors when DB2 attempts to
access the log data.

Controlling the log
You can control and monitor log activity through several commands and a utility as
discussed in the following sections:

“Archiving the log”
“Changing the checkpoint frequency dynamically” on page 340
“Setting limits for archive log tape units” on page 340
“Displaying log information” on page 340

Archiving the log

General-use Programming Interface

A properly authorized operator can archive the current DB2 active log data sets,
whenever required, by issuing the ARCHIVE LOG command. Using ARCHIVE LOG

Chapter 18. Managing the log and the bootstrap data set 337

#
#
#

can help with diagnosis by allowing you to quickly offload the active log to the
archive log where you can use DSN1LOGP to further analyze the problem.

To issue this command, you must have either SYSADM authority, or have been
granted the ARCHIVE privilege.
-ARCHIVE LOG

When you issue the above command, DB2 truncates the current active log data
sets, then runs an asynchronous offload, and updates the BSDS with a record of
the offload. The RBA that is recorded in the BSDS is the beginning of the last
complete log record written in the active log data set being truncated.

You could use the ARCHIVE LOG command as follows to capture a point of
consistency for the MSTR01 and XUSR17 databases:
-STOP DATABASE (MSTR01,XUSR17)
-ARCHIVE LOG
-START DATABASE (MSTR01,XUSR17)

In this simple example, the STOP command stops activity for the databases before
archiving the log.

Quiescing activity before offloading: Another method of ensuring that activity has
stopped before the log is archived is the MODE(QUIESCE) option of ARCHIVE
LOG. With this option, DB2 users are quiesced after a commit point, and the
resulting point of consistency is captured in the current active log before it is
offloaded. Unlike the QUIESCE utility, ARCHIVE LOG MODE(QUIESCE) does not
force all changed buffers to be written to disk and does not record the log RBA in
SYSIBM.SYSCOPY. It does record the log RBA in the boot strap data set.

Consider using MODE(QUIESCE) when planning for offsite recovery. It creates a
system-wide point of consistency, which can minimize the number of data
inconsistencies when the archive log is used with the most current image copy
during recovery.

In a data sharing group, ARCHIVE LOG MODE(QUIESCE) might result in a delay
before activity on all members has stopped. If this delay is unacceptable to you,
consider using ARCHIVE LOG SCOPE(GROUP) instead. This command causes
truncation and offload of the logs for each active member of a data sharing group.
Although the resulting archive log data sets do not reflect a point of consistency, all
the archive logs are made at nearly the same time and have similar LRSN values in
their last log records. When you use this set of archive logs to recover the data
sharing group, you can use the ENDLRSN option in the CRESTART statement of
the change log inventory utility (DSNJU003) to truncate all the logs in the group to
the same point in time. See DB2 Data Sharing: Planning and Administration for
more information.

The MODE(QUIESCE) option suspends all new update activity on DB2 up to the
maximum period of time specified on the installation panel DSNTIPA, described in
Part 2 of DB2 Installation Guide. If the time needed to quiesce is less than the time
specified, then the command completes successfully; otherwise, the command fails
when the time period expires. This time amount can be overridden when you issue
the command, by using the TIME option:
-ARCHIVE LOG MODE(QUIESCE) TIME(60)

The above command allows for a quiesce period of up to 60 seconds before
archive log processing occurs.

338 Administration Guide

Important
Use of this option during prime time, or when time is critical, can cause a
significant disruption in DB2 availability for all jobs and users that use DB2
resources.

By default, the command is processed asynchronously from the time you submit the
command. (To process the command synchronously with other DB2 commands,
use the WAIT(YES) option with QUIESCE; then, the MVS console is locked from
DB2 command input for the entire QUIESCE period.)

During the quiesce period:

v Jobs and users on DB2 are allowed to go through commit processing, but are
suspended if they try to update any DB2 resource after the commit.

v Jobs and users that only read data can be affected, because they can be waiting
for locks held by jobs or users that were suspended.

v New tasks can start, but they are not allowed to update data.

As shown in the following example, the DISPLAY THREAD output issues message
DSNV400I to indicate that a quiesce is in effect:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV400I - ARCHIVE LOG QUIESCE CURRENTLY ACTIVE
DSNV402I - ACTIVE THREADS -
NAME ST A REQ ID AUTHID PLAN ASID TOKEN
BATCH T * 20 TEPJOB SYSADM DSNTEP3 0012 12
DISPLAY ACTIVE REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

When all updates are quiesced, the quiesce history record in the BSDS is updated
with the date and time that the active log data sets were truncated, and with the
last-written RBA in the current active log data sets. DB2 truncates the current active
log data sets, switches to the next available active log data sets, and issues
message DSNJ311E, stating that offload started.

If updates cannot be quiesced before the quiesce period expires, DB2 issues
message DSNJ317I, and archive log processing terminates. The current active log
data sets are not truncated and not switched to the next available log data sets,
and offload is not started.

Whether the quiesce was successful or not, all suspended users and jobs are then
resumed, and DB2 issues message DSNJ312I, stating that the quiesce is ended
and update activity is resumed.

If ARCHIVE LOG is issued when the current active log is the last available active
log data set, the command is not processed, and DB2 issues this message:
DSNJ319I - csect-name CURRENT ACTIVE LOG DATA SET IS THE LAST

AVAILABLE ACTIVE LOG DATA SET. ARCHIVE LOG PROCESSING WILL
BE TERMINATED.

If ARCHIVE LOG is issued when another ARCHIVE LOG command is already in
progress, the new command is not processed, and DB2 issues this message:
DSNJ318I - ARCHIVE LOG COMMAND ALREADY IN PROGRESS.

Chapter 18. Managing the log and the bootstrap data set 339

Canceling log offloads: It is possible for the offload of an active log to be
suspended when something goes wrong with the offload process, such as a
problem with allocation or tape mounting. If the active logs cannot be offloaded,
DB2’s active log data sets fill up and DB2 stops logging.

To avoid this problem, use the following command to cancel (and retry) an offload:
-ARCHIVE LOG CANCEL OFFLOAD

When you enter the command, DB2 restarts the offload again, beginning with the
oldest active log data set and proceeding through all active log data sets that need
offloading. If the offload fails again, you must fix the problem that is causing the
failure before the command can work.

End of General-use Programming Interface

Changing the checkpoint frequency dynamically
Use the LOGLOAD or CHKTIME option of the SET LOG command to dynamically
change the checkpoint frequency without recycling DB2. The LOGLOAD value
specifies the number of log records that DB2 writes between checkpoints. The
CHKTIME value specifies the number of minutes between checkpoints. Either value
affects the restart time for DB2.

For example, during prime shift, your DB2 shop might have a low logging rate, but
require that DB2 restart quickly if it terminates abnormally. To meet this restart
requirement, you can decrease the LOGLOAD value to force a higher checkpoint
frequency. In addition, during off-shift hours the logging rate might increase as batch
updates are processed, but the restart time for DB2 might not be as critical. In that
case, you can increase the LOGLOAD value which lowers the checkpoint
frequency.

You can also use the LOGLOAD or CHKTIME option to initiate an immediate
system checkpoint:
-SET LOG LOGLOAD(0)
or
-SET LOG CHKTIME(0)

The CHKFREQ value that is altered by the SET LOG command persists only while
DB2 is active. On restart, DB2 uses the CHKFREQ value in the DB2 subsystem
parameter load module. See Chapter 2 of DB2 Command Reference for detailed
information about this command.

Setting limits for archive log tape units
Use the DB2 command SET ARCHIVE to set the upper limit for the number of and
the deallocation time of tape units for the archive log. This command overrules the
values specified during installation or in a previous invocation of the SET ARCHIVE
command. The changes initiated by SET ARCHIVE are temporary; at restart, DB2
uses the values that were set during installation. See Chapter 2 of DB2 Command
Reference for detailed information about this command.

Displaying log information
Use the DISPLAY LOG command to display the current checkpoint frequency
(either the number of log records or the minutes between checkpoints). See
Chapter 2 of DB2 Command Reference for more details about the DISPLAY LOG
and SET LOG commands.

340 Administration Guide

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

You can obtain additional information about log data sets and checkpoints from the
Print Log Map utility (DSNJU004). See Part 3 of DB2 Utility Guide and Reference
for more information about utility DSNJU004.

Managing the bootstrap data set (BSDS)
The BSDS is a VSAM key-sequenced data set that contains information about the
log data sets and the records those data sets include. It also contains information
about buffer pool attributes. The BSDS is defined with access method services
when DB2 is installed and is allocated by a DD statement in the DB2 startup
procedure. It is deallocated when DB2 terminates.

Normally, DB2 keeps duplicate copies of the BSDS. If an I/O error occurs, DB2
deallocates the failing copy and continues with a single BSDS. However, you can
restore the dual mode as follows:
1. Use access method services to rename or delete the failing BSDS.
2. Define a new BSDS with the same name as the deleted BSDS.
3. Issue the DB2 command RECOVER BSDS to make a copy of the good BSDS

in the newly allocated data set.

The active logs are first registered in the BSDS by job DSNTIJID, when DB2 is
installed. They cannot be replaced, nor new ones added, without terminating and
restarting DB2.

Archive log data sets are dynamically allocated. When one is allocated, the data set
name is registered in the BSDS in separate entries for each volume on which the
archive log resides. The list of archive log data sets expands as archives are
added, and wraps around when a user-determined number of entries has been
reached. The maximum number of entries is 1000 for single archive logging and
2000 for dual logging.

The inventory of archive log data sets can be managed by use of the change log
inventory utility (DSNJU003). For further information, see “Changing the BSDS log
inventory” on page 342.

A wide variety of tape management systems exist, along with the opportunity for
external manual overrides of retention periods. Because of that, DB2 does not have
an automated method to delete the archive log data sets from the BSDS inventory
of archive log data sets. Thus, the information about an archive log data set can be
in the BSDS long after the archive log data set has been scratched by a tape
management system following the expiration of the data set’s retention period.

Conversely, the maximum number of archive log data sets could have been
exceeded, and the data from the BSDS dropped long before the data set has
reached its expiration date. For additional information, refer to “Deleting archive log
data sets or tapes automatically” on page 343.

If you specified at installation that archive log data sets are cataloged when
allocated, the BSDS points to the integrated catalog facility catalog for the
information needed for later allocations. Otherwise, the BSDS entries for each
volume register the volume serial number and unit information that is needed for
later allocation.

Chapter 18. Managing the log and the bootstrap data set 341

BSDS copies with archive log data sets
Each time a new archive log data set is created, a copy of the BSDS is also
created. If the archive log is on tape, the BSDS is the first file on the first output
volume. If the archive log is on disk, the BSDS copy is a separate file which could
reside on a separate volume.

For better offload performance and space utilization, it is recommended that you
use the default archive block size of 28672. If required, this value can be changed
in the BLOCK SIZE field on installation panel DSNTIPA. The PRIMARY QUANTITY
and SECONDARY QUANTITY fields should also be adjusted to reflect any changes
in block size.

The data set names of the BSDS copy and the archive log are the same, except
that the first character of the last data set name qualifier in the BSDS name is B
instead of A, as in the example below:
Archive log name

DSNCAT.ARCHLOG1.A0000001
BSDS copy name

DSNCAT.ARCHLOG1.B0000001

If there is a read error while copying the BSDS, the copy is not created. Message
DSNJ125I is issued, and the offload to the new archive log data set continues
without the BSDS copy.

The utility DSNJU004, print log map, lists the information stored in the BSDS. For
instructions on using it, see Part 3 of DB2 Utility Guide and Reference.

Changing the BSDS log inventory
You do not have to take special steps to keep the BSDS updated with records of
logging events—DB2 does that automatically. But you might want to change the
BSDS if you:

v Add more active log data sets

v Copy active log data sets to newly allocated data sets, as when providing larger
active log allocations

v Move log data sets to other devices

v Recover a damaged BSDS

v Discard outdated archive log data sets

v Create or cancel control records for conditional restart

v Add to or change the DDF communication record.

You can change the BSDS by running the DB2 batch change log inventory
(DSNJU003) utility. This utility should not be run when DB2 is active. If it is run
when DB2 is active, inconsistent results can be obtained. For instructions on how to
use the change log inventory utility, see Part 3 of DB2 Utility Guide and Reference.

You can copy an active log data set using the access method services IDCAMS
REPRO statement. The copy can only be performed when DB2 is down, because
DB2 allocates the active log data sets as exclusive (DISP=OLD) at DB2 startup. For
more information on the REPRO statement, see DFSMS/MVS: Access Method
Services for the Integrated Catalog and DFSMS/MVS: Access Method Services for
VSAM Catalogs.

342 Administration Guide

Discarding archive log records
You must keep enough log records to recover units of work and databases.

To recover units of recovery, you need log records at least until all current actions
are completed. If DB2 abends, restart requires all log records since the previous
checkpoint or the beginning of the oldest UR that was active at the abend,
whichever is first on the log.

To tell whether all units of recovery are complete, read the status counts in the DB2
restart messages (shown in “Starting DB2” on page 256). If all counts are zero, no
unit of recovery actions are pending. If there are indoubt units of recovery
remaining, identify and recover them by the methods described in “Chapter 17.
Monitoring and controlling DB2 and its connections” on page 267.

To recover databases, you need log records and image copies of table spaces.
How long you keep log records depends, then, on how often you make those image
copies. “Chapter 21. Backing up and recovering databases” on page 373 gives
suggestions about recovery cycles; the following sections assume that you know
what records you want to keep and describe only how to delete the records you do
not want.

Deleting archive log data sets or tapes automatically
You can use a disk or tape management system to delete archive log data sets or
tapes automatically. The length of the retention period (in days), which is passed to
the management system in the JCL parameter RETPD, is determined by the
RETENTION PERIOD field on the DSNTIPA installation panel, discussed further in
Part 2 of DB2 Installation Guide.

The default for the retention period keeps archive logs forever. If you use any other
retention period, it must be long enough to contain as many recovery cycles as you
plan for. For example, if your operating procedures call for a full image copy every
sixty days of the least-frequently-copied table space, and you want to keep two
complete image copy cycles on hand at all times, then you need an archive log
retention period of at least 120 days. For more than two cycles, you need a
correspondingly longer retention period.

If archive log data sets or tapes are deleted automatically, the operation does not
update the archive log data set inventory in the BSDS. If you wish, you can update
the BSDS with the change log inventory utility, as described in “Changing the BSDS
log inventory” on page 342. The update is not really necessary; it wastes space in
the BSDS to record old archive logs, but does no other harm as the archive log
data set inventory wraps and automatically deletes the oldest entries. See
“Managing the bootstrap data set (BSDS)” on page 341 for more details.

Locating archive log data sets to delete
You must keep all the logs since the most recent checkpoint of DB2, so that DB2
can restart. You also must keep all the logs for two or more complete image copy
cycles of your least-frequently-copied table space. What, then, can you discard?

You need an answer in terms of the log RBA ranges of the archive data sets. The
earliest log record you want is identified by a log RBA. You can discard any archive
log data sets that contain only records with log RBAs less than that.

The procedure that follows locates those data sets:

Chapter 18. Managing the log and the bootstrap data set 343

Step 1: Resolve indoubt units of recovery: If DB2 is running with TSO, continue
with “Find the startup log RBA”. If DB2 is running with IMS, CICS, or distributed
data, the following procedure applies:

1. The period between one startup and the next must be free of any indoubt units
of recovery. Ensure that no DB2 activity is going on until you finish this
procedure. (You might plan this procedure for a non-prime shift, for minimum
impact on users.) To find out whether indoubt units exist, issue the DB2
command DISPLAY THREAD TYPE(INDOUBT). If there are none, skip to “Find
the startup log RBA”.

2. If there are one or more indoubt units of recovery, do one of the following:
v Start IMS or CICS, causing that subsystem to resolve the indoubt units of

recovery. If the thread is a distributed indoubt unit of recovery, restart the
distributed data facility (DDF) to resolve the unit of work. If DDF does not
start or cannot resolve the unit of work, use the command RECOVER
INDOUBT to resolve the unit of work.

v Issue the DB2 command RECOVER INDOUBT.

These topics, including making the proper commit or abort decision, are
covered in greater detail in “Resolving indoubt units of recovery” on page 363.

3. Re-issue the command DISPLAY THREAD TYPE(INDOUBT) to ensure that the
indoubt units have been recovered. When none remain, continue with “Find the
startup log RBA”.

Step 2: Find the startup log RBA: Keep at least all log records with log RBAs
greater than the one given in this message, issued at restart:
DSNR003I RESTART...PRIOR CHECKPOINT RBA=xxxxxxxxxxxx

If you suspended DB2 activity while performing step 1, you can restart it now.

Step 3: Find the minimum log RBA needed: Suppose that you have determined
to keep some number of complete image copy cycles of your least-frequently-
copied table space. You now need to find the log RBA of the earliest full image
copy you want to keep.

1. If you have any table spaces so recently created that no full image copies of
them have ever been taken, take full image copies of them. If you do not take
image copies of them, and you discard the archive logs that log their creation,
DB2 can never recover them.

General-use Programming Interface

The following SQL statement lists table spaces that have no full image copy:
SELECT X.DBNAME, X.NAME, X.CREATOR, X.NTABLES, X.PARTITIONS

FROM SYSIBM.SYSTABLESPACE X
WHERE NOT EXISTS (SELECT * FROM SYSIBM.SYSCOPY Y

WHERE X.NAME = Y.TSNAME
AND X.DBNAME = Y.DBNAME
AND Y.ICTYPE = 'F')

ORDER BY 1, 3, 2;

End of General-use Programming Interface

344 Administration Guide

2. Issue the following SQL statement to find START_RBA values:

General-use Programming Interface
SELECT DBNAME, TSNAME, DSNUM, ICTYPE, ICDATE, HEX(START_RBA)

FROM SYSIBM.SYSCOPY
ORDER BY DBNAME, TSNAME, DSNUM, ICDATE;

End of General-use Programming Interface

The statement lists all databases and table spaces within them, in ascending
order by date.

Find the START_RBA for the earliest full image copy (ICTYPE=F) that you
intend to keep. If your least-frequently-copied table space is partitioned, and you
take full image copies by partition, use the earliest date for all the partitions.

If you are going to discard records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX, note the date of the earliest image copy you want to
keep.

Step 4: Copy catalog and directory tables: Take full image copies of the DB2
table spaces listed below, to ensure that copies of them are included in the range of
log records you will keep.

Database name Table space names

DSNDB01 DBD01
SCT02
SPT01

SYSUTILX
SYSLGRNX

DSNDB06 SYSCOPY
SYSDBASE
SYSDBAUT
SYSGPAUT
SYSGROUP
SYSPKAGE

SYSPLAN
SYSSTATS
SYSSTR
SYSUSER
SYSVIEWS

Step 5: Locate and discard archive log volumes: Now that you know the
minimum LOGRBA, from step 3, suppose that you want to find archive log volumes
that contain only log records earlier than that. Proceed as follows:

1. Execute the print log map utility to print the contents of the BSDS. For an
example of the output, see the description of print log map (DSNJU004) in Part
3 of DB2 Utility Guide and Reference.

2. Find the sections of the output titled “ARCHIVE LOG COPY n DATA SETS”. (If
you use dual logging, there are two sections.) The columns labelled STARTRBA
and ENDRBA show the range of log RBAs contained in each volume. Find the
volumes (two, for dual logging) whose ranges include the minimum log RBA you
found in step 3; these are the earliest volumes you need to keep.

If no volumes have an appropriate range, one of these cases applies:

v The minimum LOGRBA has not yet been archived, and you can discard all
archive log volumes.

v The list of archive log volumes in the BSDS wrapped around when the
number of volumes exceeded the number allowed by the RECORDING MAX
field of installation panel DSNTIPA. If the BSDS does not register an archive
log volume, it can never be used for recovery. Therefore, you should consider

Chapter 18. Managing the log and the bootstrap data set 345

adding information about existing volumes to the BSDS. For instructions, see
Part 3 of DB2 Utility Guide and Reference.

You should also consider increasing the value of MAXARCH. For information,
see information about installation panel DSNTIPA in Part 2 of DB2 Installation
Guide.

3. Delete any archive log data set or volume (both copies, for dual logging) whose
ENDRBA value is less than the STARTRBA value of the earliest volume you
want to keep.

Because BSDS entries wrap around, the first few entries in the BSDS archive
log section might be more recent than the entries at the bottom. Look at the
combination of date and time to compare age. Do not assume you can discard
all entries above the entry for the archive log containing the minimum LOGRBA.

Delete the data sets. If the archives are on tape, scratch the tapes; if they are
on disks, run an MVS utility to delete each data set. Then, if you want the
BSDS to list only existing archive volumes, use the change log inventory utility
to delete entries for the discarded volumes; for an example, see Part 3 of DB2
Utility Guide and Reference.

346 Administration Guide

Chapter 19. Restarting DB2 after termination

This chapter tells what to expect when DB2 terminates normally or abnormally, and
how to start it again. The concepts are important background for “Chapter 20.
Maintaining consistency across multiple systems” on page 359 and “Chapter 21.
Backing up and recovering databases” on page 373. This chapter includes the
following topics:

“Termination”
“Normal restart and recovery” on page 348
“Deferring restart processing” on page 354
“Restarting with conditions” on page 355

“Chapter 20. Maintaining consistency across multiple systems” on page 359
describes additional considerations for a DB2 subsystem that must be kept
consistent with some other system. The term object, used throughout this chapter,
refers to any database, table space, or index space.

Restarting in a data sharing environment: In a data sharing environment, restart
processing is expanded to handle the coordination of data recovery across more
than one DB2 subsystem. When certain critical resources are lost, restart includes
additional processing to recovery and rebuild those resources. This process is
called group restart, which is described in Chapter 5 of DB2 Data Sharing: Planning
and Administration.

Termination
DB2 terminates normally in response to the command STOP DB2. If DB2 stops for
any other reason, the termination is considered abnormal.

Normal termination
In a normal termination, DB2 stops all activity in an orderly way. You can use either
STOP DB2 MODE (QUIESCE) or STOP DB2 MODE (FORCE). The effects are
given in Table 66.

Table 66. Termination using QUIESCE and FORCE

Thread type QUIESCE FORCE

Active threads Run to completion Roll back

New threads Permitted Not permitted

New connections Not permitted Not permitted

You can use either command to prevent new applications from connecting to DB2.

When you give the command STOP DB2 MODE(QUIESCE), current threads can
run to completion, and new threads can be allocated to an application that is
running.

With IMS and CICS, STOP DB2 MODE(QUIESCE) allows a current thread to run
only to the end of the unit of recovery, unless either of the following conditions are
true:
v There are open, held cursors.
v Special registers are not in their original state.

© Copyright IBM Corp. 1982, 2001 347

Before DB2 can come down, all held cursors must be closed and all special
registers must be in their original state, or the transaction must complete.

With CICS, QUIESCE mode brings down the CICS attachment facility, so an active
task will not necessarily run to completion.

For example, assume that a CICS transaction opens no cursors declared WITH
HOLD and modifies no special registers. The transaction does the following:
EXEC SQL
. ← -STOP DB2 MODE(QUIESCE) issued here...

SYNCPOINT...

EXEC SQL ← This receives an AETA abend

The thread is allowed only to run through the first SYNCPOINT.

When you give the command STOP DB2 MODE(FORCE), no new threads are
allocated, and work on existing threads is rolled back.

During shutdown, use the command DISPLAY THREAD to check its progress. If
shutdown is taking too long, you can issue STOP DB2 MODE (FORCE), but rolling
back work can take as much or more time as the completion of QUIESCE.

When stopping in either mode, the following steps occur:
1. Connections end.
2. DB2 ceases to accept commands.
3. DB2 disconnects from the IRLM.
4. The shutdown checkpoint is taken and the BSDS is updated.

A data object could be left in an inconsistent state, even after a shutdown with
mode QUIESCE, if it was made unavailable by the command STOP DATABASE, or
if DB2 recognized a problem with the object. MODE (QUIESCE) does not wait for
asynchronous tasks that are not associated with any thread to complete, before it
stops DB2. This can result in data commands such as STOP DATABASE and
START DATABASE having outstanding units of recovery when DB2 stops. These
will become inflight units of recovery when DB2 is restarted, then be returned to
their original states.

Abends
An abend can leave data in an inconsistent state for any of the following reasons:
v Units of recovery might be interrupted before reaching a point of consistency.
v Committed data might not be written to external media.
v Uncommitted data might be written to external media.

Normal restart and recovery
DB2 uses its recovery log and the bootstrap data set (BSDS) to determine what to
recover when restarting. The BSDS identifies the active and archive log data sets,
the location of the most recent DB2 checkpoint on the log, and the high-level
qualifier of the integrated catalog facility catalog name.

After DB2 is initialized, the restart process goes through four phases, which are
described in the following sections:

348 Administration Guide

“Phase 1: Log initialization”
“Phase 2: Current status rebuild” on page 350
“Phase 3: Forward log recovery” on page 351
“Phase 4: Backward log recovery” on page 352

In the descriptions that follow, the terms inflight, indoubt, in-commit, and in-abort
refer to statuses of a unit of work that is coordinated between DB2 and another
system, such as CICS, IMS, or a remote DBMS. For definitions of those terms, see
“Maintaining consistency after termination or failure” on page 361.

At the end of the fourth phase recovery, a checkpoint is taken, and committed
changes are reflected in the data.

Application programs that do not commit often enough cause long running units of
recovery (URs). These long running URs might be inflight after a DB2 failure.
Inflight URs can extend DB2 restart time. You can restart DB2 more quickly by
postponing the backout of long running URs. Use installation options LIMIT
BACKOUT and BACKOUT DURATION to establish what work to delay during
restart.

If your DB2 subsystem has the UR checkpoint count option enabled, DB2
generates console message DSNR035I and trace records for IFCID 0313 to inform
you about long running URs. The UR checkpoint count option is enabled at
installation time, through field UR CHECK FREQ on panel DSNTIPN. See Part 2 of
DB2 Installation Guide for more information about enabling this option.

If your DB2 subsystem has the UR log threshold option enabled, DB2 generates
console message DSNR031I when an inflight UR writes more than the
installation-defined number of log records. DB2 also generates trace records for
IFCID 0313 to inform you about these long running URs. You can enable the UR
log threshold option at installation time, through field UR LOG WRITE CHECK on
panel DSNTIPN. See Part 2 of DB2 Installation Guide for more information about
enabling this option.

You can restart a large object (LOB) table space like other table spaces. LOB table
spaces defined with LOG NO do not log LOB data, but they log enough control
information (and follow a force-at-commit policy) so that they can restart without
loss of data integrity.

Phase 1: Log initialization
During phase 1, DB2 attempts to locate the last log RBA written before termination.
Logging continues at the next log RBA after that. In phase 1, DB2:

1. Compares the high-level qualifier of the integrated catalog facility catalog name,
in the BSDS, with the corresponding qualifier of the name in the current
subsystem parameter module (DSNZPxxx).

v If they are equal, processing continues with step 2 on page 350.

v If they are not equal, DB2 terminates with this message:
DSNJ130I ICF CATALOG NAME IN BSDS

DOES NOT AGREE WITH DSNZPARM.
BSDS CATALOG NAME=aaaaa,
DSNZPARM CATALOG NAME=bbbbb

Without the check, the next DB2 session could conceivably update an entirely
different catalog and set of table spaces. If the check fails, you presumably

Chapter 19. Restarting DB2 after termination 349

|
|
|
|
|
|
|

have the wrong parameter module. Start DB2 with the command START DB2
PARM(module-name), and name the correct module.

2. Checks the consistency of the timestamps in the BSDS.

v If both copies of the BSDS are current, DB2 tests whether the two
timestamps are equal.

– If they are equal, processing continues with step 3.

– If they are not equal, DB2 issues message DSNJ120I and terminates.
That can happen when the two copies of the BSDS are maintained on
separate disk volumes (as recommended) and one of the volumes is
restored while DB2 is stopped. DB2 detects the situation at restart.

To recover, copy the BSDS with the latest timestamp to the BSDS on the
restored volume. Also recover any active log data sets on the restored
volume, by copying the dual copy of the active log data sets onto the
restored volume. For more detailed instructions, see “BSDS failure” on
page 429.

v If one copy of the BSDS was deallocated, and logging continued with a single
BSDS, a problem could arise. If both copies of the BSDS are maintained on
a single volume, and the volume was restored, or if both BSDS copies were
restored separately, DB2 might not detect the restoration. In that case, log
records not noted in the BSDS would be unknown to the system.

3. Finds in the BSDS the log RBA of the last log record written before termination.

The highest RBA field (as shown in the output of the print log map utility) is
updated only when the following events occur:
v When DB2 is stopped normally (-STOP DB2).
v When active log writing is switched from one data set to another.
v When DB2 has reached the end of the log output buffer. The size of this

buffer is determined by the OUTPUT BUFFER field of installation panel
DSNTIPL described in Part 2 of DB2 Installation Guide.

4. Scans the log forward, beginning at the log RBA of the most recent log record,
up to the last control interval (CI) written before termination.

5. Prepares to continue writing log records at the next CI on the log.

6. Issues message DSNJ099I, which identifies the log RBA at which logging
continues for the current DB2 session. That message signals the end of the log
initialization phase of restart.

Phase 2: Current status rebuild
During phase 2, DB2 determines the statuses of objects at the time of termination.
By the end of the phase, DB2 has determined whether any units of recovery were
interrupted by the termination. In phase 2, DB2:

1. Checks the BSDS to find the log RBA of the last complete checkpoint before
termination.

2. Processes the RESTART or DEFER option of the parameter module of the
START DB2 command if any exist. The default is always RESTART ALL.

3. Reads every log record from that checkpoint up to the end of the log (which
was located during phase 1), and identifies:

v All exception conditions existing for each database and all image copy
information related to the DSNDB01.SYSUTILX, DSNDB01.DBD01, and
DSNDB06.SYSCOPY table spaces.

v All objects open at the time of termination, and how far back in the log to go
to reconstruct data pages that were not written to disk.

350 Administration Guide

The number of log records written between one checkpoint and the next is set
when DB2 is installed; see the field CHECKPOINT FREQ of installation panel
DSNTIPN, described in Part 2 of DB2 Installation Guide.

You can temporarily modify the checkpoint frequency by using the command
SET LOG. The value you specify persists while DB2 is active; on restart, DB2
uses the value that is specified in the CHECKPOINT FREQ field of installation
panel DSNTIPN. See Chapter 2 of DB2 Command Reference for detailed
information about this command.

4. Issues message DSNR004I, which summarizes the activity required at restart
for outstanding units of recovery.

5. Issues message DSNR007I if any outstanding units of recovery are discovered.
The message includes, for each outstanding unit of recovery, its connection
type, connection ID, correlation ID, authorization ID, plan name, status, log RBA
of the beginning of the unit of recovery (URID), and the date and time of its
creation.

During phase 2, no database changes are made, nor are any units of recovery
completed. DB2 determines what processing is required by phase 3 forward log
recovery before access to databases is allowed.

Phase 3: Forward log recovery
During phase 3, DB2 completes the processing for all committed changes and
database write operations. This includes:

v Making all database changes for each indoubt unit of recovery and locking the
data to prevent access to it after restart

v Making database changes for inflight and in-abort units of recovery, and in the
case of group restarts in which locks have been lost, acquiring locks to prevent
access to data in use by those units of recovery

DB2 can use the fast log apply process to enhance performance of the forward
recovery phase. See the Log Apply Storage field on panel DSNTIPL in DB2
Installation Guide, for details on defining storage for the sort used in fast log apply
processing. DB2 executes these steps:

1. Detects whether a page set being recovered is at the same level ID as it was
when the page set was last closed. If it is not, DB2 issues message DSNB232I
and places the pages for that object on the logical page list (LPL). DB2 does
not restart that object. In this case, you must recover from the down level page
set using one of the methods described in “Recovery from down-level page
sets” on page 435.

2. Scans the log forward, beginning at the lowest (earliest) log RBA that is either
required for completion of database writes or is associated with the “Begin Unit
of Recovery” of units of recovery that require locks.

That log RBA is determined during phase 2. REDO log records for all units of
recovery are processed in this phase.

3. Uses the log RBA of the earliest potential redo log record for each object
(determined during phase 2). All earlier changes to the object have been
written to disk; therefore, DB2 ignores their log records.

4. Reads the data or index page for each remaining redo log record. The page
header registers the log RBA of the record of the last change to the page.

v If the log RBA of the page header is greater than or equal to that of the
current log record, the logged change has already been made and written to
disk, and the log record is ignored.

Chapter 19. Restarting DB2 after termination 351

v If the log RBA in the page header is less than that of the current log record,
the change has not been made; DB2 makes the change to the page in the
buffer pool.

5. Writes pages to disk as the need for buffers demands it.

6. Marks the completion of each unit of recovery processed. If restart processing
terminates later, those units of recovery do not reappear in status lists.

7. Stops scanning at the current end of the log.

8. Writes to disk all modified buffers not yet written.

9. Issues message DSNR005I, which summarizes the number of remaining
in-commit or indoubt units of recovery. There should not be any in-commit units
of recovery, because all processing for these should have completed. The
number of indoubt units of recovery should be equal to the number specified in
the previous DSNR004I restart message.

10. Issues message DSNR007I (described in “Phase 2: Current status rebuild” on
page 350), which identifies any outstanding unit of recovery that still must be
processed.

If DB2 encounters a problem while applying log records to an object during phase
3, the affected pages are placed in the logical page list. Message DSNI001I is
issued once per page set or partition, and message DSNB250E is issued once per
page. Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

Phase 4: Backward log recovery
During phase 4, DB2 changes performed for inflight or in-abort units of recovery are
reversed. In phase 4, DB2:

1. Scans the log backward, starting at the current end. The scan continues until
the earliest “Begin Unit of Recovery” record for any outstanding inflight or
in-abort unit of recovery.

If you specified limited backout processing, the scan might stop prematurely
(however, DB2 guarantees that all catalog and directory changes are completely
backed out). In this case, the scan completes after DB2 receives the RECOVER
POSTPONED command. You can have DB2 automatically issue this command
after restart by specifying the AUTO option for limited backout processing, or
you can issue this command manually.

2. Reads the data or index page for each remaining undo log record. The page
header registers the log RBA of the record of the last change to the page.

v If the log RBA of the page header is greater than or equal to that of the
current log record, the logged change has already been made and written to
disk, therefore DB2 reverses it.

v If the log RBA in the page header is less than that of the current log record,
the change has not been made; DB2 ignores it.

3. Writes redo compensation information in the log for each undo log record, as it
does when backing out a unit of recovery. The redo records describe the
reversal of the change and facilitate media recovery. They are written under all
circumstances, even when:
v The disk version of the data did not need to be reversed.
v The page set has pages on the LPL.
v An I/O error occurred on the disk version of the data.
v The disk version of the data could not be allocated or opened.

4. Writes pages to disk as the need for buffers demands it.

352 Administration Guide

5. Finally, writes to disk all modified buffers that have not yet been written.

6. Issues message DSNR006I, which summarizes the number of remaining inflight,
in-abort, and postponed-abort units of recovery. The number of inflight and
in-abort units of recovery should be zero; the number of postponed-abort units
of recovery might not be zero.

7. Marks the completion of each completed unit of recovery in the log so that, if
restart processing terminates, the unit of recovery is not processed again at the
next restart.

8. If necessary, reacquires write claims for the objects on behalf of the indoubt and
postponed-abort units of recovery.

9. Takes a checkpoint, after all database writes have been completed.

If DB2 encounters a problem while applying a log record to an object during phase
4, the affected pages are placed in the logical page list. Message DSNI001I is
issued once per page set or partition, and message DSNB250E is issued once per
page. Restart processing continues.

DB2 issues status message DSNR031I periodically during this phase.

Restarting automatically
If you are running DB2 in a Sysplex, and on the appropriate level of MVS, you can
have the automatic restart function of MVS automatically restart DB2 or IRLM after
a failure.

When DB2 or IRLM stops abnormally, MVS determines whether MVS failed too,
and where DB2 or IRLM should be restarted. It then restarts DB2 or IRLM.

You must have DB2 installed with a command prefix scope of S to take advantage
of automatic restart. See Part 2 of DB2 Installation Guide for instruction on
specifying command scope.

Using an automatic restart policy: You control how automatic restart works by
using automatic restart policies. When the automatic restart function is active, the
default action is to restart the subsystems when they fail. If this default action is not
what you want, then you must create a policy defining the action you want taken.

To create a policy, you need the element names of the DB2 and IRLM subsystems:

v For a non-data-sharing DB2, the element name is 'DB2$' concatenated by the
subsystem name (DB2$DB2A, for example). To specify that a DB2 subsystem is
not to be restarted after a failure, include RESTART_ATTEMPTS(0) in the policy
for that DB2 element.

v For local mode IRLM, the element name is a concatenation of the IRLM
subsystem name and the IRLM ID. For global mode IRLM, the element name is
a concatenation of the IRLM data sharing group name, IRLM subsystem name,
and the IRLM ID.

For instructions on defining automatic restart policies, see OS/390 MVS Setting Up
a Sysplex.

Chapter 19. Restarting DB2 after termination 353

Deferring restart processing
Usually, restarting DB2 activates restart processing for objects that were available
when DB2 terminated (in other words, not stopped with the command STOP
DATABASE). Restart processing applies or backs out log records for objects that
have unresolved work.

Restart processing is controlled by what you choose on installation panel DSNTIPS,
and the default is RESTART ALL.

If some specific object is causing problems, you should consider deferring its restart
processing by starting DB2 without allowing that object to go through restart
processing. When you defer restart of an object, DB2 puts pages necessary for the
object’s restart in the logical page list (LPL). Only those pages are inaccessible; the
rest of the object can still be accessed after restart.

There are exceptions: when you say DEFER ALL at a site that is designated as
RECOVERYSITE in DSNZPxxx, then all pages are placed in the LPL (as a page
range, not as a huge list of individual pages). Also, if any changes must be backed
out for a nonpartitioning index, then all pages for the index are placed in the LPL.

DB2 can also defer restart processing for particular objects. DB2 puts pages in the
LPL for any object (or specific pages of an object) with certain problems, such as
an open or I/O error during restart. Again, only pages that are affected by the error
are placed on the LPL.

You can defer an object’s restart processing with any of the following actions:

VARY the device (or volume) on which the objects reside OFFLINE. If the data
sets containing an object are not available, and the object requires recovery during
restart, DB2 flags it as stopped and requiring deferred restart. DB2 then restarts
without it.

Delay the backout of a long running UR. On installation panel DSNTIPN, you can
use the following options:

v LIMIT BACKOUT defined as YES or AUTO indicates that some backout
processing will be postponed when restarting DB2. Users must issue the
RECOVER POSTPONED command to complete the backout processing when
the YES option is selected. DB2 does the backout work automatically after DB2
is running and receiving new work when the AUTO option is selected.

v BACKOUT DURATION indicates the number of log records, specified as a
multiplier, to be read during restart’s backward log scan.

The amount of backout processing to be postponed is determined by:

v The frequency of checkpoints

v The BACKOUT DURATION installation option

v The characteristics of the inflight and in-abort activity when the system went
down

Selecting a limited backout affects log processing during restart. The backward
processing of the log proceeds until the oldest inflight or in-abort UR with activity
against the catalog or directory is backed out, and the requested number of log
records have been processed.

354 Administration Guide

Name the object with DEFER when installing DB2. On installation panel
DSNTIPS, you can use the following options:

v DEFER ALL defers restart log apply processing for all objects, including DB2
catalog and directory objects.

v DEFER list_of_objects defers restart processing only for objects in the list.

Alternatively, you can specify RESTART list_of_objects, which limits restart
processing to the list of objects in the list.

DEFER does not affect processing of the log during restart. Therefore, even if you
specify DEFER ALL, DB2 still processes the full range of the log for both the
forward and backward log recovery phases of restart. However, logged operations
are not applied to the data set.

Restarting with conditions
If you want to skip some portion of the log processing during DB2 restart, you can
use a conditional restart. However, if a conditional restart skips any database
change log records, data in the associated objects becomes inconsistent and any
attempt to process them for normal operations might cause unpredictable results.
The only operations that can safely be performed on the objects are recovery to a
prior point of consistency, total replacement, or dropping.

In unusual cases, you might choose to make inconsistent objects available for use
without recovering them. For example, the only inconsistent object might be a table
space that is dropped as soon as DB2 is restarted, or the DB2 subsystem might be
used only for testing application programs still under development. In cases like
those, where data consistency is not critical, normal recovery operations can be
partially or fully bypassed by using conditional restart control records in the BSDS.
The procedure is:

1. While DB2 is stopped, run the change log inventory utility using the CRESTART
control statement to create a new conditional restart control record.

2. Restart DB2. The type of recovery operations that take place is governed by the
current conditional restart control record.

When considering a conditional restart, it is often useful to run the DSN1LOGP
utility and review a summary report of the information contained in the log.

For an example of the messages that are written to the DB2 console during restart
processing, see “Messages at start” on page 256.

In a data sharing environment, you can use the new LIGHT(YES) parameter on the
START DB2 command to quickly recover retained locks on a DB2 member. For
more information, see DB2 Data Sharing: Planning and Administration.

This section gives an overview of the available options for conditional restart. For
more detail, see information about the change log inventory utility (DSNJU003) in
Part 3 of DB2 Utility Guide and Reference. For information on data sharing
considerations, see Chapter 5 of DB2 Data Sharing: Planning and Administration.

Resolving postponed units of recovery
You can postpone some of the backout work associated with long running units of
work during system restart by using the LIMIT BACKOUT installation option. By
delaying such backout work, the DB2 subsystem can be restarted more quickly. If

Chapter 19. Restarting DB2 after termination 355

you specify LIMIT BACKOUT = YES, then you must use the RECOVER
POSTPONED command to resolve postponed units of recovery. See Part 2 of DB2
Installation Guide for more information about installation options.

Use the RECOVER POSTPONED command to complete postponed backout
processing on all units of recovery; you cannot specify a single unit of work for
resolution. This command might take several hours to complete depending on the
content of the long-running job. In some circumstances, you can elect to use the
CANCEL option of the RECOVER POSTPONED command. This option leaves the
objects in an inconsistent state (REFP) that you must resolve before using the
objects. However, you might choose the CANCEL option for the following reasons:

v You determine that the complete recovery of the postponed units of recovery will
take more time to complete than you have available. Further, you determine it is
faster to either recover the objects to a prior point in time (PIT) or run the LOAD
utility with the REPLACE option.

v You want to replace the existing data in the object with new data.

v You decide to drop the object. To drop the object successfully, complete the
following steps:

1. Issue the RECOVER POSTPONED command with the CANCEL option.

2. Issue the DROP TABLESPACE statement.

v You do not have the DB2 logs to successfully recover the postponed units of
recovery.

Errors encountered during RECOVER POSTPONED processing
If a required page cannot be accessed during RECOVER POSTPONED processing,
or if any other error is encountered while attempting to apply a log record, the page
set or partition is deferred and processing continues. DB2 writes a compensation
log record to reflect those deferrals and places the page in the logical page list.
Some errors encountered while recovering indexes cause the entire page set to be
placed in the logical page list. Some errors halt the construction of the
compensation log and mark the page set as RECP.

When an error prevents logging of a compensation log record, DB2 abends. If DB2
abends:

1. Fix the error.

2. Restart DB2.

3. Re-issue the RECOVER POSTPONED command if automatic backout
processing has not been specified.

Output from RECOVER POSTPONED processing
Output from the RECOVER POSTPONED command consists of informational
messages. In Figure 40 on page 357, backout processing was performed against
two table space partitions and two index partitions:

356 Administration Guide

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

|
|

Recovery operations you can choose for conditional restart
The recovery operations that take place during restart are controlled by the
currently active conditional restart control record. An active control record is created
or deactivated by running the change log inventory utility with the CRESTART
control statement. You can choose:

v To retain a specific portion of the log for future DB2 processing

v To read the log forward to recover indoubt and uncommitted units of recovery

v To read the log backward to back out uncommitted and in-abort units of recovery

v To do a cold start, not processing any log records.

A conditional restart record that specifies left truncation of the log causes any
postponed abort units of recovery that began earlier than the truncation RBA to end
without resolution. The combination of unresolved postponed abort units of recovery
can cause more records than requested by the BACKODUR system parameter to
be processed. The left truncation RBA takes precedence over BACKODUR in this
case.

Be careful about doing a conditional restart that discards log records. If the
discarded log records contain information from an image copy of the DB2 directory,
a future execution of the RECOVER utility on the directory will fail. For more
information, see “Recovering the catalog and directory” on page 395.

Records associated with conditional restart
In addition to information describing the active and archive logs, the BSDS contains
two queues of records associated with conditional restart.

v A wrap-around queue of conditional restart control records. Each element in the
queue records the choices you made when you created the record and the
progress of the restart operation it controls. When the operation is complete, the
use count is set at 1 for the record and it is not used again.

v A queue of checkpoint descriptions. Because a conditional restart can specify
use of a particular log record range, the recovery process cannot automatically
use the most recent checkpoint. The recovery process must find the latest
checkpoint within the specified range, and uses that checkpoint queue for that
purpose.

Use the utility DSN1LOGP to read information about checkpoints and conditional
restart control records. See Part 3 of DB2 Utility Guide and Reference for
information about that utility.

DSNV435I ! RESOLUTION OF POSTPONED ABORT URS HAS BEEN SCHEDULED
DSN9022I ! DSNVRP 'RECOVER POSTPONED' NORMAL COMPLETION
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .I PART 00000004.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .PT PART 00000004.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .I PART 00000002.
DSNI024I ! DSNIARPL BACKOUT PROCESSING HAS COMPLETED

FOR PAGESET DSNDB04 .PT PART 00000002.

Figure 40. Example of output from RECOVER POSTPONED processing

Chapter 19. Restarting DB2 after termination 357

358 Administration Guide

Chapter 20. Maintaining consistency across multiple systems

This chapter explains data consistency issues which arise when DB2 acts in
conjunction with other systems, either IMS, CICS, or remote DBMSs.

The following topics are covered:

“Consistency with other systems”

“Resolving indoubt units of recovery” on page 363

“Resolution of indoubt units of recovery between DB2 and a remote system” on
page 365

“Consistency across more than two systems” on page 368

“Resolution of indoubt units of recovery from OS/390 RRS” on page 367

Consistency with other systems
DB2 can work with other database management systems, including IMS, CICS,
other DB2s through the distributed data facility (DDF), and other types of remote
DBMSs through DDF.

If data in more than one subsystem is to be consistent, then all update operations
at all subsystems for a single logical unit of work must either be committed or
backed out.

The two-phase commit process: coordinator and participant
In a distributed system, the actions of a logical unit of work might occur at more
than one system. When these actions update recoverable resources, the commit
process insures that either all the effects of the logical unit of work persist or that
none of the effects persist, despite component, system, or communications failures.

DB2 uses a two-phase commit process in communicating between subsystems.
That process is under the control of one of the subsystems, called the coordinator.
The other systems involved are the participants. IMS or CICS is always the
coordinator in interaction with DB2, and DB2 is always the participant. DB2 is
always the coordinator in interaction with TSO and, in that case, completely controls
the commit process. In interactions with other DBMSs, including other DB2s, your
local DB2 can be either the coordinator or a participant.

© Copyright IBM Corp. 1982, 2001 359

Illustration of two-phase commit
Figure 41 illustrates the two-phase commit process. Events in the coordinator (IMS,
CICS, or DB2) are shown on the upper line, events in the participant on the lower
line. The numbers in the following discussion are keyed to those in the figure. The
resultant state of the update operations at the participant are shown between the
two lines.

1. The data in the coordinator is at a point of consistency.

2. An application program in the coordinator calls the participant to update some
data, by executing an SQL statement.

3. This starts a unit of recovery in the participant.

4. Processing continues in the coordinator until an application synchronization
point is reached.

5. The coordinator then starts commit processing. IMS can do that by using a
DL/I CHKP call, a fast path SYNC call, a GET UNIQUE call to the I/O PCB, or
a normal application termination. CICS uses a SYNCPOINT command or a
normal application termination. A DB2 application starts commit processing by
an SQL COMMIT statement or by normal termination. Phase 1 of commit
processing begins.

6. The coordinator informs the participant that it is to prepare for commit. The
participant begins phase 1 processing.

7. The participant successfully completes phase 1, writes this fact in its log, and
notifies the coordinator.

1 2 3 4 5 6 7 8 9 10 11 12 13

Coordinator

Old point of
consistency

Application
synchronization
point

Instant of
Commit

New point of
consistency

Phase 1

Commit
process begins

Phase 2

Time
line

Participant

Phase 1

Begin unit of
recovery

New point of
consistency

End unit of
recovery

Period b

Data is
backed out
at restart

Period a

Data is
backed out
at restart

Period c

Data is
indoubt at
restart and
either backed
out or
committed

Period d

Data is
committed
at restart

Phase 2

Old point of
consistency

Figure 41. Time line illustrating a commit that is coordinated with another subsystem

360 Administration Guide

8. The coordinator receives the notification.

9. The coordinator successfully completes its phase 1 processing. Now both
subsystems agree to commit the data changes, because both have completed
phase 1 and could recover from any failure. The coordinator records on its log
the instant of commit—the irrevocable decision of the two subsystems to make
the changes.

The coordinator now begins phase 2 of the processing—the actual
commitment.

10. It notifies the participant to begin its phase 2.

11. The participant logs the start of phase 2.

12. Phase 2 is successfully completed, which establishes a new point of
consistency for the participant. The participant then notifies the coordinator that
it is finished with phase 2.

13. The coordinator finishes its phase 2 processing. The data controlled by both
subsystems is now consistent and available to other applications.

There are occasions when the coordinator invokes the participant when no
participant resource has been altered since the completion of the last commit
process. This can happen, for example, when SYNCPOINT is issued after
performance of a series of SELECT statements or when end-of-task is reached
immediately after SYNCPOINT has been issued. When this occurs, the participant
performs both phases of the two-phase commit during the first commit phase and
records that the user or job is read-only at the participant.

Maintaining consistency after termination or failure
If DB2 fails while acting as a coordinator, it has the appropriate information to
determine commit or roll back decisions after restart. On the other hand, if DB2 fails
while acting as the participant, it must determine after restart whether to commit or
to roll back units of recovery that were active at the time of the failure. For certain
units of recovery, DB2 has enough information to make the decision. For others, it
does not, and must get information from the coordinator when the connection is
reestablished.

The status of a unit of recovery after a termination or failure depends upon the
moment at which the incident occurred. Figure 41 on page 360 helps to illustrate
the possible statuses listed below:

Status Description and Processing

Inflight
The participant or coordinator failed before finishing phase 1 (period a or b);
during restart, both systems back out the updates.

Indoubt
The participant failed after finishing phase 1 and before starting phase 2
(period c); only the coordinator knows whether the failure happened before
or after the commit (point 9). If it happened before, the participant must
back out its changes; if it happened afterward, it must make its changes
and commit them. After restart, the participant waits for information from the
coordinator before processing this unit of recovery.

In-commit
The participant failed after it began its own phase 2 processing (period d); it
makes committed changes.

Chapter 20. Maintaining consistency across multiple systems 361

In-abort
The participant or coordinator failed after a unit of recovery began to be
rolled back but before the process was complete (not shown in the figure).
The operational system rolls back the changes; the failed system continues
to back out the changes after restart.

Postponed abort
If LIMIT BACKOUT installation option is set to YES or AUTO, any backout
not completed during restart is postponed. The status of the incomplete
URs is changed from inflight or in-abort to postponed abort.

Termination
Termination for multiple systems is like termination for single systems, but with
these added considerations:

v Using -STOP DB2 MODE(FORCE) could create indoubt units of recovery for
threads that are between commit processing phases. They are resolved upon
reconnection with the coordinator.

v Data updated by an indoubt unit of recovery is locked and unavailable for use by
others. The unit could be indoubt when DB2 was stopped, or could be indoubt
from an earlier termination and not yet resolved.

v A DB2 system failure can leave a unit of recovery in an indoubt state if the failure
occurs between phase 1 and phase 2 of the commit process.

Normal restart and recovery
When DB2 acts together with another system, the recovery log contains information
about units of recovery that are inflight, indoubt, in-abort, postponed abort, or
in-commit. The phases of restart and recovery deal with that information as follows:

Phase 1: Log initialization
This phase proceeds as described in “Phase 1: Log initialization” on page 349.

Phase 2: Current status rebuild
While reading the log, DB2 identifies:

v The coordinator and all participants for every unit of recovery.

v All units of recovery that are outstanding and their statuses (indoubt, in-commit,
in-abort, or inflight, as described under “Maintaining consistency after termination
or failure” on page 361).

Phase 3: Forward log recovery
DB2 makes all database changes for each indoubt unit of recovery, and locks the
data to prevent access to it after restart. Later, when an indoubt unit of recovery is
resolved, processing is completed in one of these ways:
v For the ABORT option of the RECOVER INDOUBT command, DB2 reads and

processes the log, reversing all changes.
v For the COMMIT option of the RECOVER INDOUBT command, DB2 reads the

log but does not process the records because all changes have been made.

At the end of this phase, indoubt activity is reflected in the database as though the
decision was made to commit the activity, but the activity has not yet been
committed. The data is locked and cannot be used until DB2 recognizes and acts
upon the indoubt decision. (For a description of indoubt units of recovery, see
“Resolving indoubt units of recovery” on page 363.)

362 Administration Guide

Phase 4: Backward log recovery
As described in “Phase 4: Backward log recovery” on page 352, this phase reverses
changes performed for inflight or in-abort units of recovery. At the end of this phase,
interrupted inflight and in-abort changes have been removed from the database (the
data is consistent and can be used) or removal of the changes has been postponed
(the data is inconsistent and unavailable).

If removal of the changes has been postponed, the units of recovery become
known as postponed abort units of recovery. The data with pending backout work is
in a restrictive state (restart pending) which makes the data unavailable. The data
becomes available upon completion of backout work or upon cold or conditional
restart of DB2.

If the LIMIT BACKOUT system parameter is AUTO, completion of the backout work
begins automatically by DB2 when the system accepts new work. If the LIMIT
BACKOUT system parameter is YES, completion of the backout work begins when
you use the RECOVER POSTPONED command.

Restarting with conditions
If conditional restart is performed when DB2 is acting together with other systems,
the following occurs:

1. All information about another coordinator and other participants known to DB2 is
displayed by messages DSNL438I and DSNL439I.

2. This information is purged. Therefore the RECOVER INDOUBT command must
be used at the local DB2 when the local location is a participant, and at another
DB2 when the local location is the coordinator.

3. Indoubt database access threads continue to appear as indoubt and no
resynchronization with either a coordinator or a participant is allowed.

Methods for resolving inconsistencies caused by conditional restart and implications
in a distributed environment are described in “Resolving inconsistencies resulting
from conditional restart” on page 500.

Resolving indoubt units of recovery
If DB2 loses its connection to another system, it normally attempts to recover all
inconsistent objects after restart. The information needed to resolve indoubt units of
recovery must come from the coordinating system. This section describes the
process of resolution for different types of other systems.

Check the console for message DSNR036I for unresolved units of recovery
encountered during a checkpoint. This message might occur to remind operators of
existing indoubt threads. See Part 2 of of DB2 Installation Guide for details.

Important

If the TCP/IP address associated with a DRDA server is subject to change,
each DRDA server’s domain name must be defined in the CDB. This allows
DB2 to recover from situations where the server’s IP address changes prior to
successful resynchronization.

Chapter 20. Maintaining consistency across multiple systems 363

Resolution of indoubt units of recovery from IMS
The resolution of indoubt units in IMS has no effect on DL/I resources. Because
IMS is in control of recovery coordination, DL/I resources are never indoubt. When
IMS restarts, it automatically commits or backs out incomplete DL/I work, based on
whether or not the commit decision was recorded on the IMS log. The existence of
indoubt units does not imply that DL/I records are locked until DB2 connects.

During the current status rebuild phase of DB2 restart, the DB2 participant makes a
list of indoubt units of recovery. IMS builds its own list of residual recovery entries
(RREs). The RREs are logged at IMS checkpoints until all entries are resolved.

When indoubt units are recovered, the following steps take place:

1. IMS either passes an RRE to the IMS attachment facility to resolve the entry or
informs the attachment facility of a cold start. The attachment facility passes the
required information to DB2.

2. If DB2 recognizes that an entry has been marked by DB2 for commit and by
IMS for roll back, it issues message DSNM005I. DB2 issues this message for
inconsistencies of this type between DB2 and IMS.

3. The IMS attachment facility passes a return code to IMS, indicating that it
should either destroy the RRE (if it was resolved) or keep it (if it was not
resolved). The procedure is repeated for each RRE.

4. Finally, if DB2 has any remaining indoubt units, the attachment facility issues
message DSNM004I.

The IMS attachment facility writes all the records involved in indoubt processing to
the IMS log tape as type X'5501FE'.

For all resolved units, DB2 updates databases as necessary and releases the
corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started.

DB2 maintains locks on indoubt work that was not resolved. This can create a
backlog for the system if important locks are being held. Use the DISPLAY
DATABASE LOCKS command to find out which tables and table spaces are locked
by indoubt units of recovery. The connection remains active so you can clean up
the IMS RREs. Recover the indoubt threads by the methods described in
“Controlling IMS connections” on page 295.

All indoubt work should be resolved unless there are software or operating
problems, such as with an IMS cold start. Resolution of indoubt units of recovery
from IMS can cause delays in SQL processing. Indoubt resolution by the IMS
control region takes place at two times:

v At the start of the connection to DB2, during which resolution is done
synchronously

v When a program fails, during which the resolution is done asynchronously.

In the first case, SQL processing is prevented in all dependent regions until the
indoubt resolution is completed. IMS does not allow connections between IMS
dependent regions and DB2 before the indoubt units are resolved.

Resolution of indoubt units of recovery from CICS
The resolution of indoubt units has no effect on CICS resources. CICS is in control
of recovery coordination and, when it restarts, automatically commits or backs out

364 Administration Guide

each unit, depending on whether there was or was not an end of unit of work log
record. The existence of indoubt work does not lock CICS resources until DB2
connection.

A process to resolve indoubt units of recovery is initiated during start up of the
attachment facility. During this process:

v The attachment facility receives a list of indoubt units of recovery for this
connection ID from the DB2 participant and passes them to CICS for resolution.

v CICS compares entries from this list with entries in its own. CICS determines
from its own list what action it took for the indoubt unit of recovery.

v For each entry in the list, CICS creates a task that drives the attachment facility,
specifying the final commit or abort direction for the unit of recovery.

v If DB2 does not have any indoubt unit of recovery, a dummy list is passed. CICS
then purges any unresolved units of recovery from previous connections, if any.

If the units of recovery cannot be resolved because of conditions described in
messages DSNC001I, DSNC034I, DSNC035I, or DSNC036I, CICS enables the
connection to DB2. For other conditions, it sends message DSNC016I and
terminates the connection.

For all resolved units, DB2 updates databases as necessary and releases the
corresponding locks. For threads that access offline databases, the resolution is
logged and acted on when the database is started. Unresolved units can remain
after restart; resolve them by the methods described in “Manually recovering CICS
indoubt units of recovery” on page 419.

Resolution of indoubt units of recovery between DB2 and a remote
system

When communicating with a remote DBMS, indoubt units of recovery can result
from failure with either the participant or coordinator or with the communication link
between them even if the systems themselves have not failed.

Normally, if your subsystem fails while communicating with a remote system, you
should wait until both systems and their communication link become operational.
Your system then automatically recovers its indoubt units of recovery and continues
normal operation. When DB2 restarts while any unit of recovery is indoubt, the data
required for that unit remains locked until the unit of recovery is resolved.

If automatic recovery is not possible, DB2 alerts you to any indoubt units of
recovery that you need to resolve. If it is imperative that you release locked
resources and bypass the normal recovery process, you can resolve indoubt
situations manually.

Important

In a manual recovery situation, you must determine whether the coordinator
decided to commit or abort and ensure that the same decision is made at the
participant. In the recovery process, DB2 attempts to automatically
resynchronize with its participants. If you decide incorrectly what the
coordinator’s recovery action is, data is inconsistent at the coordinator and
participant.

Chapter 20. Maintaining consistency across multiple systems 365

If you choose to resolve units of recovery manually, you must:

v Commit changes made by logical units of work that were committed by the other
system

v Roll back changes made by logical units of work that were rolled back by the
other system

Making heuristic decisions
From DB2’s point of view, a decision to commit or roll back an indoubt unit of
recovery by any means but the normal resynchronization process is a heuristic
decision. If you commit or roll back a unit of work and your decision is different from
the other system’s decision, data inconsistency occurs. This type of damage is
called heuristic damage. If this situation should occur, and your system then
updates any data involved with the previous unit of work, your data is corrupted and
is extremely difficult to correct.

In order to make a correct decision, you must be absolutely sure that the action you
take on indoubt units of recovery is the same as the action taken at the coordinator.
Validate your decision with the administrator of the other systems involved with the
logical unit of work.

Methods for determining the coordinator’s commit or abort
decision
The first step is to communicate with the other system administrator. There are
several ways to ascertain the status of indoubt units at other systems:

v Use a NetView program. Write a program that analyzes NetView alerts for each
involved system, and returns the results through the NetView system.

v Use an automated MVS console to ascertain the status of the indoubt threads at
the other involved systems.

v Use the command DISPLAY THREAD TYPE(INDOUBT) LUWID(luwid).

If the coordinator DB2 system is started and no DB2 cold start was performed,
then DISPLAY THREAD TYPE(INDOUBT) can be used. If the decision was to
commit, the display thread indoubt report includes the LUWID of the indoubt
thread. If the decision was to abort, the thread is not displayed.

v Read the recovery log using DSN1LOGP.

If the coordinator DB2 cannot be started, then DSN1LOGP can determine the
commit decision. If the coordinator DB2 performed a cold start (or any type of
conditional restart), then the system log should contain messages DSNL438I or
DSNL439I, which describe the status of the unit of recovery (LUWID).

Displaying information on indoubt threads
Use DISPLAY THREAD TYPE(INDOUBT) to find information on allied and database
access indoubt threads. The command provides information about threads where
DB2 is a participant, a coordinator, or both. The TYPE(INDOUBT) option tells you
which systems still need indoubt resolution and provides the LUWIDs you need to
recover indoubt threads. A thread that has completed phase 1 of commit and still
has a connection with its coordinator is in the prepared state and is displayed as
part of the display thread active report. If a prepared thread loses its connection
with its coordinator, it enters the indoubt state and terminates its connections to any
participants at that time. Any threads in the prepared or indoubt state when DB2
terminates are indoubt after DB2 restart. However, if the participant system is
waiting for a commit or roll back decision from the coordinator, and the connection
is still active, DB2 considers the thread active.

If a thread is indoubt at a participant, you can determine whether a commit or abort
decision was made at the coordinator by issuing the DISPLAY THREAD command

366 Administration Guide

at the coordinator as described previously. If an indoubt thread appears at one
system and does not appear at the other system, then the latter system backed out
the thread, and the first system must therefore do the same. See “Monitoring
threads” on page 283 for examples of output from the DISPLAY THREAD
command.

Recovering indoubt threads
After you determine whether you need to commit or roll back an indoubt thread,
recover it with the RECOVER INDOUBT command. This command does not erase
the thread’s indoubt status. It still appears as an indoubt thread until the systems go
through the normal resynchronization process. An indoubt thread can be identified
by its LUWID, LUNAME or IP address. You can also use the LUWID’s token with
the command.

Committing or rolling back: Use the ACTION(ABORT|COMMIT) option of
RECOVER INDOUBT to commit or roll back a logical unit of work. If your system is
the coordinator of one or more other systems involved with the logical unit of work,
your action propagates to the other system associated with the LUW.

For example, to recover two indoubt threads, the first with
LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002 and the second with a token of
442, and commit the LUWs, enter:
-RECOVER INDOUBT ACTION(COMMIT) LUWID(DB2NET.LUNSITE0.A11A7D7B2057.0002,442)

Detailed scenarios describing indoubt thread resolution can be found in “Resolving
indoubt threads” on page 465.

Resetting the status of an indoubt thread
Following manual recovery of an indoubt thread, allow the systems to resynchronize
automatically; this resets the status of the indoubt thread. However, if heuristic
damage or a protocol error occurs, you must use the RESET INDOUBT command
to delete indoubt thread information for a thread whose reset status is yes. DB2
maintains this information until normal automatic recovery. You can purge
information about threads where DB2 is either the coordinator or participant. If the
thread is an allied thread connected with IMS or CICS, the command only applies
to coordinator information about downstream participants. Information that is purged
does not appear in the next display thread report and is erased from DB2’s logs.

For example, to purge information on two indoubt threads, the first with an
LUWID=DB2NET.LUNSITE0.A11A7D7B2057.0002 and a resync port number of
123; and the second with a token of 442, enter:
-RESET INDOUBT LUWID(DB2NET.LUNSITE0.A11A7D7B2057.0002:123,442)

You can also use a LUNAME or IP address with the RESET INDOUBT command. A
new keyword (IPADDR) can be used in place of LUNAME or LUW keywords, when
the partner uses TCP/IP instead of SNA. The partner’s resync port number is
required when using the IP address. The DISPLAY THREAD output lists the resync
port number. This allows you to specify a location, instead of a particular thread.
You can reset all the threads associated with that location with the (*) option.

Resolution of indoubt units of recovery from OS/390 RRS
It is possible for a DB2 unit of recovery (for a thread that uses RRSAF) or for a
OS/390 RRS unit of recovery (for a stored procedure) to enter the INDOUBT state.
This is a state where a failure occurs when the participant (DB2 for a thread that
uses RRSAF or OS/390 RRS for a stored procedure) has completed phase 1 of

Chapter 20. Maintaining consistency across multiple systems 367

commit processing and is waiting for the decision from the commit coordinator. This
failure could be a DB2 abnormal termination, an OS/390 RRS abnormal termination,
or both.

Normally, automatic resolution of indoubt units of recovery occurs when DB2 and
OS/390 RRS reestablish communication with each other. If something prevents this,
then it is possible to manually resolve an indoubt unit of recovery. This process is
not recommended because it might lead to inconsistencies in recoverable
resources.

The following errors make manual recovery necessary:

v An OS/390 RRS cold start where the OS/390 RRS log is lost.

If DB2 is a participant and has one or more indoubt threads, then these indoubt
threads must be manually resolved in order to commit or abort the database
changes and to release database locks. If DB2 is a coordinator for an OS/390
RRS unit of recovery, then DB2 knows the commit/abort decision but cannot
communicate this information to the RRS compliant resource manager that has
an indoubt unit of recovery.

v If DB2 performs a conditional restart and loses information from its log, then
there might be inconsistent DB2 managed data.

v In a Sysplex, if DB2 is restarted on an MVS system where OS/390 RRS is not
installed, then DB2 might have indoubt threads.

This is a user error because OS/390 RRS must be started on all processors in a
Sysplex on which OS/390 RRS work is to be performed.

Both DB2 and OS/390 RRS can display information about indoubt units of recovery.
Both also provide techniques for manually resolving these indoubt units of recovery.

In DB2, the DISPLAY THREAD command provides information about indoubt DB2
thread. The display output includes OS/390 RRS unit of recovery IDs for those DB2
threads that have OS/390 RRS either as a coordinator or as a participant. If DB2 is
a participant, the OS/390 RRS unit of recovery ID displayed can be used to
determine the outcome of the OS/390 RRS unit of recovery. If DB2 is the
coordinator, you can determine the outcome of the unit of recovery from the
DISPLAY THREAD output.

In DB2, the RECOVER INDOUBT command lets you manually resolve a DB2
indoubt thread. You can use RECOVER INDOUBT to commit or roll back a unit of
recovery after you determine what the correct decision is.

OS/390 RRS provides an ISPF interface that provides a similar capability.

Consistency across more than two systems
The principles and methods for maintaining consistency across more than two
systems are similar to those used to ensure consistency across two systems. The
main difference involves a system’s role as coordinator or participant when a unit of
work spans multiple systems.

Commit coordinator and multiple participants
The coordinator of a unit of work that involves two or more other DBMSs must
ensure that all systems remain consistent. After the first phase of the two-phase
commit process, the DB2 coordinator waits for the other participants to indicate that

368 Administration Guide

they can commit the unit of work. If all systems are able, the DB2 coordinator sends
the commit decision and each system commits the unit of work.

If even one system indicates that it cannot commit, then the DB2 coordinator sends
out the decision to roll back the unit of work at all systems. This process ensures
that data among multiple DBMSs remains consistent. When DB2 is the participant,
it follows the decision of the coordinator, whether the coordinator is another DB2 or
another DBMS.

DB2 is always the participant when interacting with IMS or CICS systems. However,
DB2 can also serve as the coordinator for other DBMSs or DB2 subsystems in the
same unit of work. For example, if DB2 receives a request from a coordinating
system that also requires data manipulation on another system, DB2 propagates
the unit of work to the other system and serves as the coordinator for that system.

For example, in Figure 42, DB2A is the participant for an IMS transaction, but
becomes the coordinator for the two database servers (AS1 and AS2), DB2B, and
its respective DB2 servers (DB2C, DB2D, and DB2E).

If the connection goes down between DB2A and the coordinating IMS system, the
connection becomes an indoubt thread. However, DB2A’s connections to the other
systems are still waiting and are not considered indoubt. Wait for automatic
recovery to occur to resolve the indoubt thread. When the thread is recovered, the
unit of work commits or rolls back and this action is propagated to the other
systems involved in the unit of work.

DB2A DB2B

DB2C
Server

DB2D
Server

DB2E
Server

AS1

AS2

IMS/
CICS

Figure 42. Illustration of multi-site unit of work

Chapter 20. Maintaining consistency across multiple systems 369

Illustration of multi-site update

Figure 43 illustrates a multi-site update involving one coordinator and two
participants.

Phase 1:

1. When an application commits a logical unit of work, it signals the DB2
coordinator. The coordinator starts the commit process by sending messages to
the participants to determine whether they can commit.

2. A participant (Participant 1) that is willing to let the logical unit of work be
committed, and which has updated recoverable resources, writes a log record. It
then sends a request commit message to the coordinator and waits for the final
decision (commit or roll back) from the coordinator. The logical unit of work at
the participant is now in the prepared state.

If a participant (Participant 2) has not updated recoverable resources, it sends a
forget message to the coordinator, releases its locks and forgets about the
logical unit of work. A read-only participant writes no log records. As far as this
participant is concerned, it does not matter whether the logical unit of work
ultimately gets rolled back or committed.

If a participant wants to have the logical unit of work rolled back, it writes a log
record and sends a message to the coordinator. Because a message to roll
back acts like a veto, the participant in this case knows that the logical unit of
work will be rolled back by the coordinator. The participant does not need any
more information from the coordinator and therefore rolls back the logical unit of
work, releases its locks, and forgets about the logical unit of work. (This case is
not illustrated in the figure.)

Phase 2:

3. After the coordinator receives request commit or forget messages from all its
participants, it starts the second phase of the commit process. If at least one of
the responses is request commit, the coordinator writes a log record and sends
committed messages to all the participants who responded to the prepare

Time
line

Prepare

Forget

Forget

Forget

Request
Commit

Commit

Coordinator

Phase 1 Phase 2

Participant 2

Participant 1

2 4 51 3

Figure 43. Illustration of multi-site update. C is the coordinator; P1 and P2 are the
participants.

370 Administration Guide

message with request commit. If neither the participants nor the coordinator
have updated any recoverable resources, there is no second phase and no log
records are written by the coordinator.

4. Each participant, after receiving a committed message, writes a log record,
sends a response to the coordinator, and then commits the logical unit of work.

If any participant responds with a roll back message, the coordinator writes a
log record and sends a roll back message to all participants. Each participant,
after receiving a roll back message writes a log record, sends an
acknowledgment to the coordinator, and then rolls back the logical unit of work.
(This case is not illustrated in the figure.)

5. The coordinator, after receiving the responses from all the participants that were
sent a message in the second phase, writes an ’end’ record and forgets the
logical unit of work.

It is important to remember that if you try to resolve any indoubt threads manually,
you need to know whether the participants committed or rolled back their units of
work. With this information you can make an appropriate decision regarding
processing at your site.

Chapter 20. Maintaining consistency across multiple systems 371

372 Administration Guide

Chapter 21. Backing up and recovering databases

DB2 provides means for recovering data to its current state or to an earlier state.
The units of data that can be recovered are table spaces, indexes, index spaces,
partitions, and data sets.

This chapter explains the following topics:
“Planning for backup and recovery”
“Copying page sets and data sets” on page 391
“Recovering page sets and data sets” on page 393
“Recovering the catalog and directory” on page 395
“Recovering data to a prior point of consistency” on page 396
“Recovery of dropped objects” on page 403
“Discarding SYSCOPY and SYSLGRNX records” on page 407

For all commands and utility statements, the complete syntax and parameter
descriptions can be found in DB2 Command Reference and DB2 Utility Guide and
Reference.

Planning for backup and recovery
Development at your site of backup and recovery procedures is critical in order to
avoid costly and time-consuming losses of data. You should develop procedures to:
v Create a point of consistency
v Restore system and data objects to a point of consistency
v Back up the DB2 catalog and directory and your data
v Recover the DB2 catalog and directory and your data
v Recover from out-of-space conditions
v Recover from a hardware or power failure
v Recover from an MVS component failure

In addition, you should consider a procedure for offsite recovery in case of a
disaster.

To improve recovery capability in the event of a disk failure, it is advisable to use
dual active logging and to place the copies of the active log data sets and the
bootstrap data sets on different disk volumes. These concepts are described in
“Establishing the logging environment” on page 333.

The principal tools for recovery are the utilities QUIESCE, REPORT, COPY,
RECOVER, and MERGECOPY. This section also gives an overview of these utilities
to help you with your backup and recovery planning.

This section covers the following topics, which you should consider when you plan
for backup and recovery:
v “Considerations for recovering distributed data” on page 374
v “Considerations for recovering indexes” on page 375
v “Preparing for recovery” on page 375
v “Making backup and recovery plans that maximize availability” on page 379
v “What happens during recovery” on page 376
v “How to find recovery information” on page 382
v “Preparing to recover to a prior point of consistency” on page 383
v “Preparing to recover the entire DB2 subsystem to a prior point in time” on

page 384
v “Preparing for disaster recovery” on page 385

© Copyright IBM Corp. 1982, 2001 373

v “Ensuring more effective recovery from inconsistency problems” on page 388
v “Running RECOVER in parallel” on page 390
v “Reading the log without RECOVER” on page 391

Considerations for recovering distributed data
Using distributed data, no matter where a unit of work originates, the unit is
processed as a whole at the target systems. At a DB2 server, the entire unit is
either committed or rolled back. It is not processed if it violates referential
constraints defined within the target system. Whatever changes it makes to data are
logged. A set of related table spaces can be quiesced at the same point in the log,
and image copies can be made of them simultaneously. If that is done, and if the
log is intact, any data can be recovered after a failure and be internally consistent.

However, DB2 provides no special means to coordinate recovery between different
subsystems even if an application accesses data in several systems. To guarantee
consistency of data between systems, write your applications, as usual, to do all
related updates within one unit of work.

Point-in-time recovery (to the last image copy or to an RBA) presents other
problems. You cannot control a utility in one subsystem from another subsystem. In
practice, you cannot quiesce two sets of table spaces, or make image copies of
them, in two different subsystems at exactly the same instant. Neither can you
recover them to exactly the same instant, because there are two different logs, and
a relative byte address (RBA) does not mean the same thing for both of them.

In planning, then, the best approach is to consider carefully what the QUIESCE,
COPY, and RECOVER utilities do for you and then plan not to place data that must
be closely coordinated on separate subsystems. After that, recovery planning is a
matter of agreement among database administrators at separate locations.

Because DB2 is responsible for recovering DB2 data only, it does not recover
non-DB2 data. Non-DB2 systems do not always provide equivalent recovery
capabilities.

Extended recovery facility (XRF) toleration
DB2 can be used in an XRF recovery environment with CICS or IMS. All
DB2-owned data sets (executable code, the DB2 catalog, user databases) must be
on disk shared between the primary and alternate XRF processors. In the event of
an XRF recovery, DB2 must be stopped on the primary processor and started on
the alternate. For CICS that can be done automatically, by using the facilities
provided by CICS, or manually, by the system operator. For IMS, that is a manual
operation and must be done after the coordinating IMS system has completed the
processor switch. In that way, any work that includes SQL can be moved to the
alternate processor with the remaining non-SQL work. Other DB2 work (interactive
or batch SQL and DB2 utilities) must be completed or terminated before DB2 can
be switched to the alternate processor. Consider the effect of this potential
interruption carefully when planning your XRF recovery scenarios.

Care must be taken to prevent DB2 from being started on the alternate processor
until the DB2 system on the active, failing processor terminates. A premature start
can cause severe integrity problems in data, the catalog, and the log. The use of
global resource serialization (GRS) helps avoid the integrity problems by preventing
simultaneous use of DB2 on the two systems. The bootstrap data set (BSDS) must
be included as a protected resource, and the primary and alternate XRF processors
must be included in the GRS ring.

374 Administration Guide

Considerations for recovering indexes
DB2 indexes can be recovered to currency through the REBUILD INDEX utility. The
RECOVER utility recovers indexes by restoring an image copy of the index and
then applying the log. The REBUILD INDEX utility reconstructs the indexes by
reading the appropriate rows in the table space, extracting the index keys, sorting
the keys, and then loading the index keys into the index. You can use either of
these methods. For more information on the RECOVER and REBUILD INDEX
utilities, see Part 2 of DB2 Utility Guide and Reference.

If you use the RECOVER utility for indexes, you must make several operational
changes.

v You must create or alter indexes using the SQL statement ALTER INDEX with
the option COPY YES before you can copy and recover them.

v You must make image copies of all indexes that you plan to recover using the
RECOVER utility. The COPY utility makes full image copies or concurrent copies
of indexes. Incremental copies of indexes is not supported. If full image copies of
the index are taken at timely intervals, recovering a large index might be faster
than rebuilding the index.

v You can recover indexes and table spaces in a single list using the RECOVER
utility. By using one utility statement, the logs for all of the indexes and table
spaces are processed in one pass.

The output from the DISPLAY DATABASE RESTRICT command shows the pending
states for index spaces. See DB2 Command Reference for descriptions of status
codes displayed by the DISPLAY DATABASE command.

Preparing for recovery
The RECOVER utility supports the recovery of table spaces or index spaces. In the
discussions about recovery in this chapter, the term page set can be a table space,
index space, or any combination of these.

DB2 can recover a page set by using a backup copy or the recovery log or both.
The DB2 recovery log contains a record of all changes made to the page set. If
DB2 fails, it can recover the page set by restoring the backup copy and applying
the log changes to it from the point of the backup copy.

The DB2 catalog and directory page sets must be copied at least as frequently as
the most critical user page sets. Moreover, it is your responsibility to periodically
copy the tables in the communications database (CDB), the application registration
table, the object registration table, and the resource limit facility (governor), or to
maintain the information necessary to re-create them. Plan your backup strategy
accordingly.

A recovery preparation scenario: The following backup scenario suggests how
DB2 utilities might be used:

Imagine that you are the database administrator for DBASE1. Table space
TSPACE1 in DBASE1 has been available all week. On Friday, a disk write
operation for TSPACE1 fails. You need to recover the table space to the last
consistent point before the failure occurred. You can do that because you have
regularly followed a cycle of preparations for recovery. The most recent cycle began
on Monday morning.

Chapter 21. Backing up and recovering databases 375

Monday morning: You start the DBASE1 database and make a full image copy of
TSPACE1 and all indexes immediately. That gives you a starting point from which to
recover. Use the COPY utility with the SHRLEVEL CHANGE option to improve
availability. See Part 2 of DB2 Utility Guide and Reference for more information
about the COPY utility.

Tuesday morning: You run COPY again. This time you make an incremental
image copy to record only the changes made since the last full image copy you
took on Monday. You also make a full index copy.

TSPACE1 can be accessed and updated while the image copy is being made. For
maximum efficiency, however, you schedule the image copies when online use is
minimal.

Wednesday morning: You make another incremental image copy, and then create
a full image copy by using the MERGECOPY utility to merge the incremental image
copy with the full image copy.

Thursday and Friday mornings: You make another incremental image copy and a
full index copy each morning.

Friday afternoon: An unsuccessful write operation occurs and you need to recover
the table space. Run the RECOVER utility, as described in Part 2 of DB2 Utility
Guide and Reference. The utility restores the table space from the full image copy
made by MERGECOPY on Wednesday and the incremental image copies made on
Thursday and Friday, and includes all changes made to the recovery log since
Friday morning.

Later Friday afternoon: The RECOVER utility issues a message announcing that it
has successfully recovered TSPACE1 to current point-in-time.

This imaginary scenario is somewhat simplistic. You might not have taken daily
incremental image copies on just the table space that failed. You might not
ordinarily recover an entire table space. However, it illustrates this important point:
with proper preparation, recovery from a failure is greatly simplified.

What happens during recovery
Figure 44 on page 377 shows an overview of the recovery process. To recover a
page set, the RECOVER utility typically uses these items:

v A full image copy; that is, a complete copy of the page set

v For table spaces only, any later incremental image copies; each summarizes all
the changes made to the table space from the time the previous image copy was
made

v All log records for the page set that were created since the most recent image
copy.

The RECOVER utility uses information in the SYSIBM.SYSCOPY catalog table to:

v Restore the page set with the data in the most recent full image copy (appearing,
in Figure 44 on page 377, at X'40000').

v For table spaces only, apply all the changes summarized in any later incremental
image copies. (There are two in Figure 44: X'80020' and X'C0040'.)

v Apply all changes to the page set that are registered in the log, beginning at the
log RBA of the most recent image copy. (In Figure 44, X'C0040', that address is
also stored in the SYSIBM.SYSCOPY catalog table.)

376 Administration Guide

|

If the log has been damaged or discarded, or if data has been changed erroneously
and then committed, you can recover to a particular point in time by limiting the
range of log records to be applied by the RECOVER utility.

Complete recovery cycles
In planning for recovery, you determine how often to take image copies and how
many complete cycles to keep. Those values tell how long you must keep log
records and image copies for database recovery.

In deciding how often to take image copies, consider the time needed to recover a
table space. It is determined by all of the following:
v The amount of log to traverse
v The time it takes an operator to mount and remove archive tape volumes
v The time it takes to read the part of the log needed for recovery
v The time needed to reprocess changed pages

In general, the more often you make image copies, the less time recovery takes;
but, of course, the more time is spent making copies. If you use LOG NO without
the COPYDDN keyword when you run the LOAD or REORG utilities, DB2 places
the table space in copy pending status. You must remove the copy pending status
of the table space by making an image copy before making further changes to the
data. However, if you run REORG or LOAD REPLACE with the COPYDDN
keyword, DB2 creates a full image copy of a table space during execution of the
utility, so DB2 does not place the table space in copy pending status. Inline copies
of indexes during LOAD and REORG are not supported.

If you use LOG YES and log all updates for table spaces, then an image copy of
the table space is not required for data integrity. However, taking an image copy
makes the recovery process more efficient. The process is even more efficient if
you use MERGECOPY to merge incremental image copies with the latest full image
copy. You can schedule the MERGECOPY operation at your own convenience,
whereas the need for a recovery can come upon you unexpectedly. The
MERGECOPY operation does not apply to indexes.

Recommendation: Copy your indexes after the associated utility has run. Indexes
are placed in informational copy pending (ICOPY) status after running LOAD
TABLESPACE, REORG TABLESPACE, REBUILD INDEX, or REORG INDEX
utilities. Only structural modifications of the index are logged when these utilities are
run, so there is not enough information in the log to recover the index.

Figure 44. Overview of DB2 recovery. The figure shows one complete cycle of image copies;
the SYSIBM.SYSCOPY catalog table can record many complete cycles.

Chapter 21. Backing up and recovering databases 377

Use the CHANGELIMIT option of the COPY utility to let DB2 determine when an
image copy should be performed on a table space and whether a full or incremental
copy should be taken. Use the CHANGELIMIT and REPORTONLY options together
to let DB2 recommend what types of image copies to make. When you specify both
CHANGELIMIT and REPORTONLY, DB2 makes no image copies. The
CHANGELIMIT option does not apply to indexes.

In determining how many complete copy and log cycles to keep, you are guarding
against damage to a volume containing an important image copy or a log data set.
A retention period of at least two full cycles is recommended. For further security,
keep records for three or more copy cycles.

A recovery cycle example
Table 67 suggests how often a user group with 10 locally defined table spaces (one
table per table space) might take image copies, based on frequency of updating.
Their least-frequently-copied table is EMPSALS, containing employee salary data. If
they choose to keep two complete image copy cycles on hand, then each time they
copy EMPSALS they can delete records prior to its previous copy or copies, made
two months ago. They will always have on hand between two months and four
months of log records.

In the example, the user’s most critical tables are copied daily. Hence, the DB2
catalog and directory are also copied daily.

Table 67. DB2 log management example

Table space
name Content

Update
activity

Full image
copy period

ORDERINF Invoice line: part and
quantity ordered

Heavy Daily

SALESINF Invoice description Heavy Daily

SALESQTA Quota information for
each sales person

Moderate Weekly

SALESDSC Customer descriptions Moderate Weekly

PARTSINV Parts inventory Moderate Weekly

PARTSINF Parts suppliers Light Monthly

PARTS Parts descriptions Light Monthly

SALESCOM Commission rates Light Monthly

EMPLOYEE Employee descriptive
data

Light Monthly

EMPSALS Employee salaries Light Bimonthly

If you do a full recovery, you do not need to recover the indexes unless they are
damaged. If you recover to a prior point in time, then you do need to recover the
indexes. See “Considerations for recovering indexes” on page 375 for information
on indexes.

How DFSMShsm affects your recovery environment
The Data Facility Hierarchical Storage Manager (DFSMShsm) can automatically
manage space and data availability among storage devices in your system. If you
use it, you need to know that it automatically moves data to and from the DB2
databases.

378 Administration Guide

DFSMShsm manages your disk space efficiently by moving data sets that have not
been used recently to less expensive storage. It also makes your data available for
recovery by automatically copying new or changed data sets to tape or disk. It can
delete data sets, or move them to another device. Its operations occur daily, at a
specified time, and allow for keeping a data set for a predetermined period before
deleting or moving it.

All DFSMShsm operations can also be performed manually. DFSMS/MVS:
DFSMShsm Managing Your Own Data tells how to use the DFSMShsm commands.

DFSMShsm:
v Uses cataloged data sets
v Operates on user tables, image copies, and logs
v Supports VSAM data sets

If a volume has a DB2 storage group specified, the volume should only be recalled
to like devices of the same VOLSER defined by CREATE or ALTER STOGROUP.

DB2 can recall user page sets that have been migrated. Whether DFSMShsm recall
occurs automatically is determined by the values of the RECALL DATABASE and
RECALL DELAY fields of installation panel DSNTIPO. If the value of the RECALL
DATABASE field is NO, automatic recall is not performed and the page set is
considered an unavailable resource. It must be recalled explicitly before it can be
used by DB2. If the value of the RECALL DATABASE field is YES, DFSMShsm is
invoked to recall the page sets automatically. The program waits for the recall for
the amount of time specified by the RECALL DELAY parameter. If the recall is not
completed within that time, the program receives an error message indicating the
page set is unavailable but that recall was initiated.

The deletion of DFSMShsm migrated data sets and the DB2 log retention period
must be coordinated with use of the MODIFY utility. If not, you could need recovery
image copies or logs that have been deleted. See “Discarding archive log records”
on page 343 for suggestions.

Making backup and recovery plans that maximize availability
You need to develop a plan for backup and recovery, and you need to become
familiar enough with that plan so that when an outage occurs, you can get back in
operation as quickly as possible. This topic contains some factors to consider when
you develop and implement your plan.

Decide on the level of availability you need: To do this, start by determining the
primary types of outages you are likely to experience. Then, for each of those types
of outages, decide on the maximum amount of time that you can spend on
recovery. Consider the trade-off between cost and availability. Recovery plans for
continuous availability are very costly, so you need to think about what percentage
of the time your systems really need to be available.

Practice for recovery: You cannot know whether a backup and recovery plan is
workable unless you practice it. In addition, the pressure of a recovery situation can
cause mistakes. The best way to minimize mistakes is to practice your recovery
scenario until you know it well. The best time to practice is outside of regular
working hours, when fewer key applications are running.

Minimize preventable outages: One aspect of your backup and recovery plan
should be eliminating the need to recover whenever possible. One way to do that is

Chapter 21. Backing up and recovering databases 379

to prevent outages caused by errors in DB2. Be sure to check available
maintenance often and apply fixes for problems that are likely to cause outages.

Determine the required backup frequency: Use your recovery criteria to decide
how often to make copies of your databases. For example, if the maximum
acceptable recovery time after you lose a volume of data is two hours, your
volumes typically hold about 4 GB of data, and you can read about 2 GB of data
per hour, then you should make copies after every 4 GB of data written. You can
use the COPY option SHRLEVEL CHANGE or DFSMSdss concurrent copy to make
copies while transactions and batch jobs are running. You should also make a copy
after running jobs that make large numbers of changes. In addition to copying your
table spaces, you should also consider copying your indexes.

You can make additional backup image copies from a primary image copy by using
the COPYTOCOPY utility. This capability is especially useful when the backup
image is copied to a remote site that is to be used as a disaster recovery site for
the local site. Applications can run concurrently with the COPYTOCOPY utility. Only
utilities that write to the SYSCOPY catalog table cannot run concurrently with
COPYTOCOPY.

Minimize the elapsed time of RECOVER jobs: The RECOVER utility supports the
recovery of a list of objects in parallel. For those objects in the list that can be
processed independently, multiple subtasks are created to restore the image copies
for the objects. The image copies must be on disk for the parallel function to be
available. If an object that is on tape is encountered in the list, then processing for
the remainder of the list waits until the processing of the tape object has completed.

Minimize the elapsed time for copy jobs: You can use the COPY utility to make
image copies of a list of objects in parallel. To take advantage of parallelism, image
copies must be made to disk.

Determine the right characteristics for your logs:

v If you have enough disk space, use more and larger active logs. Recovery from
active logs is quicker than from archive logs.

v To speed recovery from archive logs, consider archiving to disk.

v If you archive to tape, be sure you have enough tape drives that DB2 does not
have to wait for an available drive on which to mount an archive tape during
recovery.

v Make the buffer pools and the log buffers large enough to be efficient.

Minimize DB2 restart time: Many recovery processes involve restart of DB2. You
need to minimize the time that DB2 shutdown and startup take.

For non-data-sharing systems, you can limit the backout activity during DB2 system
restart. You can postpone the backout of long running URs until after the DB2
system is operational. See “Deferring restart processing” on page 354 for an
explanation of how to use the installation options LIMIT BACKOUT and BACKOUT
DURATION to determine what backout work will be delayed during restart
processing.

These are some major factors that influence the speed of DB2 shutdown:

v Number of open DB2 data sets

During shutdown, DB2 must close and deallocate all data sets it uses if the fast
shutdown feature has been disabled. The default is to use the fast shutdown

380 Administration Guide

|
|
|
|
|
|

feature. Contact your IBM service representative for information on enabling and
disabling the fast shutdown feature. The maximum number of concurrently open
data sets is determined by the DB2 subsystem parameter DSMAX. Closing and
deallocation of data sets generally takes .1 to .3 seconds per data set. See Part
5 (Volume 2) of DB2 Administration Guide for information on how to choose an
appropriate value for DSMAX.

Be aware that MVS global resource serialization (GRS) can increase the time to
close DB2 data sets. If your DB2 data sets are not shared among more than one
MVS system, set the GRS RESMIL parameter value to OFF or place the DB2
data sets in the SYSTEMS exclusion RNL. See OS/390 MVS Planning: Global
Resource Serialization for details.

v Active threads

DB2 cannot shut down until all threads have terminated. Issue the DB2
command -DISPLAY THREAD to determine if there are any active threads while
DB2 is shutting down. If possible, cancel those threads.

v Processing of SMF data

At DB2 shutdown, MVS does SMF processing for all DB2 data sets opened since
DB2 startup. You can reduce the time that this processing takes by setting the
MVS parameter DDCONS(NO).

These major factors influence the speed of DB2 startup:

v DB2 checkpoint interval

The DB2 checkpoint interval creates a number of log records that DB2 writes
between successive checkpoints. This value is controlled by the DB2 subsystem
parameter CHKFREQ. The default of 50000 results in the fastest DB2 startup
time in most cases.

You can use the LOGLOAD or CHKTIME option of the SET LOG command to
modify the CHKFREQ value dynamically without recycling DB2. The value you
specify depends on your restart requirements. See “Changing the checkpoint
frequency dynamically” on page 340 for examples of how you might use these
command options. See Chapter 2 of DB2 Command Reference for detailed
information about the SET LOG command.

v Long running units of work

DB2 rolls back uncommitted work during startup. The amount of time for this
activity is roughly double the time that the unit of work was running before DB2
shut down. For example, if a unit of work runs for two hours before a DB2 abend,
it will take at least four hours to restart DB2. Decide how long you can afford for
startup, and avoid units of work that run for more than half that long.

You can use accounting traces to detect long running units of work. For tasks
that modify tables, divide the elapsed time by the number of commit operations
to get the average time between commit operations. Add commit operations to
applications for which this time is unacceptable.

Recommendation
To detect long running units of recovery, enable the UR CHECK FREQ
option of installation panel DSNTIPN. If long running units of recovery are
unavoidable, consider enabling the LIMIT BACKOUT option on installation
panel DSNTIPN.

v Size of active logs

If you archive to tape, you can avoid unnecessary startup delays by making each
active log big enough to hold the log records for a typical unit of work. This

Chapter 21. Backing up and recovering databases 381

|
|
|
|

|
|
|
|
|
|

|
|
|
|

lessens the probability that DB2 will have to wait for tape mounts during startup.
See Part 5 (Volume 2) of DB2 Administration Guide for more information on
choosing the size of the active logs.

How to find recovery information
This section contains guidance on locating and reporting information needed for
recovery.

Where recovery information resides
Information needed for recovery is contained in these locations:

v SYSIBM.SYSCOPY, a catalog table, contains information about full and
incremental image copies. If concurrent updates were allowed when making the
copy, the log RBA corresponds to the image copy start time; otherwise, it
corresponds to the end time. The RECOVER utility uses the log RBA to look for
log information after restoring the image copy. The SYSCOPY catalog table also
contains information recorded by the COPYTOCOPY utility.

SYSCOPY also contains entries with the same kinds of log RBAs recorded by
the utilities QUIESCE, REORG, LOAD, REBUILD INDEX, RECOVER TOCOPY,
and RECOVER TORBA (or TOLOGPOINT). For a summary of the information
contained in the DB2 catalog tables, see Appendix D of DB2 SQL Reference.

When the REORG utility is used, the time at which DB2 writes the log RBA to
SYSIBM.SYSCOPY depends on the value of the SHRLEVEL parameter:

– For SHRLEVEL NONE, the log RBA is written at the end of the reload phase.

If a failure occurs before the end of the reload phase, the RBA is not written
to SYSCOPY.

If a failure occurs after the reload phase is complete (and thus, after the log
RBA is written to SYSCOPY), the RBA is not backed out of SYSCOPY.

– For SHRLEVEL REFERENCE and SHRLEVEL CHANGE, the log RBA is
written at the end of the switch phase.

If a failure occurs before the end of the switch phase, the RBA is not written
to SYSCOPY.

If a failure occurs after the switch phase is complete (and thus, after the log
RBA is written to SYSCOPY), the RBA is not backed out of SYSCOPY.

The log RBA is put in SYSCOPY whether the LOG option is YES or NO, or
whether the UNLOAD PAUSE option is indicated.

When DSNDB01.DBD01, DSNDB01.SYSUTILX, and DSNDB06.SYSCOPY are
quiesced or copied, a SYSCOPY record is created for each table space and any
associated index that has the COPY YES attribute. For recovery reasons, the
SYSCOPY records for these three objects are placed in the log.

v SYSIBM.SYSLGRNX, a directory table, contains records of the log RBA ranges
used during each period of time that any recoverable page set is open for
update. Those records speed recovery by limiting the scan of the log for changes
that must be applied.

If you discard obsolete image copies, you should consider removing their records
from SYSIBM.SYSCOPY and the obsolete log ranges from SYSIBM.SYSLGRNX.
“Discarding SYSCOPY and SYSLGRNX records” on page 407 describes the
process.

Reporting recovery information
You can use the REPORT utility in planning for recovery. REPORT provides
information necessary for recovering a page set. REPORT displays:

382 Administration Guide

|
|

v Recovery information from the SYSIBM.SYSCOPY catalog table
v Log ranges of the table space from the SYSIBM.SYSLGRNX directory
v Archive log data sets from the bootstrap data set
v The names of all members of a table space set

You can also use REPORT to obtain recovery information about the catalog and
directory.

Details about the REPORT utility and examples showing the results obtained when
using the RECOVERY option are contained in Part 2 of DB2 Utility Guide and
Reference .

Preparing to recover to a prior point of consistency
The major steps in preparing to recover to a particular point in time are:
1. Release the data from any exception status.
2. Copy the data, taking appropriate precautions about concurrent activity.
3. Immediately after, establish a point when the data is consistent and no unit of

work is changing it.

With that preparation, recovery to the point of consistency is as quick and simple as
possible. DB2 begins recovery with the copy you made and reads the log only up to
the point of consistency. At that point, there are no indoubt units of recovery to
hinder restarting.

Step 1: Resetting exception status
You can use the DISPLAY DATABASE RESTRICT command to determine whether
the data is in an exception status. See Appendix C of DB2 Utility Guide and
Reference for instructions on resetting those states.

Step 2: Copying the data
You can copy the data and also establish a point of consistency for a list of objects,
in one operation, by using the COPY utility with the option SHRLEVEL
REFERENCE. That operation allows only read access to the data while it is copied.
The data is consistent at the moment when copying starts and remains consistent
until copying ends. The advantage of the method is that the data can be restarted
at a point of consistency by restoring the copy only, with no need to read log
records. The disadvantage is that updates cannot be made throughout the entire
time that the data is being copied.

You can use the CONCURRENT option of the COPY utility to make a backup, with
DFSMSdss concurrent copy, that is recorded in the DB2 catalog. For more
information about using this option, see DB2 Utility Guide and Reference.

Copying data while updates occur is not recommended. However, to allow
updates while the data is being copied, you can:

v Use the COPY utility with the option SHRLEVEL CHANGE.

v Use an offline program to copy the data, such as DSN1COPY, DFSMShsm, or
disk dump.

If you allow updates while copying, then step 3 is essential. With concurrent
updates, the copy can include uncommitted changes. Those might be backed out
after copying ends. Thus, the copy is not necessarily consistent data, and recovery
cannot rely on the copy only. Recovery requires reading the log up to a point of
consistency, so you want to establish such a point as soon as possible.

Chapter 21. Backing up and recovering databases 383

Step 3: Establishing a point of consistency
Use the QUIESCE utility also to establish a single point of consistency (a quiesce
point) for one or more page sets. Typically, you name all the table spaces in a table
space set that you want recovered to the same point in time to avoid referential
integrity violations. Or you can use the QUIESCE utility with the TABLESPACESET
keyword for RI-related tables. The following statement quiesces two table spaces in
database DSN8D71A:
QUIESCE TABLESPACE DSN8D71A.DSN8S71E

TABLESPACE DSN8D71A.DSN8S71D

QUIESCE writes changed pages from the page set to disk. The catalog table
SYSIBM.SYSCOPY records the current RBA and the timestamp of the quiesce
point. At that point, neither page set contains any uncommitted data. A row with
ICTYPE Q is inserted into SYSCOPY for each table space quiesced. Page sets
DSNDB06.SYSCOPY, DSNDB01.DBD01, and DSNDB01.SYSUTILX, are an
exception: their information is written to the log. Indexes are quiesced automatically
when you specify WRITE(YES) on the QUIESCE statement. A SYSIBM.SYSCOPY
row with ICTYPE Q is inserted for indexes that have the COPY YES attribute.

QUIESCE allows concurrency with many other utilities; however, it does not allow
concurrent updates until it has quiesced all specified page sets. Depending upon
the amount of activity, that can take considerable time. Try to run QUIESCE when
system activity is low.

Also, consider using the MODE(QUIESCE) option of the ARCHIVE LOG command
when planning for offsite recovery. It creates a system-wide point of consistency,
which can minimize the number of data inconsistencies when the archive log is
used with the most current image copy during recovery. See “Archiving the log” on
page 337 for more information about using the MODE(QUIESCE) option of the
ARCHIVE LOG command.

Preparing to recover the entire DB2 subsystem to a prior point in time
Under certain circumstances, you might want to reset the entire DB2 subsystem to
a point of consistency. You can prepare a point of consistency by using the
following procedure:

1. Display and resolve any indoubt units of recovery.

2. Use COPY to make image copies of all data, both user data and DB2 catalog
and directory table spaces and optionally indexes. Copy SYSLGRNX and
SYSCOPY last. Install job DSNTIJIC creates image copies of the DB2 catalog
and directory table spaces. If you decide to copy your directory and catalog
indexes, modify job DSNTIJIC to include those indexes. See Part 2 of DB2
Installation Guide for a description of job DSNTIJIC.

Alternatively, you can use an offline method to copy the data. In that case, stop
DB2 first; that is, do step 3 before step 2. If you do not stop DB2 before
copying, you might have trouble restarting after restoring the system. If you do a
volume restore, verify that the restored data is cataloged in the integrated
catalog facility catalog. Use the access method services LISTCAT command to
get a listing of the integrated catalog.

3. Stop DB2 by the command -STOP DB2 MODE (QUIESCE). DB2 does not
actually stop until all currently executing programs have completed processing.
Be sure to use MODE (QUIESCE); otherwise, I/O errors can occur when the
steps listed in “Performing the fall back to a prior shutdown point” on page 495
are used to restart DB2.

384 Administration Guide

4. When DB2 has stopped, use access method services EXPORT to copy all
BSDS and active log data sets. If you have dual BSDSs or dual active log data
sets, export both copies of the BSDS and the logs.

5. Save all the data that has been copied or dumped, and protect it and the
archive log data sets from damage.

Preparing for disaster recovery
In the case of a total loss of a DB2 computing center, you can recover on another
DB2 system at a recovery site. To do this, you must regularly back up the data sets
and the log for recovery. As with all data recovery operations, the objectives of
disaster recovery are to lose as little data, workload processing (updates), and time
as possible.

You can provide shorter restart times after system failures by using the installation
options LIMIT BACKOUT and BACKOUT DURATION. These options postpone the
backout processing of long running URs during DB2 restart. See Part 2 of DB2
Installation Guide for the details on how to use these parameters.

Data sharing
In a data sharing environment, you can use the LIGHT(YES) parameter to
quickly bring up a DB2 member to recover retained locks. Restart light is not
recommended for a restart in place and is intended only for a cross-system
restart for a system that does not have adequate capacity to sustain the DB2
IRLM pair. Restart light can be used for normal restart and recovery. See
Chapter 5 of DB2 Data Sharing: Planning and Administration for more details.

For data sharing, you need to consider whether you want the DB2 group to
use light mode at the recovery site. A light start might be desirable if you have
configured only minimal resources at the remote site. If this is the case, you
might run a subset of the members permanently at the remote site. The other
members are restarted and then directly shutdown. The procedure for a light
start at the remote site is:

1. Start the members that run permanently with the LIGHT(NO) option. This
is the default.

2. Start other members with LIGHT(YES). The members started with
LIGHT(YES) use a smaller storage footprint. After their restart processing
completes, they automatically shutdown. If ARM is in use, ARM does not
automatically restart the members with LIGHT(YES) again.

3. Members started with LIGHT(NO) remain active and are available to run
new work.

To keep ECSA storage consumption to a minimum, DB2 autostarts IRLM with
PC = YES when restart light is invoked.

There are several levels of preparation for disaster recovery:

v Prepare the recovery site to recover to a fixed point in time.

For example, you could copy everything weekly with a DFSMSdss volume dump
(logical) and manually send it to the recovery site, then restore the data there.

v For recovery through the last archive, copy and send the following objects to the
recovery site as you produce them:
– Image copies of all catalog, directory, and user page sets
– Archive logs

Chapter 21. Backing up and recovering databases 385

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

– Integrated catalog facility catalog EXPORT and list
– BSDS lists

With this approach you can determine how often you want to make copies of
essential recovery elements and send them to the recovery site.

Once you establish your copy procedure and have it operating, you must prepare
to recover your data at the recovery site. See “Remote site recovery from
disaster at a local site” on page 449 for step-by-step instructions on the disaster
recovery process.

v Use the log capture exit to capture log data in real time and send it to the
recovery site. See “Reading log records with the log capture exit” on page 980
and “Log capture routines” on page 944.

System-wide points of consistency
In any disaster recovery scenario, system-wide points of consistency are necessary
for maintaining data integrity and preventing a loss of data. There is a direct
relationship between the frequency with which you make and send copies to the
recovery site and the amount of data that you could potentially lose.

Figure 45 is an overview of the process of preparing to bring DB2 up at a recovery
site.

Essential disaster recovery elements
Following is a list of essential disaster recovery elements and the steps you need to
take to create them. You must determine how often to make copies and send them
to the recovery site.

v Image copies

1. Make copies of your data sets and DB2 catalogs and directories.

Use the COPY utility to make copies for the local subsystem and additional
copies for disaster recovery. You can also use the COPYTOCOPY utility to
make additional image copies from the primary image copy made by the
COPY utility. Install your local subsystem with the LOCALSITE option of the
SITE TYPE field on installation panel DSNTIPO. Use the RECOVERYDDN

*Local site time line

Recovery site time line

Disaster

Full copy
archive log

Archive
log

Archive
log

Incremental
copy

archive log

Archive
log

Take tapes
to the

recovery site

Data range
lost with
first level

of recovery

Start
DB2

Recover
DB2

Figure 45. Preparing for disaster recovery. The information you need to recover is contained
in the copies of data (including the DB2 catalog and directory) and the archive log data sets.

386 Administration Guide

|
|
|

option when you run COPY to make additional copies for disaster recovery.
You can use those copies on any DB2 subsystem that you have installed
using the RECOVERYSITE option.8

For information about making multiple image copies, see COPY and
COPYTOCOPY in Part 2 of DB2 Utility Guide and Reference. Do not produce
the copies by invoking COPY twice.

2. Catalog the image copies if you want to track them.

3. Create a QMF report or use SPUFI to issue a SELECT statement to list the
contents of SYSCOPY.

4. Send the image copies and report to the recovery site.

5. Record this activity at the recovery site when the image copies and the report
are received.

All table spaces should have valid image copies. Indexes can have valid
image copies or they can be rebuilt from the table spaces.

v Archive logs

1. Make copies of the archive logs for the recovery site.

a. Use the ARCHIVE LOG command to archive all current DB2 active log
data sets. For more ARCHIVE LOG command information see “Archiving
the log” on page 337.

Recommendation: When using dual logging, keep both copies of the
archive log at the local site in case the first copy becomes unreadable. If
the first copy is unreadable, DB2 requests the second copy. If the second
copy is not available, the read fails.

However, if you take precautions when using dual logging, such as
making another copy of the first archive log, you can send the second
copy to the recovery site. If recovery is necessary at the recovery site,
specify YES for the READ COPY2 ARCHIVE field on installation panel
DSNTIPO. Using this option causes DB2 to request the second archive
log first.

b. Catalog the archive logs if you want to track them.

You will probably need some way to track the volume serial numbers and
data set names. One way of doing this is to catalog the archive logs to
create a record of the necessary information. You could also create your
own tracking method and do it manually.

2. Use the print log map utility to create a BSDS report.

3. Send the archive copy, the BSDS report, and any additional information about
the archive log to the recovery site.

4. Record this activity at the recovery site when the archive copy and the report
are received.

v Integrated catalog facility catalog backups

1. Back up all DB2-related integrated catalog facility catalogs with the VSAM
EXPORT command on a daily basis.

2. Synchronize the backups with the cataloging of image copies and archives.

3. Use the VSAM LISTCAT command to create a list of the DB2 entries.

4. Send the EXPORT backup and list to the recovery site.

8. You can also use these copies on a subsystem installed with the LOCALSITE option if you run RECOVER with the
RECOVERYSITE option. Or you can use copies prepared for the local site on a recovery site, if you run RECOVER with the option
LOCALSITE.

Chapter 21. Backing up and recovering databases 387

5. Record this activity at the recovery site when the EXPORT backup and list
are received.

v DB2 libraries

1. Back up DB2 libraries to tape when they are changed. Include the SMP/E,
load, distribution, and target libraries, as well as the most recent user
applications and DBRMs.

2. Back up the DSNTIJUZ job that builds the ZPARM and DECP modules.

3. Back up the data set allocations for the BSDS, logs, directory, and catalogs.

4. Document your backups.

5. Send backups and corresponding documentation to the recovery site.

6. Record activity at the recovery site when the library backup and
documentation are received.

For disaster recovery to be successful, all copies and reports must be updated and
sent to the recovery site regularly. Data will be up to date through the last archive
sent. For disaster recovery start up procedures, see “Remote site recovery from
disaster at a local site” on page 449.

Ensuring more effective recovery from inconsistency problems
The DB2 RECOVER utility is often the quickest and easiest method of resolving
data inconsistency problems. However, these problems can involve data that the
RECOVER utility needs to use, such as the recovery log or image copy data sets. If
the data needed by the RECOVER utility is damaged or unavailable, you might
have to resolve the problem manually.

Actions to take
To aid in successful recovery of inconsistent data:

v During the installation of, or migration to, Version 7, make a full image copy
of the DB2 directory and catalog using installation job DSNTIJIC.

See Part 2 of DB2 Installation Guide for DSNTIJIC information. If you did not do
this during installation or migration, use the COPY utility, described in Part 2 of
DB2 Utility Guide and Reference, to make a full image copy of the DB2 catalog
and directory. If you do not do this and you subsequently have a problem with
inconsistent data in the DB2 catalog or directory, you will not be able to use the
RECOVER utility to resolve the problem.

v Periodically make an image copy of the catalog, directory, and user
databases.

This minimizes the time the RECOVER utility requires to perform recovery. In
addition, this increases the probability that the necessary archive log data sets
will still be available. You should keep two copies of each level of image copy
data set. This reduces the risk involved if one image copy data set is lost or
damaged. See Part 2 of DB2 Utility Guide and Reference for more information
about using the COPY utility.

v Use dual logging for your active log, archive log, and bootstrap data sets.

This increases the probability that you can recover from unexpected problems. It
is especially useful in resolving data inconsistency problems. See “Establishing
the logging environment” on page 333 for related dual logging information.

v Before using RECOVER, rename your data sets.

If the image copy or log data sets are damaged, you can compound your
problem by using the RECOVER utility. Therefore, before using RECOVER,
rename your data sets by using one of the following methods:
– rename the data sets that contain the page sets you want to recover, or

388 Administration Guide

– copy your data sets using DSN1COPY, or
– for user-defined data sets, use access method services to define a new data

set with the original name.

The RECOVER utility applies log records to the new data set with the old name.
Then, if a problem occurs during RECOVER utility processing, you will have a
copy (under a different name) of the data set you want to recover.

v Keep back-level image copy data sets.

If you make an image copy of a page set containing inconsistent data, the
RECOVER utility cannot resolve the data inconsistency problem. However, you
can use RECOVER TOCOPY or TOLOGPOINT to resolve the inconsistency if
you have an older image copy of the page set that was taken before the problem
occurred. You can also resolve the inconsistency problem by using a
point-in-time recovery to avoid using the most recent image copy.

v Maintain consistency between related objects.

A referential structure is a set of tables including indexes and their relationships.
It must include at least one table, and for every table in the set, include all of the
relationships in which the table participates, as well as all the tables to which it is
related. To help maintain referential consistency, keep the number of table
spaces in a table space set to a minimum, and avoid tables of different
referential structures in the same table space. The TABLESPACESET option of
the REPORT utility reports all members of a table space set defined by
referential constraints.

A referential structure must be kept consistent with respect to point-in-time
recovery. Use the QUIESCE utility to establish a point of consistency for a table
space set, to which the table space set can later be recovered without
introducing referential constraint violations.

A base table space must be kept consistent with its associated LOB table spaces
with respect to point-in-time recovery. Use the TABLESPACESET option of the
REPORT utility to find all LOB table spaces associated with a base table space.
Use the QUIESCE utility to establish a point of consistency, for a table space set,
to which the table space set can later be recovered.

Actions to avoid
v Do not discard archive logs you might need.

The RECOVER utility might need an archive log to recover from an inconsistent
data problem. If you have discarded it, you cannot use the RECOVER utility and
must resolve the problem manually. For information about determining when you
can discard archive logs, see “Discarding archive log records” on page 343.

v Do not make an image copy of a page set that contains inconsistent data.

If you use the COPY utility to make an image copy of a page set containing
inconsistent data, the RECOVER cannot recover a problem involving that page
set unless you have an older image copy of that page set taken before the
problem occurred. You can run DSN1COPY with the CHECK option to determine
whether intra-page data inconsistency problems exist on page sets before
making image copies of them. If you are taking a copy of a catalog or directory
page set, you can run DSN1CHKR which verifies the integrity of the links, and
the CHECK DATA utility which checks the DB2 catalog (DSNDB06). For
information, see DB2 Utility Guide and Reference.

v Do not use the TERM UTILITY command on utility jobs you want to restart.

If an error occurs while a utility is running, the data on which the utility was
operating might continue to be written beyond the commit point. If the utility is
restarted later, processing resumes at the commit point or at the beginning of the

Chapter 21. Backing up and recovering databases 389

|

current phase, depending on the restart parameter that was specified. If the utility
stops while it has exclusive access to data, other applications cannot access that
data. In this case, you might want to issue the TERM UTILITY command to
terminate the utility and make the data available to other applications. However,
use the TERM UTILITY command only if you cannot restart or do not need to
restart the utility job.

When you issue the TERM UTILITY command, two different situations can occur:
– If the utility is active, it terminates at its next commit point.
– If the utility is stopped, it terminates immediately.

If you use the TERM UTILITY command to terminate a utility, the objects on
which the utility was operating are left in an indeterminate state. Often, the same
utility job cannot be rerun. The specific considerations vary for each utility,
depending on the phase in process when you issue the command. For details,
see Part 2 of DB2 Utility Guide and Reference.

Running RECOVER in parallel
You can schedule jobs with the RECOVER utility in two ways:

v Use the PARALLEL keyword on the RECOVER utility to support the recovery of
a list of objects in parallel. For those objects in the list that can be processed
independently, multiple subtasks are created to restore the image copies for the
objects. The image copies must be on disk for the parallel function to be
available; however, parallelism is not affected if the copy on disk has been
migrated to tape by DFSMShsm. If an object that is on tape is encountered in the
list, then processing for the remainder of the list will pause until the object being
restored from tape completes.

When you use one utility statement to recover indexes and table spaces, the logs
for all indexes and tables spaces are processed in one pass. This approach
results in a significant performance advantage, especially when the required
archive log data is on tape or the fast log apply function is enabled, or both of
these conditions occur.

v Schedule concurrent RECOVER jobs that process different partitions. The degree
of parallelism in this case is limited by contention for both the image copies and
the required log data.

Image copies that reside on disk are read in parallel. Image copies that reside on
tape are read serially by each RECOVER job in turn.

Log data is read by concurrent jobs as follows:

– Active logs and archive logs on disk are read entirely in parallel.

– A data set controlled by DFSMShsm is first recalled. It then resides on disk
and is read in parallel.

– A non-DFSMShsm data set that must be read from tape is read sequentially
by each job in turn. As soon as one job finishes with a tape, the next job
gains control and begins reading the same tape. Different jobs can read
different log tapes in parallel. DB2 optimizes the tape handling process.

Using fast log apply during RECOVER
The RECOVER utility automatically uses the fast log apply process during the
LOGAPPLY phase if fast log apply has been enabled on the DB2 subsystem. For
detailed information about defining storage for the sort used in fast log apply
processing, see the Log Apply Storage field on panel DSNTIPL in DB2 Installation
Guide.

390 Administration Guide

|

Reading the log without RECOVER
The DATA CAPTURE(CHANGES) clause of the SQL statements CREATE TABLE
and ALTER TABLE captures all SQL data changes made to the table on the DB2
log. The captured data can be propagated to an IMS subsystem or remain in the
DB2 log. This allows the creation of duplicate data for recovery purposes. Although
SQL changes to tables defined for data capture are supported from any subsystem,
propagation is permitted only to an IMS subsystem. For further information see
“Appendix C. Reading log records” on page 957.

Data written to the log for propagation to IMS uses an expanded format that is
much longer than the DB2 internal format. Using DATA CAPTURE(CHANGES) can
greatly increase the size of your log.

Copying page sets and data sets
You can use the COPY utility to copy data from a page set to an MVS sequential
data set on disk or tape. It makes a full or incremental image copy, as you choose,
and it can be used to make copies that will be used for local or offsite recovery
operations. Use the COPYTOCOPY utility to make additional image copies from a
primary image copy that you made with the COPY utility.

A full image copy is required for indexes. For information about copying indexes,
see “Considerations for recovering indexes” on page 375.

You can use the CONCURRENT option of the COPY utility to make a copy, with
DFSMSdss concurrent copy, that is recorded in the DB2 catalog. For more
information about using this option, see DB2 Utility Guide and Reference.

Use the MERGECOPY utility to merge several image copies. MERGECOPY does
not apply to indexes.

The CHANGELIMIT option of the COPY utility causes DB2 to make an image copy
automatically when a table space has changed past a default limit or a limit you
specify. DB2 determines whether to make a full or incremental image copy. DB2
makes an incremental image copy if the percent of changed pages is greater than
the low CHANGELIMIT value and less than the high CHANGELIMIT value. DB2
makes a full image copy if the percent of changed pages is greater than or equal to
the high CHANGELIMIT value. The CHANGELIMIT option does not apply to
indexes.

If you want DB2 to recommend what image copies should be made but not make
the image copies, use the CHANGELIMIT and REPORTONLY options of the COPY
utility.

If you specify the parameter DSNUM ALL with CHANGELIMIT and REPORTONLY,
DB2 reports information for each partition of a partitioned table space or each piece
of a nonpartitioned table space.

You can add conditional code to your jobs so that an incremental or full image copy,
or some other step is performed depending on how much the table space has
changed. When you use the COPY utility with the CHANGELIMIT option to display
image copy statistics, the COPY utility uses the following return codes to indicate
the degree that a table space or list of table spaces has changed:

Code Meaning

Chapter 21. Backing up and recovering databases 391

|
|

1 Successful and no CHANGELIMIT value is met. No image copy is
recommended or taken.

2 Successful and the percent of changed pages is greater than the low
CHANGELIMIT value and less than the high CHANGELIMIT value. An
incremental image copy is recommended or taken.

3 Successful and the percent of changed pages is greater than or equal to
the high CHANGELIMIT value. A full image copy is recommended or taken.

When you use generation data groups (GDGs) and need to make an incremental
image copy, there are new steps you can take to prevent an empty image copy
output data set from being created if no pages have been changed. You can do the
following:

v Make a copy of your image copy step, but add the REPORTONLY and
CHANGELIMIT options to the new COPY utility statement. The REPORTONLY
keyword specifies that you only want image copy information displayed. Change
the SYSCOPY DD card to DD DUMMY so that no output data set is allocated.
Run this step to visually determine the change status of your table space.

v Add this step before your existing image copy step, and add a JCL conditional
statement to examine the return code and execute the image copy step if the
table space changes meet either of the CHANGELIMIT values.

You can also use the COPY utility with the CHANGELIMIT option to determine
whether any space map pages are broken, or to identify any other problems that
might prevent an image copy from being taken, such as the object being in recover
pending status. You need to correct these problems before you run the image copy
job.

You can also make a full image copy when you run the LOAD or REORG utility.
This technique is better than running the COPY utility after the LOAD or REORG
utility because it decreases the time that your table spaces are unavailable.
However, only the COPY utility makes image copies of indexes.

Related information: For guidance in using COPY and MERGECOPY and making
image copies during LOAD and REORG, see Part 2 of DB2 Utility Guide and
Reference.

Backing up with DFSMS: The concurrent copy function of Data Facility Storage
Management Subsystem (DFSMS) can copy a data set concurrently with access by
other processes, without significant impact on application performance. The function
requires the 3990 Model 3 controller with the extended platform.

There are two ways to use the concurrent copy function of Data Facility Storage
Management Subsystem (DFSMS):

v Run the COPY utility with the CONCURRENT option. DB2 records the resulting
image copies in SYSIBM.SYSCOPY. To recover with these DFSMS copies, you
can run the RECOVER utility to restore those image copies and apply the
necessary log records to them to complete recovery.

v Make copies using DFSMS outside of DB2’s control. To recover with these
copies, you must manually restore the data sets, and then run RECOVER with
the LOGONLY option to apply the necessary log records.

Backing up with RVA storage control or Enterprise Storage Server™ : IBM’s
RAMAC® Virtual Array (RVA) storage control with the peer-to-peer remote copy
(PPRC) function or Enterprise Storage Server provides a faster method of

392 Administration Guide

recovering DB2 subsystems at a remote site in the event of a disaster at the local
site. You can use RVAs, PPRC, and the RVA fast copy function, SnapShot, to
create entire DB2 subsystem backups to a point-in-time on a hot stand-by remote
site without interruption of any application process. Another option is to use the
Enterprise Storage Server FlashCopy function to create point-in-time backups of
entire DB2 subsystems.

To use RVA SnapShot or Enterprise Storage Server FlashCopy for a DB2 backup
requires a method of suspending all update activity for a DB2 subsystem to make a
remote copy of the entire subsystem without quiescing the update activity at the
primary site. Use the SUSPEND option on the -SET LOG command to suspend all
logging activity at the primary site which also prevents any database updates. After
the remote copy has been created, use the RESUME option on the -SET LOG
command to return to normal logging activities. See the DB2 Command Reference
for more details on using the -SET LOG command. For more information about
RVA, see IBM RAMAC Virtual Array. For more information on using PPRC, see
RAMAC Virtual Array: Implementing Peer-to-Peer Remote Copy. For more
information about Enterprise Storage Server and the FlashCopy function, see
Enterprise Storage Server Introduction and Planning.

Recovering page sets and data sets
You can recover objects in either of these ways:

v If you made backup copies of table spaces using the COPY utility, the
COPYTOCOPY utility, or the inline copy feature of the LOAD or REORG utility,
use the RECOVER utility to restore the objects to the current or a previous state.
Backup copies of indexes are made using the DB2 COPY utility.

v If you made backup copies using a method outside of DB2’s control, such as
with DSN1COPY or the DFSMSdss concurrent copy function, use the same
method to restore the objects to a prior point in time. Then, if you wish to restore
the objects to currency, run the RECOVER utility with the LOGONLY option.

The RECOVER utility performs these actions:
v Restores the most current full image copy
v Applies changes recorded in later incremental image copies of table spaces, if

applicable, and applies later changes from the archive or active log

RECOVER can act on:
v A table space, or list of table spaces
v An index, or list of indexes
v A mixed list of table spaces and indexes
v A specific partition within an index space
v A single page
v A page range within a table space that DB2 has found in error
v The catalog and directory

Typically, RECOVER restores an object to its current state by applying all image
copies and log records. It can also restore to a prior state, meaning one of the
following:
v A specified point on the log (use the TORBA or TOLOGPOINT keyword)
v A particular image copy (use the TOCOPY keyword)

The RECOVER utility can use image copies for the local site or the recovery site,
regardless of where you invoke the utility. The RECOVER utility locates all full and
incremental image copies.

Chapter 21. Backing up and recovering databases 393

|
|

The RECOVER utility first attempts to use the primary image copy data set. If an
error is encountered (allocation, open, or I/O), RECOVER attempts to use the
backup image copy if it is present. If an error is encountered with the backup copy,
RECOVER falls back to an earlier recoverable point.

For guidance in using RECOVER and REBUILD INDEX, see Part 2 of DB2 Utility
Guide and Reference .

Not every recovery operation requires RECOVER; see also
“Recovering error ranges for a work file table space” on page 395
“Recovering the work file database”
“Recovering data to a prior point of consistency” on page 396.

A caution about disk dump: Be very careful when using disk dump and restore for
recovering a data set. Disk dump and restore can make one data set inconsistent
with DB2 subsystem tables in some other data set. Use disk dump and restore only
to restore the entire subsystem to a previous point of consistency, and prepare that
point as described in the alternative in step 2 under “Preparing to recover to a prior
point of consistency” on page 383.

Recovering the work file database
You cannot use RECOVER with the work file database (called DSNDB07, except in
a data sharing environment). That database is used for temporary space for certain
SQL operations, such as join and ORDER BY. If DSNDB01.DBD01 is stopped or
otherwise inaccessible when DB2 is started, then the descriptor for the work file
database is not loaded into main storage and the work file database is not
allocated. In order to recover from this condition after DSNDB01.DBD01 has been
made available, it is necessary to stop and then start the work file database again.

Problem with user-defined work file data sets
If you have a problem on a volume of a user-defined data set for the work file
database, then:

1. Issue the following DB2 command:
-STOP DATABASE (DSNDB07)

2. Use the DELETE and DEFINE functions of access method services to redefine
a user work file on a different volume and reconnect it to DB2.

3. Issue the following DB2 command:
-START DATABASE (DSNDB07)

Problem with DB2-managed work file data sets
If you have a problem on a volume in a DB2 storage group for the work file
database, such as a system I/O problem, then:

1. Enter the following SQL statement to remove the problem volume from the DB2
storage group:
ALTER STOGROUP stogroup-name
REMOVE VOLUMES (xxxxxx);

2. Issue the following DB2 command:
-STOP DATABASE (DSNDB07)

3. Enter the following SQL statement to drop the table space with the problem:
DROP TABLESPACE DSNDB07.tsname:

4. Re-create the table space. You can use the same storage group, because the
problem volume has been removed, or you can use an alternate.

394 Administration Guide

CREATE TABLESPACE tsname
IN DSNDB07
USING STOGROUP stogroup-name;

5. Issue the following command:
-START DATABASE (DSNDB07)

Recovering error ranges for a work file table space
Page error ranges operate for work file table spaces in the same way as for other
DB2 table spaces, except for the process of recovering them. Error ranges in a
work file table space cannot be reset by RECOVER ERROR RANGE. Instead, do
the following:

1. Stop the work file table space.

2. Correct the disk error, using the ICKDSF service utility or access method
services to delete and redefine the data set.

3. Start the work file table space. When the work file table space is started, DB2
automatically resets the error range.

Also, DB2 always resets any error ranges when the work file table space is
initialized, regardless of whether the disk error has really been corrected. Work file
table spaces are initialized when:
v The work file table space is stopped and then started
v The work file database is stopped and then started, and the work file table space

was not previously stopped
v DB2 is started and the work file table space was not previously stopped

If the error range is reset while the disk error still exists, and if DB2 has an I/O error
when using the work file table space again, then DB2 sets the error range again.

Recovering the catalog and directory
Catalog and directory objects must be recovered in a particular order. Because the
recovery of some objects depends on information derived from others, recovery
cannot proceed until the logically prior objects are in an undamaged state. For this
reason, you cannot recover a catalog or directory page set as part of a list of page
sets. You can recover a catalog or directory table space with its corresponding
IBM-defined indexes in a list. The restriction of only one catalog or directory table
space per list still applies. See the description of RECOVER in Part 2 of DB2 Utility
Guide and Reference for more information about the specific order of recovery.

You can use the REPORT utility to report on recovery information about the catalog
and directory.

To avoid restart processing of any page sets before attempts are made to recover
any of the members of the list of catalog and directory objects, use the DEFER
option when installing DB2 followed by the option ALL. For more information on
DEFER, see “Deferring restart processing” on page 354.

Point-in-time recovery: Recovering the DB2 catalog and directory to a prior
point-in-time can cause a populated VSAM data set that was defined with DEFINE
NO option to revert back to the undefined state. To avoid errors, you must delete
the existing VSAM data sets before the table space or index can be accessed. For
more information on the DEFINE NO option of the CREATE TABLESPACE and
CREATE INDEX SQL statements, see DB2 SQL Reference.

Chapter 21. Backing up and recovering databases 395

A prior point-in-time recovery on the catalog and directory can also cause problems
for user table spaces or index spaces that have been reorganized with
FASTSWITCH. If the IPREFIX recorded in the DB2 catalog and directory is different
from the VSAM cluster names, you cannot access your data. To determine which
IPREFIX is recorded in the catalog for a particular object, query the
SYSIBM.SYSTABLEPART or SYSIBM.SYSINDEXPART catalog table. Then rename
any VSAM clusters whose names do not specify the correct IPREFIX. For example,
if the IPREFIX value in the catalog is J, the cluster name should be:
catname.DSNDBC.dbname.spname.J0001.A001

Recovery after a conditional restart of DB2: After a DB2 conditional restart in
which a log record range is specified, such as with a cold start, a portion of the DB2
recovery log is no longer available. If the unavailable portion includes information
that is needed for internal DB2 processing, an attempt to use the RECOVER utility
to restore directory table spaces DSNDBD01 or SYSUTILX, or catalog table space
SYSCOPY, will fail with abend 00E40119. Instead of using the RECOVER utility,
use this procedure to recover those table spaces and their indexes:

1. Run DSN1COPY to recover the table spaces from an image copy.

2. Run the RECOVER utility with the LOGONLY option to apply updates from the
log records to the recovered table spaces.

3. Rebuild the indexes.

4. Make a full image copy of the table spaces and optionally the indexes to
establish a new recovery point.

Recovering data to a prior point of consistency
Data can be restored to its state at a prior point in time if it has been backed up
appropriately. There are several ways to restore data, described in the following
sections:

v “Restoring data by using DSN1COPY” on page 399

v “Backing up and restoring data with non-DB2 dump and restore” on page 400

v “Using RECOVER to restore data to a previous point in time” on page 400.

You cannot recover to certain points in time. See Part 2 of DB2 Utility Guide and
Reference for more information about those restrictions.

The following considerations apply to all methods for backing up and restoring data:

Considerations for recovering table space sets: To determine a valid quiesce
point for the table space set, use the procedure for determining a RECOVER
TORBA value. See RECOVER in Part 2 of DB2 Utility Guide and Reference for
more information.

Be aware of table space sets: If you restore a page set to a prior state, restore all
related tables and indexes to the same point to avoid inconsistencies. The table
spaces that contain related tables are called a table space set; similarly, a LOB
table space and its associated base table space are also part of a table space set.
For example, in the DB2 sample application, a column in the EMPLOYEE table
identifies the department to which each employee belongs. The departments are
described by records in the DEPARTMENT table, which is in a different table space.
If only that table space is restored to a prior state, a row in the unrestored
EMPLOYEE table might then identify a department that does not exist in the
restored DEPARTMENT table.

396 Administration Guide

|
|
|
|
|
|
|
|

|

|

|
|
|
|

You can use the REPORT utility to determine all the page sets that belong to a
single table space set and then restore those page sets that are related. However, if
there are related page sets that belong to more than one table space set or there
are page sets that are logically related in application programs of which DB2 is not
aware, you are responsible for identifying all the page sets on your own.

Recovering indexes: If image copies exist for the indexes, use the RECOVER
utility. If indexes do not have image copies, use REBUILD INDEX to re-create the
indexes after the data has been recovered.

Recovering a table with identity columns: When data is recovered to a prior
point-in-time on a table space that contains a table with an identity column, consider
the following two cases:

v Assume the table was created with an identity column. If the table space is
recovered to a prior point-in-time, the RECOVER utility does not set the REORP
status for the table space, and the table is ready to access.

The values for the identity columns of the rows that exist after recovery are the
same values for these rows as before recovery. However, a large gap in the
sequence of generated values for the identity column might result when the next
row is inserted. For example, assume that a table has an identity column that
increments by 1 and that the last generated value at time T1 was 100 and DB2
subsequently generates values up to 1000. Now, assume that the table space is
recovered back to time T1. The generated value of the identity column for the
next row inserted after the recovery completes will be 1001, leaving a gap from
101 to 1000 in the values of the identity column.

v Assume an identity column was added to the table after the table was created.
When the column was added, the REORG utility was run to reset the REORP
status, and DB2 generated the values for the identity columns in all existing
rows. Now, if the table space is recovered to a point-in-time prior to when the
identity column was added to the table, the RECOVER utility sets the table space
status to REORP. The RECOVER utility also sets the check pending status if the
table is a member of a referential set.

To remove the various pending states, run the following utilities in this order:

1. Use the REORG utility to remove the REORP status.

When REORG assigns the identity column values, it does so based on the
current ordinal position of the rows in the table, beginning with the start value.
As a result, if the number of rows in the table after recovery is different than
the original number of rows when the table was first altered, the identity
column values after this REORG might be different than the original identity
column values.

2. If the table space status is auxiliary check pending:

– Use CHECK LOB for all associated LOB table spaces.

– Use CHECK INDEX for all indexes on the LOB table spaces.

3. Use the CHECK DATA utility to remove the check-pending status.

For the ADD COLUMN case, if the table space is partitioned, all partitions are
marked REORP after a point-in-time recovery, and all partitions must be
recovered.

Check consistency with catalog definitions: Catalog and data inconsistencies
are usually the result of one of the following:

v A catalog table space was restored.

Chapter 21. Backing up and recovering databases 397

#
#
#

#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

#

#

#
#
#
#
#
#

#

#

#

#

#
#
#

v If SYSSEQ and SYSSEQ2 are recovered to a prior point-in-time, DB2 might
generate some duplicate values for some identity columns. To avoid any
duplicate values, table spaces that contain tables with identity columns should be
recovered to the same prior point-in-time.

v The definition of a table or table space changed after the data was last backed
up.

If restoring your data might have caused an inconsistency between your catalog
and data, you need to do the following:

1. Run the DSN1PRNT utility with the FORMAT option against all data sets that
might contain user table spaces. These data sets are of the form
catname.DSNDBC.dbname.tsname.y0001.A00n

where y can be either I or J.

2. Execute these SELECT statements to find a list of table space and table
definitions in the DB2 catalog:

Product-sensitive Programming Interface
SELECT NAME, DBID, PSID FROM SYSIBM.SYSTABLESPACE;
SELECT NAME, TSNAME, DBID, OBID FROM SYSIBM.SYSTABLES;

End of Product-sensitive Programming Interface

3. For each table space name in the catalog, check to see if there is a data set
with a corresponding name. If a data set exists,

v Find the field HGBOBID in the header page section of the DSN1PRNT
output. This field contains the DBID and PSID for the table space. See if the
corresponding table space name in the DB2 catalog has the same DBID and
PSID.

v If the DBID and PSID do not match, execute DROP TABLESPACE and
CREATE TABLESPACE to replace the incorrect table space entry in the DB2
catalog with a new entry. Be sure to make the new table space definition
exactly like the old one. If the table space is segmented, SEGSIZE must be
identical for the old and new definitions.

A LOB table space can be dropped only if it is empty (that is, it does not
contain auxiliary tables). If a LOB table space is not empty, you must first
drop the auxiliary table before you drop the LOB table space. To drop the
auxiliary table, do one of the following actions:

– Drop the base table, or

– Delete all rows from the base table and then drop the auxiliary table, or

– Update all LOBs in the LOB table space to null or zero-length string and
then drop the auxiliary table.

v Find the PGSOBD fields in the data page sections of the DSN1PRNT output.
These fields contain the OBIDs for the tables in the table space. For each
OBID you find in the DSN1PRNT output, search the DB2 catalog for a table
definition with the same OBID.

v If any of the OBIDs in the table space do not have matching table definitions,
examine the DSN1PRNT output to determine the structure of the tables
associated with these OBIDs. If a table exists whose structure matches a
definition in the catalog, but the OBIDs differ, proceed to the next step. The
OBIDXLAT option of DSN1COPY will correct the mismatch. If a table exists
for which there is no table definition in the catalog, re-create the table
definition using CREATE TABLE. To re-create a table definition for a table

398 Administration Guide

that has had columns added, first use the original CREATE TABLE
statement, then use ALTER TABLE to add columns to make the table
definition match the current structure of the table.

v Use the utility DSN1COPY with the OBIDXLAT option to copy the existing
data to the new tables and table space and translate the DBID, PSID, and
OBIDs.

If a table space name in the DB2 catalog does not have a data set with a
corresponding name, the table space was probably created after your backup
was taken, and you cannot recover the table space. Execute DROP
TABLESPACE to delete the entry from the DB2 catalog.

4. For each data set in the DSN1PRNT output, check to see if there is a
corresponding DB2 catalog entry. If no entry exists, follow the instructions in
“Recovery of an accidentally dropped table space” on page 405 to re-create the
entry in the DB2 catalog.

See Part 3 of DB2 Utility Guide and Reference for more information about
DSN1COPY and DSN1PRNT.

Recovery of segmented table spaces: When data is restored to a prior point in
time on a segmented table space, information in the DBD for the table space might
not match the restored table space. If you use the DB2 RECOVER utility, the DBD
is updated dynamically to match the restored table space on the next non-index
access of the table. The table space must be in WRITE access mode. If you use a
method outside of DB2’s control, such as DSN1COPY, to restore the table space to
a prior point in time, run the REPAIR utility with the LEVELID option to force DB2 to
accept the down-level data, then run the REORG utility on the table space to
correct the DBD.

Catalog and directory: If any table space in the DB2 catalog (DSNDB06) and
directory (DSNDB01) is recovered, then all table spaces (except SYSUTILX) must
be recovered.

The catalog and directory contain definitions of all databases. When databases
DSNDB01 and DSNDB06 are restored to a prior point, information about later
definitions, authorizations, binds, and recoveries is lost. If you restore the catalog
and directory, you might have to restore user databases; if you restore user
databases, you might have to restore the catalog and directory.

Restoring data by using DSN1COPY
You can use DSN1COPY to restore data that has been previously backed up by
DSN1COPY or by COPY. If you use DSN1COPY to restore data or move data, the
data definitions for the target object must be exactly the same as when the copy
was created. You cannot use DSN1COPY to restore data that was backed up with
the DFSMSdss concurrent copy facility.

Be careful when creating backups with DSN1COPY. You must ensure that the data
is consistent or you will end up with faulty backup copies. One advantage of using
COPY to create backups is that it does not allow you to copy data that is in check
or recovery pending status. COPY allows you to prepare an up-to-date image copy
of the table space, either by making a full image copy or by making an incremental
image copy and merging it with the most recent full image copy.

Keep access method services LISTCAT listings of table space data sets that
correspond to each level of retained backup data.

Chapter 21. Backing up and recovering databases 399

For more information about using DSN1COPY, see Part 3 of DB2 Utility Guide and
Reference.

Backing up and restoring data with non-DB2 dump and restore
You can use certain non-DB2 facilities to dump and restore data sets and volumes.
But note carefully the limitations described below.

Even though DB2 data sets are defined as VSAM data sets, DB2 data cannot be
read or written by VSAM record processing because it has a different internal
format. The data can be accessed by VSAM control interval (CI) processing. If you
manage your own data sets, you can define them as VSAM linear data sets (LDSs),
and access them through services that support data sets of that type.

Access method services for CI and LDS processing are available in MVS. IMPORT
and EXPORT use CI processing; PRINT and REPRO do not, but do support LDSs.

DFSMS/MVS Data Set Services (DFSMSdss) is available on MVS and provides
dump and restore services that can be used on DB2 data sets. Those services do
use VSAM CI processing.

Using RECOVER to restore data to a previous point in time
TOCOPY, TORBA and TOLOGPOINT are options of the RECOVER utility. All
terminate recovery at a specified point. Because they recover data to a prior time,
and not to the present, they are referred to as point-in-time recoveries. A recovery
to a prior point in time will use either the TOCOPY, TORBA, or TOLOGPOINT
options of RECOVER.

TOCOPY identifies an image copy. Recovery is restored to the value of that copy,
without applying subsequent changes from the log. If the image copy in TOCOPY
cannot be applied, RECOVER TOCOPY uses an earlier full image copy and applies
logged changes up to the specified point.

If the image copy data set is cataloged when the image copy is made, then the
entry for that copy in SYSIBM.SYSCOPY does not record the volume serial
numbers of the data set. Identify that copy by its name, using TOCOPY data set
name. If the image copy data set was not cataloged when created, then you can
identify the copy by its volume serial identifier, using TOVOLUME volser.

In a non-data-sharing environment, TORBA and TOLOGPOINT are interchangeable
keywords that identify an RBA on the log at which recovery stops. TORBA can be
used in a data sharing environment only if the TORBA value is before the point at
which data sharing was enabled. In this publication, whenever we talk about using
the TORBA keyword, the TOLOGPOINT keyword can be used instead. If you are
planning to use data sharing eventually, start using TOLOGPOINT now, to prepare.

With TORBA and TOLOGPOINT, the most recent full image copy taken before that
point on the log is restored, and logged changes are applied up to, and including,
the record that contains the specified log point. If no full image copy exists before
the chosen log point, recovery is attempted entirely from the log, applying the log
from page set creation to the chosen log point. This assumes you have not used
the MODIFY RECOVERY utility to delete SYSIBM.SYSLGRNX records for the page
set.

If you are working with partitioned table spaces, image copies taken prior to
resetting the REORG pending status of any partition of a partitioned table space

400 Administration Guide

cannot be used for recovery to currency. Avoid performing a point-in-time recovery
for a partitioned table space to a point-in-time that is after the REORG pending
status was set, but before a rebalancing REORG was performed. See information
about RECOVER in Part 2 of DB2 Utility Guide and Reference for details on
determining an appropriate point in time and creating a new recovery point.

Planning for point-in-time recovery: TOCOPY and TORBA are viable alternatives
in many situations in which recovery to the current point in time is not possible or
desirable. To make these options work best for you, take periodic quiesce points at
points of consistency that are appropriate to your applications.

When making copies of a single object, use SHRLEVEL REFERENCE to establish
consistent points for TOCOPY recovery. Copies made with SHRLEVEL CHANGE
do not copy data at a single instant, because changes can occur as the copy is
made. A subsequent RECOVER TOCOPY operation can produce inconsistent data.

When copying a list of objects, use SHRLEVEL REFERENCE. If a subsequent
recovery to a point-in-time is necessary, you can use a single RECOVER utility
statement to list all of the objects, along with TOLOGPOINT to identify the common
RBA or LRSN value. If you use SHRLEVEL CHANGE to copy a list of objects, you
should follow it with a QUIESCE of the objects.

An inline copy made during LOAD REPLACE can produce unpredictable results if
that copy is used later in a RECOVER TOCOPY operation. DB2 makes the copy
during the RELOAD phase of the LOAD operation. Therefore, the copy does not
contain corrections for unique index violations, referential constraint violations, or
check constraint violations because those corrections occur during the INDEXVAL,
ENFORCE, and DISCARD phases.

To improve the performance of the recovery, take a full image copy of the page
sets, and then quiesce them using the QUIESCE utility. This allows RECOVER
TORBA to recover the page sets to the quiesce point with minimal use of the log.

A table space prefix for an image copy remains unchanged when you perform a
point-in-time recovery using the FASTSWITCH YES option with CONCURRENT
YES upon recovery. Here is an example of this procedure:

1. Create an image copy of the table space, for example, table space I0001, using
CONCURRENT YES.

2. Reorganize the table space using FASTSWITCH YES. This changes the table
space prefix to J0001.

3. Perform a point-in-time recovery with image copy I0001. After RECOVERY
processing, the table space prefix is J0001.

Authorization: Restrict use of TOCOPY and TORBA to personnel with a thorough
knowledge of the DB2 recovery environment.

Ensuring consistency: RECOVER TORBA and RECOVER TOCOPY can be used
on a single:
v Partition of a partitioned table space
v Partition of a partitioning index space
v Page set of a simple table space

All page sets must be restored to the same level or the data will be inconsistent.

A table space and all of its indexes (or a table space set and all related indexes)
should be recovered in the same RECOVER utility statement, specifying TORBA to

Chapter 21. Backing up and recovering databases 401

|
|
|

|
|

|
|

|
|

identify a QUIESCE point or a common SHRLEVEL(REFERENCE) copy point. This
action avoids placing indexes in the CHECK pending or RECOVER pending status.
If the TORBA is not a common QUIESCE point or SHRLEVEL(REFERENCE) copy
point for all objects, use the following procedure:

1. RECOVER table spaces to the log point.

2. Use concurrent REBUILD INDEX jobs to rebuild the indexes over each table
space.

This procedure ensures that the table spaces and indexes are synchronized, and
eliminates the need to run the CHECK INDEX utility.

Point-in-time recovery can cause table spaces to be placed in check pending status
if they have table check constraints or referential constraints defined on them.
When recovering tables involved in a referential constraint, you should recover all
the table spaces involved in a constraint. This is the table space set. To avoid
setting check pending, you must do both of the following:

v Recover the table space set to a quiesce point.

If you do not recover each table space of the table space set to the same
quiesce point, and if any of the table spaces are part of a referential integrity
structure:

– All dependent table spaces that are recovered are placed in check-pending
status with the scope of the whole table space.

– All dependent table spaces of the above recovered table spaces are placed in
check-pending status with the scope of the specific dependent tables.

v Do not add table check constraints or referential constraints after the quiesce
point or image copy.

If you recover each table space of a table space set to the same quiesce point,
but referential constraints were defined after the quiesce point, then the
check-pending status is set for the table space containing the table with the
referential constraint.

For information about resetting the check-pending status, see “Violations of
referential constraints” on page 443.

When recovering tables with LOB columns, you should recover the entire set of
page sets, including the base table space, the LOB table spaces, and index spaces
for the auxiliary indexes. Recovering a LOB table space to a prior point-in-time is
similar to recovering a non-LOB table space to a prior point-in-time, with the
following exceptions:

v The RECOVER utility set the auxiliary warning (AUXW) status for a LOB table
space if it finds at least one invalid column during the LOGAPPLY phase.

v If you recover a LOB table space to a point-in-time that is not a QUIESCE point
or to an image copy produced with SHRLEVEL CHANGE, the LOB table space is
placed in check pending (CHKP) status.

v If you recover only the LOB table space to any previous point-in-time, the base
table space is placed in auxiliary check pending (ACHKP) status, and the index
space containing an index on the auxiliary table is placed in rebuild pending
(RBDP) status.

v If you recover only the base table space to a point-in-time, the base table space
is placed in auxiliary check pending (ACHKP) status.

v If you recover only the index space containing an index on the auxiliary table to a
point-in-time, the index space is placed in check pending (CHKP) status.

402 Administration Guide

See Part 2 of DB2 Utility Guide and Reference for detailed information about
recovering a table space that contains LOB data.

Compressed data: Use caution when recovering a single data set of a
nonpartitioned page set to a prior point in time. If the data set being recovered was
compressed with a different dictionary from the rest of the page set, then you can
no longer read the data. For important information on loading and compressing data
see the description of LOAD in Part 2 of DB2 Utility Guide and Reference.

Recovery of dropped objects
The procedures described in this section can be used in the event that a table or
table space is inadvertently dropped.

Avoiding the problem
To avoid the problem of accidentally dropping tables, you can create a table with
the clause WITH RESTRICT ON DROP. No one can drop the table, nor the table
space or database containing the table, until the restriction on the table is removed.
The ALTER TABLE statement includes a new clause to remove the restriction, as
well as one to impose it.

Procedures for recovery
The following terms are used throughout this discussion and are defined here:

Term Meaning

DBID Database identifier

OBID Data object identifier

PSID Table space identifier

To prepare for this procedure, it is a good idea to run regular catalog reports that
include a list of all OBIDs in the subsystem. In addition, it is also very useful to
have catalog reports listing dependencies on the table (such as referential
constraints, indexes, and so on). After a table is dropped, this information
disappears from the catalog.

If an OBID has been reused by DB2, you must run DSN1COPY to translate the
OBIDs of the objects in the data set. However, this is unlikely; DB2 reuses OBIDs
only when no image copies exist that contain data from that table.

Recovery of an accidentally dropped table
Tables in a partitioned table space cannot be dropped without dropping the table
space. If you have accidentally dropped a table space, see “Recovery of an
accidentally dropped table space” on page 405.

To perform this procedure, you need a full image copy or a DSN1COPY file that
contains the data from the dropped table.

For segmented table spaces, the image copy or DSN1COPY file must contain the
table when it was active (that is, created). Because of the way space is reused for
segmented table spaces, this procedure cannot be used if the table was not active
when the image copy or DSN1COPY was made. For nonsegmented table spaces,
the image copy or DSN1COPY file can contain the table when it was active or not
active.

Chapter 21. Backing up and recovering databases 403

|
|
|
|
|
|

1. If you know the DBID, the PSID, the original OBID of the dropped table, and
the OBIDs of all other tables contained in the table space, go to step 2.

If you do not know all of the items listed above, use the following steps to find
them. For later use with DSN1COPY, record the DBID, the PSID, and the
OBIDs of all the tables contained in the table space, not just the dropped table.

a. For the data set that contains the dropped table, run DSN1PRNT with the
FORMAT option. Record the HPGOBID field in the header page and the
PGSOBD field from the data records in the data pages.

For the auxiliary table of a LOB table space, record the HPGROID field in
the header page instead of PGSOBD field in the data pages.

v Field HPGOBID is four bytes long and contains the DBID in the first two
bytes and the PSID in the last two bytes.

v Field HPGROID (for LOB table spaces) contains the OBID of the table.
A LOB table space can contain only one table.

v Field PGSOBD (for non-LOB table spaces) is two bytes long and
contains the OBID of the table. If your table space contains more than
one table, check for all OBIDs. In other words, search for all different
PGSOBD fields. You need to specify all OBIDs from the data set as
input for the DSN1COPY utility.

b. Convert the hex values in the identifier fields to decimal so they can be
used as input for the DSN1COPY utility.

2. Use the SQL CREATE statement to re-create the table and any indexes on the
table.

3. To allow DSN1COPY to access the DB2 data set, stop the table space using
the following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

This is necessary to ensure that all changes are written out and that no data
updates occur during this procedure.

4. Find the new OBID for the table by querying the SYSIBM.SYSTABLES catalog
table. The following statement returns the object ID (OBID) for the table:

Product-sensitive Programming Interface
SELECT NAME, OBID FROM SYSIBM.SYSTABLES

WHERE NAME='table_name'
AND CREATOR='creator_name';

End of Product-sensitive Programming Interface

This value is returned in decimal format, which is the format you need for
DSN1COPY.

5. Run DSN1COPY with the OBIDXLAT and RESET options to perform the OBID
translation and to copy the data from the full image copy data set, inline copy
data set, or DSN1COPY file that contains the data from the dropped table into
the original data set. Use the original OBIDs you recorded in step 1 and the
new OBID you recorded in step 4 as the input records for the translation file
(SYSXLAT). For more information about DSN1COPY, see Part 3 of DB2 Utility
Guide and Reference.

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

6. Start the table space for normal use using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

404 Administration Guide

7. Recover any indexes on the table.

8. Verify that you can access the table, including LOB columns, by executing
SELECT statements to use the table.

9. Make a full image copy of the table space. See “Copying page sets and data
sets” on page 391 for more information about the COPY utility.

10. Re-create the objects that are dependent on the table.

As explained in “Implications of dropping a table” on page 66, when a table is
dropped, all objects dependent on that table (synonyms, views, aliases,
indexes, referential constraints, and so on) are dropped. Privileges granted for
that table are dropped as well. Catalog reports or a copy of the catalog taken
prior to the DROP TABLE can make this task easier.

Recovery of an accidentally dropped table space
These procedures are for table spaces, including LOB table spaces, that were
dropped accidentally. This can happen, for example, when all tables in an
implicitly-created table space are dropped, or if someone unintentionally executes a
DROP TABLESPACE statement for a particular table space.

When a table space is dropped, DB2 loses all information about the image copies
of that table space. Although the image copy data set is not lost, locating it might
require examination of image copy job listings or manually recorded information
about the image copies.

Following are two separate procedures: one for user-managed data sets and one
for DB2-managed data sets.

User-managed data sets
In this procedure, you copy the data sets containing data from the dropped table
space to redefined data sets using the “OBID translate” function of DSN1COPY.

1. Find the DBID for the database, the PSID for the dropped table space, and the
OBIDs for the tables contained in the dropped table space. For information
about how to do this, see step 1 of “Recovery of an accidentally dropped table”
on page 403.

2. Rename the data set containing the dropped table space using the IDCAMS
ALTER command. Do not forget to rename both the CLUSTER and DATA
portion of the data set and to begin the data set name with the integrated
catalog facility catalog name or alias.

3. Redefine the original DB2 VSAM data sets.

Use the access method services LISTCAT command to obtain a list of data set
attributes. The data set attributes on the redefined data sets must be the same
as they were on the original data sets.

4. Use SQL CREATE statements to re-create the table space, tables and any
indexes on the tables.

5. To allow DSN1COPY to access the DB2 data sets, stop the table space using
the following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

This is necessary to prevent updates to the table space during this procedure
in the event the table space has been left open.

6. Find the target OBIDs (the OBIDs for the tables and the PSID for the table
space) by querying the SYSIBM.SYSTABLESPACE and SYSIBM.SYSTABLES

Chapter 21. Backing up and recovering databases 405

catalog tables.

Product-sensitive Programming Interface

The following statement returns the object ID for a table space; this is the
PSID.
SELECT DBID, PSID FROM SYSIBM.SYSTABLESPACE

WHERE NAME='tablespace_name' and DBNAME='database_name'
AND CREATOR='creator_name';

The following statement returns the object ID for a table:
SELECT NAME, OBID FROM SYSIBM.SYSTABLES

WHERE NAME='table_name'
AND CREATOR='creator_name';

End of Product-sensitive Programming Interface

These values are returned in decimal format, which is the format you need for
DSN1COPY.

7. Run DSN1COPY with the OBIDXLAT and RESET options to perform the OBID
translation and to copy the data from the renamed VSAM data set containing
the dropped table space to the redefined VSAM data set. Use of the RESET
option prevents DB2 from marking data in the table space you restore as down
level. Use the OBIDs you recorded from steps 1and 6 as the input records for
the translation file (SYSXLAT). For more information about DSN1COPY, see
Part 3 of DB2 Utility Guide and Reference.

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

8. Start the table space for normal use by using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

9. Recover all indexes on the table space.

10. Verify that you can access the table space, perhaps by executing SELECT
statements to use each table.

11. Make a full image copy of the table space.

See “Copying page sets and data sets” on page 391 for more information
about the COPY utility.

12. Re-create the objects that are dependent on the table.

See step 10 of “Recovery of an accidentally dropped table” on page 403 for
more information.

DB2-managed data sets
If a consistent full image copy or DSN1COPY file is available, DSN1COPY can be
used to recover a dropped table space. To do this:

1. Find the original DBID for the database, the PSID for the table space, and the
OBIDs of all tables contained in the dropped table space. For information on
how to do this, see step 1 of “Recovery of an accidentally dropped table” on
page 403.

2. Re-create the table space and all tables. This can be difficult for tables where
either:
v The table definition is not available.
v The table is no longer required.

In these cases, simply create a dummy table with any structure of columns.

406 Administration Guide

3. Re-create auxiliary tables and indexes if a LOB table space has been dropped.

4. To allow DSN1COPY to access the DB2 data set, stop the table space with
the following command:
-STOP DATABASE(database-name) SPACENAM(tablespace-name)

5. Find the new DBID, PSID, and OBIDs by querying the DB2 catalog as
described in step 6 of “User-managed data sets” on page 405.

6. Run DSN1COPY using OBIDXLAT and RESET options to perform the OBID
translation and to copy the data from the full image copy data set, inline copy
data set, or the DSN1COPY data set. Use the OBIDs you recorded from steps
1 and 5 as the input records for the translation file (SYSXLAT). For more
information about DSN1COPY, see Part 3 of DB2 Utility Guide and Reference.

Be sure you have named the VSAM data sets correctly by checking messages
DSN1998I and DSN1997I after DSN1COPY completes.

7. Start the table space for normal use using the following command:
-START DATABASE(database-name) SPACENAM(tablespace-name)

8. Drop all dummy tables. The row structure does not match the definition, so
these tables cannot be used.

9. Reorganize the table space to remove all rows from dropped tables.

10. Recover all indexes on the table space.

11. Verify that you can access the table space, perhaps by executing SELECT
statements to use each table.

12. Make a full image copy of the table space.

See “Copying page sets and data sets” on page 391 for more information
about the COPY utility.

13. Re-create the objects that are dependent on the table.

See step 10 on page 405 of “Recovery of an accidentally dropped table” on
page 403 for more information.

Discarding SYSCOPY and SYSLGRNX records
Use the MODIFY utility to delete obsolete records from SYSIBM.SYSCOPY and
SYSIBM.SYSLGRNX. To keep a table space and its indexes synchronized, the
MODIFY utility deletes the SYSCOPY and SYSLGRNX records for the table space
and its indexes defined with the COPY YES option.

1. Follow these steps of the procedure described under “Locating archive log data
sets to delete” on page 343:
a. “Resolve indoubt units of recovery” on page 344.
b. “Find the startup log RBA” on page 344.
c. “Find the minimum log RBA needed” on page 344. In that step, note the date

of the earliest image copy you intend to keep.

What copies to keep: The earliest image copies and log data sets you need
for recovery to the present date are not necessarily the earliest ones you want
to keep. If you foresee resetting the DB2 subsystem to its status at any earlier
date, you also need the image copies and log data sets that allow you to
recover to that date.

If the most recent image copy of an object is damaged, the RECOVER utility
seeks a backup copy. If there is no backup copy, or the backup is lost or
damaged, RECOVER will use a previous image copy. It will continue searching
until it finds an undamaged image copy or there are no more image copies. The
process has important implications for keeping archive log data sets. At the very

Chapter 21. Backing up and recovering databases 407

least, you need all log records since the most recent image copy; to protect
against loss of data from damage to that copy, you need log records as far back
as the earliest image copy you keep.

2. Run the MODIFY utility for each table space whose old image copies you want
to discard, using the date of the earliest image copy you will keep. For example,
you could enter:
MODIFY RECOVERY TABLESPACE dbname.tsname

DELETE DATE date

The DELETE DATE option removes records written earlier than the given date.
You also can use DELETE AGE, to remove records older than a given number
of days.

You can delete SYSCOPY records for a single partition by naming it with the
DSNUM keyword. That option does not delete SYSLGRNX records and does
not delete SYSCOPY records that are later than the earliest point to which you
can recover the entire table space. Thus, you can still recover by partition after
that point.

You cannot run the MODIFY utility on a table space that is in the recovery
pending status.

408 Administration Guide

Chapter 22. Recovery scenarios

This chapter contains problem scenarios and the recommended procedures for
restarting and recovering DB2. The following situations are described:

“IRLM failure”
“MVS or power failure” on page 410
“Disk failure” on page 410
“Application program error” on page 412
“IMS-related failures” on page 413
“CICS-related failures” on page 417
“Subsystem termination” on page 422
“DB2 system resource failures” on page 423

“Active log failure” on page 423
“Archive log failure” on page 427
“BSDS failure” on page 429
“Recovering the BSDS from a backup copy” on page 431

“DB2 database failures” on page 434
“Recovery from down-level page sets” on page 435
“Table space input/output errors” on page 437
“DB2 catalog or directory input/output errors” on page 438
“Integrated catalog facility catalog VSAM volume data set failures” on page 439

“VSAM volume data set (VVDS) destroyed” on page 439
“Out of disk space or extent limit reached” on page 440

“Violations of referential constraints” on page 443
“Failures related to the distributed data facility” on page 444
“Remote site recovery from disaster at a local site” on page 449
“Using a tracker site for disaster recovery” on page 459
“Resolving indoubt threads” on page 465

“Communication failure between two systems” on page 467
“Making a heuristic decision” on page 468
“IMS outage that results in an IMS cold start” on page 469
“DB2 outage at a requester results in a DB2 cold start” on page 469
“DB2 outage at a server results in a DB2 cold start” on page 472
“Correcting a heuristic decision” on page 473

IRLM failure
Problem: The IRLM fails in a wait, loop, or abend.

Symptom: The IRLM abends and the following message appears:
DXR122E irlmnm ABEND UNDER IRLM TCB/SRB IN MODULE xxxxxxxx
ABEND CODE zzzz

System action: If the IRLM abends, DB2 terminates. If the IRLM waits or loops,
then terminate the IRLM, and DB2 terminates automatically.

System programmer action: None.

Operator action:

v Start the IRLM if you did not set it for automatic start when you installed DB2.
(For instructions on starting the IRLM, see “Starting the IRLM” on page 281.)

v Start DB2. (For instructions, see “Starting DB2” on page 256.)

v Give the command /START SUBSYS ssid to connect IMS to DB2.

© Copyright IBM Corp. 1982, 2001 409

v Give the command DSNC STRT to connect CICS to DB2. (See “Connecting from
CICS” on page 288.)

MVS or power failure
Problem: MVS or processor power fails.

Symptom: No processing is occurring.

System action: None.

System programmer action: None.

Operator action:

1. IPL MVS and initialize the job entry subsystem.

2. If you normally run VTAM with DB2, start VTAM at this point.

3. Start the IRLM if you did not set it for automatic start when you installed DB2.
(See “Starting the IRLM” on page 281.)

4. Start DB2. (See “Starting DB2” on page 256.)

5. Use the RECOVER POSTPONED command if postponed-abort units of
recovery were reported after restarting DB2, and the AUTO option of the LIMIT
BACKOUT field on installation panel DSNTIPN was not specified.

6. Restart IMS or CICS.

a. IMS automatically connects and resynchronizes when it is restarted. (See
“Connecting to the IMS control region” on page 295.)

b. CICS automatically connects to DB2 if the CICS PLT contains an entry for
the attach module DSNCCOM0. Alternatively, use the command DSNC
STRT to connect the CICS attachment facility to DB2. (See “Connecting
from CICS” on page 288.)

If you know that a power failure is imminent, it is a good idea to issue -STOP DB2
MODE(FORCE) to allow DB2 to come down cleanly before the power is interrupted.
If DB2 is unable to stop completely before the power failure, the situation is no
worse than if DB2 were still up.

Disk failure
Problem: A disk hardware failure occurs, resulting in the loss of an entire unit.

Symptom: No I/O activity for the affected disk address. Databases and tables
residing on the affected unit are unavailable.

System action: None

System programmer action: None

Operator action: Attempt recovery by following these steps:

1. Assure that there are no incomplete I/O requests against the failing device. One
way to do this is to force the volume off line by issuing the following MVS
command:
VARY xxx,OFFLINE,FORCE

where xxx is the unit address.

410 Administration Guide

To check disk status you can issue:
D U,DASD,ONLINE

A console message similar to the following is displayed after you have forced a
volume offline:

UNIT TYPE STATUS VOLSER VOLSTATE
4B1 3390 O-BOX XTRA02 PRIV/RSDNT

The disk unit is now available for service.

If you have previously set the I/O timing interval for the device class, the I/O
timing facility should terminate all incomplete requests at the end of the
specified time interval, and you can proceed to the next step without varying the
volume off line. You can set the I/O timing interval either through the IECIOSxx
MVS parameter library member or by issuing the MVS command
SETIOS MIH,DEV=devnum,IOTIMING=mm:ss.

For more information on the I/O timing facility, see OS/390 MVS Initialization
and Tuning Reference and OS/390 MVS System Commands.

2. An authorized operator issues the following command to stop all databases and
table spaces residing on the affected volume:
-STOP DATABASE(database-name) SPACENAM(space-name)

If the disk unit must be disconnected for repair, all databases and table spaces
on all volumes in the disk unit must be stopped.

3. Select a spare disk pack and use ICKDSF to initialize from scratch a disk unit
with a different unit address (yyy) and the same volser.

// Job
//ICKDSF EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REVAL UNITADDRESS(yyy) VERIFY(volser)

If you are initializing a 3380 or 3390 volume, use REVAL with the VERIFY
parameter to ensure you are initializing the volume you want, or to revalidate
the volume’s home address and record 0. Details are provided in Device
Support Facilities User's Guide and Reference. Alternatively, use ISMF to
initialize the disk unit.

4. Issue this MVS console command. yyy is the new unit address.
VARY yyy,ONLINE

5. To check disk status you can issue:
D U,DASD,ONLINE

A console message similar to the following is displayed:
UNIT TYPE STATUS VOLSER VOLSTATE
7D4 3390 O XTRA02 PRIV/RSDNT

6. Issue the following command to start all the appropriate databases and table
spaces that had been stopped previously:
-START DATABASE(database-name) SPACENAM(space-name)

7. Delete all table spaces (VSAM linear data sets) from the ICF catalog by issuing
the following access method services command for each one of them:
DELETE catnam.DSNDBC.dbname.tsname.y0001.A00x CLUSTER NOSCRATCH

Chapter 22. Recovery scenarios 411

where y can be either I or J.

Access method services commands are described in detail in DFSMS/MVS:
Access Method Services for VSAM Catalogs.

8. For user-managed table spaces, the VSAM cluster and data components must
be defined for the new volume by issuing the access method services DEFINE
CLUSTER command with the data set name:
catnam.DSNDBC.dbname.tsname.y0001.A00x

where y can be either I or J, and x is C (for VSAM clusters) or D (for VSAM
data components).

This data set is the same as defined in Step 7. Detailed requirements for
user-managed data sets are described in “Requirements for your own data sets”
on page 34.

For a user defined table space, the new data set must be defined before an
attempt to recover it. Table spaces defined in storage groups can be recovered
without prior definition.

9. Recover the table spaces using the RECOVER utility. Additional information and
procedures for recovering data can be found in “Recovering page sets and data
sets” on page 393.

Application program error
Problem: An application program placed a logically incorrect value in a table.

Symptom: SQL SELECT returns unexpected data.

System action: The system returns SQLCODE 0 for the SELECT statement,
because the error was not in SQL or DB2, but in the application program. That error
can be identified and corrected, but the data in the table is now inaccurate.

System programmer action: You might be able to use RECOVER TORBA (or
RECOVER TOLOGPOINT) to restore the database to a point before the error
occurred, but there are many circumstances under which you must manually back
out the changes introduced by the application. Among those are:

v Other applications changed the database after the error occurred. If you recover
the table spaces modified by the bad application, you would lose all subsequent
changes made by the other applications.

v There were DB2 checkpoints after the error occurred. In this case, you can use
RECOVER TORBA to restore the data up to the last checkpoint before the error
occurred, but all subsequent changes to the database are lost.

If you have a situation in which it makes sense to use RECOVER TORBA, you can
use procedures similar to those that follow to back out the changes made by the
bad application. For a discussion of RECOVER TORBA or TOLOGPOINT, see
“Using RECOVER to restore data to a previous point in time” on page 400.

Procedure 1: If you have established a quiesce point

1. Run the REPORT utility twice, once using the RECOVERY option and once
using the TABLESPACESET option. On each run, specify the table space
containing the inaccurate data. If you want to recover to the last quiesce point,
specify the option CURRENT when running REPORT RECOVERY.

412 Administration Guide

|
|
|

|

|
|

|
|
|

|
|
|

2. Examine the REPORT output to determine the RBA of the quiesce point.

3. Execute RECOVER TORBA (or TOLOGPOINT) with the RBA that you found,
specifying the names of all related table spaces. Recovering all related table
spaces to the same quiesce point prevents violations of referential constraints.

Procedure 2: If you have not established a quiesce point

If you use this procedure, you will lose any updates to the database that occurred
after the last checkpoint before the application error occurred.

1. Run the DSN1LOGP stand-alone utility on the log scope available at DB2
restart, using the SUMMARY(ONLY) option. For instructions on running
DSN1LOGP, see Part 3 of DB2 Utility Guide and Reference.

2. Determine the RBA of the most recent checkpoint before the first bad update
occurred, from one of the following sources:

v Message DSNR003I on the operator’s console. It looks (in part) like this:
DSNR003I RESTART PRIOR CHECKPOINT

RBA=000007425468

The required RBA in this example is X'7425468'.

This technique works only if there have been no checkpoints since the
application introduced the bad updates.

v Output from the print log map utility. You must know the time that the first bad
update occurred. Find the last BEGIN CHECKPOINT RBA before that time.

3. Run DSN1LOGP again, using SUMMARY(ONLY) and specify the checkpoint
RBA as the value of RBASTART. The output lists the work in the recovery log,
including information about the most recent complete checkpoint, a summary of
all processing occurring, and an identification of the databases affected by each
active user. Sample output is shown in Figure 53 on page 484.

4. One of the messages in the output (identified as DSN1151I or DSN1162I)
describes the unit of recovery in which the error was made. To find the unit of
recovery, use your knowledge of the time the program was run (START DATE=
and TIME=), the connection ID (CONNID=), authorization ID (AUTHID=), and
plan name (PLAN=). In that message, find the starting RBA as the value of
START=.

5. Execute RECOVER TORBA with the starting RBA you found in the previous
step.

6. Recover any related table spaces or indexes to the same point in time.

Operator action: None.

IMS-related failures
This section includes scenarios for problems that can be encountered in the IMS
environment:

“IMS control region (CTL) failure” on page 414
“Resolution of indoubt units of recovery” on page 414
“IMS application failure” on page 416

DB2 can be used in an XRF (Extended Recovery Facility) recovery environment
with IMS. See “Extended recovery facility (XRF) toleration” on page 374 for more
information on using XRF with IMS.

Chapter 22. Recovery scenarios 413

IMS control region (CTL) failure
Problem: The IMS control region fails.

Symptom:

v IMS waits, loops, or abends.

v DB2 attempts to send the following message to the IMS master terminal during
an abend:
DSNM002I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM

yyyy RC=RC

This message cannot be sent if the failure prevents messages from being
displayed.

v DB2 does not send any messages related to this problem to the MVS console.

System action:
v DB2 detects that IMS has failed.
v DB2 either backs out or commits work in process.
v DB2 saves indoubt units of recovery. (These must be resolved at reconnection

time.)

System programmer action: None.

Operator action:

1. Use normal IMS restart procedures, which include starting IMS by issuing the
MVS START IMS command.

2. The following results occur:
v All DL/I and DB2 updates that have not been committed are backed out.
v IMS is automatically reconnected to DB2.
v IMS passes the recovery information for each entry to DB2 through the IMS

attachment facility. (IMS indicates whether to commit or roll back.)
v DB2 resolves the entries according to IMS instructions.

Resolution of indoubt units of recovery
This section describes two different problems.

Problem 1
There are unresolved indoubt units of recovery. When IMS connects to DB2, DB2
has one or more indoubt units of recovery that have not been resolved.

Symptom: If DB2 has indoubt units of recovery that IMS did not resolve, the
following message is issued at the IMS master terminal:
DSNM004I RESOLVE INDOUBT ENTRY(S) ARE OUTSTANDING FOR

SUBSYSTEM xxxx

When this message is issued, IMS was either cold started or it was started with an
incomplete log tape. This message could also be issued if DB2 or IMS had an
abend due to a software error or other subsystem failure.

System action:
v The connection remains active.
v IMS applications can still access DB2 databases.
v Some DB2 resources remain locked out.

414 Administration Guide

If the indoubt thread is not resolved, the IMS message queues can start to back up.
If the IMS queues fill to capacity, IMS terminates. Therefore, users must be aware
of this potential difficulty and must monitor IMS until the indoubt units of work are
fully resolved.

System programmer action:

1. Force the IMS log closed using /DBR FEOV, and then archive the IMS log. Use
the command DFSERA10 to print the records from the previous IMS log tape
for the last transaction processed in each dependent region. Record the PSB
and the commit status from the X'37' log containing the recovery ID.

2. Run the DL/I batch job to back out each PSB involved that has not reached a
commit point. The process might take some time because transactions are still
being processed. It might also lock up a number of records, which could impact
the rest of the processing and the rest of the message queues.

3. Enter the DB2 command DISPLAY THREAD (imsid) TYPE (INDOUBT).

4. Compare the NIDs (IMSID + OASN in hexadecimal) displayed in the -DISPLAY
THREAD messages with the OASNs (4 bytes decimal) shown in the DFSERA10
output. Decide whether to commit or roll back.

5. Use DFSERA10 to print the X'5501FE' records from the current IMS log tape.
Every unit of recovery that undergoes indoubt resolution processing is recorded;
each record with an 'IDBT' code is still indoubt. Note the correlation ID and the
recovery ID, because they will be used during step 6.

6. Enter the following DB2 command, choosing to commit or roll back, and
specifying the correlation ID:
-RECOVER INDOUBT (imsid) ACTION(COMMIT|ABORT) NID (nid)

If the command is rejected because there are more network IDs associated, use
the same command again, substituting the recovery ID for the network ID.

(For a description of the OASN and the NID, see “Duplicate correlation IDs” on
page 299.)

Operator action: Contact the system programmer.

Problem 2
Committed units of recovery should be aborted. At the time IMS connects to DB2,
DB2 has committed one or more indoubt units of recovery that IMS says should be
rolled back.

Symptom: By DB2 restart time, DB2 has committed and rolled back those units of
recovery about which DB2 was not indoubt. DB2 records those decisions, and at
connect time, verifies that they are consistent with the IMS/VS decisions.

An inconsistency can occur when the DB2 -RECOVER INDOUBT command is used
before IMS attempted to reconnect. If this happens, the following message is issued
at the IMS master terminal:
DSNM005I IMS/TM RESOLVE INDOUBT PROTOCOL PROBLEM WITH

SUBSYSTEM xxxx

Because DB2 tells IMS to retain the inconsistent entries, the following message is
issued when the resolution attempt ends:
DFS3602I xxxx SUBSYSTEM RESOLVE-INDOUBT FAILURE,

RC=yyyy

System action:

Chapter 22. Recovery scenarios 415

v The connection between DB2 and IMS remains active.
v DB2 and IMS continue processing.
v No DB2 locks are held.
v No units of work are in an incomplete state.

System programmer action: Do not use the DB2 command RECOVER INDOUBT.
The problem is that DB2 was not indoubt but should have been.

Database updates have most likely been committed on one side (IMS or DB2) and
rolled back on the other side. (For a description of the OASN and the NID, see
“Duplicate correlation IDs” on page 299.)

1. Enter the IMS command /DISPLAY OASN SUBSYS DB2 to display the IMS list
of units of recovery that need to be resolved. The /DISPLAY OASN SUBSYS
DB2 command produces the OASNs in a decimal format, not a hexadecimal
format.

2. Issue the IMS command /CHANGE SUBSYS DB2 RESET to reset all the
entries in the list. (No entries are passed to DB2.)

3. Use DFSERA10 to print the log records recorded at the time of failure and
during restart. Look at the X'37', X'56', and X'5501FE' records at reconnect time.
Notify the IBM support center about the problem.

4. Determine what the inconsistent unit of recovery was doing by using the log
information, and manually make the DL/I and DB2 databases consistent.

Operator action: None.

IMS application failure
This section describes two different problems.

Problem 1
An IMS application abends.

Symptom: The following messages appear at the IMS master terminal and at the
LTERM that entered the transaction involved:
DFS555 - TRAN tttttttt ABEND (SYSIDssss);

MSG IN PROCESS: xxxx (up to 78 bytes of data) timestamp
DFS555A - SUBSYSTEM xxxx OASN yyyyyyyyyyyyyyyy STATUS COMMIT|ABORT

System action:
The failing unit of recovery is backed out by both DL/I and DB2.
The connection between IMS and DB2 remains active.

System programmer action: None.

Operator action: If you think the problem was caused by a user error, refer to Part
2 of DB2 Application Programming and SQL Guide. For procedures to diagnose
DB2 problems, rather than user errors, refer to Part 3 of DB2 Diagnosis Guide and
Reference. If necessary, contact the IBM support center for assistance.

Problem 2
DB2 has failed or is not running.

Symptom: One of the following status situations exists:

v If you specified error option Q, the program terminates with a U3051 user abend
completion code.

416 Administration Guide

v If you specified error option A, the program terminates with a U3047 user abend
completion code.

In both cases, the master terminal receives a message (IMS message number
DFS554), and the terminal involved also receives a message (DFS555).

System action: None.

System programmer action: None.

Operator action:
1. Restart DB2.
2. Follow the standard IMS procedures for handling application abends.

CICS-related failures
This section includes scenarios for problems that can be encountered in the CICS
environment:

“CICS application failure”
“CICS is not operational”
“CICS cannot connect to DB2” on page 418
“Manually recovering CICS indoubt units of recovery” on page 419
“CICS attachment facility failure” on page 422

DB2 can be used in an XRF (Extended Recovery Facility) recovery environment
with CICS. See “Extended recovery facility (XRF) toleration” on page 374 for more
information on using XRF with CICS.

CICS application failure
Problem: A CICS application abends.

Symptom: The following message is sent to the user’s terminal.
DFH2206 TRANSACTION tranid ABEND abcode BACKOUT SUCCESSFUL

tranid can represent any abending CICS transaction and abcode is the abend code.

System action:
The failing unit of recovery is backed out in both CICS and DB2.
The connection remains.

System programmer action: None.

Operator action:
1. For information about the CICS attachment facility abend, refer to Part 2 of DB2

Messages and Codes.
2. For an AEY9 abend, start the CICS attachment facility.
3. For an ASP7 abend, determine why the CICS SYNCPOINT was unsuccessful.
4. For other abends, see DB2 Diagnosis Guide and Reference or CICS/ESA

Problem Determination Guide for diagnostic procedures.

CICS is not operational
Problem: CICS is not operational.

Symptom: More than one symptom is possible.

Chapter 22. Recovery scenarios 417

v CICS waits or loops.

Because DB2 cannot detect a wait or loop in CICS, you must find the origin of
the wait or the loop. The origin can be in CICS, CICS applications, or in the
CICS attachment facility. For diagnostic procedures for waits and loops, see Part
2 of DB2 Diagnosis Guide and Reference.

v CICS abends.

– CICS issues messages indicating an abend occurred and requests abend
dumps of the CICS region. See CICS/ESA Problem Determination Guide for
more information.

– If threads are connected to DB2 when CICS terminates, DB2 issues message
DSN3201I. The message indicates that DB2 end-of-task (EOT) routines have
been run to clean up and disconnect any connected threads.

System action: DB2 does the following:
Detects the CICS failure.
Backs out inflight work.
Saves indoubt units of recovery to be resolved when CICS is reconnected.

Operator action:

1. Correct the problem that caused CICS to terminate abnormally.

2. Do an emergency restart of CICS. The emergency restart accomplishes the
following:
v Backs out inflight transactions that changed CICS resources
v Remembers the transactions with access to DB2 that might be indoubt.

3. Start the CICS attachment facility by entering the appropriate command for your
release of CICS. See “Connecting from CICS” on page 288. The CICS
attachment facility does the following:

v Initializes and reconnects to DB2.

v Requests information from DB2 about the indoubt units of recovery and
passes the information to CICS.

v Allows CICS to resolve the indoubt units of recovery.

CICS cannot connect to DB2
Problem: The CICS attachment facility cannot connect to DB2.

Symptom:

v CICS remains operative, but the CICS attachment facility abends.

v The CICS attachment facility issues a message giving the reason for the
connection failure, or it requests an X'04E' dump.

v The reason code in the X'04E' dump gives the reason for failure.

v CICS issues message DFH2206 indicating that the CICS attach facility has
terminated abnormally with the DSNC abend code.

v CICS application programs trying to access DB2 while the CICS attachment
facility is inactive are abnormally terminated. The code AEY9 is issued.

System Action: CICS backs out the abnormally terminated transaction and treats it
like an application abend.

Operator action:

1. Start the CICS attachment facility by entering the appropriate command for your
release of CICS. See “Connecting from CICS” on page 288.

418 Administration Guide

2. The CICS attachment facility initializes and reconnects to DB2.

3. The CICS attachment facility requests information about the indoubt units of
recovery and passes the information to CICS.

4. CICS resolves the indoubt units of recovery.

Manually recovering CICS indoubt units of recovery
When the attachment facility abends, CICS and DB2 build indoubt lists either
dynamically or during restart, depending on the failing subsystem.

For CICS, a DB2 unit of recovery could be indoubt if the forget entry (X'FD59') of
the task-related installation exit is absent from the CICS system journal. The
indoubt condition applies only to the DB2 UR, because CICS will have already
committed or backed out any changes to its resources.

A DB2 unit of recovery is indoubt for DB2 if an End Phase 1 is present and the
Begin Phase 2 is absent.

Problem: When CICS connects to DB2, there are one or more indoubt units of
recovery that have not been resolved.

Symptom: One of the following messages is sent to the user-named CICS
destination specified in the ERRDEST field in the resource control table (RCT):
DSN2001I, DSN2034I, DSN2035I, or DSN2036I.

System action: The system action is summarized in Table 68:

Table 68. CICS abnormal indoubt unit of recovery situations

Message ID Meaning

DSN2001I The named unit of recovery cannot be resolved by CICS because CICS
was cold started. The CICS attachment facility continues the startup
process.

DSN2034I The named unit of recovery is not indoubt for DB2, but is indoubt
according to CICS log information. The reason is probably a CICS restart
with the wrong tape. It could also be caused by a DB2 restart to a prior
point in time.

DSN2035I The named unit of recovery is indoubt for DB2, but is not in the CICS
indoubt list. This is most likely due to an incorrect CICS restart. The
CICS attachment facility continues the startup process and provides a
transaction dump. It could also be caused by a DB2 restart to a prior
point in time.

DSN2036I CICS indicates roll back for the named unit of recovery, but DB2 has
already committed the unit of recovery. The CICS attachment facility
continues the startup process.

CICS retains details of indoubt units of recovery that were not resolved during
connection start up. An entry is purged when it no longer appears on the list
presented by DB2 or, when present, DB2 solves it.

System programmer action: Any indoubt unit of recovery that CICS cannot
resolve must be resolved manually by using DB2 commands. This manual
procedure should be used rarely within an installation, because it is required only
where operational errors or software problems have prevented automatic resolution.
Any inconsistencies found during indoubt resolution must be investigated.

To recover an indoubt unit, follow these steps:

Chapter 22. Recovery scenarios 419

Step 1: Obtain a list of the indoubt units of recovery from DB2:

Issue the following command:
-DISPLAY THREAD (connection-name) TYPE (INDOUBT)

You will receive the following messages:
DSNV401I - DISPLAY THREAD REPORT FOLLOWS -
DSNV406I - INDOUBT THREADS -
COORDINATOR STATUS RESET URID AUTHID
coordinator-name status yes/no urid authid
DISPLAY INDOUBT REPORT COMPLETE
DSN9022I - DSNVDT '-DISPLAY THREAD' NORMAL COMPLETION

The corr_id (correlation ID) for CICS TS 1.1 and previous releases of CICS consists
of:
Byte 1

Connection type: G = group, P = pool
Byte 2

Thread type: T = transaction (TYPE=ENTRY), G = group, C = command
(TYPE=COMD)

Bytes 3, 4
Thread number

Bytes 5-8
Transaction ID

The corr_id (correlation ID) for CICS TS 1.2 and subsequent releases of CICS
consists of:
Bytes 1-4

Thread type: COMD, POOL, or ENTR
Bytes 5-8

Transaction ID
Bytes 9-12

Unique thread number

It is possible for two threads to have the same correlation ID when the connection
has been broken several times and the indoubt units of recovery have not been
resolved. In this case, the network ID (NID) must be used instead of the correlation
ID to uniquely identify indoubt units of recovery.

The network ID consists of the CICS connection name and a unique number
provided by CICS at the time the syncpoint log entries are written. This unique
number is an eight-byte store clock value that is stored in records written to both
the CICS system log and to the DB2 log at syncpoint processing time. This value is
referred to in CICS as the recovery token.

Step 2: Scan the CICS log for entries related to a particular unit of recovery:
To do this, search the CICS log, looking for a PREPARE record
(JCRSTRIDX'F959'), for the task-related installation where the recovery token field
(JCSRMTKN) equals the value obtained from the network-ID. The network ID is
supplied by DB2 in the DISPLAY THREAD command output.

Locating the prepare log record in the CICS log for the indoubt unit of recovery
provides the CICS task number. All other entries on the log for this CICS task can
be located using this number.

420 Administration Guide

CICS journal print utility DFHJUP can be used when scanning the log. See CICS
for MVS/ESA Operations and Utilities Guide for details on how to use this program.

Step 3: Scan the DB2 log for entries related to a particular unit of recovery: To
do this, scan the DB2 log to locate the End Phase 1 record with the network ID
required. Then use the URID from this record to obtain the rest of the log records
for this unit of recovery.

When scanning the DB2 log, note that the DB2 start up message DSNJ099I
provides the start log RBA for this session.

The DSN1LOGP utility can be used for that purpose. See Part 3 of DB2 Utility
Guide and Reference for details on how to use this program.

Step 4: If needed, do indoubt resolution in DB2: DB2 can be directed to take the
recovery action for an indoubt unit of recovery using a DB2 RECOVER INDOUBT
command. Where the correlation ID is unique, use the following command:
DSNC -RECOVER INDOUBT (connection-name)

ACTION (COMMIT/ABORT)
ID (correlation-id)

If the transaction is a pool thread, use the value of the correlation ID (corr_id)
returned by DISPLAY THREAD for thread#.tranid in the command RECOVER
INDOUBT. In this case, the first letter of the correlation ID is P. The transaction ID is
in characters five through eight of the correlation ID.

If the transaction is assigned to a group (group is a result of using an entry thread),
use thread#.groupname instead of thread#.tranid. In this case, the first letter of the
correlation ID is a G and the group name is in characters five through eight of the
correlation ID. groupname is the first transaction listed in a group.

Where the correlation ID is not unique, use the following command:
DSNC -RECOVER INDOUBT (connection-name)

ACTION (COMMIT/ABORT)
NID (network-id)

When two threads have the same correlation ID, use the NID keyword instead of
the ID keyword. The NID value uniquely identifies the work unit.

To recover all threads associated with connection-name, omit the ID option.

The command results in either of the following messages to indicate whether the
thread is committed or rolled back:
DSNV414I - THREAD thread#.tranid COMMIT SCHEDULED
DSNV415I - THREAD thread#.tranid ABORT SCHEDULED

When performing indoubt resolution, note that CICS and the attachment facility are
not aware of the commands to DB2 to commit or abort indoubt units of recovery,
because only DB2 resources are affected. However, CICS keeps details about the
indoubt threads that could not be resolved by DB2. This information is purged either
when the list presented is empty, or when the list does not include a unit of
recovery that CICS remembers.

Operator action: Contact the system programmer.

Chapter 22. Recovery scenarios 421

CICS attachment facility failure
Problem: The CICS attachment facility abends, or a CICS attachment thread
subtask abends. CICS and DB2 remain active.

Symptom:

v If the main subtask abends, an abend dump is requested. The contents of the
dump indicate the cause of the abend. When the dump is issued, shutdown of
the CICS attachment facility begins.

v If a thread subtask terminates abnormally, an X'04E' dump is issued and the
CICS application abends with a DSNC dump code. The X'04E' dump should
show the cause of the abend. The CICS attachment facility remains active.

System action:

v The CICS attachment facility shuts down if there is a main subtask abend.

v The matching CICS application abends with a DSNC dump code if a thread
subtask abends.

System programmer action: None.

Operator action: Correct the problem that caused the abend by analyzing the
CICS formatted transaction dump or subtask SNAP dump. For more information
about analyzing these dumps, see Part 2 of DB2 Messages and Codes. If the CICS
attachment facility shuts down, use CICS commands to stop the execution of any
CICS-DB2 applications.

Subsystem termination
Problem: Subsystem termination has been started by DB2 or by an operator
cancel.

Symptom: Subsystem termination occurs. Usually some specific failure is identified
by DB2 messages, and the following messages appear.

On the MVS console:
DSNV086E - DB2 ABNORMAL TERMINATION REASON=XXXXXXXX
DSN3104I - DSN3EC00 - TERMINATION COMPLETE
DSN3100I - DSN3EC00 - SUBSYSTEM ssnm READY FOR -START COMMAND

On the IMS master terminal:
DSNM002I IMS/TM xxxx DISCONNECTED FROM SUBSYSTEM

yyyy RC=rc

On the CICS transient data error destination defined in the RCT:
DSNC2025I - THE ATTACHMENT FACILITY IS INACTIVE

System action:

v IMS and CICS continue.

v In-process CICS and IMS applications receive SQLCODE -923 (SQLSTATE
'57015') when accessing DB2.

In most cases, if an IMS or CICS application program is running when a -923
SQLCODE is returned, an abend occurs. This is because the application
program generally terminates when it receives a -923 SQLCODE. To terminate,
some synchronization processing occurs (such as a commit). If DB2 is not

422 Administration Guide

operational when synchronization processing is attempted by an application
program, the application program abends. In-process applications can abend with
an abend code X'04F'.

v New IMS applications are handled according to the error options.

– For option R, SQL return code -923 is sent to the application, and IMS pseudo
abends.

– For option Q, the message is enqueued again and the transaction abends.

– For option A, the message is discarded and the transaction abends.

v New CICS applications are handled as follows:

– If the CICS attachment facility has not terminated, the application receives a
-923 SQLCODE.

– If the CICS attachment facility has terminated, the application abends (code
AEY9).

Operator action:

1. Restart DB2 by issuing the command START DB2.

2. Reestablish the IMS connection by issuing the IMS command /START SUBSYS
DB2.

3. Reestablish the CICS connection by issuing the CICS attachment facility
command DSNC STRT.

System programmer action:

1. Use the IFCEREP1 service aid to obtain a listing of the SYS1.LOGREC data set
containing the SYS1.LOGREC entries. (For more information about this service
aid, refer to the MVS diagnostic techniques publication about SYS1.LOGREC.)

2. If the subsystem termination was due to a failure, collect material to determine
the reason for failure (console log, dump, and SYS1.LOGREC).

DB2 system resource failures
This section includes scenarios for problems that can be encountered in the DB2
environment:

“Active log failure”
“Archive log failure” on page 427
“BSDS failure” on page 429
“Recovering the BSDS from a backup copy” on page 431

Active log failure
This section covers some of the more likely active log problems. Problems not
covered here include the following:

v Active log dynamic allocation problems are indicated by message DSNJ103I at
startup time.

v Active log open/close problems are indicated by message DSNJ104I.

Those problems are covered in “Chapter 23. Recovery from BSDS or log failure
during restart” on page 475.

Problem 1 - Out of space in active logs
The available space in the active log is finite and can be exhausted. It can fill to
capacity for one of several reasons, such as delays in offloading and excessive
logging.

Chapter 22. Recovery scenarios 423

Symptom: An out of space condition on the active log has very serious
consequences. When the active log becomes full, the DB2 subsystem cannot do
any work that requires writing to the log until an offload is completed.

Due to the serious implications of this event, the DB2 subsystem issues the
following warning message when the last available active log data set is 5 percent
full and reissues the message after each additional 5 percent of the data set space
is filled. Each time the message is issued, the offload process is started. IFCID
trace record 0330 is also issued if statistics class 3 is active.
DSNJ110E - LAST COPYn ACTIVE LOG DATA SET IS nnn PERCENT FULL

If the active log fills to capacity, after having switched to single logging, the following
message is issued, and an offload is started. The DB2 subsystem then halts
processing until an offload has completed.
DSNJ111E - OUT OF SPACE IN ACTIVE LOG DATA SETS

Corrective action is required before DB2 can continue processing.

System action: DB2 waits for an available active log data set before resuming
normal DB2 processing. Normal shutdown, with either QUIESCE or FORCE, is not
possible because the shutdown sequence requires log space to record system
events related to shutdown (for example, checkpoint records).

Operator action: Make sure offload is not waiting for a tape drive. If it is, mount a
tape and DB2 will process the offload command.

If you are uncertain about what is causing the problem, enter the following
command:
-ARCHIVE LOG CANCEL OFFLOAD

This command causes DB2 to restart the offload task. This might solve the problem.

If this command does not solve the problem, you must determine the cause of the
problem and then reissue the command again. If the problem cannot be solved
quickly, have the system programmer define additional active logs.

System programmer action: Additional active log data sets can permit DB2 to
continue its normal operation while the problem causing the offload failures is
corrected.

1. Use the MVS command CANCEL command to bring DB2 down.

2. Use the access method services DEFINE command to define new active log
data sets. Run utility DSNJLOGF to initialize the new active log data sets.

To minimize the number of offloads taken per day in your installation, consider
increasing the size of the active log data sets.

3. Define the new active log data sets in the BSDS by using the change log
inventory utility (DSNJU003). For additional details, see Part 3 of DB2 Utility
Guide and Reference .

4. Restart DB2. Off-load is started automatically during startup, and restart
processing occurs.

Problem 2 - Write I/O error on active log data set
Symptom: The following message appears:
DSNJ105I - csect-name LOG WRITE ERROR DSNAME=..., LOGRBA=...,

ERROR STATUS=ccccffss

424 Administration Guide

System action:
Marks the failing log data set TRUNCATED in the BSDS.
Goes on to the next available data set.
If dual active logging is used, truncates the other copy at the same point.
The data in the truncated data set is offloaded later, as usual.
The data set is not stopped. It is reused on the next cycle. However, if there is a
DSNJ104 message indicating that there is a CATUPDT failure, then the data set
is marked “stopped”.

System programmer action: If you get the DSNJ104 message indicating
CATUPDT failure, you must use access method services and the change log
inventory utility (DSNJU003) to add a replacement data set. This requires that you
bring DB2 down. When you do this depends on how widespread the problem is.

v If the problem is localized and does not affect your ability to recover from any
further problems, you can wait until the earliest convenient time.

v If the problem is widespread (perhaps affecting an entire set of active log data
sets), take DB2 down after the next offload.

For instructions on using the change log inventory utility, see Part 3 of DB2 Utility
Guide and Reference.

Problem 3 - Dual logging is lost
Symptom: The following message appears:
DSNJ004I - ACTIVE LOG COPYn INACTIVE, LOG IN SINGLE MODE,

ENDRBA=...

Having completed one active log data set, DB2 found that the subsequent (COPY
n) data sets were not offloaded or were marked “stopped”.

System action: Continues in single mode until offloading completes, then returns to
dual mode. If the data set is marked “stopped”, however, then intervention is
required.

System programmer action: Check that offload is proceeding and is not waiting
for a tape mount. It might be necessary to run the print log map utility to determine
the status of all data sets.

If there are “stopped” data sets, you must use IDCAMS to delete the data sets, and
then re-add them using the change log inventory utility (DSNJU003). See Part 3 of
DB2 Utility Guide and Reference for information about using the change log
inventory utility.

Problem 4 - I/O errors while reading the active log
Symptom: The following message appears:
DSNJ106I - LOG READ ERROR DSNAME=..., LOGRBA=...,

ERROR STATUS=ccccffss

System action:

v If the error occurs during offload, offload tries to pick the RBA range from a
second copy.

– If no second copy exists, the data set is stopped.

– If the second copy also has an error, only the original data set that triggered
the offload is stopped. Then the archive log data set is terminated, leaving a
discontinuity in the archived log RBA range.

– The following message is issued.

Chapter 22. Recovery scenarios 425

DSNJ124I - OFFLOAD OF ACTIVE LOG SUSPENDED FROM RBA xxxxxx
TO RBA xxxxxx DUE TO I/O ERROR

– If the second copy is satisfactory, the first copy is not stopped.

v If the error occurs during recovery, DB2 provides data from specific log RBAs
requested from another copy or archive. If this is unsuccessful, recovery fails and
the transaction cannot complete, but no log data sets are stopped. However, the
table space being recovered is not accessible.

System programmer action: If the problem occurred during offload, determine
which databases are affected by the active log problem and take image copies of
those. Then proceed with a new log data set.

Also, you can use IDCAMS REPRO to archive as much of the stopped active log
data set as possible. Then run the change log inventory utility to notify the BSDS of
the new archive log and its log RBA range. Repairing the active log does not solve
the problem, because offload does not go back to unload it.

If the active log data set has been stopped, it is not used for logging. The data set
is not deallocated; it is still used for reading.

If the data set is not stopped, an active log data set should nevertheless be
replaced if persistent errors occur. The operator is not told explicitly whether the
data set has been stopped. To determine the status of the active log data set, run
the print log map utility (DSNJU004). For more information on the print log map
utility, see Part 3 of DB2 Utility Guide and Reference.

To replace the data set, take the following steps:

1. Be sure the data is saved.

If you have dual active logs, the data is saved on the other active log and it
becomes your new data set. Skip to step 4.

If you have not been using dual active logs, take the following steps to
determine whether the data set with the error has been offloaded:

a. Use the print log map to list information about the archive log data sets from
the BSDS.

b. Search the list for a data set whose RBA range includes the range of the
data set with the error.

2. If the data set with the error has been offloaded (that is, if the value for High
RBA Off-loaded in the print log map output is greater than the RBA range of the
data set with the error), you need to manually add a new archive log to the
BSDS using the change log inventory utility (DSNJU003). Use IDCAMS to
define a new log having the same LRECL and BLKSIZE values as that defined
in DSNZPxxx. You can use the access method services REPRO command to
copy a data set with the error to the new archive log. If the archive log is not
cataloged, DB2 can locate it from the UNIT and VOLSER values in the BSDS.

3. If an active log data set has been stopped, an RBA range has not been
offloaded; copy from the data set with the error to a new data set. If further I/O
errors prevent you from copying the entire data set, a gap occurs in the log and
restart might fail, though the data still exists and is not overlaid. If this occurs,
see “Chapter 23. Recovery from BSDS or log failure during restart” on
page 475.

4. Stop DB2, and use change log inventory to update information in the BSDS
about the data set with the error.

a. Use DELETE to remove information about the bad data set.

426 Administration Guide

b. Use NEWLOG to name the new data set as the new active log data set and
to give it the RBA range that was successfully copied.

The DELETE and NEWLOG operations can be performed by the same job
step; put the DELETE statement before the NEWLOG statement in the
SYSIN input data set. This step will clear the stopped status and DB2 will
eventually archive it.

5. Delete the data set in error by using access method services.

6. Redefine the data set so you can write to it. Use access method services
DEFINE command to define the active log data sets. Run utility DSNJLOGF to
initialize the active log data sets. If using dual logs, use access method services
REPRO to copy the good log into the redefined data set so that you have two
consistent, correct logs again.

Archive log failure
This section covers some of the more likely archive log problems. Problems not
covered here include archive log open/close problems that are indicated by the
message DSNJ104I. Most archive log problems are described in “Chapter 23.
Recovery from BSDS or log failure during restart” on page 475.

Problem 1 - Allocation problems
Symptom: The following message appears:
DSNJ103I - csect-name LOG ALLOCATION ERROR DSNAME=dsname,
ERROR STATUS=eeeeiiii, SMS REASON CODE=ssssssss

MVS dynamic allocation provides the ERROR STATUS. If the allocation was for
offload processing, the following is also displayed.
DSNJ115I - OFFLOAD FAILED, COULD NOT ALLOCATE AN ARCHIVE DATA SET

System action: One of the following occurs:

v The RECOVER utility is executing and requires an archive log. If neither log can
be found or used, recovery fails.

v The active log became full and an offload was scheduled. Off-load tries again the
next time it is triggered. The active log does not wrap around; therefore, if there
are no more active logs, data is not going to be lost.

v The input is needed for restart, which fails; refer to “Chapter 23. Recovery from
BSDS or log failure during restart” on page 475.

Operator action: Check the allocation error code for the cause of the problem and
correct it. Ensure that drives are available and run the recovery job again. Caution
must be exercised if a DFP/DFSMS ACS user-exit filter has been written for an
archive log data set, because this can cause the DB2 subsystem to fail on a device
allocation error attempting to read the archive log data set.

Problem 2 - Write I/O errors during archive log offload
Symptom: No specific DB2 message is issued for write I/O errors. Only an MVS
error recovery program message appears. If you get DB2 message DSNJ128I, the
offload task has abended and you should consult Part 2 of DB2 Messages and
Codes.

System action:

v Off-load abandons that output data set (no entry in BSDS).

v Off-load dynamically allocates a new archive and restarts offloading from the
point at which it was previously triggered. If there is dual archiving, the second
copy waits.

Chapter 22. Recovery scenarios 427

v If an error occurs on the new data set, the following occurs.

– If in dual archive mode, message DSNJ114I is generated and the offload
processing changes to single mode.
DSNJ114I - ERROR ON ARCHIVE DATA SET, OFFLOAD CONTINUING

WITH ONLY ONE ARCHIVE DATA SET BEING GENERATED

– If in single mode, it abandons the output data set. Another attempt to offload
this RBA range is made the next time offload is triggered.

– The active log does not wrap around; if there are no more active logs, data is
not lost.

Operator action: Ensure that offload is allocated on a good drive and control unit.

Problem 3 - Read I/O errors on archive data set during recover
Symptom: No specific DB2 message is issued, only the MVS error recovery
program message appears.

System action:
v If a second copy exists, it is allocated and used.
v If a second copy does not exist, recovery fails.

Operator action: If you are recovering from tape, try recovering using a different
drive. If this does not work, contact the system programmer.

System programmer action: The only option is to recover to the last image copy
or the last quiesce point RBA. See Part 2 of DB2 Utility Guide and Reference for
more information about using the RECOVER utility.

Problem 4 - Insufficient disk space for offload processing
Symptom: While offloading the active log data sets to disk, DB2 offload processing
terminates unexpectedly. DB2 does not issue any specific message other than:
DSNJ128I - LOG OFFLOAD TASK FAILED FOR ACTIVE LOG nnnnn

The failure is preceded by MVS ABEND messages IEC030I, IEC031I, or IEC032I.

System action: DB2 deallocates the data set on which the error occurred. If in dual
archive mode, DB2 changes to single archive mode and continues the offload. If the
offload cannot compete in single archive mode, the active log data sets cannot be
offloaded, and the status of the active log data sets remains NOTREUSEABLE.
Another attempt to offload the RBA range of the active log data sets is made the
next time offload is invoked.

System programmer action: If DB2 is operating with restricted active log
resources (see message DSNJ110E), quiesce the DB2 subsystem to restrict
logging activity until the MVS ABEND is resolved.

This message is generated for a variety of reasons. When accompanied by the
MVS abends mentioned above, the most likely failures are as follows:

v The size of the archive log data set is too small to contain the data from the
active log data sets during offload processing. All secondary space allocations
have been used. This condition is normally accompanied by MVS ABEND
message IEC030I.

To solve the problem, increase the primary or secondary allocations (or both) for
the archive log data set in DSNZPxxx. Another option is to reduce the size of the
active log data set. If the data to be offloaded is particularly large, you can mount

428 Administration Guide

another online storage volume or make one available to DB2. Modifications to
DSNZPxxx require that you stop and start DB2 to take effect.

v All available space on the disk volumes to which the archive data set is being
written has been exhausted. This condition is normally accompanied by MVS
ABEND message IEC032I.

To solve the problem, make space available on the disk volumes, or make
available another online storage volume for DB2. Then issue the DB2 command
ARCHIVE LOG CANCEL OFFLOAD to get DB2 to retry the offload.

v The primary space allocation for the archive log data set (as specified in the load
module for subsystem parameters) is too large to allocate to any available online
disk device. This condition is normally accompanied by MVS ABEND message
IEC032I.

To solve the problem, make space available on the disk volumes, or make
available another online storage volume for DB2. If this is not possible, an
adjustment to the value of PRIQTY in the DSNZPxxx module is required to
reduce the primary allocation. (For instructions, see Part 2 of DB2 Installation
Guide. If the primary allocation is reduced, the size of the secondary space
allocation might have to be increased to avoid future IEC030I abends.

Temporary resource failure
DB2 sometimes experiences a temporary problem when it accesses log data sets.
For example, DB2 might experience a problem when it attempts to allocate or open
archive log data sets during the rollback of a long-running unit of recovery. These
temporary failures can be caused by:
v A temporary problem with DFHSM recall
v A temporary problem with the tape subsystem
v Uncataloged archive logs
v Archive tape mount requests being cancelled

In these cases, DB2 issues messages for the access failure for each log data set.
These messages provide information needed to resolve the access error. For
example:
DSNJ104I (DSNJR206 RECEIVED ERROR STATUS 00000004

FROM DSNPCLOC FOR DSNAME=DSNC710.ARCHLOG1.A0000049

DSNJ104I (DSNJR206 RECEIVED ERROR STATUS 00000004
FROM DSNPCLOC FOR DSNAME=DSNC710.ARCHLOG2.A0000049

*DSNJ153E (DSNJR006 CRITICAL LOG READ ERROR
CONNECTION-ID = TEST0001
CORRELATION-ID = CTHDCORID001
LUWID = V71A.SYEC1DB2.B3943707629D=10
REASON-CODE = 00D10345

You can attempt to recover from temporary failures by issuing a positive reply to
message:
*26 DSNJ154I (DSNJR126 REPLY Y TO RETRY LOG READ REQUEST, N TO ABEND

If the problem persists, quiesce other work in the system before replying N, which
terminates DB2.

BSDS failure
For information about the BSDS, see “Managing the bootstrap data set (BSDS)” on
page 341. Normally, there are two copies of the BSDS; but if one is damaged, DB2
immediately falls into single BSDS mode processing. The damaged copy of the
BSDS must be recovered prior to the next restart. If you are in single mode and

Chapter 22. Recovery scenarios 429

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|
|

damage the only copy of the BSDS, or if you are in dual mode and damage both
copies, DB2 stops until the BSDS is recovered. To proceed under these conditions,
see “Recovering the BSDS from a backup copy” on page 431.

This section covers some of the BSDS problems that can occur. Problems not
covered here include:
v RECOVER BSDS command failure (messages DSNJ301I through DSNJ307I)
v Change log inventory utility failure (message DSNJ123E)
v Errors in the BSDS backup being dumped by offload (message DSNJ125I).

See Part 2 of DB2 Messages and Codes for information about those problems.

Problem 1 - An I/O error occurs
Symptom: The following message appears:
DSNJ126I - BSDS ERROR FORCED SINGLE BSDS MODE

It is followed by one of these messages:
DSNJ107I - READ ERROR ON BSDS

DSNAME=... ERROR STATUS=...

DSNJ108I - WRITE ERROR ON BSDS
DSNAME=... ERROR STATUS=...

System action: The BSDS mode changes from dual to single.

System programmer action:

1. Use access method services to rename or delete the damaged BSDS and to
define a new BSDS with the same name as the failing BSDS. Control
statements can be found in job DSNTIJIN.

2. Issue the DB2 command RECOVER BSDS to make a copy of the good BSDS
in the newly allocated data set and to reinstate dual BSDS mode.

Problem 2 - An error occurs while opening
Symptom: The following message appears:
DSNJ100I - ERROR OPENING BSDSn DSNAME=..., ERROR STATUS=eeii

The error status is VSAM return code/feedback. For information about VSAM
codes, refer to DFSMS/MVS: Macro Instructions for Data Sets.

System action: None.

System programmer action:

1. Use access method services to delete or rename the damaged data set, to
define a replacement data set, and to copy the remaining BSDS to the
replacement with the REPRO command.

2. Use the command START DB2 to start the DB2 subsystem.

Problem 3 - Unequal timestamps exist
Symptom: The following message appears:
DSNJ120I - DUAL BSDS DATA SETS HAVE UNEQUAL TIMESTAMPS,

BSDS1 SYSTEM=..., UTILITY=..., BSDS2 SYSTEM=..., UTILITY=...

The following are possible causes:

430 Administration Guide

v One of the volumes containing the BSDS has been restored. All information of
the restored volume is down-level. If the volume contains any active log data sets
or DB2 data, their contents are also down-level. The down-level volume has the
lower timestamp.

For information about resolving this problem, see “Failure during a log RBA read
request” on page 493.

v Dual BSDS mode has degraded to single BSDS mode, and you are trying to
start without recovering the bad BSDS.

v The DB2 subsystem abended after updating one copy of the BSDS, but prior to
updating the second copy.

System action: None.

System programmer action:

1. Run the print log map utility (DSNJU004) on both copies of the BSDS; compare
the lists to determine which copy is accurate or current.

2. Rename the down-level data set and define a replacement for it.

3. Copy the good data set to the replacement data set, using the REPRO
command of access method services.

4. If the problem was caused by a restored down-level BSDS volume, and:
v if the restored volume contains active log data, and
v you were using dual active logs on separate volumes

then use access method services REPRO to copy the current version of the
active log to the down-level data set.

If you were not using dual active logs, you must cold start the subsystem. (For
this procedure, see “Failure resulting from total or excessive loss of log data” on
page 496).

If the restored volume contains database data, use the RECOVER utility to
recover that data after successful restart.

Recovering the BSDS from a backup copy
If DB2 is operating in single BSDS mode and the BSDS is damaged, or if DB2 is
operating in dual BSDS mode and both BSDSs are damaged, DB2 stops and does
not restart until dual BSDS is restored. In this case, take the following steps:

1. Locate the BSDS associated with the most recent archive log data set. The data
set name of the most recent archive log appears on the MVS console in the last
occurrence of message DSNJ003I, which indicates that offloading has
successfully completed. In preparation for the rest of this procedure, it is a good
practice to keep a log of all successful archives noted by that message.

v If archive logs are on disk, the BSDS is allocated on any available disk. The
BSDS name is like the corresponding archive log data set name; change only
the first letter of the last qualifier, from A to B, as in the example below:
Archive log name

DSN.ARCHLOG1.A0000001
BSDS copy name

DSN.ARCHLOG1.B0000001

v If archive logs are on tape, the BSDS is the first data set of the first archive
log volume. The BSDS is not repeated on later volumes.

Chapter 22. Recovery scenarios 431

2. If the most recent archive log data set has no copy of the BSDS (presumably
because an error occurred when offloading it), then locate an earlier copy of the
BSDS from an earlier offload.

3. Rename any damaged BSDS by using the access method services ALTER
command with the NEWNAME option. If the decision is made to delete any
damaged BSDS, use the access method services DELETE command. For each
damaged BSDS, use access method services to define a new BSDS as a
replacement data set. Job DSNTIJIN contains access method services control
statements to define a new BSDS.

The BSDS is a VSAM key-sequenced data set that has three components:
cluster, index, and data. You must rename all components of the data set. Avoid
changing the high-level qualifier. See DFSMS/MVS: Access Method Services for
VSAM Catalogs for detailed information about using the access method services
ALTER command.

4. Use the access method services REPRO command to copy the BSDS from the
archive log to one of the replacement BSDSs you defined in step 3. Do not
copy any data to the second replacement BSDS; data is placed in the second
replacement BSDS in a later step in this procedure.

a. Print the contents of the replacement BSDS.

Use the print log map utility (DSNJU004) to print the contents of the
replacement BSDS. This enables you to review the contents of the
replacement BSDS before continuing your recovery work.

b. Update the archive log data set inventory in the replacement BSDS.

Examine the print log map output and note that the replacement BSDS does
not obtain a record of the archive log from which the BSDS was copied. If
the replacement BSDS is a particularly old copy, it is missing all archive log
data sets that were created later than the BSDS backup copy. Thus, the
BSDS inventory of the archive log data sets must be updated to reflect the
current subsystem inventory.

Use the change log inventory utility (DSNJU003) NEWLOG statement to
update the replacement BSDS, adding a record of the archive log from
which the BSDS was copied. Make certain the CATALOG option of the
NEWLOG statement is properly set to CATALOG = YES if the archive log
data set is cataloged. Also, use the NEWLOG statement to add any
additional archive log data sets that were created later than the BSDS copy.

c. Update DDF information in the replacement BSDS.

If your installation’s DB2 is part of a distributed network, the BSDS contains
the DDF control record. You must review the contents of this record in the
output of the print log map utility. If changes are required, use the change
log inventory DDF statement to update the BSDS DDF record.

d. Update the active log data set inventory in the replacement BSDS.

In unusual circumstances, your installation could have added, deleted, or
renamed active log data sets since the BSDS was copied. In this case, the
replacement BSDS does not reflect the actual number or names of the
active log data sets your installation has currently in use.

If you must delete an active log data set from the replacement BSDS log
inventory, use the change log inventory utility DELETE statement.

If you need to add an active log data set to the replacement BSDS log
inventory, use the change log inventory utility NEWLOG statement. Be
certain that the RBA range is specified correctly on the NEWLOG statement.

432 Administration Guide

If you must rename an active log data set in the replacement BSDS log
inventory, use the change log inventory utility DELETE statement, followed
by the NEWLOG statement. Be certain that the RBA range is specified
correctly on the NEWLOG statement.

e. Update the active log RBA ranges in the replacement BSDS.

Later, when a restart is performed, DB2 compares the RBAs of the active
log data sets listed in the BSDS with the RBAs found in the actual active log
data sets. If the RBAs do not agree, DB2 does not restart. The problem is
magnified when a particularly old copy of the BSDS is used. To resolve this
problem, you can use the change log inventory utility to adjust the RBAs
found in the BSDS with the RBAs in the actual active log data sets. This can
be accomplished by the following:

v If you are not certain of the RBA range of a particular active log data set,
use DSN1LOGP to print the contents of the active log data set. Obtain
the logical starting and ending RBA values for the active log data set from
the DSN1LOGP output. The STARTRBA value you use in the change log
inventory utility must be at the beginning of a control interval. Similarly,
the ENDRBA value you use must be at the end of a control interval. To
get these values, round the starting RBA value from the DSN1LOGP
output down so that it ends in X'000'. Round the ending RBA value up so
that it ends in X'FFF'.

v When the RBAs of all active log data sets are known, compare the actual
RBA ranges with the RBA ranges found in the BSDS (listed in the print
log map utility output).

If the RBA ranges are equal for all active log data sets, you can proceed
to the next recovery step without any additional work.

If the RBA ranges are not equal, then the values in the BSDS must be
adjusted to reflect the actual values. For each active log data set that
needs to have the RBA range adjusted, use the change log inventory
utility DELETE statement to delete the active log data set from the
inventory in the replacement BSDS. Then use the NEWLOG statement to
redefine the active log data set to the BSDS.

f. If only two active log data sets are specified in the replacement BSDS, add a
new active log data set for each copy of the active log and define each new
active log data set of the replacement BSDS log inventory.

If only two active log data sets are specified for each copy of the active log,
DB2 can have difficulty during restart. The difficulty can arise when one of
the active log data sets is full and has not been offloaded, while the second
active log data set is close to filling. Adding a new active log data set for
each copy of the active log can alleviate difficulties on restart in this
scenario.

To add a new active log data set for each copy of the active log, use the
access method services DEFINE command to define a new active log data
set for each copy of the active log. The control statements to accomplish this
task can be found in job DSNTIJIN. Once the active log data sets are
physically defined and allocated, use the change log inventory utility
NEWLOG statement to define the new active log data sets of the
replacement BSDS. The RBA ranges need not be specified on the NEWLOG
statement.

5. Copy the updated BSDS copy to the second new BSDS data set. The dual
bootstrap data sets are now identical.

You should consider using the print log map utility (DSNJU004) to print the
contents of the second replacement BSDS at this point.

Chapter 22. Recovery scenarios 433

6. See “Chapter 23. Recovery from BSDS or log failure during restart” on page 475
for information about what to do if you have lost your current active log data set.
For a discussion of how to construct a conditional restart record, see “Step 4:
Truncate the log at the point of error” on page 485.

7. Restart DB2, using the newly constructed BSDS. DB2 determines the current
RBA and what active logs need to be archived.

DB2 database failures
Problem: Allocation or open problems occur.

Symptom 1: The following message indicates an allocation problem:
DSNB207I - DYNAMIC ALLOCATION OF DATA SET FAILED.

REASON=rrrr DSNAME=dsn

where rrrr is an MVS dynamic allocation reason code. For information about these
reason codes, see OS/390 MVS Programming: Authorized Assembler Services
Guide.

Symptom 2: The following messages indicate a problem at open:
IEC161I rc[(sfi)] - ccc, iii, sss, ddn,

ddd, ser, xxx, dsn, cat

where:
rc Is a return code
sfi Is subfunction information (sfi only appears with certain return codes)
ccc Is a function code
iii Is a job name
sss Is a step name
ddn Is a ddname
ddd Is a device number (if the error is related to a specific device)
ser Is a volume serial number (if the error is related to a specific volume)
xxx Is a VSAM cluster name
dsn Is a data set name
cat Is a catalog name.

For information about these codes, see OS/390 MVS System Messages Volume 1.
DSNB204I - OPEN OF DATA SET FAILED. DSNAME = dsn

System action:
v The table space is automatically stopped.
v Programs receive an -904 SQLCODE (SQLSTATE '57011').
v If the problem occurs during restart, the table space is marked for deferred

restart, and restart continues. The changes are applied later when the table
space is started.

System programmer action: None.

Operator action:
1. Check reason codes and correct.
2. Ensure that drives are available for allocation.
3. Enter the command START DATABASE.

434 Administration Guide

Recovery from down-level page sets
When using a stand-alone or non-DB2 utility, such as DSN1COPY or DFSMShsm, it
is possible to replace a DB2 data set by mistake with an incorrect or outdated copy.
Such a copy is called down-level; using it can cause complex problems.

Other reasons for a down-level condition are:

v A cold start of DB2 was performed.

v The VSAM high-used RBA of a table space has become corrupted.

DB2 associates a level ID with every page set or partition. Most operations detect a
down-level ID, and return an error condition, when the page set or partition is first
opened for mainline or restart processing. The exceptions are operations that do
not use the data:

LOAD REPLACE
RECOVER
REBUILD INDEX
DSN1COPY
DSN1PRNT

The RESET option of DSN1COPY resets the level ID on its output to a neutral
value that passes any level check. Hence, you can still use DSN1COPY to move
data from one system or table space to another.

The LEVELID option of the REPAIR utility marks a down-level table space or index
as current. See Part 2 of DB2 Utility Guide and Reference for details on using
REPAIR.

For directory page sets, and the page sets for SYSIBM.SYSCOPY and
SYSIBM.SYSGROUP, a down-level ID is detected only at restart and not during
mainline operations.

Symptom: The following message appears:
DSNB232I csect-name - UNEXPECTED DATA SET LEVEL ID ENCOUNTERED

The message contains also the level ID of the data set, the level ID that DB2
expects, and the name of the data set.

System action:

v If the error was reported during mainline processing, DB2 sends back a
″resource unavailable″ SQLCODE to the application and a reason code
explaining the error.

v If the error was detected while a utility was processing, the utility gives a return
code 8.

System programmer action: You can recover in any of the following ways:

If the message occurs during restart:

v Replace the data set with one at the proper level, using DSN1COPY,
DFSMShsm, or some equivalent method. To check the level ID of the new data
set, run the stand-alone utility DSN1PRNT on it, with the options PRINT(0) (to
print only the header page) and FORMAT. The formatted print identifies the level
ID.

Chapter 22. Recovery scenarios 435

v Recover the data set to the current time, or to a prior time, using the RECOVER
utility.

v Replace the contents of the data set, using LOAD REPLACE.

If the message occurs during normal operation, use any of the methods listed
above, plus one more:

v Accept the down-level data set by changing its level ID.

The REPAIR utility contains a statement for that purpose. Run a utility job with
the statement REPAIR LEVELID. The LEVELID statement cannot be used in the
same job step with any other REPAIR statement.

Important
If you accept a down-level data set or disable down-level detection, your
data might be inconsistent.

For more information about using the utilities, see DB2 Utility Guide and Reference.

You can control down-level detection. Use the LEVELID UPDATE FREQ field of
panel DSNTIPL to either disable down-level detection or control how often the level
ID of a page set or partition is updated. DB2 accepts any value between 0 and
32767.

To disable down-level detection, specify 0 in the LEVELID UPDATE FREQ field of
panel DSNTIPL.

To control how often level ID updates are taken, specify a value between 1 and
32767. See Part 2 of DB2 Installation Guide for more information about choosing
the frequency of level ID updates.

Procedure for recovering invalid LOBs
Unless your LOBs are fairly small, specifying LOG NO for LOB objects is
recommended. The performance cost of logging exceeds the benefits you can
receive from logging such large amounts of data. If no changes are made to LOB
data, this is not an issue. However, you should make image copies of the LOB table
space to prepare for failures. The frequency with which you make image copies is
based on how often you update LOB data.

If you need to recover LOB data that changed after your last image copy, follow this
procedure:

1. Run the RECOVER utility as you do for other table spaces:
RECOVER TABLESPACE dbname.lobts

If changes were made after the image copy, DB2 puts the table space in Aux
Warning status. The purpose of this status is let you know that some of your
LOBs are invalid. Applications that try to retrieve the values of those LOBs will
receive SQLCODE -904. Applications can still access other LOBs in the LOB
table space.

2. Get a report of the invalid LOBs by running CHECK LOB on the LOB table
space:
CHECK LOB TABLESPACE dbname.lobts

436 Administration Guide

#
#
#
#

#
#

DB2 generates messages like the following one:
LOB WITH ROWID = 'xxxxxxx' VERSION = n IS INVALID

3. Fix the invalid LOBs, by updating the LOBs or setting them to the null value. For
example, suppose you determine from the CHECK LOB utility that the row of
the EMP_PHOTO_RESUME table with ROWID
X'C1BDC4652940D40A81C201AA0A28' has an invalid value for column
RESUME. If host variable hvlob contains the correct value for RESUME, you
can use this statement to correct the value:
UPDATE DSN8710.EMP_PHOTO_RESUME

SET RESUME = :hvlob
WHERE EMP_ROWID = ROWID(X'C1BDC4652940D40A81C201AA0A28');

Table space input/output errors
Problem: A table space failed.

Symptom: The following message is issued:
DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE= dddddddd.

DATA SET NUMBER= nnn.
I/O ERROR PAGE RANGE= aaaaaa, bbbbbb.

where dddddddd is a table space name.

Any table spaces identified in DSNU086I messages must be recovered using one of
the procedures in this section listed under “Operator Action”.

System action: DB2 remains active.

Operator action: Fix the error range.

1. Use the command STOP DATABASE to stop the failing table space.

2. Use the command START DATABASE ACCESS (UT) to start the table space for
utility-only access.

3. Start a RECOVER utility step to recover the error range by using the DB2
RECOVER (dddddddd) ERROR RANGE statement.

If you receive message DSNU086I again, indicating the error range recovery
cannot be performed, use the recovery procedure below.

4. Give the command START DATABASE to start the table space for RO or RW
access, whichever is appropriate. If the table space is recovered, you do not
need to continue with the procedure below.

If error range recovery fails: If the error range recovery of the table space failed
because of a hardware problem, proceed as follows:

1. Use the command STOP DATABASE to stop the table space or table space
partition that contains the error range. This causes all the in-storage data buffers
associated with the data set to be externalized to ensure data consistency
during the subsequent steps.

2. Use the INSPECT function of the IBM Device Support Facility, ICKDSF, to check
for track defects and to assign alternate tracks as necessary. The physical
location of the defects can be determined by analyzing the output of messages
DSNB224I, DSNU086I, IOS000I, which were displayed on the system operator’s
console at the time the error range was created. If damaged storage media is
suspected, then request assistance from hardware support personnel before
proceeding. Refer to Device Support Facilities User's Guide and Reference for
information about using ICKDSF.

Chapter 22. Recovery scenarios 437

3. Use the command START DATABASE to start the table space with
ACCESS(UT) or ACCESS(RW).

4. Run the utility RECOVER ERROR RANGE that, from image copies, locates,
allocates, and applies the pages within the tracks affected by the error ranges.

DB2 catalog or directory input/output errors
Problem: The DB2 catalog or directory failed.

Symptom: The following message is issued:
DSNU086I DSNUCDA1 READ I/O ERRORS ON SPACE= dddddddd.

DATA SET NUMBER= nnn.
I/O ERROR PAGE RANGE= aaaaaa, bbbbbb.

where dddddddd is a table space name from the catalog or directory. dddddddd is
the table space that failed (for example, SYSCOPY, abbreviation for
SYSIBM.SYSCOPY, or SYSLGRNX, abbreviation for DSNDB01.SYSLGRNX). This
message can indicate either read or write errors. You can also get a DSNB224I or
DSNB225I message, which could indicate an input or output error for the catalog or
directory.

Any catalog or directory table spaces that are identified in DSNU086I messages
must be recovered with this procedure.

System action: DB2 remains active.

If the DB2 directory or any catalog table is damaged, only user IDs with the
RECOVERDB privilege in DSNDB06, or an authority that includes that privilege,
can do the recovery. Furthermore, until the recovery takes place, only those IDs can
do anything with the subsystem. If an ID without proper authorization attempts to
recover the catalog or directory, message DSNU060I is displayed. If the
authorization tables are unavailable, message DSNT500I is displayed indicating the
resource is unavailable.

System programmer action: None.

Operator action: Take the following steps for each table space in the DB2 catalog
and directory that has failed. If there is more than one, refer to the description of
RECOVER in Part 2 of DB2 Utility Guide and Reference for more information about
the specific order of recovery.

1. Stop the failing table spaces.

2. Determine the name of the data set that failed. There are two ways to do this:

v Check prefix.SDSNSAMP (DSNTIJIN), which contains the JCL for installing
DB2. Find the fully qualified name of the data set that failed by searching for
the name of the table space that failed (the one identified in the message as
SPACE = dddddddd).

v Construct the data set name by doing one of the following:

– If the table space is in the DB2 catalog, the data set name format is:
DSNC710.DSNDBC.DSNDB06.dddddddd.I0001.A001

where dddddddd is the name of the table space that failed.

– If the table space is in the DB2 directory, the data set name format is:
DSNC710.DSNDBC.DSNDB01.dddddddd.I0001.A001

438 Administration Guide

|

where dddddddd is the name of the table space that failed.

If you do not use the default (IBM-supplied) formats, the formats for data set
names can be different.

3. Use access method services DELETE to delete the data set, specifying the fully
qualified data set name.

4. After the data set has been deleted, use access method services DEFINE to
redefine the same data set, again specifying the same fully qualified data set
name. Use the JCL for installing DB2 to determine the appropriate parameters.

Important: The REUSE parameter must be coded in the DEFINE statements.

5. Give the command START DATABASE ACCESS(UT), naming the table space
involved.

6. Use the RECOVER utility to recover the table space that failed.

7. Give the command START DATABASE, specifying the table space name and
RO or RW access, whichever is appropriate.

Integrated catalog facility catalog VSAM volume data set failures
This section includes information regarding volume data set failures. The following
topics are described:

“VSAM volume data set (VVDS) destroyed”
“Out of disk space or extent limit reached” on page 440

VSAM volume data set (VVDS) destroyed
Problem: A VSAM volume data set (VVDS) is either out of space or destroyed.

Symptom: DB2 sends the following message to the master console.
DSNP012I - DSNPSCT0 - ERROR IN VSAM CATALOG LOCATE FUNCTION

FOR data_set_name
CTLGRC=50
CTLGRSN=zzzzRRRR
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUW-ID=logical-unit-of-work-id=token

For a detailed explanation of this message, see Part 2 of DB2 Messages and
Codes.

VSAM can also issue the following message:
IDC3009I VSAM CATALOG RETURN CODE IS 50, REASON CODE IS

IGGOCLaa - yy

In this VSAM message, yy is 28, 30, or 32 for an out-of-space condition. Any other
values for yy indicate a damaged VVDS.

System action: Your program is terminated abnormally and one or more messages
are issued.

System programmer action: None.

Operator action: For information on recovering the VVDS, consult the appropriate
book for the level of DFSMS/MVS you are using:

DFSMS/MVS: Access Method Services for the Integrated Catalog
DFSMS/MVS: Managing Catalogs

Chapter 22. Recovery scenarios 439

The procedures given in these books describe three basic recovery scenarios. First
determine which scenario exists for the specific VVDS in error. Then, before
beginning the appropriate procedure, take the following steps:

1. Determine the names of all table spaces residing on the same volume as the
VVDS. To determine the table space names, look at the VTOC entries list for
that volume, which indicates the names of all the data sets on that volume. For
information on how to determine the table space name from the data set name,
refer to “Part 2. Designing a database: advanced topics” on page 27.

2. Use the DB2 COPY utility to take image copies of all table spaces of the
volume. Taking image copies minimizes reliance on the DB2 recovery log and
can speed up the processing of the DB2 RECOVER utility (to be mentioned in a
subsequent step).

If the COPY utility cannot be used, continue with this procedure. Be aware that
processing time increases because more information is obtained from the DB2
recovery log.

3. Use the command STOP DATABASE for all the table spaces that reside on the
volume, or use the command STOP DB2 to stop the entire DB2 subsystem if an
unusually large number or critical set of table spaces are involved.

4. If possible, use access method services to export all non-DB2 data sets residing
on that volume. For more information, see DFSMS/MVS: Access Method
Services for the Integrated Catalog and DFSMS/MVS: Managing Catalogs.

5. To recover all non-DB2 data sets on the volume, see DFSMS/MVS: Access
Method Services for the Integrated Catalog and DFSMS/MVS: Managing
Catalogs.

6. Use access method services DELETE and DEFINE commands to delete and
redefine the data sets for all user-defined table spaces and DB2-defined data
sets when the physical data set has been destroyed. DB2 automatically deletes
and redefines all other STOGROUP defined table spaces.

You do not need to do this for those table spaces that are STOGROUP defined;
DB2 takes care of them automatically.

7. Issue the DB2 START DATABASE command to restart all the table spaces
stopped in step 3. If the entire DB2 subsystem was stopped, issue the -START
DB2 command.

8. Use the DB2 RECOVER utility to recover any table spaces and indexes. For
information on recovering table spaces, refer to “Chapter 21. Backing up and
recovering databases” on page 373.

Out of disk space or extent limit reached
Problem: There is no more space on the volume on which the data set is stored or
the data set might have reached its maximum DB2 size or its maximum number of
VSAM extents.

Symptom: One of the following messages:

1. Extend request failure

When an insert or update requires additional space, but the space is not
available in the current table or index space, DB2 issues the following message:
DSNP007I - DSNPmmmm - EXTEND FAILED FOR

data-set-name. RC=rrrrrrrr
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUWID-ID=logical-unit-of-work-id=token

2. Look ahead warning

440 Administration Guide

A look ahead warning occurs when there is enough space for a few inserts and
updates, but the index space or table space is almost full. On an insert or
update at the end of a page set, DB2 determines whether the data set has
enough available space. DB2 uses the following values in this space calculation:

v The primary space quantity from the integrated catalog facility (ICF) catalog

v The secondary space quantity from the ICF catalog

v The allocation unit size

If there is not enough space, DB2 tries to extend the data set. If the extend
request fails, then DB2 issues the following message:
DSNP001I - DSNPmmmm - data-set-name IS WITHIN

nK BYTES OF AVAILABLE SPACE.
RC=rrrrrrrr
CONNECTION-ID=xxxxxxxx,
CORRELATION-ID=yyyyyyyyyyyy
LUW-ID=logical-unit-of-work-id=token

System action: For a demand request failure during restart, the object supported
by the data set (an index space or a table space) is stopped with deferred restart
pending. Otherwise, the state of the object remains unchanged. Programs receive a
-904 SQL return code (SQLSTATE '57011').

System programmer action: None.

Operator action: The appropriate choice of action depends on particular
circumstances. The following topics are described in this section; decision criteria
are outlined below:

v “Procedure 1. Extend a data set” on page 442

v “Procedure 2. Enlarge a fully extended data set (user-managed)” on page 442

v “Procedure 3. Enlarge a fully extended data set (in a DB2 storage group)” on
page 442

v “Procedure 4. Add a data set” on page 443

v “Procedure 5. Redefine a partition” on page 443

v “Procedure 6. Enlarge a fully extended data set for the work file database” on
page 443

If the database qualifier of the data set name is DSNDB07, then the condition is on
your work file database. Use “Procedure 6. Enlarge a fully extended data set for the
work file database” on page 443.

In all other cases, if the data set has not reached its maximum DB2 size, then you
can enlarge it. (The maximum size is 2 gigabytes for a data set of a simple space,
and 1, 2, or 4 gigabytes for a data set containing a partition. Large partitioned table
spaces and indexes on large partitioned table spaces have a maximum data set
size of 4 gigabytes.)

v If the data set has not reached the maximum number of VSAM extents, use
“Procedure 1. Extend a data set” on page 442.

v If the data set has reached the maximum number of VSAM extents, use either
“Procedure 2. Enlarge a fully extended data set (user-managed)” on page 442 or
“Procedure 3. Enlarge a fully extended data set (in a DB2 storage group)” on
page 442, depending on whether the data set is user-managed or DB2-managed.
User-managed data sets include essential data sets such as the catalog and the
directory.

Chapter 22. Recovery scenarios 441

If the data set has reached its maximum DB2 size, then your action depends on the
type of object it supports.

v If the object is a simple space, add a data set, using “Procedure 4. Add a data
set” on page 443.

v If the object is partitioned, each partition is restricted to a single data set. You
must redefine the partitions; use “Procedure 5. Redefine a partition” on page 443.

Procedure 1. Extend a data set: If the data set is user-defined, provide more
VSAM space. You can add volumes with the access method services command
ALTER ADDVOLUMES or make room on the current volume.

If the data set is defined in a DB2 storage group, add more volumes to the storage
group by using the SQL ALTER STOGROUP statement.

For more information on DB2 data set extension, refer to “Extending DB2-managed
data sets” on page 39.

Procedure 2. Enlarge a fully extended data set (user-managed):

1. To allow for recovery in case of failure during this procedure, be sure that you
have a recent full image copy (for table spaces or if you copy your indexes).
Use the DSNUM option to identify the data set for table spaces or partitioning
indexes.

2. Issue the command STOP DATABASE SPACENAM for the last data set of the
object supported.

3. Delete the last data set by using access method services. Then redefine it and
enlarge it as necessary.

4. Issue the command START DATABASE ACCESS (UT) to start the object for
utility-only access.

The object must be user-defined and a linear data set, and should not have
reached the maximum number of 32 data sets (or 254 data sets for LOB table
spaces). For non-partitioning indexes on a large partitioned table space, the
maximum is 128 data sets.

5. To recover the data set that was redefined, use RECOVER on the table space
or index, and identify the data set by the DSNUM option (specify this DSNUM
option for table spaces or partitioning indexes only).

RECOVER lets you specify a single data set number for a table space. Thus,
only the last data set (the one that needs extension) must be redefined and
recovered. This can be better than using REORG if the table space is very large
and contains multiple data sets, and if the extension must be done quickly.

If you do not copy your indexes, then use the REBUILD INDEX utility.

6. Issue the command START DATABASE to start the object for either RO or RW
access, whichever is appropriate.

Procedure 3. Enlarge a fully extended data set (in a DB2 storage group):

1. Use ALTER TABLESPACE or ALTER INDEX with a USING clause. (You do not
have to stop the table space before you use ALTER TABLESPACE.) You can
give new values of PRIQTY and SECQTY in either the same or a new DB2
storage group.

2. Use one of the following procedures. Keep in mind that no movement of data
occurs until this step is completed.

v For indexes:

442 Administration Guide

If you have taken full image copies of the index, run the RECOVER INDEX
utility. Otherwise, run the REBUILD INDEX utility.

v For table spaces other than LOB table space:

Run one of the following utilities on the table space: REORG, RECOVER, or
LOAD REPLACE.

v For LOB table spaces defined with LOG YES:

Run the RECOVER utility on the table space.

v For LOB table spaces defined with LOG NO, follow these steps:

a. Start the table space in read-only (RO) mode to ensure that no updates
are made during this process.

b. Make an image copy of the table space.

c. Run the RECOVER utility on the table space.

d. Start the table space in read-write (RW) mode.

Procedure 4. Add a data set: If the object supported is user-defined, use the
access method services to define another data set. The name of the new data set
must continue the sequence begun by the names of the existing data sets that
support the object. The last four characters of each name are a relative data set
number: If the last name ended with A001, the next must end with A002, and so on.
Also, be sure to add either I or J in the name of the data set.

If the object is defined in a DB2 storage group, DB2 automatically tries to create an
additional data set. If that fails, access method services messages are sent to an
operator indicating the cause of the problem. Correcting that problem allows DB2 to
get the additional space.

Procedure 5. Redefine a partition:

1. Alter the key range values of the partitioning index.

2. Use REORG with inline statistics on the partitions that are affected by the
change in key range.

3. Use RUNSTATS on the nonpartitioned indexes.

4. Rebind the dependent packages and plans.

Procedure 6. Enlarge a fully extended data set for the work file database

Use one of the following methods to add extension space to the storage group:

v Use SQL to create more table spaces in database DSNDB07.

Or,

v Execute these steps:

1. Use the command STOP DATABASE(DSNDB07) to ensure that no users are
accessing the database.

2. Use SQL to alter the storage group, adding volumes as necessary.

3. Use the command START DATABASE(DSNDB07) to allow access to the
database.

Violations of referential constraints
Problem: A table space can contain violations of referential constraints.

Chapter 22. Recovery scenarios 443

|

|

|

Symptom: One of the following messages is issued at the end of utility processing,
depending upon whether or not the table space is partitioned.
DSNU561I csect-name - TABLESPACE= tablespace-name PARTITION= partnum

IS IN CHECK PENDING
DSNU563I csect-name - TABLESPACE= tablespace-name IS IN CHECK PENDING

System action: None. The table space is still available; however, it is not available
to the COPY, REORG, and QUIESCE utilities, or to SQL select, insert, delete, or
update operations that involve tables in the table space.

System programmer action: None.

Operator action:

1. Use the START DATABASE ACCESS (UT) command to start the table space for
utility-only access.

2. Run the CHECK DATA utility on the table space. Take the following into
consideration:

v If you do not believe that violations exist, specify DELETE NO. If, indeed,
violations do not exist, this resets the check-pending status; however, if
violations do exist, the status is not going to be reset.

v If you believe that violations exist, specify the DELETE YES option and an
appropriate exception table (see Part 2 of DB2 Utility Guide and Referencefor
the syntax of this utility). This deletes all rows in violation, copies them to an
exception table, and resets the check-pending status.

v If the check-pending status was set during execution of the LOAD utility,
specify the SCOPE PENDING option. This checks only those rows added to
the table space by LOAD, rather than every row in the table space.

3. Correct the rows in the exception table, if necessary, and use the SQL INSERT
statement to insert them into the original table.

4. Give the command START DATABASE to start the table space for RO or RW
access, whichever is appropriate. The table space is no longer in check-pending
status and is available for use. If you use the ACCESS (FORCE) option of this
command, the check-pending status is reset. However, this is not recommended
because it does not correct violations of referential constraints.

Failures related to the distributed data facility
The following failures related to the DDF are discussed in this section:

“Conversation failure”
“Communications database failure” on page 445
“Failure of a database access thread” on page 446
“VTAM failure” on page 447
“TCP/IP failure” on page 447
“Failure of a remote logical unit” on page 447
“Indefinite wait conditions for distributed threads” on page 448
“Security failures for database access threads” on page 448

Conversation failure
Problem: A VTAM APPC or TCP/IP conversation failed during or after allocation
and is unavailable for use.

Symptom: VTAM or TCP/IP returns a resource unavailable condition along with the
appropriate diagnostic reason code and message. A DSNL500 or DSNL511
(conversation failed) message is sent to the console for the first failure to a location

444 Administration Guide

for a specific logical unit (LU) mode or TCP/IP address. All other threads detecting a
failure from that LU mode or IP address are suppressed until communications to
that LU using that mode are successful.

DB2 returns messages DSNL501I and DSNL502I. Message DSNL501I usually
means that the other subsystem is not up.

System action: When the error is detected, it is reported by a console message
and the application receives an SQL return code. For DB2 private protocol access,
SQLCODE -904 (SQLSTATE '57011') is returned with resource type 1001, 1002, or
1003. The resource name in the SQLCA contains VTAM return codes such as
RTNCD, FDBK2, RCPRI, and RCSEC, and any SNA SENSE information. See
VTAM for MVS/ESA Messages and Codes for more information.

If you use application directed access or DRDA as the database protocols,
SQLCODE -30080 is returned to the application. The SQLCA contains the VTAM
diagnostic information, which contains only the RCPRI and RCSEC codes. For SNA
communications errors, SQLCODE -30080 is returned. For TCP/IP connections,
SQLCODE -30081 is returned. See DB2 Messages and Codes for more information
about those SQL return codes.

The application can choose to request rollback or commit. Commit or rollback
processing deallocates all but the first conversation between the allied thread and
the remote database access thread. A commit or rollback message is sent over this
remaining conversation.

Errors during the conversation’s deallocation process are reported through
messages, but do not stop the commit or rollback processing. If the conversation
used for the commit or roll back message fails, the error is reported. If the error
occurred during a commit process, the commit process continues, provided the
remote database access was read only; otherwise the commit process is rolled
back.

System programmer action: The system programmer needs to review the VTAM
or TCP/IP return codes and might need to discuss the problem with a
communications expert. Many VTAM or TCP/IP errors, besides the error of an
inactive remote LU or TCP/IP errors, require a person who has a knowledge of
VTAM or TCP/IP and the network configuration to diagnose them.

Operator action: Correct the cause of the unavailable resource condition by taking
action required by the diagnostic messages appearing on the console.

Communications database failure
This section describes two different problems.

Problem 1
A failure occurs during an attempt to access the DB2 CDB (after DDF is started).

Symptom: A DSNL700I message, indicating that a resource unavailable condition
exists, is sent to the console. Other messages describing the cause of the failure
are also sent to the console.

System action: The distributed data facility (DDF) does not terminate if it has
already started and an individual CDB table becomes unavailable. Depending on
the severity of the failure, threads will either receive a -904 SQL return code
(SQLSTATE '57011') with resource type 1004 (CDB), or continue using VTAM

Chapter 22. Recovery scenarios 445

defaults. Only the threads that access locations that have not had any prior threads
will receive a -904 SQL return code. DB2 and DDF remain up.

Operator action: Correct the error based on the messages received, then stop and
restart DDF.

Problem 2
The DB2 CDB is not defined correctly. This occurs when DDF is started and the
DB2 catalog is accessed to verify the CDB definitions.

Symptom: A DSNL701I, 702I, 703I, 704I, or 705I message is issued to identify the
problem. Other messages describing the cause of the failure are also sent to the
console.

System action: DDF fails to start up. DB2 remains up.

Operator action: Correct the error based on the messages received and restart
DDF.

Failure of a database access thread
Problem: A database access thread has been deallocated and a conversation
failure occurs.

Symptom: In the event of a failure of a database access thread, the DB2 server
terminates the database access thread only if a unit of recovery exists. The server
deallocates the database access thread and then deallocates the conversation with
an abnormal indication (a negative SQL code), which is subsequently returned to
the requesting application. The returned SQL code depends on the type of remote
access:

v DB2 private protocol access

The application program receives a -904 SQL return code (SQLSTATE '57011')
with a resource type 1005 at the requesting site. The SNA sense in the resource
name contains the DB2 reason code describing the failure.

v DRDA access

For a database access thread or non-DB2 server, a DDM error message is sent
to the requesting site and the conversation is deallocated normally. The SQL
error status code is a -30020 with a resource type ’1232’ (agent permanent error
received from the server).

System action: Normal DB2 error recovery mechanisms apply with the following
exceptions:

v Errors caught in the functional recovery routine are automatically converted to
rollback situations. The allied thread sees conversation failures.

v Errors occurring during commit, roll back, and deallocate within the DDF function
do not normally cause DB2 to abend. Conversations are deallocated and the
database access thread is terminated. The allied thread sees conversation
failures.

System programmer action: All diagnostic information related to the failure must
be collected at the serving site. For a DB2 DBAT, a dump is produced at the server.

Operator action: Communicate with the operator at the other site to take the
appropriate corrective action, regarding the messages appearing on consoles at

446 Administration Guide

both the requesting and responding sites. Operators at both sites should gather the
appropriate diagnostic information and give it to the programmer for diagnosis.

VTAM failure
Problem: VTAM terminates or fails.

Symptom: VTAM messages and DB2 messages are issued indicating that DDF is
terminating and explaining why.

System action: DDF terminates.

An abnormal VTAM failure or termination causes DDF to issue a STOP DDF
MODE(FORCE) command. The VTAM commands Z NET,QUICK or Z NET,CANCEL
causes an abnormal VTAM termination. A Z NET,HALT causes a -STOP DDF
MODE(QUIESCE) to be issued by DDF.

System programmer action: None.

Operator action: Correct the condition described in the messages received at the
console, and restart VTAM and DDF.

TCP/IP failure
Problem: TCP/IP terminates or fails.

Symptom: TCP/IP messages and DB2 messages are issued indicating that TCP/IP
is unavailable.

System action: DDF periodically attempts to reconnect to TCP/IP. If the TCP/IP
listener fails, DDF automatically tries to reestablish the TCP/IP listener for the SQL
port or the resync port every 3 minutes. TCP/IP connections cannot be established
until the TCP/IP listener is reestablished.

System programmer action: None.

Operator action: Correct the condition described in the messages received at the
console, restart TCP/IP. You do not have to restart DDF after a TCP/IP failure.

Failure of a remote logical unit
Problem: A series of conversation or change number of sessions (CNOS) failures
occur from a remote LU.

Symptom: Message DSNL501I is issued when a CNOS request to a remote LU
fails. The CNOS request is the first attempt to connect to the remote site and must
be negotiated before any conversations can be allocated. Consequently, if the
remote LU is not active, message DSNL500I is displayed indicating that the CNOS
request cannot be negotiated. Message DSNL500I is issued only once for all the
SQL conversations that fail because of a remote LU failure.

Message DSNL502I is issued for system conversations that are active to the
remote LU at the time of the failure. This message contains the VTAM diagnostic
information on the cause of the failure.

System action: Any application communications with a failed LU receives a
message indicating a resource unavailable condition. The application programs

Chapter 22. Recovery scenarios 447

receive SQL return code -904 (SQLSTATE '57011') for DB2 private protocol access
and SQL return code -30080 for DRDA access. Any attempt to establish
communication with such an LU fails.

Operator action: Communicate with the other sites involved regarding the
unavailable resource condition, and request that appropriate corrective action be
taken. If a DSNL502 message is received, the operator should activate the remote
LU.

Indefinite wait conditions for distributed threads
Problem: An allied thread is waiting indefinitely for a response from a remote
subsystem or a database access thread is waiting for a response from the local
subsystem.

Symptom: An application is in an indefinitely long wait condition. This can cause
other DB2 threads to fail due to resources held by the waiting thread. DB2 sends
an error message to the console and the application program receives an SQL
return code.

System action: None.

System programmer action: None.

Operator action: Use the DISPLAY THREAD command with the LOCATION and
DETAIL options to identify the LUWID and the session’s allocation for the waiting
thread. Then use the CANCEL DDF THREAD command to cancel the waiting
thread. If the CANCEL DDF THREAD command fails to break the wait (because the
thread is not suspended in DB2), try using VTAM commands such as VARY
TERM,SID=xxx. For additional information concerning canceling DDF threads, see
“The command CANCEL THREAD” on page 317 and “Using VTAM commands to
cancel threads” on page 319.

To check for very long waits, look to see if the conversation timestamp is changing
from the last time used. If it is changing, the conversation thread is not hung, but is
taking more time for a long query. Also, look for conversation state changes and
determine what they mean.

Security failures for database access threads
Problem: During database access thread allocation, the remote user does not have
the proper security to access DB2 through the DDF.

Symptom: Message DSNL500I is issued at the requester for VTAM conversations
(if it is a DB2 subsystem) with return codes RTNCD=0, FDBK2=B, RCPRI=4,
RCSEC=5 meaning ″Security Not Valid.″ The server has deallocated the
conversation because the user is not allowed to access the server. For
conversations using DRDA access, LU 6.2 communications protocols present
specific reasons for why the user failed, to be returned to the application. If the
server is a DB2 database access thread, message DSNL030I is issued to describe
what caused the user to be denied access into DB2 through DDF. No message is
issued for TCP/IP connections.

System action: If the server is a DB2 subsystem, message DSNL030I is issued.
Otherwise, the system programmer needs to refer to the documentation of the
server. If the application uses DB2 private protocol access, it receives SQLCODE
-904 (SQLSTATE '57011') with a reason code 00D3103D, indicating that a resource

448 Administration Guide

is unavailable. For DRDA access, SQLCODE –30082 is returned. See DB2
Messages and Codes for more information about those messages.

System programmer action: Refer to the description of 00D3103D in Part 3 of
DB2 Messages and Codes.

Operator action: If it is a DB2 database access thread, the operator should provide
the DSNL030I message to the system programmer. If it is not a DB2 server, the
operator needs to work with the operator or programmer at the server to get
diagnostic information needed by the system programmer.

Remote site recovery from disaster at a local site
The procedures in this scenario differ from other recovery procedures in that the
hardware at your local DB2 site cannot be used to recover data. This scenario
bases recovery on the latest available archive log and assumes that all copies and
reports have arrived at the recovery site as specified in “Preparing for disaster
recovery” on page 385. For data sharing, see Chapter 5 of DB2 Data Sharing:
Planning and Administration for the data sharing specific disaster recovery
procedures.

Problem: Your local system experiences damage or disruption that prevents
recovery from that site.

Symptom: Your local system hardware has suffered physical damage and is
inoperable.

System programmer action: Coordinate activities detailed below.

Operator action (at the recovery site):

1. For scenarios other than data sharing, continue with the next step.

Data sharing
Clean out old information from the coupling facility, if you have
information in your coupling facility from practice startups. If you do not
have old information in the coupling facility, you can omit this step.

a. Enter the following MVS command to display the structures for this
data sharing group:
D XCF,STRUCTURE,STRNAME=grpname*

b. For group buffer pools and the lock structure, enter the following
command to force the connections off those structures:
SETXCF FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

Connections for the SCA are not held at termination, so there are no
SCA connections to force off.

c. Delete all the DB2 coupling facility structures by using the following
command for each structure:
SETXCF FORCE,STRUCTURE,STRNAME=strname

This step is necessary to clean out old information that exists in the
coupling facility from your practice startup when you installed the
group.

Chapter 22. Recovery scenarios 449

|

2. If an integrated catalog facility catalog does not already exist, run job
DSNTIJCA to create a user catalog.

3. Use the access method services IMPORT command to import the integrated
catalog facility catalog.

4. Restore DB2 libraries, such as DB2 reslibs, SMP libraries, user program
libraries, user DBRM libraries, CLISTs, SDSNSAMP, or where the installation
jobs are, JCL for user-defined table spaces, and so on.

5. Use IDCAMS DELETE NOSCRATCH to delete all catalog and user objects.
(Because step 3 imports a user ICF catalog, the catalog reflects data sets that
do not exist on disk.)

Obtain a copy of installation job DSNTIJIN. This job creates DB2 VSAM and
non-VSAM data sets. Change the volume serial numbers in the job to volume
serial numbers that exist at the recovery site. Comment out the steps that
create DB2 non-VSAM data sets, if these data sets already exist. Run
DSNTIJIN.

Data sharing
Obtain a copy of the installation job DSNTIJIN for the first data sharing
member to be migrated. Run DSNTIJIN on the first data sharing member.
For subsequent members of the data sharing group, run the DSNTIJIN
that defines the BSDS and logs.

6. Recover the BSDS:

a. Use the access method services REPRO command to restore the contents
of one BSDS data set (allocated in the previous step). The most recent
BSDS image will be found in the last file (archive log with the highest
number) on the latest archive log tape.

Data sharing
The BSDS data sets on each data sharing member need to be
restored.

b. To determine the RBA range for this archive log, use the print log map
utility (DSNJU004) to list the current BSDS contents. Find the most recent
archive log in the BSDS listing and add 1 to its ENDRBA value. Use this as
the STARTRBA. Find the active log in the BSDS listing that starts with this
RBA and use its ENDRBA as the ENDRBA.

Data Sharing
The LRSNs are also required.

c. Use the change log inventory utility (DSNJU003) to register this latest
archive log tape data set in the archive log inventory of the BSDS just
restored. This is necessary because the BSDS image on an archive log
tape does not reflect the archive log data set residing on that tape.

450 Administration Guide

Data sharing
Running DSNJU003 is critical for data sharing groups. Group buffer
pool checkpoint information is stored in the BSDS and needs to be
included from the most recent archive log.

After these archive logs are registered, use the print log map utility
(DSNJU004) with the GROUP option to list the contents of all the
BSDSs. You get output that includes the start and end LRSN and
RBA values for the latest active log data sets (shown as
NOTREUSABLE). If you did not save the values from the DSNJ003I
message, you can get those values from here, as shown in Figure 46
and Figure 47.

Data sharing
Do all other preparatory activities as you would for a single system.
Do these activities for each member of the data sharing group.

d. Use the change log inventory utility to adjust the active logs:

1) Use the DELETE option of the change log inventory utility (DSNJU003)
to delete all active logs in the BSDS. Use the BSDS listing produced in
the step above to determine the active log data set names.

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION
-------------------- -------------------- -------- ----- --------------------

000001C20000 000001C67FFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS03
ADFA0FB26C6D ADFA208AA36B STATUS=TRUNCATED, REUSABLE

1996.361 23:37:48.4 1996.362 00:53:10.1
000001C68000 000001D4FFFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS01

ADFA208AA36C AE3C45273A77 STATUS=TRUNCATED, NOTREUSABLE
1996.362 00:53:10.1 1997.048 15:28:23.5

000001D50000 0000020D3FFF 1996.358 17:25 DSN=DSNDB0G.DB1G.LOGCOPY1.DS02
AE3C45273A78 STATUS=NOTREUSABLE

1997.048 15:28:23.5

Figure 46. BSDS contents (partial) of member DB1G

ACTIVE LOG COPY 1 DATA SETS
START RBA/LRSN/TIME END RBA/LRSN/TIME DATE LTIME DATA SET INFORMATION
-------------------- -------------------- -------- ----- --------------------

EMPTY DATA SET 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS03
000000000000 000000000000 STATUS=NEW, REUSABLE

0000.000 00:00:00.0 0000.000 00:00:00.0
000000000000 0000000D6FFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS01

ADFA00BB70FB AE3C45276DD7 STATUS=TRUNCATED, NOTREUSABLE
1996.361 22:30:51.4 1997.048 15:28:23.7

0000000D7000 00000045AFFF 1996.361 14:14 DSN=DSNDB0G.DB2G.LOGCOPY1.DS02
AE3C45276DD8 STATUS=NOTREUSABLE

1997.048 15:28:23.7

Figure 47. BSDS contents (partial) of member DB2G

Chapter 22. Recovery scenarios 451

2) Use the NEWLOG statement of the change log inventory utility
(DSNJU003) to add the active log data sets to the BSDS. Do not
specify a STARTRBA or ENDRBA value in the NEWLOG statement.
This indicates to DB2 that the new active logs are empty.

e. If you are using the DB2 distributed data facility, run the change log
inventory utility with the DDF statement to update the LOCATION and the
LUNAME values in the BSDS.

f. Use the print log map utility (DSNJU004) to list the new BSDS contents and
ensure that the BSDS correctly reflects the active and archive log data set
inventories. In particular, ensure that:

v All active logs show a status of NEW and REUSABLE

v The archive log inventory is complete and correct (for example, the start
and end RBAs should be correct).

g. If you are using dual BSDSs, make a copy of the newly restored BSDS
data set to the second BSDS dataset.

7. Optionally, you can restore archive logs to disk. Archive logs are typically
stored on tape, but restoring them to disk could speed later steps. If you elect
this option, and the archive log data sets are not cataloged in the primary
integrated catalog facility catalog, use the change log inventory utility to update
the BSDS. If the archive logs are listed as cataloged in the BSDS, DB2
allocates them using the integrated catalog and not the unit or volser specified
in the BSDS. If you are using dual BSDSs, remember to update both copies.

8. Use the DSN1LOGP utility to determine which transactions were in process at
the end of the last archive log. Use the following job control language:
//SAMP EXEC PGM=DSN1LOGP
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//ARCHIVE DD DSN=last-archive,DISP=(OLD,KEEP),UNIT=TAPE,

LABEL=(2,SL),VOL=SER=volser1
(NOTE FILE 1 is BSDS COPY)

//SYSIN DD *
STARTRBA(yyyyyyyyyyyy) SUMMARY(ONLY)

/*

where yyyyyyyyyyyy is the STARTRBA of the last complete checkpoint within
the RBA range on the last archive log from the previous print log map.

DSN1LOGP gives a report. For sample output and information about how to
read it, see Part 3 of DB2 Utility Guide and Reference.

Note whether any utilities were executing at the end of the last archive log.
You will have to determine the appropriate recovery action to take on each
table space involved in a utility job.

If DSN1LOGP showed that utilities are inflight (PLAN=DSNUTIL), you need
SYSUTILX to identify the utility status and determine the recovery approach.
See “What to do about utilities in progress” on page 457.

9. Modify DSNZPxxx parameters:

a. Run the DSNTINST CLIST in UPDATE mode. See Part 2 of DB2
Installation Guide.

b. To defer processing of all databases, select “Databases to Start
Automatically” from panel DSNTIPB. You are presented with panel
DSNTIPS. Type DEFER in the first field, ALL in the second, and press
Enter. You are returned to DSNTIPB.

452 Administration Guide

c. To specify where you are recovering, select “Operator Functions” from
panel DSNTIPB. You are presented with panel DSNTIPO. Type
RECOVERYSITE in the SITE TYPE field. Press Enter to continue.

d. To optionally specify which archive log to use, select “Operator Functions”
from panel DSNTIPB. You are presented with panel DSNTIPO. Type YES
in the READ ARCHIVE COPY2 field if you are using dual archive logging
and want to use the second copy of the archive logs. Press Enter to
continue.

e. Reassemble DSNZPxxx using job DSNTIJUZ (produced by the CLIST
started in the first step).

At this point you have the log, but the table spaces have not been recovered.
With DEFER ALL, DB2 assumes that the table spaces are unavailable, but
does the necessary processing to the log. This step also handles the units of
recovery in process.

10. Use the change log inventory utility to create a conditional restart control
record. In most cases, you can use this form of the CRESTART statement:
CRESTART CREATE,ENDRBA=nnnnnnnnn000,FORWARD=YES,

BACKOUT=YES

where nnnnnnnnn000 equals a value one more than the ENDRBA of the latest
archive log.

Data sharing
If you are recovering a data sharing group, and your logs are not at a
single point of consistency, use this form of the CRESTART statement:
CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES,BACKOUT=YES

where nnnnnnnnnnnn is the LRSN of the last log record to be used
during restart. Use the same LRSN for all members in a data sharing
group. Determine the ENDLRSN value using one of the following
methods:

v Use the DSN1LOGP summary utility to obtain the ENDLRSN value. In
the ’Summary of Completed Events’ section, find the lowest LRSN
value listed in the DSN1213I message, for the data sharing group. Use
this value for the ENDLRSN in the CRESTART statement.

v Use the print log map utility (DSNJU004) to list the BSDS contents.
Find the ENDLRSN of the last log record available for each active
member of the data sharing group. Subtract 1 from the lowest
ENDLRSN in the data sharing group. Use this value for the ENDLRSN
in the CRESTART statement. (In our example in Figure 46 on
page 451, that is AE3C45273A77 - 1, which is AE3C45273A76.)

v If only the console logs are available, use the archive offload message,
DSNJ003I to obtain the ENDLRSN. Compare the ending LRSN values
for all members’ archive logs. Subtract 1 from the lowest LRSN in the
data sharing group. Use this value for the ENDLRSN in the
CRESTART statement. (In our example in Figure 46 on page 451, that
is AE3C45273A77 - 1, which is AE3C45273A76.)

DB2 discards any log information in the bootstrap data set and the active logs
with an RBA greater than or equal to nnnnnnnnn000 or an LRSN greater than
nnnnnnnnnnnn as listed in the CRESTART statements above.

Chapter 22. Recovery scenarios 453

Use the print log map utility to verify that the conditional restart control record
that you created in the previous step is active.

11. Enter the command START DB2 ACCESS(MAINT).

Data Sharing
If there is a discrepancy among the print log map reports as to the
number of members in the group, record the one that shows the highest
number of members. (This is an unlikely occurrence.) Start this DB2 first
using ACCESS(MAINT). DB2 will prompt you to start each additional DB2
subsystem in the group.

After all additional members are successfully restarted, and if you are
going to run single-system data sharing at the recovery site, stop all
DB2s but one by using the STOP DB2 command with MODE(QUIESCE).

If you planned to use the light mode when starting the DB2 group, add
the LIGHT parameter to the START command listed above. Start the
members that run in LIGHT(NO) mode first, followed by the LIGHT(YES)
members. See “Preparing for disaster recovery” on page 385 for details
on using restart light at a recovery site.

Even though DB2 marks all table spaces for deferred restart, log records are
written so that in-abort and inflight units of recovery are backed out. In-commit
units of recovery are completed, but no additional log records are written at
restart to cause this. This happens when the original redo log records are
applied by the RECOVER utility.

At the primary site, DB2 probably committed or aborted the inflight units of
recovery, but you have no way of knowing.

During restart, DB2 accesses two table spaces that result in DSNT501I,
DSNT500I, and DSNL700I resource unavailable messages, regardless of
DEFER status. The messages are normal and expected, and you can ignore
them.

The return code accompanying the message might be one of the following,
although other codes are possible:

00C90081
This return code occurs if there is activity against the object during
restart as a result of a unit of recovery or pending writes. In this case
the status shown as a result of -DISPLAY is STOP,DEFER.

00C90094
Because the table space is currently only a defined VSAM data set, it
is in an unexpected state to DB2.

00C900A9
This codes indicates that an attempt was made to allocate a deferred
resource.

12. Resolve the indoubt units of recovery.

The RECOVER utility, which you will soon invoke, will fail on any table space
that has indoubt units of recovery. Because of this, you must resolve them first.
Determine the proper action to take (commit or abort) for each unit of recovery.
To resolve indoubt units of recovery, see “Resolving indoubt units of recovery”
on page 363

454 Administration Guide

|
|
|
|
|

on page 363. From an install SYSADM authorization ID, enter the RECOVER
INDOUBT command for all affected transactions.

13. To recover the catalog and directory, follow these instructions:

The RECOVER function includes: RECOVER TABLESPACE, RECOVER
INDEX, or REBUILD INDEX. If you have an image copy of an index, use
RECOVER INDEX. If you do not have an image copy of an index, use
REBUILD INDEX to reconstruct the index from the recovered table space.

a. Recover DSNDB01.SYSUTILX. This must be a separate job step.

b. Recover all indexes on SYSUTILX. This must be a separate job step.

c. Your recovery strategy for an object depends on whether a utility was
running against it at the time the latest archive log was created. To identify
the utilities that were running, you must recover SYSUTILX.

You cannot restart a utility at the recovery site that was interrupted at the
disaster site. You must use the TERM command to terminate it. The TERM
UTILITY command can be used on any object except
DSNDB01.SYSUTILX.

Determine which utilities were executing and the table spaces involved by
following these steps:

1) Enter the DISPLAY UTILITY(*) command and record the utility and the
current phase.

2) Run the DIAGNOSE utility with the DISPLAY SYSUTILX statement.
The output consists of information about each active utility, including
the table space name (in most instances). It is the only way to correlate
the object name with the utility. Message DSNU866I gives information
on the utility, while DSNU867I gives the database and table space
name in USUDBNAM and USUSPNAM respectively.

d. Use the command TERM UTILITY to terminate any utilities in progress on
catalog or directory table spaces.

See “What to do about utilities in progress” on page 457 for information on
how to recover catalog and directory table spaces on which utilities were
running.

e. Recover the rest of the catalog and directory objects starting with DBD01,
in the order shown in the description of the RECOVER utility in Part 2 of
DB2 Utility Guide and Reference.

14. Use any method desired to verify the integrity of the DB2 catalog and directory.
Migration step 1 in Chapter 1 of DB2 Installation Guide lists one option for
verification. The catalog queries in member DSNTESQ of data set
DSN710.SDSNSAMP can be used after the work file database is defined and
initialized.

15. Define and initialize the work file database.

a. Define temporary work files. Use installation job DSNTIJTM as a model.

b. Issue the command -START DATABASE(work-file-database) to start the
work file database.

16. If you use data definition control support, recover the objects in the data
definition control support database.

17. If you use the resource limit facility, recover the objects in the resource limit
control facility database.

18. Modify DSNZPxxx to restart all databases:

a. Run the DSNTINST CLIST in UPDATE mode. See Part 2 of DB2
Installation Guide .

Chapter 22. Recovery scenarios 455

b. From panel DSNTIPB select “Databases to Start Automatically”. You are
presented with panel DSNTIPS. Type RESTART in the first field, ALL in the
second and press Enter. You are returned to DSNTIPB.

c. Reassemble DSNZPxxx using job DSNTIJUZ (produced by the CLIST
started in the first step).

19. Stop and start DB2.

20. Make a full image copy of the catalog and directory.

21. Recover user table spaces and index spaces. See “What to do about utilities in
progress” on page 457 for information on how to recover table spaces or index
spaces on which utilities were running. You cannot restart a utility at the
recovery site that was interrupted at the disaster site. Use the TERM command
to terminate any utilities running against user table spaces or index spaces.

a. To determine which, if any, of your table spaces or index spaces are
user-managed, perform the following queries for table spaces and index
spaces.

Table spaces:
SELECT * FROM SYSIBM.SYSTABLEPART WHERE STORTYPE='E';

Index spaces:
SELECT * FROM SYSIBM.SYSINDEXPART WHERE STORTYPE='E';

To allocate user-managed table spaces or index spaces, use the access
method services DEFINE CLUSTER command.To find the correct IPREFIX
for the DEFINE CLUSTER command, perform the following queries for
table spaces and index spaces.

Table spaces:
SELECT DBNAME, TSNAME, PARTITION, IPREFIX FROM SYSIBM.SYSTABLEPART
WHERE DBNAME=dbname AND TSNAME=tsname
ORDER BY PARTITION;

Index spaces:
SELECT IXNAME, PARTITION, IPREFIX FROM SYSIBM.SYSINDEXPART
WHERE IXCREATOR=ixcreator AND IXNAME=ixname
ORDER BY PARTITION;

Now you can perform the DEFINE CLUSTER command with the correct
IPREFIX (I or J) in the data set name:
catname.DSNDBC.dbname.spname.y0001.A00x

where y can be either I or J, x is C (for VSAM clusters) or D (for VSAM
data components), and spname is either the table space or index space
name.

Access method services commands are described in detail in
DFSMS/MVS: Access Method Services for VSAM Catalogs.

b. If your user table spaces or index spaces are STOGROUP-defined, and if
the volume serial numbers at the recovery site are different from those at
the local site, use ALTER STOGROUP to change them in the DB2 catalog.

c. Recover all user table spaces and index spaces from the appropriate
image copies. If you do not copy your indexes, use the REBUILD INDEX
utility to reconstruct the indexes.

456 Administration Guide

|
|
|
|
|

|
|
|

|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|

|
|

|

|
|
|

|
|

d. Start all user table spaces and index spaces for read or write processing
by issuing the command -START DATABASE with the ACCESS(RW)
option.

e. Resolve any remaining check pending states that would prevent COPY
execution.

f. Run select queries with known results.

22. Make full image copies of all table spaces and indexes with the COPY YES
attribute.

23. Finally, compensate for lost work since the last archive was created by
rerunning online transactions and batch jobs.

What to do about utilities in progress: If any utility jobs were running after the
last time that the log was offloaded before the disaster, you might need to take
some additional steps. After restarting DB2, the following utilities only need to be
terminated with the TERM UTILITY command:
v CHECK INDEX
v MERGECOPY
v MODIFY
v QUIESCE
v RECOVER
v RUNSTATS
v STOSPACE

It is preferable to allow the RECOVER utility to reset pending states. However, it is
occasionally necessary to use the REPAIR utility to reset them. Do not start the
table space with ACCESS(FORCE) because FORCE resets any page set exception
conditions described in “Database page set control records” on page 962.

For the following utility jobs, perform the actions indicated:

CHECK DATA
Terminate the utility and run it again after recovery is complete.

COPY After you enter the TERM command, DB2 places a record in the SYSCOPY
catalog table indicating that the COPY utility was terminated. This makes it
necessary for you to make a full image copy. When you copy your
environment at the completion of the disaster recovery scenario, you fulfill
that requirement.

LOAD Find the options you specified in Table 69, and perform the specified
actions.

Table 69. Actions when LOAD is interrupted

LOAD options specified What to do

LOG YES If the RELOAD phase completed, then recover to the current
time, and recover the indexes.

If the RELOAD phase did not complete, then recover to a
prior point in time. The SYSCOPY record inserted at the
beginning of the RELOAD phase contains the RBA or LRSN.

LOG NO
copy spec

If the RELOAD phase completed, then the table space is
complete after you recover it to the current time. Recover the
indexes.

If the RELOAD phase did not complete, then recover the
table space to a prior point in time. Recover the indexes.

Chapter 22. Recovery scenarios 457

|
|

Table 69. Actions when LOAD is interrupted (continued)

LOAD options specified What to do

LOG NO
copy spec
SORTKEYS

If the BUILD or SORTBLD phase completed, then recover to
the current time, and recover the indexes.

If the BUILD or SORTBLD phase did not complete, then
recover to a prior point in time. Recover the indexes.

LOG NO Recover the table space to a prior point in time. You can use
TOCOPY to do this.

To avoid extra loss of data in a future disaster situation, run QUIESCE on
table spaces before invoking LOAD. This enables you to recover a table
space using TORBA instead of TOCOPY.

REORG
For a user table space, find the options you specified in Table 70, and
perform the specified actions.

Table 70. Actions when REORG is interrupted

REORG options specified What to do

LOG YES If the RELOAD phase completed, then recover to the current
time, and recover the indexes.

If the RELOAD phase did not complete, then recover to the
current time to restore the table space to the point before
REORG began. Recover the indexes.

LOG NO If the RELOAD phase completed, then recover to a prior
point in time. You can use TOCOPY or TORBA to do this.

If the RELOAD phase did not complete, then recover to the
current time to restore the table space to the point before
REORG began. Recover the indexes.

LOG NO
copy spec

If the RELOAD phase completed, then the table space is
complete after you recover it to the current time. Recover the
indexes.

If the RELOAD phase did not complete, then recover to the
current time to restore table space to the point before
REORG began. Recover the indexes.

LOG NO
copy spec
SORTKEYS

If the build or SORTBLD phase completed, then recover to
the current time, and recover the indexes.

If the build or SORTBLD phase did not complete, then
recover to the current time to restore the table space to the
point before REORG began. Recover the indexes.

SHRLEVEL CHANGE If the SWITCH phase completed, terminate the utility.
Recover the table space to the current time. Recover the
indexes.

If the SWITCH phase did not complete, recover the table
space to the current time. Recover the indexes.

SHRLEVEL REFERENCE Same as for SHRLEVEL CHANGE.

For a catalog or directory table space, follow these instructions:

458 Administration Guide

Table spaces with links cannot use online REORG. For those table spaces
that can use online REORG, find the options you specified in Table 70 on
page 458, and perform the specified actions.

If you have no image copies from immediately before REORG failed, use
this procedure:

1. From your DISPLAY UTILITY and DIAGNOSE output, determine what
phase REORG was in and which table space it was reorganizing when
the disaster occurred.

2. Run RECOVER on the catalog and directory in the order shown in Part
2 of DB2 Utility Guide and Reference. Recover all table spaces to the
current time, except the table space that was being reorganized. If the
RELOAD phase of the REORG on that table space had not completed
when the disaster occurred, recover the table space to the current time.
Because REORG does not generate any log records prior to the
RELOAD phase for catalog and directory objects, the RECOVER to
current restores the data to the state it was in before the REORG. If the
RELOAD phase completed, do the following:

a. Run DSN1LOGP against the archive log data sets from the disaster
site.

b. Find the begin-UR log record for the REORG that failed in the
DSN1LOGP output.

c. Run RECOVER with the TORBA option on the table space that was
being reorganized. Use the URID of the begin-UR record as the
TORBA value.

3. Recover or rebuild all indexes.

If you have image copies from immediately before REORG failed, run
RECOVER with the option TOCOPY to recover the catalog and directory, in
the order shown in Part 2 of DB2 Utility Guide and Reference.

Recommendation: Make full image copies of the catalog and directory
before you run REORG on them.

Using a tracker site for disaster recovery
This section describes a different method for disaster recovery from that described
in “Remote site recovery from disaster at a local site” on page 449. Many steps are
similar to a regular disaster recovery, so these steps are not described in detail
here.

Recommendation: Test and document a disaster procedure that is customized for
your location.

Overview of the method: A DB2 tracker site is a separate DB2 subsystem or data
sharing group that exists solely for the purpose of keeping shadow copies of your
primary site’s data. No independent work can be run on the tracker site.

From the primary site, you transfer the BSDS and the archive logs, and that tracker
site runs periodic LOGONLY recoveries to keep the shadow data up-to-date. If a
disaster occurs at the primary site, the tracker site becomes the takeover site.
Because the tracker site has been shadowing the activity on the primary site, you
do not have to constantly ship image copies; the takeover time for the tracker site
might be faster because DB2 recovery does not have to use image copies.

Chapter 22. Recovery scenarios 459

The following topics are described in this section:
“Characteristics of a tracker site”
“Setting up a tracker site”
“Establishing a recovery cycle at the tracker site” on page 461
“Maintaining the tracker site” on page 464
“The disaster happens: making the tracker site the takeover site” on page 464

Characteristics of a tracker site
Because the tracker site must use only the primary site’s logs for recovery, you
must not update the catalog and directory or the data at the tracker site. The DB2
subsystem at the tracker site disallows updates. In summary:

v The following SQL statements are not allowed at a tracker site:
– GRANT or REVOKE
– DROP, ALTER, or CREATE
– UPDATE, INSERT, or DELETE

Dynamic read-only SELECT statements are allowed.

v The only online utilities that are allowed are REPORT, DIAGNOSE, RECOVER,
and REBUILD. Recovery to a prior point in time is not allowed.

v BIND is not allowed.

v TERM UTIL is not allowed for LOAD, REORG, REPAIR, and COPY.

v The START DATABASE command is not allowed when LPL or GRECP status
exists for the object of the command. It is not necessary to use START
DATABASE to clear LPL or GRECP conditions, because you are going to be
running RECOVERY jobs that clear the conditions.

v The START DATABASE command with ACCESS(FORCE) is not allowed.

v Down-level detection is disabled.

v Log archiving is disabled.

Setting up a tracker site
To set up the tracker site:

1. Create a mirror image of your primary DB2 subsystem or data sharing group.
This process is described in steps 1 through 4 of the normal disaster recovery
procedure, and includes such things as creating catalogs and restoring DB2
libraries.

2. Modify the subsystem parameters as follows:

v Set the TRKSITE subsystem parameter to YES.

v Optionally, set the SITETYP parameter to RECOVERYSITE if the full image
copies this site will be receiving are created as remote site copies.

3. Use the access method services DEFINE CLUSTER command to allocate data
sets for all user-managed table spaces that you will be sending over from the
primary site. Similarly, allocate data sets for any user-managed indexes that you
want to rebuild during recovery cycles. The main reason to rebuild indexes for
recovery cycles is for running queries on the tracker site. If you do not require
indexes, you do not have to rebuild them for recovery cycles. For
nonpartitioning indexes on very large tables, you can include indexes for
LOGONLY recovery during the recovery cycle, which can reduce the amount of
time it takes to bring up the disaster site. Be sure you define data sets with the
proper I or J prefix for both indexes and table spaces.

4. Send full image copies of all the primary site’s DB2 data to the tracker site.

5. Tailor installation job DSNTIJIN to create DB2 catalog data sets.

460 Administration Guide

|
|

Important: Do not attempt to start the tracker site when you are setting it up. You
must follow the procedure described in “Establishing a recovery cycle at the tracker
site”.

Establishing a recovery cycle at the tracker site
When the tracker site has full image copies of all the data at the primary site, you
periodically send the archive logs and BSDSs from the primary site to the tracker
site and recover data from the log.

The cycle of events is:

1. While your primary site continues its usual workload, send a copy of the primary
site’s BSDSs and archive logs to the tracker site.

Send full image copies for any object when:

v The table space or partition is reorganized, loaded, or repaired with the LOG
NO option

v The object has undergone a point-in-time recovery

See “What to do about DSNDB01.SYSUTILX” on page 463 for information about
options for preparing SYSUTILX for recovery.

Recommendation: If you are taking incremental image copies, run the
MERGECOPY utility at the primary site before sending the copy to the tracker
site.

2. At the tracker site, restore the BSDS that was received from the primary site.
Find the most recent BSDS image on the latest archive log tape and use the
change log inventory utility (DSNJU003) to register the latest archive log tape in
the archive log inventory of this BSDS. You must also delete the tracker site’s
active logs and add new empty active logs to the BSDS inventory.

For more details on this step, see step 6 of “Remote site recovery from disaster
at a local site” on page 449.

3. Use the change log inventory utility (DSNJU003) with a CRESTART statement
that looks like this:
CRESTART CREATE,ENDRBA=nnnnnnnnn000,FORWARD=NO,BACKOUT=NO

where nnnnnnnnn000 equals ENDRBA + 1 of the latest archive log. You must
not specify STARTRBA, because you cannot cold start or skip logs in a tracker
system.

Data sharing
If you are recovering a data sharing group, you must use this form of the
CRESTART statement on all members of the data sharing group. The
ENDLRSN value must be the same for all members:
CRESTART CREATE,ENDRBA=nnnnnnnnnnnn,FORWARD=NO,BACKOUT=NO

where nnnnnnnnnnnn is the lowest ENDLRSN of all the members to be
read during restart. The ENDLRSN value must be the same:

v If you get the ENDLRSN from the output of the print log map utility
(DSNJU004) or from the console logs using message DSNJ003I, you
must use ENDLRSN-1 as the input to the conditional restart.

v If you get the ENDLRSN from the output of the DSN1LOGP utility
(DSN1213I message), you can use the value as is.

Chapter 22. Recovery scenarios 461

The ENDLRSN or ENDRBA value indicates the end log point for data recovery
and for truncating the archive log. With ENDLRSN, the missing log records
between the lowest and highest ENDLRSN values for all the members are
applied during the next recovery cycle.

4. If the tracker site is a data sharing group, delete all DB2 coupling facility
structures before restarting the tracker members.

5. If you are using LOGONLY recovery for DSNDB01.SYSUTILX, use DSN1COPY
to restore SYSUTILX from the previous tracker cycle (or the initial copy if this is
the first tracker cycle.)

6. At the tracker site, restart DB2 to begin a tracker site recovery cycle.

Data sharing
For data sharing, restart every member of the data sharing group.

7. At the tracker site, run RECOVER jobs to recover the data from the image
copies, if needed, or use the LOGONLY option to recover from the logs received
from the primary site to keep the shadow DB2 data current. See “Media failures
during LOGONLY recovery” on page 463 for information about what to do if a
media failure occurs during LOGONLY recovery.

a. Recover the catalog and directory

See DB2 Utility Guide and Reference for information about the order of
recovery for the catalog and directory objects.

Recovering SYSUTILX: If you are doing a LOGONLY recovery on
SYSUTILX from a previous DSN1COPY backup, make another DSN1COPY
copy of that table space after the LOGONLY recovery is complete and
before recovering any other catalog or directory objects.

After you recover SYSUTILX and either recover or rebuild its indexes, and
before recovering other system and user table spaces, find out what utilities
were running at the primary site.

1) Enter DISPLAY UTIL(*) for a list of currently running utilities.

2) Run the DIAGNOSE utility with the DISPLAY SYSUTIL statement to find
out the names of the object on which the utilities are running. Installation
SYSOPR authority is required.

Because the tracker DB2 prevents the TERM UTIL command from removing
the status of utilities, the following restrictions apply:

v If a LOAD, REORG, REPAIR, or COPY is in progress on any catalog or
directory object at the primary site, you cannot continue recovering
through the list of catalog and directory objects. Therefore, you cannot
recover any user data. Shut down and wait until the next recovery cycle
when you have a full image copy with which to do recovery.

v If a LOAD, REORG, REPAIR, or COPY utility is in progress on any user
data, you cannot recover that object until the next cycle when you have a
full image copy.

v If an object is in the restart pending state, you can use LOGONLY
recovery to recover the object when that object is no longer in restart
pending state.

462 Administration Guide

Data sharing
If read/write shared data (GPB-dependent data) is in the advisory
recovery pending state, the tracker DB2 performs recovery
processing. Because the tracker DB2 always performs a conditional
restart, the postponed indoubt units of recovery are not recognized
after the tracker DB2 restarts.

User-defined catalog indexes: Unless you require them for catalog query
performance, it is not necessary to rebuild user-defined catalog indexes until
the tracker DB2 becomes the takeover DB2. However, if you are recovering
user-defined catalog indexes, do the recover in this step.

b. If needed, recover other system data such as the data definition control
support table spaces and the resource limit facility table spaces.

c. Recover user data and, optionally, rebuild your indexes.

It is not necessary to rebuild indexes unless you intend to run dynamic
queries on the data at the tracker site.

Because this is a tracker site, DB2 stores the conditional restart ENDRBA or
ENDLRSN in the page set after each recovery completes successfully. By
storing the log truncation value in the page set, DB2 ensures that it does not
skip any log records between recovery cycles.

8. After all recovery has completed at the tracker site, shut down the tracker site
DB2. This is the end of the tracker site recovery cycle.

If you choose to, you can stop and start the tracker DB2 several times before
completing a recovery cycle.

What to do about DSNDB01.SYSUTILX
DB2 does not write SYSLGRNX entries for DSNDB01.SYSUTILX, which can lead to
long recovery times at the tracker site. In addition, SYSUTILX and its indexes are
updated during the tracker cycle when you run your recoveries. Because SYSUTILX
must remain consistent with the SYSUTILX at the primary site, the tracker cycle
updates must be discarded before the next tracker cycle.

There are two ways to plan for recovering SYSUTILX:

v Send a full image copy to DSNDB01.SYSUTILX for each recovery cycle. At the
tracker site, you would use normal recovery (that is, full image copy and logs).

v Use DSN1COPY copies of SYSUTILX at the tracker site and LOGONLY
recoveries. The sequence of steps is as follows:

1. Use DSN1COPY to restore a copy made during the last tracker cycle.

2. Run RECOVER with the LOGONLY option on the table space.

3. Before running any other utilities, use DSN1COPY to make a copy to be
used during the next tracker cycle.

Media failures during LOGONLY recovery
As documented in DB2 Utility Guide and Reference, if there is an I/O error during a
LOGONLY recovery, recover the object using the image copies and logs after you
correct the media failure.

If an entire volume is corrupted and you are using DB2 storage groups, you cannot
use the ALTER STOGROUP statement to remove the corrupted volume and add
another as is documented for a non-tracker system. Instead, you must remove the

Chapter 22. Recovery scenarios 463

corrupted volume and reinitialize another volume with the same volume serial
before invoking the RECOVER utility for all table spaces and indexes on that
volume.

Maintaining the tracker site
It is recommended that the tracker site and primary site be at the same
maintenance level to avoid unexpected problems. Between recovery cycles, you
can apply maintenance as you normally do, by stopping and restarting the DB2
subsystem or DB2 member.

If a tracker site fails, you can restart it normally.

Because bringing up your tracker site as the takeover site destroys the tracker site
environment, you should save your complete tracker site prior to takeover site
testing. The tracker site can then be restored after the takeover site testing, and the
tracker site recovery cycles can be resumed.

Data sharing group restarts
During recovery cycles, the first member that comes up puts the ENDLRSN
value in the shared communications area (SCA) of the coupling facility. If an
SCA failure occurs during a recovery cycle, you must go through the recovery
cycle again, using the same ENDLRSN value for your conditional restart.

The disaster happens: making the tracker site the takeover site
If a disaster occurs at the primary site, the tracker site must become the takeover
site. After the takeover site is restarted, run RECOVER jobs for log data or image
copies that were enroute when the disaster occurred.

1. Restore the BSDS and register the archive log from the last archive you
received from the primary site.

2. For scenarios other than data sharing, continue with the next step.

Data sharing
If this is a data sharing system, delete the coupling facility structures.

3. Ensure that the DEFER ALL and TRKSITE NO subsystem parameters are
specified.

4. If this is a non-data-sharing DB2, the log truncation point varies depending on
whether you have received more logs from the primary site since the last
recovery cycle:

v If you received no more logs from the primary site:

Start DB2 using the same ENDRBA you used on the last tracker cycle.
Specify FORWARD=YES and BACKOUT=YES (this takes care of
uncommitted work). If you have fully recovered the objects during the
previous cycle, then they are current except for any objects that had
outstanding units of recovery during restart. Because the previous cycle
specified NO for FORWARD and BACKOUT and you have now specified
YES, affected data sets are placed in LPL. Restart the objects that are in LPL
status using the following START DATABASE command:
START DATABASE(*) SPACENAM(*)

464 Administration Guide

After you issue the command, all table spaces and indexes that were
previously recovered are now current. Remember to rebuild any indexes that
were not recovered during the previous tracker cycle, including user-defined
indexes on the DB2 catalog.

v If you received more logs from the primary site:

Start DB2 using the truncated RBA nnnnnnnnn000, which is the ENDRBA + 1
of the latest archive log. Specify FORWARD=YES and BACKOUT=YES. Run
your recoveries as you did during recovery cycles.

Data sharing
You must restart every member of the data sharing group, using this form
of the CRESTART statement:
CRESTART CREATE,ENDLRSN=nnnnnnnnnnnn,FORWARD=YES,BACKOUT=YES

where nnnnnnnnnnnn is the LRSN of the last log record to be used during
restart. See step 3 of “Establishing a recovery cycle at the tracker site” on
page 461 for more information about determining this value. The takeover
DB2s must specify conditional restart with a common ENDLRSN value to
allow all remote members to logically truncate the logs at a consistent
point.

5. As described for a tracker recovery cycle, recover SYSUTILX from an image
copy from the primary site, or from a previous DSN1COPY taken at the tracker
site.

6. Terminate any in-progress utilities using the following steps:

a. Enter the command DISPLAY UTIL(*).

b. Run the DIAGNOSE utility with DISPLAY SYSUTIL to get the names of
objects on which utilities are being run.

c. Terminate in-progress utilities using the command TERM UTIL(*).

See “What to do about utilities in progress” on page 457 for more
information about how to terminate in-progress utilities and how to recover
an object on which a utility was running.

7. Continue with your recoveries either with the LOGONLY option or image copies.
Do not forget to rebuild indexes, including IBM and user-defined indexes on the
DB2 catalog and user-defined indexes on table spaces.

Resolving indoubt threads
This section describes problem scenarios involving indoubt threads resulting from
the following types of error conditions:

“Communication failure between two systems” on page 467
“Making a heuristic decision” on page 468
“IMS outage that results in an IMS cold start” on page 469
“DB2 outage at a requester results in a DB2 cold start” on page 469
“DB2 outage at a server results in a DB2 cold start” on page 472
“Correcting a heuristic decision” on page 473

All scenarios are developed in the context presented in “Description of the
environment” on page 466. System programmer, operator, and database
administrator actions are indicated for the examples as appropriate. In these
descriptions, the term administrator refers to the database administrator (DBA) if not
otherwise specified.

Chapter 22. Recovery scenarios 465

Description of the environment

Configuration
The configuration is composed of four systems at three geographic locations:
Seattle (SEA), San Jose (SJ) and Los Angeles (LA). The system descriptions are
as follows:

v DB2 subsystem at Seattle, Location name = IBMSEADB20001, Network name =
IBM.SEADB21

v DB2 subsystem at San Jose, Location name = IBMSJ0DB20001 Network name
= IBM.SJDB21

v DB2 subsystem at Los Angeles, Location name = IBMLA0DB20001 Network
name = IBM.LADB21

v IMS subsystem at Seattle, Connection name = SEAIMS01

Applications
The following IMS and TSO applications are running at Seattle and accessing both
local and remote data.

v IMS application, IMSAPP01, at Seattle, accessing local data and remote data by
DRDA access at San Jose, which is accessing remote data on behalf of Seattle
by DB2 private protocol access at Los Angeles.

v TSO application, TSOAPP01, at Seattle, accessing data by DRDA access at San
Jose and at Los Angeles.

Threads
The following threads are described and keyed to Figure 48 on page 467. Data
base access threads (DBAT) access data on behalf of a thread (either allied or
DBAT) at a remote requester.

v Allied IMS thread �A� at Seattle accessing data at San Jose by DRDA access.
– DBAT at San Jose accessing data for Seattle by DRDA access �1� and

requesting data at Los Angeles by DB2 private protocol access �2�.
– DBAT at Los Angeles accessing data for San Jose by DB2 private protocol

access �2�.

v Allied TSO thread �B� at Seattle accessing local data and remote data at San
Jose and Los Angeles, by DRDA access.

– DBAT at San Jose accessing data for Seattle by DRDA access �3�.

– DBAT at Los Angeles accessing data for Seattle by DRDA access �4�.

466 Administration Guide

The results of issuing the DISPLAY THREAD TYPE(ACTIVE) command to display
the status of threads at all DB2 locations are summarized in the boxes of Figure 48.
The logical unit of work IDs (LUWIDs) have been shortened for readability:

v LUWID=15 would be IBM.SEADB21.15A86A876789.0010

v LUWID=16 would be IBM.SEADB21.16B57B954427.0003

For the purposes of this section, assume that both applications have updated data
at all DB2 locations. In the following problem scenarios, the error occurs after the
coordinator has recorded the commit decision, but before the affected participants
have recorded the commit decision. These participants are therefore indoubt.

Communication failure between two systems
Problem: A communication failure occurred between Seattle and Los Angeles after
the DBAT at LA completed phase 1 of commit processing. At SEA, the TSO thread,
LUWID=16 and TOKEN=2 �B�, cannot complete the commit with the DBAT at
LA�4�.

Symptom: At SEA, NetView alert A006 is generated and message DSNL406 is
displayed, indicating an indoubt thread at LA because of communication failure. At
LA, alert A006 is generated and message DSNL405 is displayed, indicating a
thread has entered indoubt state because of communication failure with SEA.

System action: At SEA, an IFCID 209 trace record is written. After the alert has
been generated, and after the message has been displayed, the thread completes

3

DB2 at SJ
IBMSJ0DB20001

DBAT
CONNID=SEAINS01
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=8

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=6

DB2 at SEA
IBMSEADB20001

Allied Thread
CONNID=SEAIMS01
CORRID=xyz
PLAN=IMSAPP01
NID=A5
LUWID=15,TOKEN=1

Allied Thread
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=2

A

IMS

TSO

B

DB2 at LA
IBMLA0DB20001

DBAT
CONNID=SERVER
CORRID=xyz
PLAN=IMSAPP01
LUWID=15,TOKEN=4

2

DBAT
CONNID=BATCH
CORRID=abc
PLAN=TSOAPP01
LUWID=16,TOKEN=5

4

1

Figure 48. Resolving indoubt threads. Results of issuing -DIS THD TYPE(ACTIVE) at each
DB2 system.

Chapter 22. Recovery scenarios 467

the commit, which includes the DBAT at SJ�3�. Concurrently, the thread is added to
the list of threads for which the SEA DB2 has an indoubt resolution responsibility.
The thread appears in a display thread report for indoubt threads. The thread also
appears in a display thread report for active threads until the application terminates.

The TSO application is told that the commit succeeded. If the application continues
and processes another SQL request, it is rejected with an SQL code indicating it
must roll back before any more SQL requests can be processed. This is to insure
that the application does not proceed with an assumption based upon data retrieved
from LA, or with the expectation that cursor positioning at LA is still intact.

At LA, an IFCID 209 trace record is written. After the alert is generated and the
message displayed, the DBAT �4� is placed into the indoubt state. All locks remain
held until resolution occurs. The thread appears in a display thread report for
indoubt threads.

The DB2 systems, at both SEA and LA, periodically attempt reconnecting and
automatically resolving the indoubt thread. If the communication failure only affects
the session being used by the TSO application, and other sessions are available,
automatic resolution occurs in a relatively short time. At this time, message
DSNL407 is displayed by both DB2 subsystems.

Operator action: If message DSNL407 or DSNL415 for the thread identified in
message DSNL405 does not appear in a reasonable period of time, call the system
programmer. A communication failure is making database resources unavailable.

System programmer action: Determine and correct the cause of the
communication failure. When corrected, automatic resolution of the indoubt thread
occurs within a short time. If the failure cannot be corrected for a long time, call the
database administrator. The database administrator might want to make a heuristic
decision to release the database resources held for the indoubt thread. See
“Making a heuristic decision”.

Making a heuristic decision
Problem: The indoubt thread at LA is holding database resources that are needed
by other applications.

Symptom: Many symptoms can be present, including:

v Message DSNL405 indicating a thread in the indoubt state.

v A display thread report of active threads showing a larger than normal number of
threads.

v A display thread report of indoubt threads continuing to show the same thread.

v A display database report with the LOCKS option showing a large number of
threads waiting for the locks held by the indoubt thread.

v Some threads terminating due to time out.

v IMS and CICS transactions not completing.

Database administrator action: Determine whether to commit or abort the indoubt
thread. First, determine the name of the commit coordinator for the indoubt thread.
This is the location name of the DB2 subsystem at SEA, and is included in the DB2
indoubt thread display report at LA. Then, have an authorized person at SEA
perform one of the following:

v If the coordinator DB2 subsystem is active, or can be started, request a display
thread report for indoubt threads, specifying the LUWID of the thread.

468 Administration Guide

(Remember that the token used at LA is different than the token used at SEA). If
there is no report entry for the LUWID, then the proper action is to abort. If there
is an entry for the LUWID, it shows the proper action to take.

v If the coordinator DB2 subsystem is not active and cannot be started, and if
statistics class 4 was active when DB2 was active, search the SEA SMF data for
an IFCID 209 event entry containing the indoubt LUWID. This entry indicates
whether the commit decision was commit or abort.

v If statistics class 4 is not available, then run, at SEA, the DSN1LOGP utility
requesting a summary report. The volume of log data to be searched can be
restricted if you can determine the approximate SEA log RBA value in effect at
the time of the communication failure. A DSN1LOGP entry in the summary report
for the indoubt LUWID indicates whether the decision was commit or abort.

After determining the correct action to take, issue the -RECOVER INDOUBT
command at the LA DB2 subsystem, specifying the LUWID and the correct action.

System action: Issuing the RECOVER INDOUBT command at LA results in
committing or aborting the indoubt thread. Locks are released. The thread does not
disappear from the indoubt thread display until resolution with SEA is completed.
The recover indoubt report shows that the thread is either committed or aborted by
a heuristic decision. An IFCID 203 trace record is written, recording the heuristic
action.

IMS outage that results in an IMS cold start
Problem: The abnormal termination of IMS has left one allied thread �A� at the
SEA DB2 subsystem indoubt. This is the thread having LUWID=15. Because the
SEA DB2 still has effective communication with the DB2 subsystem at SJ, the
LUWID=15 DBAT �1� at this system is waiting for the SEA DB2 to communicate the
final decision and is not aware that IMS has failed. Also, the LUWID=15 DBAT at
LA �2� which is connected to SJ is also waiting for SJ to communicate the final
decision. This cannot be done until SEA communicates the decision to SJ.

Symptom: When IMS is cold started, and later reconnects with the SEA DB2
subsystem, IMS is not able to resolve the indoubt thread with DB2. Message
DSNM004I is displayed at the IMS master terminal. This is the same process as
described in “Resolution of indoubt units of recovery” on page 414.

System action: This is the same process as described in “Resolution of indoubt
units of recovery” on page 414.

System programmer action: This is the same process as described in “Resolution
of indoubt units of recovery” on page 414.

When the indoubt thread at the SEA DB2 subsystem is resolved by issuing the
RECOVER INDOUBT command, completion of the two-phase commit process with
the DB2 subsystems at SJ and LA occurs, and the unit of work commits or aborts.

Operator action: This is the same process as described in “Resolution of indoubt
units of recovery” on page 414.

DB2 outage at a requester results in a DB2 cold start
Problem: The abnormal termination of the SEA DB2 has left the two DBATs at SJ
�1�, �3� and the LUWID=16 DBAT at LA �4� indoubt. The LUWID=15 DBAT at LA
�2�, connected to SJ, is waiting for the SJ DB2 to communicate the final decision.

Chapter 22. Recovery scenarios 469

The IMS subsystem at SEA is operational and has the responsibility of resolving
indoubt units with the SEA DB2.

Symptom: The DB2 subsystem at SEA is started with a conditional restart record in
the BSDS indicating a cold start:

v When the IMS subsystem reconnects, it attempts to resolve the indoubt thread
identified in IMS as NID=A5. IMS has a resource recovery element (RRE) for this
thread. The SEA DB2 informs IMS that it has no knowledge of this thread. IMS
does not delete the RRE and it can be displayed by using the IMS DISPLAY
OASN command. The SEA DB2 also:

– Generates message DSN3005 for each IMS RRE for which DB2 has no
knowledge.

– Generates an IFCID 234 trace event.

v When the DB2 subsystems at SJ and LA reconnect with SEA, each detects that
the SEA DB2 has cold started. Both the SJ DB2 and the LA DB2:
– Display message DSNL411.
– Generate alert A001.
– Generate an IFCID 204 trace event.

v A display thread report of indoubt threads at both the SJ and LA DB2
subsystems shows the indoubt threads and indicates that the coordinator has
cold started.

System action: The DB2 subsystem at both SJ and LA accept the cold start
connection from SEA. Processing continues, waiting for a heuristic decision to
resolve the indoubt threads.

System programmer action: Call the database administrator.

Operator action: Call the database administrator.

Database administrator action: At this point, neither the SJ nor the LA
administrator know if the SEA coordinator was a participant of another coordinator.
In this scenario, the SEA DB2 subsystem originated LUWID=16. However, it was a
participant for LUWID=15, being coordinated by IMS.

Also not known to the administrator at LA is the fact that SEA distributed the
LUWID=16 thread to SJ where it is also indoubt. Likewise, the administrator at SJ
does not know that LA has an indoubt thread for the LUWID=16 thread. It is
important that both SJ and LA make the same heuristic decision. It is also important
that the administrators at SJ and LA determine the originator of the two-phase
commit.

The recovery log of the originator indicates whether the decision was commit or
abort. The originator might have more accessible functions to determine the
decision. Even though the SEA DB2 cold started, you might be able to determine
the decision from its recovery log. Or, if the failure occurred before the decision was
recorded, you might be able to determine the name of the coordinator, if the SEA
DB2 was a participant. A summary report of the SEA DB2 recovery log can be
provided by execution of the DSN1LOGP utility.

The LUWID contains the name of the logical unit (LU) where the distributed logical
unit of work originated. This logical unit is most likely in the system that originated
the two-phase commit.

470 Administration Guide

If an application is distributed, any distributed piece of the application can initiate
the two-phase commit. In this type of application, the originator of two-phase
commit can be at a different system than that identified by the LUWID. With DB2
private protocol access, the two-phase commit can flow only from the system
containing the application that initiates distributed SQL processing. In most cases,
this is where the application originates.

The administrator must determine if the LU name contained in the LUWID is the
same as the LU name of the SEA DB2 subsystem. If this is not the case (it is the
case in this example), then the SEA DB2 is a participant in the logical unit of work,
and is being coordinated by a remote system. You must communicate with that
system and request that facilities of that system be used to determine if the logical
unit of work is to be committed or aborted.

If the LUWID contains the LU name of the SEA DB2 subsystem, then the logical
unit of work originated at SEA and is either an IMS, CICS, TSO, or BATCH allied
thread of the SEA DB2. The display thread report for indoubt threads at a DB2
participant includes message DSNV458 if the coordinator is remote. This line
provides external information provided by the coordinator to assist in identifying the
thread. A DB2 coordinator provides the following:
connection-name.correlation-id

where connection-name is:

v SERVER - the thread represents a remote application to the DB2 coordinator
and uses DRDA access.

v BATCH - the thread represents a local batch application to the DB2 coordinator.

Anything else represents an IMS or CICS connection name. The thread represents
a local application and the commit coordinator is the IMS or CICS system using this
connection name.

In our example, the administrator at SJ sees that both indoubt threads have a
LUWID with the LU name the same as the SEA DB2 LU name, and furthermore,
that one thread (LUWID=15) is an IMS thread and the other thread (LUWID=16) is
a batch thread. The LA administrator sees that the LA indoubt thread (LUWID=16)
originates at SEA DB2 and is a batch thread.

The originator of a DB2 batch thread is DB2. To determine the commit or abort
decision for the LUWID=16 indoubt threads, the SEA DB2 recovery log must be
analyzed, if it can be. The DSN1LOGP utility must be executed against the SEA
DB2 recovery log, looking for the LUWID=16 entry. There are three possibilities:
1. No entry is found - that portion of the DB2 recovery log was not available.
2. An entry is found but incomplete.
3. An entry is found and the status is committed or aborted.

In the third case, the heuristic decision at SJ and LA for indoubt thread LUWID=16
is indicated by the status indicated in the SEA DB2 recovery log. In the other two
cases, the recovery procedure used when cold starting DB2 is important. If recovery
was to a previous point in time, then the correct action is to abort. If recovery
included repairing the SEA DB2 database, then the SEA administrator might know
what decision to make.

The recovery logs at SJ and LA can help determine what activity took place. If it
can be determined that updates were performed at either SJ, LA, or both (but not
SEA), then if both SJ and LA make the same heuristic action, there should be no

Chapter 22. Recovery scenarios 471

data inconsistency. If updates were also performed at SEA, then looking at the SEA
data might help determine what action to take. In any case, both SJ and LA should
make the same decision.

For the indoubt thread with LUWID=15 (the IMS coordinator), there are several
alternative paths to recovery. The SEA DB2 has been restarted. When it reconnects
with IMS, message DSN3005 is issued for each thread that IMS is trying to resolve
with DB2. The message indicates that DB2 has no knowledge of the thread that is
identified by the IMS assigned NID. The outcome for the thread, commit or abort, is
included in the message. Trace event IFCID=234 is also written to statistics class 4
containing the same information.

If there is only one such message, or one such entry in statistics class 4, then the
decision for indoubt thread LUWID=15 is known and can be communicated to the
administrator at SJ. If there are multiple such messages, or multiple such trace
events, you must match the IMS NID with the network LUWID. Again, DSN1LOGP
should be used to analyze the SEA DB2 recovery log if possible. There are now
four possibilities:
1. No entry is found - that portion of the DB2 recovery log was not available.
2. An entry is found but incomplete because of lost recovery log.
3. An entry is found and the status is indoubt.
4. An entry is found and the status is committed or aborted.

In the fourth case, the heuristic decision at SJ for the indoubt thread LUWID=15 is
determined by the status indicated in the SEA DB2 recovery log. If an entry is found
whose status is indoubt, DSN1LOGP also reports the IMS NID value. The NID is
the unique identifier for the logical unit of work in IMS and CICS. Knowing the NID
allows correlation to the DSN3005 message, or to the 234 trace event, which
provides the correct decision.

If an incomplete entry is found, the NID may or may not have been reported by
DSN1LOGP. If it was, use it as previously discussed. If no NID is found, or the SEA
DB2 has not been started, or reconnecting to IMS has not occurred, then the
correlation-id used by IMS to correlate the IMS logical unit of work to the DB2
thread must be used in a search of the IMS recovery log. The SEA DB2 provided
this value to the SJ DB2 when distributing the thread to SJ. The SJ DB2 displays
this value in the report generated by -DISPLAY THREAD TYPE(INDOUBT).

For IMS, the correlation-id is:
pst#.psbname

In CICS, the correlation-id consists of four parts:
Byte 1 - Connection Type - G=Group, P=Pool
Byte 2 - Thread Type - T=transaction, G=Group, C=Command
Bytes 3-4 - Thread Number
Bytes 5—8 - Transaction-id

DB2 outage at a server results in a DB2 cold start
Problem: This problem is similar to “DB2 outage at a requester results in a DB2
cold start” on page 469. If the DB2 subsystem at SJ is cold started instead of the
DB2 at SEA, then the LA DB2 has the LUWID=15 �2� thread indoubt. The
administrator would see that this thread did not originate at SJ, but did originate at
SEA. To determine the commit or abort action, the LA administrator would request
that -DISPLAY THREAD TYPE(INDOUBT) be issued at the SEA DB2, specifying
LUWID=15. IMS would not have any indoubt status for this thread, because it would
complete the two-phase commit process with the SEA DB2.

472 Administration Guide

As described in “Communication failure between two systems” on page 467, the
DB2 at SEA tells the application that the commit succeeded.

When a participant cold starts, a DB2 coordinator continues to include in the display
of indoubt threads all committed threads where the cold starting participant was
believed to be indoubt. These entries must be explicitly purged by issuing the
RESET INDOUBT command. If a participant has an indoubt thread that cannot be
resolved because of coordinator cold start, it can request a display of indoubt
threads at the DB2 coordinator to determine the correct action.

Correcting a heuristic decision
Problem: Assume the conditions of “Communication failure between two systems”
on page 467. The LA administrator is called to make a heuristic decision and
decides to abort the indoubt thread with LUWID=16. The decision is made without
communicating with SEA to determine the proper action. The thread at LA is
aborted, while the threads at SEA and SJ are committed. Processing continues at
all systems. DB2 at SEA has indoubt resolution responsibility with LA for
LUWID=16.

Symptom: When the DB2 at SEA reconnects with the DB2 at LA, indoubt
resolution occurs for LUWID=16. Both systems detect heuristic damage and both
generate alert A004; each writes an IFCID 207 trace record. Message DSNL400 is
displayed at LA and message DSNL403 is displayed at SEA..

System action: Processing continues. Indoubt thread resolution responsibilities
have been fulfilled and the thread completes at both SJ and LA.

System programmer action: Call the database administrator.

Operator action: Call the database administrator.

Database administrator action: Correct the damage.

This is not an easy task. Since the time of the heuristic action, the data at LA might
have been read or written by many applications. Correcting the damage can involve
reversing the effects of these applications as well. The tools available are:

v DSN1LOGP - the summary report of this utility identifies the table spaces
modified by the LUWID=16 thread.

v The statistics trace class 4 contains an IFCID 207. entry. This entry identifies the
recovery log RBA for the LUWID=16 thread.

Notify the IBM support center about the problem.

Chapter 22. Recovery scenarios 473

474 Administration Guide

Chapter 23. Recovery from BSDS or log failure during restart

Use this chapter when you have reason to believe that the bootstrap data set
(BSDS) or part of the recovery log for DB2 is damaged or lost and that damage is
preventing restart. If the problem is discovered at restart, begin with one of these
recovery procedures:

“Active log failure” on page 423
“Archive log failure” on page 427
“BSDS failure” on page 429

If the problem persists, return to the procedures in this chapter.

When DB2 recovery log damage terminates restart processing, DB2 issues
messages to the console identifying the damage and giving an abend reason code.
(The SVC dump title includes a more specific abend reason code to assist in
problem diagnosis.) If the explanations in Part 2 of DB2 Messages and Codes
indicate that restart failed because of some problem not related to a log error, refer
to Part 2 of DB2 Diagnosis Guide and Reference and contact the IBM support
center.

To minimize log problems during restart, the system requires two copies of the
BSDS. Dual logging is also recommended.

Basic approaches to recovery: There are two basic approaches to recovery from
problems with the log:

v Restart DB2, bypassing the inaccessible portion of the log and rendering some
data inconsistent. Then recover the inconsistent objects by using the RECOVER
utility, or re-create the data using REPAIR. Methods are described below.

v Restore the entire DB2 subsystem to a prior point of consistency. The method
requires that you have first prepared such a point; for suggestions, see
“Preparing to recover to a prior point of consistency” on page 383. Methods of
recovery are described under “Unresolvable BSDS or log data set problem during
restart” on page 494.

Bypassing the damaged log: Even if the log is damaged, and DB2 is started by
circumventing the damaged portion, the log is the most important source for
determining what work was lost and what data is inconsistent. For information on
data sharing considerations, see Chapter 5 of DB2 Data Sharing: Planning and
Administration.

Bypassing a damaged portion of the log generally proceeds with the following
steps:

1. DB2 restart fails. A problem exists on the log, and a message identifies the
location of the error. The following abend reason codes, which appear only in
the dump title, can be issued for this type of problem. This is not an exhaustive
list; other codes might occur.

00D10261
00D10262
00D10263

00D10264
00D10265
00D10266

00D10267
00D10268
00D10329

00D1032A
00D1032B

00D1032C
00E80084

Figure 49 on page 476 illustrates the general problem:

© Copyright IBM Corp. 1982, 2001 475

2. DB2 cannot skip over the damaged portion of the log and continue restart
processing. Instead, you restrict processing to only a part of the log that is error
free. For example, the damage shown in Figure 49 occurs in the log RBA range
from X to Y. You can restrict restart to all of the log before X; then changes later
than X are not made. Or you can restrict restart to all of the log after Y; then
changes between X and Y are not made. In either case, some amount of data is
inconsistent.

3. You identify the data that is made inconsistent by your restart decision. With the
SUMMARY option, the DSN1LOGP utility scans the accessible portion of the log
and identifies work that must be done at restart, namely, the units of recovery to
be completed and the page sets that they modified. (For instructions on using
DSN1LOGP, see Part 3 of DB2 Utility Guide and Reference.)

Because a portion of the log is inaccessible, the summary information might not
be complete. In some circumstances, your knowledge of work in progress is
needed to identify potential inconsistencies.

4. You use the CHANGE LOG INVENTORY utility to identify the portion of the log
to be used at restart, and to tell whether to bypass any phase of recovery. You
can choose to do a cold start and bypass the entire log.

5. You restart DB2. Data that is unaffected by omitted portions of the log is
available for immediate access.

6. Before you allow access to any data that is affected by the log damage, you
resolve all data inconsistencies. That process is described under “Resolving
inconsistencies resulting from conditional restart” on page 500.

Where to start: The specific procedure depends on the phase of restart that was in
control when the log problem was detected. On completion, each phase of restart
writes a message to the console. You must find the last of those messages in the
console log. The next phase after the one identified is the one that was in control
when the log problem was detected. Accordingly, start at:
v “Failure during log initialization or current status rebuild” on page 477
v “Failure during forward log recovery” on page 486
v “Failure during backward log recovery” on page 491

As an alternative, determine which, if any, of the following messages was last
received and follow the procedure for that message. Other DSN messages can be
issued as well.

Message ID Procedure to use

DSNJ001I “Failure during log initialization or current status rebuild” on page 477

DSNJ100I “Unresolvable BSDS or log data set problem during restart” on page 494

DSNJ107I “Unresolvable BSDS or log data set problem during restart” on page 494

DSNJ1191 “Unresolvable BSDS or log data set problem during restart” on page 494

DSNR002I None. Normal restart processing can be expected.

Log Start Log EndLog Error

XRBA: Y

Time
line

Figure 49. General problem of damaged DB2 log information

476 Administration Guide

Message ID Procedure to use

DSNR004I “Failure during forward log recovery” on page 486

DSNR005I “Failure during backward log recovery” on page 491

DSNR006I None. Normal restart processing can be expected.

Other “Failure during log initialization or current status rebuild”

Another scenario (“Failure resulting from total or excessive loss of log data” on
page 496) provides information to use if you determine (by using Failure during log
initialization or current status rebuild) that an excessive amount (or all) of DB2 log
information (BSDS, active, and archive logs) has been lost.

The last scenario in this chapter (“Resolving inconsistencies resulting from
conditional restart” on page 500) can be used to resolve inconsistencies introduced
while using one of the restart scenarios in this chapter. If you decide to use
“Unresolvable BSDS or log data set problem during restart” on page 494, it is not
necessary to use “Resolving inconsistencies resulting from conditional restart” on
page 500.

Because of the severity of the situations described, the scenarios identify
“Operations Management Action”, rather than “Operator Action”. Operations
management might not be performing all the steps in the procedures, but they must
be involved in making the decisions about the steps to be performed.

Failure during log initialization or current status rebuild
Problem: A failure occurred during the log initialization or current status rebuild
phase of restart.

Symptom: An abend was issued indicating that restart failed. In addition, the last
restart message received was a DSNJ001I message indicating a failure during
current status rebuild, or none of the following messages was issued:

DSNJ001I
DSNR004I
DSNR005I

If none of the above messages was issued, the failure occurred during the log
initialization phase of restart.

System action: The action depends on whether the failure occurred during log
initialization or during current status rebuild.

v Failure during log initialization: DB2 terminates because a portion of the log is
inaccessible, and DB2 cannot locate the end of the log during restart.

v Failure during current status rebuild: DB2 terminates because a portion of the
log is inaccessible, and DB2 cannot determine the state of the subsystem (such
as outstanding units of recovery, outstanding database writes, or exception
database conditions) that existed at the prior DB2 termination.

Operations management action: To correct the problem, choose one of the
following approaches:

v Correct the problem that has made the log inaccessible and start DB2 again. To
determine if this approach is possible, refer to DB2 Messages and Codes for an
explanation of the messages and codes received. The explanation will identify

Chapter 23. Recovery from BSDS or log failure during restart 477

the corrective action that can be taken to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

v Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or log data set problem during
restart” on page 494.

v Start DB2 without completing some database changes. Using a combination of
DB2 services and your own knowledge, determine what work will be lost by
truncating the log. The procedure for determining the page sets that contain
incomplete changes is described in “Restart by truncating the log” on page 479.
In order to obtain a better idea of what the problem is, read one of the following
sections, depending on when the failure occurred.

Description of failure during log initialization
Figure 50 illustrates the problem on the log.

The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the log initialization phase, the following activities occur:

1. DB2 allocates and opens each active log data set that is not in a stopped state.

2. DB2 reads the log until the last log record is located.

3. During this process, a problem with the log is encountered, preventing DB2 from
locating the end of the log. DB2 terminates and issues one of the abend reason
codes listed in Table 71 on page 480.

During its operations, DB2 periodically records in the BSDS the RBA of the last log
record written. This value is displayed in the print log map report as follows:
HIGHEST RBA WRITTEN: 00000742989E

Because this field is updated frequently in the BSDS, the highest RBA written can
be interpreted as an approximation of the end of the log. The field is updated in the
BSDS when any one of a variety of internal events occurs. In the absence of these
internal events, the field is updated each time a complete cycle of log buffers is
written. A complete cycle of log buffers occurs when the number of log buffers
written equals the value of the OUTPUT BUFFER field of installation panel
DSNTIPL. The value in the BSDS is, therefore, relatively close to the end of the log.

To find the actual end of the log at restart, DB2 reads the log forward sequentially,
starting at the log RBA that approximates the end of the log and continuing until the
actual end of the log is located.

Because the end of the log is inaccessible in this case, some information has been
lost. Units of recovery might have successfully committed or modified additional
page sets past point X. Additional data might have been written, including those that
are identified with writes pending in the accessible portion of the log. New units of

Begin URID1 Begin URID3

Page Set B Checkpoint

Log Start Log Error

XRBA: Y

Time
line

Figure 50. Failure during log initialization

478 Administration Guide

recovery might have been created, and these might have modified data. Because of
the log error, DB2 cannot perceive these events.

How to restart DB2 is described under “Restart by truncating the log”.

Description of failure during current status rebuild
Figure 51 illustrates the problem on the log.

The portion of the log between log RBAs X and Y is inaccessible. For failures that
occur during the current status rebuild phase, the following activities occur:

1. Log initialization completes successfully.

2. DB2 locates the last checkpoint. (The BSDS contains a record of its location on
the log.)

3. DB2 reads the log, beginning at the checkpoint and continuing to the end of the
log.

4. DB2 reconstructs the subsystem’s state as it existed at the prior termination of
DB2.

5. During this process, a problem with the log is encountered, preventing DB2 from
reading all required log information. DB2 terminates with one of the abend
reason codes listed in Table 71 on page 480.

Because the end of the log is inaccessible in this case, some information has been
lost. Units of recovery might have successfully committed or modified additional
page sets past point X. Additional data might have been written, including those that
are identified with writes pending in the accessible portion of the log. New units of
recovery might have been created, and these might have modified data. Because of
the log error, DB2 cannot perceive these events.

How to restart DB2 is described under “Restart by truncating the log”.

Restart by truncating the log
When a portion of the log is inaccessible, during the log initialization or current
status rebuild phases of restart, DB2 cannot identify precisely what units of recovery
failed to complete, what page sets those modified, and what page sets have writes
pending. This procedure tells how to gather that information and restart.

Step 1: Find the log RBA after the inaccessible part of the log
The log damage is illustrated in Figure 50 on page 478 and in Figure 51. The range
of the log between RBAs X and Y is inaccessible to all DB2 processes.

Use the abend reason code accompanying the X'04E' abend and the message on
the title of the accompanying dump at the operator’s console, to find the name and
page number of a procedure in Table 71 on page 480. Use that procedure to find X
and Y.

Begin URID1 Begin URID3

Page Set B Checkpoint

Log Start Log Error

XRBA: Y

Time
line

Log End

Figure 51. Failure during current status rebuild

Chapter 23. Recovery from BSDS or log failure during restart 479

Table 71. Abend reason codes and messages

Abend
Reason
Code Message

Procedure
Name and
Page General Error Description

00D10261
00D10262
00D10263
00D10264
00D10265
00D10266
00D10267
00D10268

DSNJ012I RBA 1, page 480 Log record is logically damaged

00D10329 DSNJ106I RBA 2, page 480 I/O error occurred while log record
was being read

00D1032A DSNJ113E RBA 3, page 481 Log RBA could not be found in BSDS

00D1032B DSNJ103I RBA 4, page 481 Allocation error occurred for an
archive log data set

00D1032B DSNJ007I RBA 5, page 482 The operator canceled a request for
archive mount

00D1032C DSNJ104I RBA 4, page 481 Open error occurred for an archive
and active log data set

00E80084 DSNJ103I RBA 4, page 481 Active log data set named in the
BSDS could not be allocated during
log initialization

Procedure RBA 1: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates a logical error in the log record at log RBA X'7429ABA'.
DSNJ012I ERROR D10265 READING RBA 000007429ABA

IN DATA SET DSNCAT.LOGCOPY2.DS01
CONNECTION-ID=DSN,
CORRELATION-ID=DSN

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the log control interval
definition (LCID). DB2 stores logical records in blocks of physical records to
improve efficiency. When this type of an error on the log occurs during log
initialization or current status rebuild, all log records within the physical log record
are inaccessible. Therefore, the value of X is the log RBA that was reported in the
message rounded down to a 4 KB boundary (X'7429000').

Continue with step 2 on page 482.

Procedure RBA 2: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates an I/O error in the log at RBA X'7429ABA'.
DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,

LOGRBA=000007429ABA,ERROR STATUS=0108320C

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during log initialization or current status rebuild,
all log records within the physical log record and beyond it to the end of the log
data set are inaccessible to the log initialization or current status rebuild phase of

480 Administration Guide

restart. Therefore, the value of X is the log RBA that was reported in the message,
rounded down to a 4 KB boundary (X'7429000').

Continue with step 2 on page 482.

Procedure RBA 3: The message accompanying the abend identifies the log RBA
of the inaccessible log record. This log RBA is not registered in the BSDS.

For example, the following message indicates that the log RBA X'7429ABA' is not
registered in the BSDS:
DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

The print log map utility can be used to list the contents of the BSDS. For an
example of the output, see the description of print log map (DSNJU004) in Part 3 of
DB2 Utility Guide and Reference.

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during log initialization or current status rebuild,
all log records within the physical log record are inaccessible.

Using the print log map output, locate the RBA closest to, but less than,
X'7429ABA' for the value of X. If there is not an RBA that is less than X'7429ABA',
a considerable amount of log information has been lost. If this is the case, continue
with “Failure resulting from total or excessive loss of log data” on page 496.

If there is a value for X, continue with step 2 on page 482.

Procedure RBA 4: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible, and the
STATUS field identifies the code that is associated with the reason for the data set
being inaccessible. For an explanation of the STATUS codes, see the explanation
for the message in Part 2 of DB2 Messages and Codes .
DSNJ103I - csect-name LOG ALLOCATION ERROR

DSNAME=DSNCAT.ARCHLOG1.A0000009,ERROR
STATUS=04980004
SMS REASON CODE=00000000

To determine the value of X, run the print log map utility to list the log inventory
information. For an example of the output, see the description of print log map
(DSNJU004) in Part 3 of DB2 Utility Guide and Reference. The output provides
each log data set name and its associated log RBA range—the values of X and Y.

Verify the accuracy of the information in the print log map utility output for the active
log data set with the lowest RBA range. For this active log data set only, the
information in the BSDS is potentially inaccurate for the following reasons:

v When an active log data set is full, archiving is started. DB2 then selects another
active log data set, usually the data set with the lowest RBA. This selection is
made so that units of recovery do not have to wait for the archive operation to
complete before logging can continue. However, if a data set has not been
archived, nothing beyond it has been archived, and the procedure is ended.

v When logging has begun on a reusable data set, DB2 updates the BSDS with
the new log RBA range for the active log data set, and marks it as Not Reusable.
The process of writing the new information to the BSDS can be delayed by other

Chapter 23. Recovery from BSDS or log failure during restart 481

processing. It is therefore possible for a failure to occur between the time that
logging to a new active log data set begins and the time that the BSDS is
updated. In this case, the BSDS information is not correct.

The log RBA that appears for the active log data set with the lowest RBA range in
the print log map utility output is valid, provided that the data set is marked Not
Reusable. If the data set is marked Reusable, it can be assumed for the purposes
of this restart that the starting log RBA (X) for this data set is one greater than the
highest log RBA listed in the BSDS for all other active log data sets.

Continue with step 2 on page 482.

Procedure RBA 5: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
operator canceled a request for archive mount, resulting in the following message:
DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE

DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

To determine the value of X, run the print log map utility to list the log inventory
information. For an example of the output, see the description of print log map
(DSNJU004) in Part 3 of DB2 Utility Guide and Reference. The output provides
each log data set name and its associated log RBA range: the values of X and Y.

Continue with step 2 on 482.

Step 2: Identify lost work and inconsistent data
1. Obtain available information to help you determine the extent of the loss.

It is impossible for DB2 to determine what units of recovery are not completed,
what database state information is lost, or what data is inconsistent in this
situation. The log contains all such information, but the information is not
available. The following steps explain what to do to obtain the information that is
available within DB2 to help determine the extent of the loss. The steps also
explain how to start DB2 in this situation.

After restart, data is inconsistent. Results of queries and any other operations
on such data vary from incorrect results to abends. Abends that occur either
identify an inconsistency in the data or incorrectly assume the existence of a
problem in the DB2 internal algorithms. If the inconsistent page sets cannot
be identified and the problems in them cannot be resolved after starting
DB2, there is a risk in following this procedure and allowing access to
inconsistent data.

a. Execute the print log map utility. The report it produces includes a
description of the last 100 checkpoints and provides, for each checkpoint:

The location in the log of the checkpoint (begin and end RBA)
The date and time of day that the checkpoint was performed.

b. Locate the checkpoint on the log prior to the point of failure (X). Do that by
finding the first checkpoint with an end RBA that is less than X.

If you cannot find such a checkpoint, this means that a considerable amount
of log has been lost. In this case, either follow the procedure under “Failure
resulting from total or excessive loss of log data” on page 496 or the
procedure under “Unresolvable BSDS or log data set problem during restart”
on page 494.

If the checkpoint is found, look at the date and time it was performed. If the
checkpoint is several days old (and DB2 was operational during the interim),

482 Administration Guide

either follow the procedure under “Failure resulting from total or excessive
loss of log data” on page 496 or the procedure under “Unresolvable BSDS
or log data set problem during restart” on page 494.

Otherwise, continue with the next step.

2. Determine what work is lost and what data is inconsistent.

The portion of the log representing activity that occurred before the failure
provides information about work that was in progress at that point. From this
information, it might be possible to deduce the work that was in progress within
the inaccessible portion of the log. If use of DB2 was limited at the time or if
DB2 was dedicated to a small number of activities (such as batch jobs
performing database loads or image copies), it might be possible to accurately
identify the page sets that were made inconsistent. To make the identification,
extract a summary of the log activity up to the point of damage in the log by
using the DSN1LOGP utility described in Part 3 of DB2 Utility Guide and
Reference.

Use the DSN1LOGP utility to specify the “BEGIN CHECKPOINT” RBA prior to
the point of failure, which was determined in the previous step as the
RBASTART. End the DSN1LOGP scan prior to the point of failure on the log (X
- 1) by using the RBAEND specification.

Specifying the last complete checkpoint is very important for ensuring that
complete information is obtained from DSN1LOGP.

Specify the SUMMARY(ONLY) option to produce a summary report.

Figure 52 is an example of a DSN1LOGP job to obtain summary information for
the checkpoint discussed previously.

3. Analyze the DSN1LOGP utility output.

The summary report that is placed in the SYSSUMRY file includes two sections
of information: a summary of completed events (not shown here) and a restart
summary shown in Figure 53 on page 484. Following this figure is a description
of the sample output.

//ONE EXEC PGM=DSN1LOGP
//STEPLIB DD DSN=prefix.SDSNLOAD,DISP=SHR
//SYSABEND DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//SYSSUMRY DD SYSOUT=A
//BSDS DD DSN=DSNCAT.BSDS01,DISP=SHR
//SYSIN DD *

RBASTART (7425468) RBAEND (7428FFF) SUMMARY (ONLY)
/*

Figure 52. Sample JCL for obtaining DSN1LOGP summary output for restart

Chapter 23. Recovery from BSDS or log failure during restart 483

The heading message:
DSN1157I RESTART SUMMARY

is followed by messages that identify the units of recovery that have not yet
completed and the page sets that they modified.

Following the summary of outstanding units of recovery is a summary of page
sets with database writes pending.

In each case (units of recovery or databases with pending writes), the earliest
required log record is identified by the START information. In this context,
START information is the log RBA of the earliest log record required in order to
complete outstanding writes for this page set.

Those units of recovery with a START log RBA equal to, or prior to, the point Y
cannot be completed at restart. All page sets modified by such units of recovery
are inconsistent after completion of restart using this procedure.

All page sets identified in message DSN1160I with a START log RBA value
equal to, or prior to, the point Y have database changes that cannot be written

DSN1157I RESTART SUMMARY

DSN1153I DSN1LSIT CHECKPOINT
STARTRBA=000007425468 ENDRBA=000007426C6C STARTLRSN=AA527AA809DF ENDLRSN=AA527AA829F4
DATE=92.284 TIME=14:49:25

DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMF001 PLAN=TCEU02
START DATE=92.284 TIME=11:12:01 DISP=INFLIGHT INFO=COMPLETE
STARTRBA=0000063DA17B STARTLRSN=A974FAFF27FF NID=*
LUWID=DB2NET.LUND0.A974FAFE6E77.0001 COORDINATOR=*
PARTICIPANTS=*

DATA MODIFIED:
DATABASE=0101=STVDB02 PAGESET=0002=STVTS02

DSN1162I DSN1LPRT UR CONNID=BATCH CORRID=PROGRAM5 AUTHID=ADMF001 PLAN=TCEU02
START DATE=92.284 TIME=11:21:02 DISP=INFLIGHT INFO=COMPLETE
STARTRBA=000006A57C57 STARTLRSN=A974FAFF2801 NID=*
LUWID=DB2NET.LUND0.A974FAFE6FFF.0003 COORDINATOR=*
PARTICIPANTS=*

DATA MODIFIED:
DATABASE=0104=STVDB05 PAGESET=0002=STVTS05

DSN1162I DSN1LPRT UR CONNID=TEST0001 CORRID=CTHDCORID001 AUTHID=MULT002 PLAN=DONSQL1
START DATE=92.278 TIME=06:49:33 DISP=INDOUBT INFO=PARTIAL
STARTRBA=000005FBCC4F STARTLRSN=A974FBAF2302 NID=*
LUWID=DB2NET.LUND0.B978FAFEFAB1.0000 COORDINATOR=*
PARTICIPANTS=*

NO DATA MODIFIED (BASED ON INCOMPLETE LOG INFORMATION)

DSN1162I UR CONNID=BATCH CORRID=PROGRAM2 AUTHID=ADMF001 PLAN=TCEU02
START DATE=92.284 TIME=11:12:01 DISP=INFLIGHT INFO=COMPLETE
START=0000063DA17B

DSN1160I DATABASE WRITES PENDING:
DATABASE=0001=DSNDB01 PAGESET=004F=SYSUTIL START=000007425468
DATABASE=0102 PAGESET=0015 START=000007425468

Figure 53. Partial sample of DSN1LOGP summary output

484 Administration Guide

to disk. As in the case previously described, all such page sets are inconsistent
after completion of restart using this procedure.

At this point, it is only necessary to identify the page sets in preparation for
restart. After restart, the problems in the page sets that are inconsistent must be
resolved.

Because the end of the log is inaccessible, some information has been lost,
therefore, the information is inaccurate. Some of the units of recovery that
appear to be inflight might have successfully committed, or they could have
modified additional page sets beyond point X. Additional data could have been
written, including those page sets that are identified as having writes pending in
the accessible portion of the log. New units of recovery could have been
created, and these can have modified data. DB2 cannot detect that these
events occurred.

From this and other information (such as system accounting information and
console messages), it could be possible to determine what work was actually
outstanding and which page sets will be inconsistent after starting DB2,
because the record of each event contains the date and time to help determine
how recent the information is. In addition, the information is displayed in
chronological sequence.

Step 3: Determine what status information has been lost
Some amount of system status information might have been lost. In some cases,
you will know what information has been lost (such as the case in which utilities are
in progress). In other cases, messages about the loss of status information (such as
in the cases of deferred restart pending or write error ranges) might be received. If
system status information has been lost, it could be possible to reconstruct this
information from recent console displays, messages, and abends that alerted you to
these conditions. The page sets that are in such a state must be identified because
they are inconsistent and inconsistencies must be resolved.

Step 4: Truncate the log at the point of error
No DB2 process, including RECOVER, allows a gap in the log RBA sequence. You
cannot process up to point X, skip over points X through Y, and continue after Y.

Use the change log inventory utility to create a conditional restart control record
(CRCR) in the BSDS, identifying the end of the log (X) to use on a subsequent
restart. The value is the RBA at which DB2 begins writing new log records. If point
X is X'7429000', on the CRESTART control statement, specify ENDRBA=7429000.

At restart, DB2 discards the portion of the log beyond X'7429000' before processing
the log for completing work (such as units of recovery and database writes). Unless
otherwise directed, normal restart processing is performed within the scope of the
log. Because log information has been lost, DB2 errors can occur. For example, a
unit of recovery that has actually been committed can be rolled back. Also, some
changes made by that unit of recovery might not be rolled back because
information about data changes has been lost.

To minimize such errors, use this change log inventory control statement:
CRESTART CREATE,ENDRBA=7429000,FORWARD=NO,BACKOUT=NO

When DB2 is started (in Step 6), it:

1. Discards from the checkpoint queue any entries with RBAs beyond the
ENDRBA value in the CRCR (X'7429000' in the previous example).

Chapter 23. Recovery from BSDS or log failure during restart 485

2. Reconstructs the system status up to the point of log truncation.

3. Completes all database writes that are identified by the DSN1LOGP summary
report and have not already been performed.

4. Completes all units of recovery that have committed or are indoubt. The
processing varies for different unit of recovery states as described in “Normal
restart and recovery” on page 348.

5. Does not back out inflight or in-abort units of recovery. Inflight units of recovery
might have been committed. Data modified by in-abort units of recovery could
have been modified again after the point of damage on the log. Thus,
inconsistent data can be left in tables modified by inflight or indoubt URs.
Backing out without the lost log information might introduce further
inconsistencies.

Step 5: Start DB2
At the end of restart, the conditional restart control record (CRCR) is marked
DEACTIVATED to prevent its use on a later restart. Until the restart has completed
successfully, the CRCR is in effect. Start DB2 with ACCESS (MAINT) until data is
consistent or page sets are stopped.

Step 6: Resolve data inconsistency problems
After successfully restarting DB2, resolve all data inconsistency problems as
described in “Resolving inconsistencies resulting from conditional restart” on
page 500.

Failure during forward log recovery
Problem: A failure occurred during the forward log recovery phase of restart.

Symptom: An abend was issued, indicating that restart had failed. In addition, the
last restart message received was a DSNR004I message indicating that log
initialization had completed and thus the failure occurred during forward log
recovery.

System action: DB2 terminates because a portion of the log is inaccessible, and
DB2 is therefore unable to guarantee the consistency of the data after restart.

Operations management action: To start DB2 successfully, choose one of the
following approaches:

v Correct the problem that has made the log inaccessible and start DB2 again. To
determine if this approach is possible, refer to DB2 Messages and Codes for an
explanation of the messages and codes received. The explanation will identify
any corrective action that can be taken to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

v Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or log data set problem during
restart” on page 494.

v Start DB2 without completing some database changes. The exact changes
cannot be identified; all that can be determined is which page sets might have
incomplete changes. The procedure for determining which page sets contain
incomplete changes is described in “Starting DB2 by limiting restart processing”
on page 487. Continue reading this chapter to obtain a better idea of what the
problem is.

Figure 54 illustrates the problem on the log.

486 Administration Guide

The portion of the log between log RBA X and Y is inaccessible. The log
initialization and current status rebuild phases of restart completed successfully.
Restart processing was reading the log in a forward direction beginning at some
point prior to X and continuing to the end of the log. Because of the inaccessibility
of log data (between points X and Y), restart processing cannot guarantee the
completion of any work that was outstanding at restart prior to point Y.

For purposes of discussion, assume the following work was outstanding at restart:

v The unit of recovery identified as URID1 was in-commit.

v The unit of recovery identified as URID2 was inflight.

v The unit of recovery identified as URID3 was in-commit.

v The unit of recovery identified as URID4 was inflight.

v Page set A had writes pending prior to the error on the log, continuing to the end
of the log.

v Page set B had writes pending after the error on the log, continuing to the end of
the log.

The earliest log record for each unit of recovery is identified on the log line in
Figure 54. In order for DB2 to complete each unit of recovery, DB2 requires access
to all log records from the beginning point for each unit of recovery to the end of the
log.

The error on the log prevents DB2 from guaranteeing the completion of any
outstanding work that began prior to point Y on the log. Consequently, database
changes made by URID1 and URID2 might not be fully committed or backed out.
Writes pending for page set A (from points in the log prior to Y) will be lost.

Starting DB2 by limiting restart processing
This procedure describes how to start DB2 when a portion of the log is inaccessible
during forward recovery. It also describes how to identify the units of recovery for
which database changes cannot be fully guaranteed (either committed or backed
out) and the page sets that these units of recovery changed. You must determine
which page sets are involved because after this procedure is used, the page sets
will contain inconsistencies that must be resolved. In addition, using this procedure
results in the completion of all database writes that are pending. For a description
of this process of writing database pages to disk, see “Tuning database buffer
pools” on page 549.

Step 1: Find the log RBA after the inaccessible part of the log
The log damage is shown in Figure 54. The range of the log between RBA X and
RBA Y is inaccessible to all DB2 processes.

Begin
URID1

Begin
URID2

Begin
URID3

Begin
URID4

Page
Set A

Page
Set B

Checkpoint

Log
Start Log Error

XRBA: Y

Time
line

Log
End

Figure 54. Illustration of failure during forward log recovery

Chapter 23. Recovery from BSDS or log failure during restart 487

Use the abend reason code accompanying the X'04E' abend, and the message on
the title of the accompanying dump at the operator’s console, to find the name and
page number of a procedure in Table 72. Use that procedure to find X and Y.

Table 72. Abend reason codes and messages

Abend
Reason
Code Message

Procedure
Name and
Page General Error Description

00D10261
00D10262
00D10263
00D10264
00D10265
00D10266
00D10267
00D10268

DSNJ012I RBA 1, page 488 Log record is logically damaged

00D10329 DSNJ106I RBA 2, page 488 I/O error occurred while log record
was being read

00D1032A DSNJ113E RBA 3, page 489 Log RBA could not be found in BSDS

00D1032B DSNJ103I RBA 4, page 489 Allocation error occurred for an
archive log data set

00D1032B DSNJ007I RBA 5, page 490 The operator canceled a request for
archive mount

00D1032C DSNJ104E RBA 4, page 489 Open error occurred for an archive
log data set

00E80084 DSNJ103I RBA 4, page 489 Active log data set named in the
BSDS could not be allocated during
log initialization.

Procedure RBA 1: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates a logical error in the log record at log RBA X'7429ABA':
DSNJ012I ERROR D10265 READING RBA 000007429ABA

IN DATA SET DSNCAT.LOGCOPY2.DS01
CONNECTION-ID=DSN
CORRELATION-ID=DSN

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the log control interval
definition (LCID). When this type of an error on the log occurs during forward log
recovery, all log records within the physical log record, as described, are
inaccessible. Therefore, the value of X is the log RBA that was reported in the
message, rounded down to a 4K boundary (that is, X'7429000').

For purposes of following the steps in this procedure, assume that the extent of
damage is limited to the single physical log record. Therefore, calculate the value of
Y as the log RBA that was reported in the message, rounded up to the end of the
4K boundary (that is, X'7429FFF').

Continue with step 2 on page 490.

Procedure RBA 2: The message accompanying the abend identifies the log RBA
of the first inaccessible log record that DB2 detects. For example, the following
message indicates an I/O error in the log at RBA X'7429ABA':
DSNJ106I LOG READ ERROR DSNAME=DSNCAT.LOGCOPY2.DS01,

LOGRBA=000007429ABA, ERROR STATUS=0108320C

488 Administration Guide

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of an error on the log occurs during forward log recovery, all log records within
the physical log record and beyond it to the end of the log data set are inaccessible
to the forward recovery phase of restart. Therefore, the value of X is the log RBA
that was reported in the message, rounded down to a 4K boundary (that is,
X'7429000').

To determine the value of Y, run the print log map utility to list the log inventory
information. For an example of this output, see the description of print log map
(DSNJU004) in Part 3 of DB2 Utility Guide and Reference. Locate the data set
name and its associated log RBA range. The RBA of the end of the range is the
value Y.

Continue with step 2 on page 490.

Procedure RBA 3: The message accompanying the abend identifies the log RBA
of the inaccessible log record. This log RBA is not registered in the BSDS.

For example, the following message indicates that the log RBA X'7429ABA' is not
registered in the BSDS:
DSNJ113E RBA 000007429ABA NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=DSN, CORRELATION-ID=DSN

Use the print log map utility to list the contents of the BSDS. For an example of this
output, see the description of print log map (DSNJU004) in Part 3 of DB2 Utility
Guide and Reference.

Figure 138 on page 963 shows that a given physical log record is actually a set of
logical log records (the log records generally spoken of) and the LCID. When this
type of error on the log occurs during forward log recovery, all log records within the
physical log record are inaccessible.

Using the print log map output, locate the RBA closest to, but less than,
X'7429ABA'. This is the value of X. If an RBA less than X'7429ABA' cannot be
found, the value of X is zero. Locate the RBA closest to, but greater than,
X'7429ABA'. This is the value of Y.

Continue with step 2 on page 490.

Procedure RBA 4: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
STATUS field identifies the code that is associated with the reason for the data set
being inaccessible. For an explanation of the STATUS codes, see the explanation
for the message in DB2 Messages and Codes .
DSNJ103I LOG ALLOCATION ERROR

DSNAME=DSNCAT.ARCHLOG1.A0000009, ERROR
STATUS=04980004
SMS REASON CODE=00000000

To determine the values of X and Y, run the print log map utility to list the log
inventory information. For an example of this output, see the description of print log
map (DSNJU004) in Part 2 of DB2 Utility Guide and Reference. The output
provides each log data set name and its associated log RBA range: the values of X
and Y.

Chapter 23. Recovery from BSDS or log failure during restart 489

Continue with step 2 on page 490.

Procedure RBA 5: The message accompanying the abend identifies an entire data
set that is inaccessible. For example, the following message indicates that the
archive log data set DSNCAT.ARCHLOG1.A0000009 is not accessible. The
operator canceled a request for archive mount resulting in the following message:
DSNJ007I OPERATOR CANCELED MOUNT OF ARCHIVE

DSNCAT.ARCHLOG1.A0000009 VOLSER=5B225.

To determine the values of X and Y, run the print log map utility to list the log
inventory information. For an example of the output, see the description of print log
map (DSNJU004) in Part 3 of DB2 Utility Guide and Reference. The output
provides each log data set name and its associated log RBA range: the values of X
and Y. Continue with Step 2 on page 490.

Step 2: Identify incomplete units of recovery and inconsistent
page sets
Units of recovery that cannot be fully processed are considered incomplete units of
recovery. Page sets that will be inconsistent following completion of restart are
considered inconsistent page sets. Take the following steps to identify them:

1. Determine the location of the latest checkpoint on the log. Determine this by
looking at one of the following sources, whichever is more convenient:

v The operator’s console contains the following message, identifying the
location of the start of the last checkpoint on the log at log RBA X'876B355'.
DSNR003I RESTART ... PRIOR CHECKPOINT

RBA=00007425468

v The print log map utility output identifies the last checkpoint, including its
BEGIN CHECKPOINT RBA.

2. Run the DSN1LOGP utility to obtain a report of the outstanding work that is to
be completed at the next restart of DB2. When you run the DSN1LOGP utility,
specify the checkpoint RBA as the STARTRBA and the SUMMARY(ONLY)
option. It is very important that you include the last complete checkpoint from
running DSN1LOGP in order to obtain complete information.

Figure 52 on page 483 shows an example of the DSN1LOGP job submitted for
the checkpoint that was reported in the DSNR003I message.

Analyze the output of the DSN1LOGP utility. The summary report that is placed in
the SYSSUMRY file contains two sections of information. For an example of
SUMMARY output, see Figure 53 on page 484; and for an example of the program
that results in the output, see Figure 52 on page 483.

Step 3: Restrict restart processing to the part of the log after the
damage
Use the change log inventory utility to create a conditional restart control record
(CRCR) in the BSDS. Identify the accessible portion of the log beyond the damage
by using the STARTRBA specification, which will be used at the next restart.
Specify the value Y+1 (that is, if Y is X'7429FFF', specify STARTRBA=742A000).
Restart will restrict its processing to the portion of the log beginning with the
specified STARTRBA and continuing to the end of the log. A sample change log
inventory utility control statement is:
CRESTART CREATE,STARTRBA=742A000

490 Administration Guide

Step 4: Start DB2
At the end of restart, the CRCR is marked DEACTIVATED to prevent its use on a
subsequent restart. Until the restart is complete, the CRCR will be in effect. Use
-START DB2 ACCESS(MAINT) until data is consistent or page sets are stopped.

Step 5: Resolve inconsistent data problems
Following the successful start of DB2, all data inconsistency problems must be
resolved. “Resolving inconsistencies resulting from conditional restart” on page 500
describes how to do this. At this time, all other data can be made available for use.

Failure during backward log recovery
Problem: A failure occurred during the backward log recovery phase of restart.

Symptom: An abend was issued that indicated that restart failed because of a log
problem. In addition, the last restart message received was a DSNR005I message,
indicating that forward log recovery completed and thus the failure occurred during
backward log recovery.

System action: DB2 terminates because a portion of the log that it needs is
inaccessible, and DB2 is therefore unable to rollback some database changes
during restart.

Operations management action: To start DB2, choose one of the following
approaches:

1. Correct the problem that has made the log inaccessible and start DB2 again. To
determine whether this approach is possible, refer to DB2 Messages and Codes
for an explanation of the messages and codes received. The explanation
identifies the corrective action to take to resolve the problem. In this case, it is
not necessary to read the scenarios in this chapter.

2. Restore the DB2 log and all data to a prior consistent point and start DB2. This
procedure is described in “Unresolvable BSDS or log data set problem during
restart” on page 494.

3. Start DB2 without rolling back some database changes. The exact database
changes cannot be identified. All that can be determined is which page sets
contain incomplete changes and which units of recovery made modifications to
those page sets. The procedure for determining which page sets contain
incomplete changes and which units of recovery made the modifications is
described in “Bypassing backout before restarting” on page 492. Continue
reading this chapter to obtain a better idea of how to fix the problem.

Figure 55 illustrates the problem on the log.

The portion of the log between log RBA X and Y is inaccessible. Restart was
reading the log in a backward direction beginning at the end of the log and

Begin
URID5

Begin
URID6

Begin
URID7

Checkpoint

Log
Start Log Error

XRBA: Y

Time
line

Log
End

Figure 55. Illustration of failure during backward log recovery

Chapter 23. Recovery from BSDS or log failure during restart 491

continuing backward to the point marked by Begin URID5 in order to back out the
changes made by URID5, URID6, and URID7. You can assume that DB2
determined that these units of recovery were inflight or in-abort. The portion of the
log from point Y to the end has been processed. However, the portion of the log
from Begin URID5 to point Y has not been processed and cannot be processed by
restart. Consequently, database changes made by URID5 and URID6 might not be
fully backed out. All database changes made by URID7 have been fully backed out,
but these database changes might not have been written to disk. A subsequent
restart of DB2 causes these changes to be written to disk during forward recovery.

Bypassing backout before restarting
This procedure describes how to start DB2 when a portion of the log is inaccessible
during backward recovery. It also describes how to identify the units of recovery that
cannot be fully backed out and the page sets that are inconsistent because they
were changed by the units of recovery that did not complete.

1. Determine the units of recovery that cannot be backed out and the page sets
that will be inconsistent following completion of restart. To do this, take the
following steps:

a. Determine the location of the latest checkpoint on the log. This can be
determined by looking at one of the following sources, whichever is more
convenient:

v The operator’s console contains message DSNR003I, which identifies the
location of the start of the last checkpoint on the log at log RBA
X'7425468'.
DSNR003I RESTART ... PRIOR CHECKPOINT

RBA=00007425468

v Print log map utility output identifies the last checkpoint, including its
BEGIN CHECKPOINT RBA.

b. Execute the DSN1LOGP utility to obtain a report of the outstanding work
that is to be completed at the next restart of DB2. When you run
DSN1LOGP, specify the checkpoint RBA as the RBASTART and the
SUMMARY(ONLY) option. Include the last complete checkpoint in the
execution of DSN1LOGP in order to obtain complete information.

Figure 53 on page 484 shows an example of the DSN1LOGP job submitted
for the checkpoint that was reported in the DSNR003I message.

Analyze the output of the DSN1LOGP utility. The summary report that is placed
in the SYSSUMRY file contains two sections of information. The sample report
output shown in Figure 53 on page 484 resulted from the invocation shown in
Figure 52 on page 483. The following description refers to that sample output.

The first section is headed by the following message:
DSN1150I SUMMARY OF COMPLETED EVENTS

That message is followed by others that identify completed events, such as
completed units of recovery. That section does not apply to this procedure.

The second section is headed by this message:
DSN1157I RESTART SUMMARY

That message is followed by others that identify units of recovery that are not
yet completed and the page sets that they modified. An example of the
DSN1162I messages is shown in Figure 53 on page 484.

492 Administration Guide

Following the summary of outstanding units of recovery is a summary of page
sets with database writes pending. An example of the DSN1160I message is
shown in Figure 53 on page 484.

The restart processing that failed was able to complete all units of recovery
processing within the accessible scope of the log following point Y. Database
writes for these units of recovery are completed during the forward recovery
phase of restart on the next restart. Therefore, do not bypass the forward
recovery phase. All units of recovery that can be backed out have been backed
out.

All remaining units of recovery to be backed out (DISP=INFLIGHT or
DISP=IN-ABORT) are bypassed on the next restart because their STARTRBA
values are less than the RBA of point Y. Therefore, all page sets modified by
those units of recovery are inconsistent following restart. This means that some
changes to data might not be backed out. At this point, it is only necessary to
identify the page sets in preparation for restart.

2. Direct restart to bypass backward recovery processing. Use the change log
inventory utility to create a conditional restart control record (CRCR) in the
BSDS. Direct restart to bypass backward recovery processing during the
subsequent restart by using the BACKOUT specification. At restart, all units of
recovery requiring backout are declared complete by DB2, and log records are
generated to note the end of the unit of recovery. The change log inventory
utility control statement is:
CRESTART CREATE,BACKOUT=NO

3. Start DB2. At the end of restart, the CRCR is marked DEACTIVATED to prevent
its use on a subsequent restart. Until the restart is complete, the CRCR is in
effect. Use START DB2 ACCESS(MAINT) until data is consistent or page sets
are stopped.

4. Resolve all inconsistent data problems. Following the successful start of DB2,
all data inconsistency problems must be resolved. “Resolving inconsistencies
resulting from conditional restart” on page 500 describes how to do this. At this
time, all other data can be made available for use.

Failure during a log RBA read request
Problem: The BSDS is wrapping around too frequently when log RBA read
requests are submitted; when the last archive log data sets were added to the
BSDS, the maximum allowable number of log data sets in the BSDS was
exceeded. This caused the earliest data sets in the BSDS to be displaced by the
new entry. Subsequently, the requested RBA containing the dropped log data set
cannot be read after the wrap occurs.

Symptom: Abend code 00D1032A and message DSNJ113E are displayed:
DSNJ113E RBA log-rba NOT IN ANY ACTIVE OR ARCHIVE

LOG DATA SET. CONNECTION-ID=aaaaaaaa, CORRELATION-ID=aaaaaaaa

System programmer action:

1. Stop DB2 with the -STOP DB2 command, if it has not already been stopped
automatically as a result of the problem.

2. Check any other messages and reason codes displayed and correct the errors
indicated. Locate the output from an old print log map run, and identify the data

Chapter 23. Recovery from BSDS or log failure during restart 493

set that contains the missing RBA. If the data set has not been reused, run the
change log inventory utility to add this data set back into the inventory of log
data sets.

3. Increase the maximum number of archive log volumes that can be recorded in
the BSDS. To do this, update the MAXARCH system parameter value as
follows:

a. Start the installation CLIST.

b. On panel DSNTIPA1, select UPDATE mode.

c. On panel DSNTIPT, change any data set names that are not correct.

d. On panel DSNTIPB, select the ARCHIVE LOG DATA SET PARAMETERS
option.

e. On panel DSNTIPA, increase the value of RECORDING MAX.

f. When the installation CLIST editing completes, rerun job DSNTIJUZ to
recompile the system parameters.

4. Start DB2 with the -START DB2 command.

For more information on updating DB2 system parameters, see Part 2 of DB2
Installation Guide.

For instructions about adding an old archive data set, refer to “Changing the BSDS
log inventory” on page 342. Also, see Part 3 of DB2 Utility Guide and Reference for
additional information on the change log inventory utility.

Unresolvable BSDS or log data set problem during restart
Use dual logging (active logs, archive logs, and bootstrap data sets) to reduce your
efforts in resolving the problem described in this section.

Problem: During restart of DB2, serious problems with the BSDS or log data sets
were detected and cannot be resolved.

Symptom: The following messages are issued:
DSNJ100I
DSNJ107I
DSNJ119I

Any of the following problems could be involved:

v A log data set is physically damaged.

v Both copies of a log data set could be physically damaged in the case of dual
logging mode.

v A log data set could be lost.

v An archive log volume could have been reused even though it was still needed.

v A log data set could contain records that are not recognized by DB2 because
they are logically broken.

System action: DB2 cannot be restarted unless the following procedure is used:

Operations management action: In serious cases such as this, it can be
necessary to fall back to a prior shutdown level. If this procedure is used, all
database changes between the shutdown point and the present will be lost, but all
the data retained will be consistent within DB2.

494 Administration Guide

If it is necessary to fall back, read “Preparing to recover to a prior point of
consistency” on page 383.

If too much log information has been lost, use the alternative approach described in
“Failure resulting from total or excessive loss of log data” on page 496.

Preparing for recovery of restart
See “Preparing to recover to a prior point of consistency” on page 383 for
preparation procedures.

Performing the fall back to a prior shutdown point
1. When a failure occurs and you decide to fall back, use the print log map utility

against the most current copy of the BSDS. Even if you are not able to do this,
continue with the next step. (If you are unable to do this, an error message will
be issued.)

2. Use access method services IMPORT to restore the backed-up versions of the
BSDS and active log data sets.

3. Use the print log map utility against the copy of the BSDS with which DB2 is to
be restarted.

4. Determine whether any archive log data sets must be deleted.

v If you have a copy of the most current BSDS, compare it to the BSDS with
which DB2 is to be restarted. Delete and uncatalog any archive log data
sets that are listed in the most current BSDS but are not listed in the
previous one. These archive log data sets are normal physical sequential
(SAM) data sets. If you are able to do this step, continue with step 5.

v If you were not able to print a copy of the most current BSDS and the
archive logs are cataloged, use access method services LISTCAT to check
for archive logs with a higher sequence number than the last archive log
shown in the BSDS being used to restart DB2.

– If no archive log data sets with a higher sequence number exist, you do
not have to delete or uncatalog any data sets, and you can continue with
step 5.

– Delete and uncatalog all archive log data sets that have a higher
sequence number than the last archive log data set in the BSDS being
used to restart DB2. These archive log data sets are SAM data sets.
Continue with the next step.

If the archive logs are not cataloged, it is not necessary to uncatalog them.

5. Give the command START DB2. Use -START DB2 ACCESS(MAINT) until data
is consistent or page sets are stopped. If DDL is required, the creator might
not be the same.

6. Now, determine what data needs to be recovered, what data needs to be
dropped, what data can remain unchanged, and what data needs to be
recovered to the prior shutdown point.

v For table spaces and indexes that might have been changed after the
shutdown point, use the DB2 RECOVER utility to recover these table
spaces and indexes. They must be recovered in the order indicated in Part
2 of DB2 Utility Guide and Reference.

v For data that has not been changed after the shutdown point (data used
with RO access), it is not necessary to use RECOVER or DROP.

v For table spaces that were deleted after the shutdown point, issue the
DROP statement. These table spaces will not be recovered.

Chapter 23. Recovery from BSDS or log failure during restart 495

v Any objects created after the shutdown point should be re-created.

All data that has potentially been modified after the shutdown point must be
recovered. If the RECOVER utility is not used to recover modified data, serious
problems can occur because of data inconsistency.

If an attempt is made to access data that is inconsistent, any of the following
events can occur (and the list is not comprehensive):

v It is possible to successfully access the correct data.

v Data can be accessed without DB2 recognizing any problem, but it might
not be the data you want (the index might be pointing to the wrong data).

v DB2 might recognize that a page is logically incorrect and, as a result,
abend the subsystem with an X'04E' abend completion code and an abend
reason code of X'00C90102'.

v DB2 might notice that a page was updated after the shutdown point and, as
a result, abend the requester with an X'04E' abend completion code and an
abend reason code of X'00C200C1'.

7. Analyze the CICS log and the IMS log to determine the work that must be
redone (work that was lost because of shutdown at the previous point). Inform
all TSO users, QMF users, and batch users for which no transaction log
tracking has been performed, about the decision to fall back to a previous
point.

8. When DB2 is started after being shut down, indoubt units of recovery can
exist. This occurs if transactions are indoubt when the command -STOP DB2
MODE (QUIESCE) is given. When DB2 is started again, these transactions will
still be indoubt to DB2. IMS and CICS cannot know the disposition of these
units of recovery.

To resolve these indoubt units of recovery, use the command RECOVER
INDOUBT.

9. If a table space was dropped and re-created after the shutdown point, it should
be dropped and re-created again after DB2 is restarted. To do this, use SQL
DROP and SQL CREATE statements.

Do not use the RECOVER utility to accomplish this, because it will result in the
old version (which can contain inconsistent data) being recovered.

10. If any table spaces and indexes were created after the shutdown point, these
must be re-created after DB2 is restarted. There are two ways to accomplish
this:

v For data sets defined in DB2 storage groups, use the CREATE
TABLESPACE statement and specify the appropriate storage group names.
DB2 automatically deletes the old data set and redefines a new one.

v For user-defined data sets, use access method services DELETE to delete
the old data sets. After these data sets have been deleted, use access
method services DEFINE to redefine them; then use the CREATE
TABLESPACE statement.

Failure resulting from total or excessive loss of log data
Problem: Either all copies of the BSDS and logs have been destroyed or lost, or an
excessive amount of the active log has been destroyed or lost.

Symptom: Any messages or abends indicating that all or an excessive amount of
log information has been lost.

496 Administration Guide

System action: None.

Operations management action: Restart DB2 without any log data by following
either the procedure in “Total loss of log” or “Excessive loss of data in the active
log” on page 498.

Total loss of log
Even if all copies of the BSDS and either the active or archive log or both have
been destroyed or lost, DB2 can still be restarted, and data that belongs to that
DB2 subsystem can still be accessed, provided that all system and user table
spaces have remained intact and you have a recent copy of the BSDS. However,
you must rely on your own sources to determine what data is inconsistent, because
DB2 cannot provide any hints of inconsistencies. We assume that you still have
other VSAM clusters on disk, such as the system databases DSNDB01, DSNDB04,
and DSNB06, as well as user databases. For example, you might know that DB2
was dedicated to a few processes (such as utilities) during the DB2 session, and
you might be able to identify the page sets they modified. If you cannot identify the
page sets that are inconsistent, you must decide whether you are willing to assume
the risk involved in restarting DB2 under those conditions. If you decide to restart,
take the following steps:

1. Define and initialize the BSDSs. See step 2 in “Recovering the BSDS from a
backup copy” on page 431.

2. Define the active log data sets using the access method services DEFINE
function. Run utility DSNJLOGF to initialize the new active log data sets.

3. Prepare to restart DB2 using no log data. See “Deferring restart processing” on
page 354.

Each data and index page contains the log RBA of the last log record applied
against the page. Safeguards within DB2 disallow a modification to a page that
contains a log RBA that is higher than the current end of the log. There are two
choices.

a. Run the DSN1COPY utility specifying the RESET option to reset the log
RBA in every data and index page. Depending on the amount of data in the
subsystem, this process can take quite a long time. Because the BSDS has
been redefined and reinitialized, logging begins at log RBA 0 when DB2
starts.

If the BSDS is not reinitialized, logging can be forced to begin at log RBA 0
by constructing a conditional restart control record (CRCR) that specifies a
STARTRBA and ENDRBA that are both equal to 0, as the following shows:
CRESTART CREATE,STARTRBA=0,ENDRBA=0

Continue with step 4.

b. Determine the highest possible log RBA of the prior log. From previous
console logs written when DB2 was operational, locate the last DSNJ001I
message. When DB2 switches to a new active log data set, this message is
written to the console, identifying the data set name and the highest
potential log RBA that can be written for that data set. Assume that this is
the value X'8BFFF'. Add one to this value (X'8C000'), and create a
conditional restart control record specifying the change log inventory control
statement as shown below:
CRESTART CREATE,STARTRBA=8C000,ENDRBA=8C000

Chapter 23. Recovery from BSDS or log failure during restart 497

When DB2 starts, all phases of restart are bypassed and logging begins at
log RBA X'8C000'. If this method is chosen, it is not necessary to use the
DSN1COPY RESET option and a lot of time is saved.

4. Start DB2. Use -START DB2 ACCESS(MAINT) until data is consistent or page
sets are stopped.

5. After restart, resolve all inconsistent data as described in “Resolving
inconsistencies resulting from conditional restart” on page 500.

Excessive loss of data in the active log
By studying “Total loss of log” on page 497, a procedure can be developed for
restarting that meets the requirements of the situation. Specifically, when an
excessive amount of the active log has been lost, the procedure can be adapted to
fit the situation, as described in “Total loss of log” on page 497. Do not delete and
redefine the BSDS. Instead, proceed as follows:

1. Use the print log map utility (DSNJU004) against the copy of the BSDS with
which DB2 is to be restarted.

2. Use the print log map output to obtain the data set names of all active log data
sets. Use access method services LISTCAT to determine which active log data
sets are no longer available or usable.

3. Use access method services DELETE to delete all active log data sets that are
no longer usable.

4. Use access method services DEFINE to define new active log data sets. Run
utility DSNJLOGF to initialize the new active log data sets. One active log data
set must be defined for each one found to be no longer available or usable in
step 2 above. Use the active log data set name found in the BSDS as the data
set name for the access method services DEFINE statement.

5. Using the print log map utility (DSNJU004) output, note whether an archive log
data set exists that contains the RBA range of the redefined active log data set.
To do this, note the starting and ending RBA values for the active log data set
that was newly redefined, and look for an archive log data set with the same
starting and ending RBA values.

If no such archive log data sets exist, then:

a. Use the change log inventory utility (DSNJU003) DELETE statement to
delete the newly redefined active log data sets from the BSDS active log
data set inventory.

b. Next, use the change log inventory utility (DSNJU003) NEWLOG statement
to add the active log data set back into the BSDS active log data set
inventory. Do not specify RBA ranges on the NEWLOG statement.

If the corresponding archive log data sets exist, then there are two courses of
action:

v If you want to minimize the number of potential read operations against the
archive log data sets, then use access method services REPRO to copy the
data from each archive log data set into the corresponding active log data
set. Make certain you copy the proper RBA range into the active log data set.

Be sure that the active log data set is big enough to hold all the data from the
archive log data set. When DB2 does an archive operation, it copies the log
data from the active log data set to the archive log data set, then pads the
archive log data set with binary zeroes to fill a block. In order for the access
method services REPRO command to be able to copy all of the data from the
archive log data set to a newly defined active log data set, the new active log
data set might need to be bigger than the original one. For example, if the

498 Administration Guide

block size of the archive log data set is 28 KB, and the active log data set
contains 80 KB of data, DB2 copies the 80 KB and pads the archive log data
set with 4 KB of nulls to fill the last block. Thus, the archive log data set now
contains 84 KB of data instead of 80 KB. In order for the access method
services REPRO command to complete successfully, the active log data set
must be able to hold 84 KB, rather than just 80 KB of data.

v If you are not concerned about read operations against the archive log data
sets, then do the same two steps as indicated above (as though the archive
data sets did not exist).

6. Choose the appropriate point for DB2 to start logging (X'8C000') as described in
the preceding procedure.

7. To restart DB2 without using any log data, create a CRCR, as described for the
change log inventory utility (DSNJU003) in Part 3 of DB2 Utility Guide and
Reference .

8. Start DB2. Use -START DB2 ACCESS(MAINT) until data is consistent or page
sets are stopped.

9. After restart, resolve all inconsistent data as described in “Resolving
inconsistencies resulting from conditional restart” on page 500.

This procedure will cause all phases of restart to be bypassed and logging to begin
at log RBA X'8C000'. It will create a gap in the log between the highest RBA kept in
the BSDS and X'8C000', and that portion of the log will be inaccessible.

No DB2 process can tolerate a gap, including RECOVER. Therefore, all data must
be image copied after a cold start. Even data that is known to be consistent must
be image copied again when a gap is created in the log.

There is another approach to doing a cold start that does not create a gap in the
log. This is only a method for eliminating the gap in the physical record. It does not
mean that you can use a cold start to resolve the logical inconsistencies. The
procedure is as follows:

1. Locate the last valid log record by using DSN1LOGP to scan the log. (Message
DSN1213I identifies the last valid log RBA.)

2. Begin at an RBA that is known to be valid. If message DSN1213I indicated that
the last valid log RBA is at X'89158', round this value up to the next 4K
boundary (X'8A000').

3. Create a CRCR similar to the following.
CRESTART CREATE,STARTRBA=8A000,ENDRBA=8A000

4. Use -START DB2 ACCESS(MAINT) until data is consistent or page sets are
stopped.

5. Now, take image copies of all data for which data modifications were recorded
beyond log RBA X'8A000'. If you do not know what data was modified, take
image copies of all data.

If image copies are not taken of data that has been modified beyond the log
RBA used in the CRESTART statement, future RECOVER operations can fail or
result in inconsistent data.

After restart, resolve all inconsistent data as described in Resolving inconsistencies
resulting from conditional restart.

Chapter 23. Recovery from BSDS or log failure during restart 499

Resolving inconsistencies resulting from conditional restart
When a conditional restart of the DB2 subsystem is done, the following can occur:
v Some amount of work is left incomplete.
v Some data is left inconsistent.
v Information about the status of the DB2 subsystem is made unusable.

Inconsistencies in a distributed environment
In a distributed environment, when a DB2 system restarts, it indicates its restart
status and the name of its recovery log to the systems with which it communicates.
There are two possible conditions for restart status, warm and cold.

A cold status for restart means that the DB2 system has no memory of previous
connections with its partner, and therefore has no memory of indoubt logical units of
work. This includes all postponed aborted URs that end without resolution and any
restart pending page sets and partitions are removed from restart pending state.
The partner accepts the cold start connection and remembers the recovery log
name of the cold starting DB2. If the partner has indoubt thread resolution
requirements with the cold starting DB2, they cannot be achieved. The partner
terminates its indoubt resolution responsibility with the cold starting DB2. However,
as a participant, the partner has indoubt logical units of work that must be resolved
manually. The DB2 system has an incomplete record of resolution responsibilities. It
attempts to reconstruct as much resynchronization information as possible and
displays the information in one or more DSNL438 or DSNL439 messages. The
displayed information is then forgotten.

A warm status for restart means the DB2 system does have memory of previous
connections with the partner and therefore does have memory of indoubt logical
units of work. The exchange of recovery log names validates that the correct
recovery logs are being used for indoubt resolution. Each partner indicates its
recovery log name and the recovery log name it believes to be the one the other
partner is using. A warm start connection where one system specifies a recovery
log name that is different than the name remembered by the other system is
rejected if indoubt resolution is required between the two partners.

Procedures for resolving inconsistencies
The following section explains what must be done to resolve any inconsistencies
that exist. Before reading this section, the procedures in the other sections of this
chapter must be considered. Each one provides important steps that must be
followed before using the information in this section.

The following three methods describe one or more steps that must be taken to
resolve inconsistencies in the DB2 subsystem. Before using these methods,
however, do the following:

1. Obtain image copies of all DB2 table spaces. You will need these image copies
if any of the following conditions apply:
v You did a cold start.
v You did a conditional restart that altered or truncated the log.
v The log is damaged.
v Part of the log is no longer accessible.

The first thing to do after a conditional restart is to take image copies of all DB2
table spaces, except those that are inconsistent. For those table spaces
suspected of being inconsistent, resolve the inconsistencies and then obtain
image copies of them.

500 Administration Guide

A cold start might cause down-level page set errors. Some of these errors
cause message DSNB232I to be displayed during DB2 restart. After you restart
DB2, check the console log for down-level page set messages. If any of those
messages exist, correct the errors before you take image copies of the affected
data sets. Other down-level page set errors are not detected by DB2 during
restart. If you use the COPY utility with the SHRLEVEL REFERENCE option to
make image copies, the COPY utility will issue message DSNB232I when it
encounters down-level page sets. Correct those errors and continue making
image copies. If you use some other method to make image copies, you will
find out about down-level errors during normal DB2 operation. “Recovery from
down-level page sets” on page 435 describes methods for correcting down-level
page set errors.

Pay particular attention to DB2 subsystem table spaces. If any are inconsistent,
recover all of them in the order shown in the discussion on recovering catalog
and directory objects in Part 2 of DB2 Utility Guide and Reference.

When a portion of the DB2 recovery log becomes inaccessible, all DB2 recovery
processes have difficulty operating successfully, including restart, RECOVER,
and deferred restart processing. Conditional restart allowed circumvention of the
problem during the restart process. To ensure that RECOVER does not attempt
to access the inaccessible portions of the log, secure a copy (either full or
incremental) that does not require such access. A failure occurs any time a DB2
process (such as the RECOVER utility) attempts to access an inaccessible
portion of the log. You cannot be sure which DB2 processes must use that
portion of the recovery log, and, therefore, you must assume that all data
recovery requires that portion of the log.

2. Resolve database inconsistencies. If you determine that the existing
inconsistencies involve indexes only (not data), use the utility RECOVER
INDEX. If the inconsistencies involve data (either user data or DB2 subsystem
data), continue reading this section.

Inconsistencies in DB2 subsystem databases DSNDB01 and DSNDB06 must be
resolved before inconsistencies in other databases can be resolved. This is
necessary because the subsystem databases describe all other databases, and
access to other databases requires information from DSNDB01 and DSNDB06.

If the table space that cannot be recovered (and is thus inconsistent) is being
dropped, either all rows are being deleted or the table is not necessary. In either
case, drop the table when DB2 is restarted, and do not bother to resolve the
inconsistencies before restarting DB2.

Any one of the following three procedures can be used to resolve data
inconsistencies. However, it is advisable to use one of the first two procedures
because of the complexity of the third procedure.

Method 1. Recover to a prior point of consistency
See “Recovering data to a prior point of consistency” on page 396 for a description
of how to successfully prepare for and do data recovery to a prior point of
consistency.

Method 2. Re-create the table space
Take the following steps to drop the table space and reconstruct the data using the
CREATE statement. This procedure is simple relative to “Method 3. Use the
REPAIR utility on the data” on page 502. However, if you want to use this
procedure, you need to plan ahead, because, when a table space is dropped, all

Chapter 23. Recovery from BSDS or log failure during restart 501

tables in that table space, as well as related indexes, authorities, and views, are
implicitly dropped. Be prepared to reestablish indexes, views, and authorizations, as
well as the data content itself.

DB2 subsystem tables, such as the catalog and directory, cannot be dropped.
Follow either “Method 1. Recover to a prior point of consistency” on page 501 or
“Method 3. Use the REPAIR utility on the data” for these tables.

1. Issue an SQL DROP TABLESPACE statement for all table spaces suspected of
being involved in the problem.

2. Re-create the table spaces, tables, indexes, synonyms, and views using SQL
CREATE statements.

3. Grant access to these objects as it was granted prior to the time of the error.

4. Reconstruct the data in the tables.

5. Run the RUNSTATS utility on the data.

6. Use COPY to acquire a full image copy of all data.

7. Use the REBIND process on all plans that use the tables or views involved in
this activity.

Method 3. Use the REPAIR utility on the data
The third method for resolving data inconsistencies involves the use of the REPAIR
utility. This method of resolving inconsistencies is not recommended unless the
inconsistency is limited to a small number of data or index pages for the following
reasons.

v For extensive data inconsistency, this method can be fairly time consuming and
complex, making the procedure more error prone than the two methods
described previously.

v DSN1LOGP can identify page sets that contain inconsistencies, but it cannot
identify the specific data modifications involved in the inconsistencies within a
given page set.

v DB2 provides no mechanism to tell users whether data is physically consistent or
damaged. If the data is damaged physically, you might learn this when you
attempt to use SQL to access the data and find that the data is inaccessible.

If you decide to use this method to resolve data inconsistencies, be sure to read the
following section carefully, because it contains information that is important to the
successful resolution of the inconsistencies.

Considerations for using the REPAIR method:

v Any pages that are on the logical page list (perhaps caused by this restart)
cannot be accessed via the REPAIR utility. Because you have decided to use the
REPAIR utility to resolve the inconsistency, give the command -START
DATABASE (dbase) SPACENAM (space) ACCESS(FORCE), where space
names the table space involved. That allows access to the data.

v As noted in “Recovering data to a prior point of consistency” on page 396, DB2
subsystem data (in the catalog and directory) exists in interrelated tables and
table spaces. Data in DB2 subsystem databases cannot be modified via SQL, so
the REPAIR utility must be used to resolve the inconsistencies that are identified.

v For a description of stored data and index formats, refer to Part 6 of DB2
Diagnosis Guide and Reference.

v DB2 stores data in data pages. The structure of data in a data page must
conform to a set of rules for DB2 to be able to process the data accurately. Using
a conditional restart process does not cause violations to this set of rules; but, if

502 Administration Guide

violations existed prior to conditional restart, they will continue to exist after
conditional restart. Therefore, use DSN1COPY with the CHECK option.

v DB2 uses several types of pointers in accessing data. Each type (indexes,
hashes, and links) is described in Part 6 of DB2 Diagnosis Guide and Reference.
Look for these pointers and manually ensure their consistency.

Hash and link pointers exist in the DB2 directory database; link pointers also
exist in the catalog database. DB2 uses these pointers to access data. During a
conditional restart, it is possible for data pages to be modified without update of
the corresponding pointers. When this occurs, one of the following things can
happen:

– If a pointer addresses data that is nonexistent or incorrect, DB2 abends the
request. If SQL is used to access the data, a message identifying the
condition and the page in question is issued.

– If data exists but no pointer addresses it, that data is virtually invisible to all
functions that attempt to access it via the damaged hash or link pointer. The
data might, however, be visible and accessible by some functions, such as
SQL functions that use some other pointer that was not damaged. As might
be expected, this situation can result in inconsistencies.

If a row containing a varying-length field is updated, it can increase in size. If the
page in which the row is stored does not contain enough available space to store
the additional data, the row is placed in another data page, and a pointer to the
new data page is stored in the original data page. After a conditional restart, one
of the following can occur.

– The row of data exists, but the pointer to that row does not exist. In this case,
the row is invisible and the data cannot be accessed.

– The pointer to the row exists, but the row itself no longer exists. DB2 abends
the requester when any operation (for instance, a SELECT) attempts to
access the data. If termination occurs, one or more messages will be received
that identify the condition and the page containing the pointer.

When these inconsistencies are encountered, use the REPAIR utility to resolve
them, as described in Part 2 of DB2 Utility Guide and Reference.

v If the log has been truncated, there can be problems changing data via the
REPAIR utility. Each data and index page contains the log RBA of the last
recovery log record that was applied against the page. DB2 does not allow
modification of a page containing a log RBA that is higher than the current end of
the log. If the log has been truncated and you choose to use the REPAIR utility
rather than recovering to a prior point of consistency, the DSN1COPY RESET
option must be used to reset the log RBA in every data and index page set to be
corrected with this procedure.

v This last step is imperative. When all known inconsistencies have been
resolved, full image copies of all modified table spaces must be taken, in order to
use the RECOVER utility to recover from any future problems.

Chapter 23. Recovery from BSDS or log failure during restart 503

504 Administration Guide

Part 5. Performance monitoring and tuning

Chapter 24. Planning your performance strategy 517
Further topics in monitoring and tuning 517
Managing performance in general 518
Establishing performance objectives 518

Defining the workload . 519
Initial planning. 519

Translating resource requirements into objectives. 520
External design . 521
Internal design . 521
Coding and testing . 521

Post-development review. 521
Planning for monitoring . 522

Continuous monitoring. 523
Periodic monitoring . 523
Detailed monitoring . 523
Exception monitoring . 524
A monitoring strategy . 524

Reviewing performance data 524
Typical review questions . 525
Are your performance objectives reasonable? 526

Tuning DB2. 526

Chapter 25. Analyzing performance data 527
Investigating the problem overall 527

Looking at the entire system 527
Beginning to look at DB2. 527

Reading accounting reports from DB2 PM 528
The accounting report—short 528
The accounting report—long 529

Major items on the report 529
A general approach to problem analysis in DB2 533

Chapter 26. Improving response time and throughput 537
Reducing I/O operations . 537

Use RUNSTATS to keep access path statistics current 537
Reserve free space in table spaces and indexes 538

Specifying free space on pages 538
Determining pages of free space 539
Recommendations for allocating free space 539

Make buffer pools large enough for the workload 540
Speed up preformatting by allocating in cylinders 540

Allocate space in cylinders 540
Preformatting during LOAD 540

Reducing the time needed to perform I/O operations 541
Create additional work file table spaces 541
Distribute data sets efficiently 542

Put frequently used data sets on fast devices 542
Distribute the I/O. 542

Ensure sufficient primary allocation quantity 544
Reducing the amount of processor resources consumed 544

Reuse threads for your high-volume transactions 545
Minimize the use of DB2 traces 545

Global trace . 545

© Copyright IBM Corp. 1982, 2001 505

Accounting and statistics traces 545
Audit trace . 545
Performance trace . 546

Use fixed-length records . 546
Understanding response time reporting 546

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 549
Tuning database buffer pools 549

Choose backing storage: primary or data space 550
Buffer pools and hiperpools 550
Buffer pools and data spaces 552

Terminology: Types of buffer pool pages 553
Read operations . 554
Write operations . 554
Assigning a table space or index to a virtual buffer pool 555

Assigning data to default buffer pools 555
Assigning data to particular buffer pools 555

Buffer pool thresholds . 555
Fixed thresholds . 556
Thresholds you can change. 557
Guidelines for setting buffer pool thresholds 559

Determining size and number of buffer pools 560
Virtual buffer pool and hiperpool sizes 560
The buffer pool hit ratio 560
Buffer pool size guidelines 561
Advantages of large buffer pools 562
Choosing one or many buffer pools 562

Choosing a page-stealing algorithm 562
Monitoring and tuning buffer pools using online commands 563
Using DB2 PM to monitor buffer pool statistics 567

Tuning the EDM pool . 570
EDM pool space handling 570

Implications for database design 571
Monitoring and tuning the EDM pool 571

Tips for managing EDM pool storage 573
Use packages. 573
Use RELEASE(COMMIT) when appropriate 573
Release thread storage 573
Understand the impact of using DEGREE(ANY) 573
Put dynamic statement cache in a data space 573

Increasing RID pool size . 574
Controlling sort pool size and sort processing 574

Estimating the maximum size of the sort pool 575
Understanding how sort work files are allocated 575
Improving the performance of sort processing 576

Chapter 28. Improving resource utilization 579
Controlling resource usage . 579

Prioritize resources . 580
Limit resources for each job. 580
Limit resources for TSO sessions 581
Limit resources for IMS and CICS 581
Limit resources for a stored procedure 581

Resource limit facility (governor) 581
Using resource limit tables (RLSTs) 582

Creating an RLST . 582

506 Administration Guide

Descriptions of the RLST columns 584
Governing dynamic queries 587

Qualifying rows in the RLST 587
Predictive governing . 589
Combining reactive and predictive governing 590
Governing statements from a remote site 591
Calculating service units 591

Restricting bind operations 592
Example . 592

Restricting parallelism modes 592
Managing the opening and closing of data sets 593

Determining the maximum number of open data sets 593
How DB2 determines DSMAX 593
Modifying DSMAX . 593
Recommendations . 595

Understanding the CLOSE YES and CLOSE NO options 595
The process of closing 595
When the data sets are closed 596

Switching to read-only for infrequently updated page sets. 596
Planning the placement of DB2 data sets. 597

Estimating concurrent I/O requests 597
Crucial DB2 data sets . 597
Changing catalog and directory size and location 598
Monitoring I/O activity of data sets 598
Work file data sets . 599

DB2 logging . 599
Logging performance issues and recommendations 599

Log writes . 599
Log reads . 601

Log capacity . 602
Total capacity and the number of logs 602

Controlling the amount of log data 604
Utilities . 604
SQL . 604
Calculating average log record size 606

Improving disk utilization: space and device utilization 606
Allocating and extending data sets 606
Compressing your data . 606

Deciding whether to compress. 607
Tuning recommendation 609
Determining the effectiveness of compression 609

Improving main storage utilization 609
Performance and the storage hierarchy 611

Real storage . 611
Expanded storage . 612
Storage controller cache . 612

The amount of storage controller cache 612
Sequential cache installation option 613
Utility cache option . 613
Parallel Access Volumes (PAV) 613
Multiple Allegiance . 613
Fast Write . 613

MVS performance options for DB2 614
Using SRM (compatibility mode) 614

Setting address space priority 614
I/O scheduling priority . 615

Part 5. Performance monitoring and tuning 507

||
||

Storage isolation . 616
Workload control . 616

Determining MVS workload management velocity goals 616
Recommendations for an interim situation 616
Recommendations for full implementation of MVS WLM 617
Other considerations . 617
How DB2 assigns I/O priorities 618

Chapter 29. Managing DB2 threads 619
Setting thread limits. 619
Allied thread allocation . 620

Step 1: Thread creation . 620
Performance factors in thread creation. 620

Step 2: Resource allocation. 621
Performance factors in resource allocation 621

Step 3: SQL statement execution. 621
Performance factors in SQL statement execution 622

Step 4: Commit and thread termination 622
Variations on thread management 623

TSO and call attachment facility differences 623
Thread management for Recoverable Resource Manager Services

Attachment Facility (RRSAF) 623
Differences for SQL under QMF 623

Providing for thread reuse 623
Bind options for thread reuse 623
Using reports to tell when threads were reused 624

Database access threads . 624
Understanding allied threads and database access threads 625
Setting thread limits for database access threads 625
Using inactive threads . 626

Using type 2 inactive threads 626
Determining if a thread can become inactive 627
Understanding the advantages of inactive threads 627
Enabling threads to become inactive 628
Timing out idle active threads 628

Establishing a remote connection. 628
Reusing threads for remote connections 629
Using Workload Manager to set performance objectives 629

Classifying DDF threads 630
Establishing performance periods for DDF threads 632
Basic procedure for establishing performance objectives 632
Considerations for compatibility mode 632
Considerations for goal mode 633

CICS design options . 633
Overview of RCT options. 634
Plans for CICS applications 634
Thread creation, reuse, and termination 634

When CICS threads are created 635
When CICS threads are released and available for reuse 636
When CICS threads terminate 637

Recommendations for RCT definitions 637
Recommendations for CICS system definitions. 639
Recommendations for accounting information for CICS threads 639

IMS design options . 639
TSO design options. 640
QMF design options . 641

508 Administration Guide

Chapter 30. Improving concurrency 643
Definitions of concurrency and locks 643
Effects of DB2 locks . 644

Suspension. 644
Timeout . 645
Deadlock . 645

Basic recommendations to promote concurrency 646
Recommendations for system options 646
Recommendations for database design 647
Recommendations for application design 648

Aspects of transaction locks 650
The size of a lock . 650

Definition . 650
Hierarchy of lock sizes 650
General effects of size. 651
Effects of table spaces of different types 651
Differences between simple and segmented table spaces. 652

The duration of a lock . 654
Definition . 654
Effects . 654

The mode of a lock . 654
Definition . 654
Modes of page and row locks 654
Modes of table, partition, and table space locks 655
Lock mode compatibility 656

The object of a lock. 656
Definition and examples 656
Indexes and data-only locking 657
Locks on the DB2 catalog 657
Locks on the skeleton tables (SKCT and SKPT) 658
Locks on the database descriptors (DBDs) 658

DB2’s choice of lock types 659
Modes of locks acquired for SQL statements 659
Lock promotion . 662
Lock escalation . 662
Modes of transaction locks for various processes 664

Lock tuning . 664
Startup procedure options 665

Using options for DB2 locking 665
Estimating the storage needed for locks 665

Installation options for wait times 665
DEADLOCK TIME on installation panel DSNTIPJ. 666
RESOURCE TIMEOUT on installation panel DSNTIPI 666
Wait time for transaction locks 666
IDLE THREAD TIMEOUT on installation panel DSNTIPR 668
UTILITY TIMEOUT on installation panel DSNTIPI. 668
Wait time for drains . 669

Other options that affect locking 670
LOCKS PER USER field of installation panel DSNTIPJ 670
LOCKSIZE clause of CREATE and ALTER TABLESPACE 671
LOCKMAX clause of CREATE and ALTER TABLESPACE 672
LOCKS PER TABLE(SPACE) field of installation panel DSNTIPJ 673
The option U LOCK FOR RR/RS. 673
Option to release locks for cursors defined WITH HOLD 673
Option XLOCK for searched updates/deletes 674
Option to avoid locks during predicate evaluation 674

Part 5. Performance monitoring and tuning 509

||

Bind options . 675
The ACQUIRE and RELEASE options 675
Advantages and disadvantages of the combinations 677
The ISOLATION option 678
Advantages and disadvantages of the isolation values 680
The CURRENTDATA option. 685
When plan and package options differ 688
The effect of WITH HOLD for a cursor 688

Isolation overriding with SQL statements 689
The statement LOCK TABLE 690

The purpose of LOCK TABLE 690
When to use LOCK TABLE 690
The effect of LOCK TABLE 691

LOB locks . 691
Relationship between transaction locks and LOB locks. 691
Hierarchy of LOB locks . 693
LOB and LOB table space lock modes. 693

Modes of LOB locks . 693
Modes of LOB table space locks 693

Duration of locks . 693
Duration of locks on LOB table spaces 693
Duration of LOB locks . 694

Instances when locks on LOB table space are not taken 694
Control of the number of locks. 694

Controlling the number of LOB locks that are acquired for a user 694
Controlling LOB lock escalation 695

The LOCK TABLE statement 695
The LOCKSIZE clause for LOB table spaces 695

Claims and drains for concurrency control 695
Objects subject to takeover 695
Definition of claims and drains 696

Definition . 696
Example . 696
Effects of a claim . 696
Three classes of claims 696
Definition . 696
Example . 696
Effects of a drain. 696
Claim classes drained . 697

Usage of drain locks . 697
Definition . 697
Types of drain locks . 697

Utility locks on the catalog and directory 697
Compatibility of utilities . 698

Definition . 698
Compatibility rules . 698

Concurrency during REORG 699
Utility operations with nonpartitioning indexes 700

Monitoring of DB2 locking . 700
Using EXPLAIN to tell which locks DB2 chooses 700
Using the statistics and accounting traces to monitor locking 701
Analyzing a concurrency scenario 702

Scenario description . 703
Accounting report . 703
Lock suspension . 704
Lockout report. 705

510 Administration Guide

Lockout trace . 706
Corrective decisions . 706

Deadlock detection scenarios 707
Scenario 1: Two-way deadlock, two resources 707
Scenario 2: Three-way deadlock, three resources. 709

Chapter 31. Tuning your queries 711
General tips and questions . 711

Is the query coded as simply as possible? 711
Are all predicates coded correctly? 711
Are there subqueries in your query? 712
Does your query involve column functions? 713
Do you have an input variable in the predicate of a static SQL query? 713
Do you have a problem with column correlation? 713
Can your query be written to use a noncolumn expression? 714

Writing efficient predicates . 714
Properties of predicates . 714

Predicate types . 715
Indexable and nonindexable predicates 716
Stage 1 and stage 2 predicates 716
Boolean term (BT) predicates 716

Predicates in the ON clause 717
General rules about predicate evaluation 717

Order of evaluating predicates 718
Summary of predicate processing 718
Examples of predicate properties 722
Predicate filter factors . 723

Default filter factors for simple predicates. 724
Filter factors for uniform distributions 724
Interpolation formulas . 725
Filter factors for all distributions 726

DB2 predicate manipulation. 728
Predicate modifications for IN-list predicates 728
When DB2 simplifies join operations 728
Predicates generated through transitive closure 729

Column correlation . 731
How to detect column correlation 731
Impacts of column correlation 732
What to do about column correlation 733

Using host variables efficiently 734
Using REOPT(VARS) to change the access path at run time 734
Rewriting queries to influence access path selection. 735

Writing efficient subqueries . 738
Correlated subqueries . 739
Noncorrelated subqueries 740

Single-value subqueries 740
Multiple-value subqueries 740

Subquery transformation into join. 741
Subquery tuning . 743

Using scrollable cursors efficiently 744
Writing efficient queries on views with UNION operators 745
Special techniques to influence access path selection 746

Obtaining information about access paths 747
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS 747
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY 749
Reducing the number of matching columns 750

Part 5. Performance monitoring and tuning 511

||

||

Adding extra local predicates 751
Creating indexes for efficient star schemas 752

Recommendations for creating indexes for star schemas 752
Determining the order of columns in an index for a star schema 753

Rearranging the order of tables in a FROM clause 754
Updating catalog statistics 754
Using a subsystem parameter 756

Using a subsystem parameter to favor matching index access 756
Using a subsystem parameter to control outer join processing 756

Giving optimization hints to DB2 757
Planning to use optimization hints 757
Enabling optimization hints for the subsystem 757
Scenario: Preventing a change at rebind 757
Scenario: Modifying an existing access path 759
Reasons to use the QUERYNO clause 760
How DB2 locates the PLAN_TABLE rows for a hint 760
How DB2 validates the hint 761

Chapter 32. Maintaining statistics in the catalog 765
Understanding statistics used for access path selection 765

Filter factors and catalog statistics 771
Statistics for partitioned table spaces 772

Setting default statistics for created temporary tables 772
History statistics . 773
Gathering monitor and update statistics 775
Updating the catalog . 777

Correlations in the catalog 777
Recommendation for COLCARDF and FIRSTKEYCARDF 779
Recommendation for HIGH2KEY and LOW2KEY 779
Statistics for distributions . 779
Recommendation for using the TIMESTAMP column 779

Querying the catalog for statistics 779
Improving index and table space access 780

How clustering affects access path selection 781
What other statistics provide index costs 783
When to reorganize indexes and table spaces 784

Reorganizing Indexes . 784
Reorganizing table spaces 786
Reorganizing LOB table spaces 786

Whether to rebind after gathering statistics 786
Modeling your production system. 786

Chapter 33. Using EXPLAIN to improve SQL performance 789
Obtaining PLAN_TABLE information from EXPLAIN 790

Creating PLAN_TABLE . 790
Populating and maintaining a plan table 796

Executing the SQL statement EXPLAIN 796
Binding with the option EXPLAIN(YES) 796
Executing EXPLAIN under QMF 796
Maintaining a plan table 797

Reordering rows from a plan table 797
Retrieving rows for a plan 797
Retrieving rows for a package 798

Asking questions about data access 798
Is access through an index? (ACCESSTYPE is I, I1, N or MX) 799
Is access through more than one index? (ACCESSTYPE=M) 799

512 Administration Guide

##

||

||

How many columns of the index are used in matching? (MATCHCOLS=n) 800
Is the query satisfied using only the index? (INDEXONLY=Y) 800
Is direct row access possible? (PRIMARY_ACCESSTYPE = D) 801

Which predicates qualify for direct row access? 801
Reverting to ACCESSTYPE. 802
Using direct row access and other access methods 802

Is a view or nested table expression materialized? 803
Was a scan limited to certain partitions? (PAGE_RANGE=Y) 803
What kind of prefetching is done? (PREFETCH = L, S, or blank) 803
Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C,

or X) . 804
Are sorts performed? . 804
Is a subquery transformed into a join? 805
When are column functions evaluated? (COLUMN_FN_EVAL) 805

Interpreting access to a single table. 805
Table space scans (ACCESSTYPE=R PREFETCH=S) 805

Table space scans of nonsegmented table spaces 806
Table space scans of segmented table spaces 806
Table space scans of partitioned table spaces 806
Table space scans and sequential prefetch 806

Overview of index access 806
Using indexes to avoid sorts 806
Costs of indexes . 807

Index access paths . 807
Matching index scan (MATCHCOLS>0) 808
Index screening . 808
Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0) . . . 809
IN-list index scan (ACCESSTYPE=N) 809
Multiple index access (ACCESSTYPE is M, MX, MI, or MU) 809
One-fetch access (ACCESSTYPE=I1) 811
Index-only access (INDEXONLY=Y) 811
Equal unique index (MATCHCOLS=number of index columns) 811

UPDATE using an index . 812
Interpreting access to two or more tables (join) 812

Definitions and examples. 813
Nested loop join (METHOD=1) 815

Method of joining . 815
Performance considerations. 815
When it is used . 815

Merge scan join (METHOD=2). 816
Method of joining . 817
Performance considerations. 818
When it is used . 818

Hybrid join (METHOD=4). 818
Method of joining . 819
Possible results from EXPLAIN for hybrid join 820
Performance considerations. 820
When it is used . 820

Star schema (star join) . 820
Example . 821
When it is used . 822

Interpreting data prefetch. 824
Sequential prefetch (PREFETCH=S) 824
List prefetch (PREFETCH=L) 825

The access method. 825
When it is used . 826

Part 5. Performance monitoring and tuning 513

Bind time and execution time thresholds 826
Sequential detection at execution time 826

When it is used . 826
How to tell whether it was used 827
How to tell if it might be used 827

Determining sort activity . 828
Sorts of data . 828

Sorts for group by and order by 828
Sorts to remove duplicates 828
Sorts used in join processing 828
Sorts needed for subquery processing 829

Sorts of RIDs . 829
The effect of sorts on OPEN CURSOR 829

Processing for views and nested table expressions 829
Merge. 830
Materialization. 830

Two steps of materialization. 831
When views or table expressions are materialized 831

Using EXPLAIN to determine when materialization occurs 832
Using EXPLAIN to determine UNION activity and query rewrite 834
Performance of merge versus materialization 835

Estimating a statement’s cost 836
Creating a statement table 836
Populating and maintaining a statement table 838
Retrieving rows from a statement table 838
Understanding the implications of cost categories. 839

Chapter 34. Parallel operations and query performance 841
Comparing the methods of parallelism 842
Partitioning for optimal parallel performance 844

Determining if a query is I/O- or processor-intensive. 845
Determining the number of partitions 845
Working with a table space that is already partitioned? 846
Making the partitions the same size 846

Enabling parallel processing 847
When parallelism is not used 848
Interpreting EXPLAIN output 848

A method for examining PLAN_TABLE columns for parallelism 848
PLAN_TABLE examples showing parallelism 849

Monitoring parallel operations 850
Using DISPLAY BUFFERPOOL 851
Using DISPLAY THREAD 851
Using DB2 trace . 851

Accounting trace . 851
Performance trace . 852

Tuning parallel processing . 853
Disabling query parallelism . 854

Chapter 35. Tuning and monitoring in a distributed environment 857
Understanding remote access types 857

Characteristics of DRDA . 857
Characteristics of DB2 private protocol. 857

Tuning distributed applications 858
The application and the requesting system 858

BIND options . 858
SQL statement options 858

514 Administration Guide

||

Block fetching result sets. 859
Optimizing for very large results sets for DRDA 863
Optimizing for small results sets for DRDA 864

The serving system. 865
Monitoring DB2 in a distributed environment 866

Using the DISPLAY command 866
Tracing distributed events 866
Reporting server-elapsed time 870

Using RMF to monitor distributed processing 870
Duration of an enclave . 870
RMF records for enclaves 871

Chapter 36. Monitoring and tuning stored procedures and user-defined
functions . 873

Controlling address space storage 874
Assigning procedures and functions to WLM application environments 875
Providing DB2 cost information for accessing user-defined table functions 876
Accounting trace . 877
Accounting for nested activities 879

Part 5. Performance monitoring and tuning 515

||

516 Administration Guide

Chapter 24. Planning your performance strategy

The first step toward improving performance is planning, which is the subject of this
chapter.

For an overview of the whole book, see “Further topics in monitoring and tuning”.

For the elements of planning a strategy, see the following sections:
v “Managing performance in general” on page 518
v “Establishing performance objectives” on page 518
v “Planning for monitoring” on page 522
v “Reviewing performance data” on page 524
v “Tuning DB2” on page 526

Information on performance monitoring and tuning in a data sharing environment is
presented in DB2 Data Sharing: Planning and Administration.

Further topics in monitoring and tuning
“Chapter 25. Analyzing performance data” on page 527 is a general guide to
analyzing and investigating performance issues.

“Chapter 26. Improving response time and throughput” on page 537 deals with
space allocation, buffer pool and data set usage, processor resources, and
response time reporting.

“Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools” on page 549 has
recommendations for monitoring and tuning those objects.

“Chapter 28. Improving resource utilization” on page 579 deals with managing data
sets, logging, disks, main storage, the resource limit facility, and performance
options in MVS.

“Chapter 29. Managing DB2 threads” on page 619 deals with DB2 threads and
workload management.

“Chapter 30. Improving concurrency” on page 643 deals with concurrency and
locking.

“Chapter 31. Tuning your queries” on page 711 deals with writing queries that are as
efficient as possible.

“Chapter 32. Maintaining statistics in the catalog” on page 765 deals with catalog
statistics, reorganizing, and rebinding.

“Chapter 33. Using EXPLAIN to improve SQL performance” on page 789 deals with
the principal means of monitoring access path selection and improving the
performance of your SQL, especially queries.

“Chapter 34. Parallel operations and query performance” on page 841 deals
specifically with monitoring and tuning parallel queries.

“Chapter 35. Tuning and monitoring in a distributed environment” on page 857 deals
with performance in a distributed environment.

© Copyright IBM Corp. 1982, 2001 517

“Chapter 36. Monitoring and tuning stored procedures and user-defined functions”
on page 873 deals with using stored procedures and user-defined functions
efficiently.

Throughout this section, bear in mind the following:

v The emphasis is on performance objectives that can be reasonably measured by
tools now available. That might not adequately serve your purpose. If, for
example, you serve a diverse range of query users and want to measure “user
satisfaction”, you might need more than the techniques described here.

v DB2 is only a part of your overall system. Any change to programs, such as
MVS, IMS, or CICS, that share your machine and I/O devices can affect how
DB2 runs.

v The recommendations in this section are based on current knowledge of DB2
performance for “normal” circumstances and “typical” systems. Therefore, that
this book provides the best or most appropriate advice for any specific site
cannot be guaranteed. In particular, the advice in this section approaches
situations from a performance viewpoint only; at some sites, other factors of
higher priority may make some recommendations in this section inappropriate.

v The recommendations are general. Actual performance statistics are not included
because such measurements are highly dependent on workload and system
characteristics external to DB2.

Managing performance in general
Managing the performance of any system involves the following steps:

1. Establish performance objectives.

2. Plan how to monitor performance.

3. Carry out the plan.

4. Analyze performance reports to decide whether the objectives have been met.

5. If performance is thoroughly satisfactory, use one of the following options:

v Monitor less, because monitoring itself uses resources.

v Continue monitoring to generate a history of performance to compare with
future results.

6. If performance has not been satisfactory, take the following actions:

a. Determine the major constraints in the system.

b. Decide where you can afford to make trade-offs and which resources can
bear an additional load. Nearly all tuning involves trade-offs among system
resources.

c. Tune your system by adjusting its characteristics to improve performance.

d. Return to step 3 above and continue to monitor the system.

Periodically, or after significant changes to your system or workload, return to step
1, reexamine your objectives, and refine your monitoring and tuning strategy
accordingly.

Establishing performance objectives
How you define good performance for your DB2 subsystem depends on your
particular data processing needs and their priority. Performance objectives should
be realistic, in line with your budget, understandable, and measurable.

Common objectives include values for:

518 Administration Guide

v Acceptable response time (a duration within which some percentage of all
applications have completed)

v Average throughput (the total number of transactions or queries that complete
within a given time)

v System availability, including mean time to failure and the durations of down
times

Objectives such as those define the workload for the system and determine the
requirements for resources—processor speed, amount of storage, additional
software, and so on. Often, though, available resources limit the maximum
acceptable workload, which requires revising the objectives.

Service-level agreements: Presumably, your users have a say in your
performance objectives. A mutual agreement on acceptable performance, between
the data processing and user groups in an organization, is often formalized and
called a service-level agreement. Service-level agreements can include
expectations of query response time, the workload throughput per day, hour, or
minute, and windows provided for batch jobs (including utilities). These agreements
list criteria for determining whether or not the system is performing adequately.

For example, a service-level agreement might require that 90% of all response
times sampled on a local network in the prime shift be under 2 seconds, or that the
average response time not exceed 6 seconds even during peak periods. (For a
network of remote terminals, consider substantially higher response times.)

Performance objectives must reflect not only elapsed time, but also the amount of
processing expected. Consider whether to define your criteria in terms of the
average, the ninetieth percentile, or even the worst-case response time. Your choice
can depend on your site’s audit controls and the nature of the workloads.

Defining the workload
To define the workload of the system, begin by determining the type of workload.
For each type, describe a preliminary workload profile that includes:

v A definition of the workload type in terms of its function and its volume. You are
likely to have many workloads that perform the same general function (for
example, order entry) and have an identifiable workload profile. Other workload
types could be SPUFI or QMF queries. For the volume of a workload that is
already processed by DB2, use the summary of its volumes from the DB2
statistics trace.

v The relative priority of the type, including periods during which the priorities
change.

v The resources required to do the work, including physical resources managed by
the operating system (such as real storage, disk I/O, and terminal I/O) and logical
resources managed by the subsystem (such as control blocks and buffers).

Before installing DB2, gather design data during the phases of initial planning,
external design, internal design, and coding and testing. Keep reevaluating your
performance objectives with that information.

Initial planning
Begin establishing resource requirements by estimating the quantities listed below,
however uncertain they might seem at this stage.

For transactions:

Chapter 24. Planning your performance strategy 519

v Availability transaction managers, such as IMS or CICS
v Number of message pairs (inputs and outputs to a terminal) for each user

function
v Line speeds (bits per second) for remote terminals
v Number of terminals and operators needed to achieve the required throughput
v Maximum rate of workloads per minute, hour, day, or week
v Number of I/O operations per user workload (disks and terminals)
v Average and maximum processor usage per workload type and total work load
v Size of tables
v Effects of objectives on operations and system programming

For query use:
v Time required to key in user data
v Online query processing load
v Limits to be set for the query environment or preformatted queries
v Size of tables
v Effects of objectives on operations and system programming

For batch processing:

v Batch windows for data reorganization, utilities, data definition activities, and
BIND processing

v Batch processing load

v Length of batch window

v Number of records to process, data reorganization activity, use of utilities, and
data definition activity

v Size of tables

v Effects of objectives on operations and system programming

Look at the base estimate to find ways of reducing the workload. Changes in design
at this stage, before contention with other programs, are likely to be the most
effective. Later, you can compare the actual production profile against the base.

Translating resource requirements into objectives
For each workload type, convert the estimates of resource requirements into
measurable objectives. Include statements about the throughput rates to be
supported (including any peak periods) and the internal response time profiles to be
achieved. Make assumptions about I/O rates, paging rates, and workloads. Include
the following factors:

v System response time. You cannot guarantee requested response times before
any of the design has been done. Hence, plan to review your performance
targets along with designing and implementing the system.

Response times can vary for many reasons. Therefore, include acceptable
tolerances in your descriptions of targets. Remember that distributed data
processing adds overhead at both the local and remote locations.

Exclude from the targets any unusual applications that have exceptionally heavy
requirements for processing or database access, or establish individual targets
for those applications.

v Network response time. Responses in the processor are likely to be in fractions
of seconds, while responses in the network can amount to seconds. This means
that a system can never deliver fast responses through an overloaded network,
however fast the processor. Queries over the network to remote systems slow
response further.

v Disk response time. I/O operations are generally responsible for much internal
processing time. Consider all I/O operations that affect a workload.

520 Administration Guide

v Existing workload. Consider the effects of additional work on existing
applications. In planning the capacity of the system, consider the total load on
each major resource, not just the load for the new application.

v Business factors. When calculating performance estimates, concentrate on the
expected peak throughput rate. Allow for daily peaks (for example, after receipt of
mail), weekly peaks (for example, a Monday peak after weekend mail), and
seasonal peaks as appropriate to the business. Also allow for peaks of work after
planned interruptions, such as preventive maintenance periods and public
holidays. Remember that the availability of input data is one of the constraints on
throughput.

External design
During the external design phase, you must:

1. Estimate the network, processor, and disk subsystem workload.

2. Refine your estimates of logical disk accesses. Ignore physical accesses at this
stage; one of the major difficulties will be determining the number of I/Os per
statement.

Internal design
During the internal design phase, you must:

1. Refine your estimated workload against the actual workload.

2. Refine disk access estimates against database design. After internal design, you
can define physical data accesses for application-oriented processes and
estimate buffer hit ratios.

3. Add the accesses for DB2 work file database, DB2 log, program library, and
DB2 sorts.

4. Consider whether additional processor loads will cause a significant constraint.

5. Refine estimates of processor usage.

6. Estimate the internal response time as the sum of processor time and
synchronous I/O time or as asynchronous I/O time, whichever is larger.

7. Prototype your DB2 system. Before committing resources to writing code, you
can create a small database, update the statistics stored in the DB2 catalog
tables, run SELECT, UPDATE, INSERT, DELETE, and EXPLAIN statements,
and examine the results. This method, which relies on production-level statistics,
allows you to prototype index design and evaluate access path selection for an
SQL statement. Buffer pool size, the presence or absence of the DB2 sort
facility, and, to a lesser extent, processor size are also factors that impact DB2
processing.

8. Use DB2 estimation formulas to develop estimates for processor resource
consumption and I/O costs for application processes that are high volume or
complex.

Coding and testing
During this phase:

1. Refine the internal design estimates of disk and processing resources.

2. Run the monitoring tools you have selected and check the results against the
estimates. You might use a terminal network simulator such as TeleProcessing
Network Simulator (TPNS) to test the system and simulate load conditions.

Post-development review
When you are ready to test the complete system, review its performance in detail.
Take the following steps to complete your performance review:

1. Validate system performance and response times against the objectives.

Chapter 24. Planning your performance strategy 521

2. Identify resources whose usage requires regular monitoring.

3. Incorporate the observed figures into future estimates. This step requires:

a. Identifying discrepancies from the estimated resource usage

b. Identifying the cause of the discrepancies

c. Assigning priorities to remedial actions

d. Identifying resources that are consistently heavily used

e. Setting up utilities to provide graphic representation of those resources

f. Projecting the processor usage against the planned future system growth to
ensure that adequate capacity will be available

g. Updating the design document with the observed performance figures

h. Modifying the estimation procedures for future systems

You need feedback from users and might have to solicit it. Establish reporting
procedures and teach your users how to use them. Consider logging incidents such
as these:

v System, line and transaction or query failures

v System unavailable time

v Response times that are outside the specified limits

v Incidents that imply performance constraints, such as deadlocks, deadlock
abends, and insufficient storage

v Situations, such as recoveries, that use additional system resources

The data logged should include the time, date, location, duration, cause (if it can be
determined), and the action taken to resolve the problem.

Planning for monitoring
Your plan for monitoring DB2 should include:

v A master schedule of monitoring. Large batch jobs or utility runs can cause
activity peaks. Coordinate monitoring with other operations so that it need not
conflict with unusual peaks, unless that is what you want to monitor.

v The kinds of analysis to be performed and the tools to be used. Document the
data that is extracted from the monitoring output.

Some of the reports discussed later in this chapter are derived from the products
described in “Appendix F. Using tools to monitor performance” on page 1029.
These reports can be produced using Performance Reporter for MVS (formerly
known as EPDM), DB2 Performance Monitor (DB2 PM), other reporting tools,
manual reduction, or a program of your own that extracts information from
standard reports.

v A list of people who should review the results. The results of monitoring and the
conclusions based on them should be available to the user support group and to
system performance specialists.

v A strategy for tuning DB2. Describe how often changes are permitted and
standards for testing their effects. Include the tuning strategy in regular system
management procedures.

Tuning recommendations could include generic database and application design
changes. You should update development standards and guidelines to reflect
your experience and to avoid repeating mistakes.

522 Administration Guide

Typically, your plan provides for four levels of monitoring: continuous, periodic,
detailed, and exception. These levels are discussed in the sections that follow. “A
monitoring strategy” on page 524 describes a plan that includes all of these levels.

Continuous monitoring
For monitoring the basic load of the system, try continually running classes 1, 3,
and 4 of the DB2 statistics trace and classes 1 and 3 of the DB2 accounting trace.
In the data you collect, look for statistics or counts that differ from past records. Pay
special attention to peak periods of activity, both of any new application and of the
system as a whole.

Running accounting class 2 as well as class 1 allows you to separate DB2 times
from application times.

With CICS, there is less need to run with accounting class 2. Application and
non-DB2 processing take place under the CICS main TCB. Because SQL activity
takes place under the SQL TCB, the class 1 and class 2 times are generally close.
The CICS attachment work is spread across class 1, class 2, and not-in-DB2 time.
Class 1 time thus reports on the SQL TCB time and some of the CICS attachment.
If you are concerned about class 2 overhead and you use CICS, you can generally
run without turning on accounting class 2.

Periodic monitoring
A typical periodic monitoring interval of about ten minutes provides information on
the workload achieved, resources used, and significant changes to the system. In
effect, you are taking “snapshots” at peak loads and under normal conditions. It is
always useful to monitor peak periods when constraints and response-time
problems are more pronounced.

The current peak is also a good indicator of the future average. You might have to
monitor more frequently at first to confirm that expected peaks correspond with
actual ones. Do not base conclusions on one or two monitoring periods, but on data
from several days representing different periods.

Both continuous and periodic monitoring serve to check system throughput, utilized
resources (processor, I/Os, and storage), changes to the system, and significant
exceptions that might affect system performance. You might notice that subsystem
response is becoming increasingly sluggish, or that more applications fail from lack
of resources (such as from locking contention or concurrency limits). You also might
notice an increase in the processor time DB2 is using, even though subsystem
responses seem normal. In any case, if the subsystem continues to perform
acceptably and you are not having any problems, DB2 might not need further
tuning.

For periodic monitoring, gather information from MVS, the transaction manager, and
DB2 itself. To compare the different results from each source, monitor each for the
same period of time. Because the monitoring tools require resources, you need to
consider processor overhead for using these tools. See “Minimize the use of DB2
traces” on page 545 for information on DB2 trace overhead.

Detailed monitoring
Add detailed monitoring to periodic monitoring when you discover or suspect a
problem. Use it also to investigate areas not covered periodically.

Chapter 24. Planning your performance strategy 523

If you have a performance problem, first verify that it is not caused by faulty design
of an application or database. If you suspect a problem in application design,
consult Part 4 of DB2 Application Programming and SQL Guide; for information
about database design, see “Part 2. Designing a database: advanced topics” on
page 27.

If you believe that the problem is caused by the choice of system parameters, I/O
device assignments, or other factors, begin monitoring DB2 to collect data about its
internal activity. “Appendix F. Using tools to monitor performance” on page 1029
suggests various techniques and methods.

If you have access path problems, refer to “Chapter 33. Using EXPLAIN to improve
SQL performance” on page 789 for information.

Exception monitoring
Exception monitoring looks for specific exceptional values or events, such as very
high response times or deadlocks. Perform exception monitoring for response-time
and concurrency problems. For an example, see “Analyzing a concurrency
scenario” on page 702.

A monitoring strategy
Consider the following cost factors when planning for monitoring and tuning:

Trace overhead
Trace data reduction and reporting times
Time spent on report analysis and tuning action

“Minimize the use of DB2 traces” on page 545 discusses overhead for global,
accounting, statistics, audit, and performance traces.

Reviewing performance data
Inspect your performance data to determine whether performance has been
satisfactory, to identify problems, and to evaluate the monitoring process. When
establishing requirements and planning to monitor performance, also plan how to
review the results of monitoring.

Plan to review the performance data systematically. Review daily data weekly and
weekly data monthly; review data more often if a report raises questions that
require checking. Depending on your system, the weekly review might require about
an hour, particularly after you have had some experience with the process and are
able to locate quickly any items that require special attention. The monthly review
might take half a day at first, less time later on. But when new applications are
installed, workload volumes increased, or terminals added, allow more time for
review.

Review the data on a gross level, looking for problem areas. Review details only if
a problem arises or if you need to verify measurements.

When reviewing performance data, try to identify the basic pattern in the workload,
and then identify variations of the pattern. After a certain period, discard most of the
data you have collected, but keep a representative sample. For example, save the
report from the last week of a month for three months; at the end of the year,
discard all but the last week of each quarter. Similarly, keep a representative
selection of daily and monthly figures. Because of the potential volume of data,
consider using EPDM or a similar tool to track historical data in a manageable form.

524 Administration Guide

Typical review questions
Use the questions listed below as a basis for your own checklist. They are not
limited strictly to performance items, but your historical data can provide most of
their answers. Pointers to more information are also listed.

How often was each function used?

1. Considering variations in the workload mix over time, are the monitoring
times appropriate?

2. Should monitoring be done more frequently during the day, week, or month
to verify this?

See “Accounting trace” on page 1034.

How were processor and I/O resources used?

1. Has usage increased for functions that run at a higher priority than DB2
tasks? Examine CICS, IMS, MVS, JES, VTAM (if running above DB2), and
overall I/O because of the lower-priority regions. Evaluate the effectiveness
of I/O scheduling priority decisions as appropriate. See also “I/O scheduling
priority” on page 615 for more information on I/O priority scheduling.

2. Is the report of processor usage consistent with previous observations?

3. Are scheduled batch jobs able to run successfully?

4. Do any incident reports show that the first invocation of a function takes
much longer than later ones? This increased time can happen when
programs have to open data sets.

See “Monitoring system resources” on page 1031, “Using MVS, CICS, and IMS
tools” on page 1030, and “Statistics trace” on page 1034.

To what degree was disk used?
Is the number of I/O requests increasing? DB2 records both physical and
logical requests. The number of physical I/Os depend on the configuration of
indexes, the data records per control interval, and the buffer allocations.

See “Monitoring system resources” on page 1031 and “Statistics trace” on
page 1034.

How much real storage was used?
Is the paging rate increasing? Adequate real storage is very important for
DB2 performance.

See “Monitoring system resources” on page 1031.

To what extent were DB2 log resources used?

1. Is the log subject to undue contention from other data sets? In particular, is
the log on the same drive as any resource whose updates are logged?

It is bad practice to put a recoverable (updated) resource and a log on the
same drive—if that drive fails, you lose both the resource and the log, and
you are unable to carry out forward recovery.

2. What’s the I/O rate for requests and physical blocks on the log?

See “Statistics trace” on page 1034.

Do any figures indicate design, coding, or operational errors?

1. Are disk, I/O, log, or processor resources heavily used? If so, was that
heavy use expected at design time? If not, can the heavy use be explained
in terms of heavier use of workloads?

Chapter 24. Planning your performance strategy 525

2. Is the heavy usage associated with a particular application? If so, is there
evidence of planned growth or peak periods?

3. What are your needs for concurrent read/write and query activity?

4. How often do locking contentions occur?

5. Are there any disk, channel, or path problems?

6. Are there any abends or dumps?

See “Monitoring system resources” on page 1031, “Statistics trace” on
page 1034, and “Accounting trace” on page 1034.

Were there any bottlenecks?

1. Were any critical thresholds reached?

2. Are any resources approaching high utilization?

See “Monitoring system resources” on page 1031 and “Accounting trace” on
page 1034.

Are your performance objectives reasonable?
After beginning to monitor, you need to find out if the objectives themselves are
reasonable. Are they achievable, given the hardware available? Are they based
upon actual measurements of the workload?

When you measure performance against initial objectives and report the results to
users, identify any systematic differences between the measured data and what the
user sees. This means investigating the differences between internal response time
(seen by DB2) and external response time (seen by the end user). If the
measurements differ greatly from the estimates, revise response-time objectives for
the application, upgrade your system, or plan a reduced application workload. If the
difference is not too large, however, you can begin tuning the entire system.

Tuning DB2
Tuning DB2 can involve reassigning data sets to different I/O devices, spreading
data across a greater number of I/O devices, running the RUNSTATS utility and
rebinding applications, creating indexes, or modifying some of your subsystem
parameters. For instructions on modifying subsystem parameters, see Part 2 of
DB2 Installation Guide.

Tuning your system usually involves making trade-offs between DB2 and overall
system resources.

After modifying the configuration, monitor DB2 for changes in performance. The
changes might correct your performance problem. If not, repeat the process to
determine whether the same or different problems exist.

526 Administration Guide

Chapter 25. Analyzing performance data

This chapter includes the following topics:

1. An overview of problem investigation and analysis, in “Investigating the problem
overall”

2. A description of a major tool for analyzing problems in DB2, in “Reading
accounting reports from DB2 PM” on page 528

3. A suggested procedure for analyzing problems within DB2, in “A general
approach to problem analysis in DB2” on page 533

Investigating the problem overall
When analyzing performance data, keep in mind that almost all symptoms of poor
performance are magnified when contention occurs. For example, if there is a
slowdown in disk operations:
v Transactions can pile up, waiting for data set activity.
v Transactions can wait for I/O and locks.
v Paging can be delayed.

In addition, more transactions in the system means greater processor overhead,
greater virtual-storage demand, and greater real-storage demand.

In such situations, the system shows heavy use of all its resources. However, it is
actually experiencing typical system stress, with a constraint that is yet to be found.

Looking at the entire system
Start by looking at the overall system before you decide that you have a problem in
DB2. In general, look in some detail to see why application processes are
progressing slowly, or why a given resource is being heavily used. The best tool for
that is the resource measurement facility (RMF™) of MVS.

Beginning to look at DB2
Within DB2, the performance problem is either poor response time or an
unexpected and unexplained high use of resources. Check factors such as total
processor usage, disk activity, and paging.

First, get a picture of task activity, from classes 1 and 3 of the accounting trace, and
then focus on particular activities, such as specific application processes or a
specific time interval. You might see problems such as these:

v Slow response time. You could look at detailed traces of one slow task, a
problem for which there could be several reasons. For instance, the users could
be trying to do too much work with certain applications, work that clearly takes
time, and the system simply cannot do all the work that they want done.

v Real storage constraints. Applications progress more slowly than expected
because of paging interrupts. The constraints show as delays between
successive requests recorded in the DB2 trace.

v Contention for a particular function. For example, there might be a wait on a
particular data set, or a certain application might cause many application
processes to put the same item in their queues. Use the DB2 performance trace
to distinguish most of these cases.

© Copyright IBM Corp. 1982, 2001 527

To determine whether the problem is inside or outside DB2, activate classes 2 and
3 of the accounting trace for the troublesome application. For information about
packages or DBRMs, run accounting trace classes 7 and 8. Compare the elapsed
times for accounting classes 1 and 2.

A number greater than 1 in the QXMAXDEG field of the accounting trace indicates
that parallelism was used. There are special considerations for interpreting such
records, as described in “Monitoring parallel operations” on page 850.

The easiest way to read and interpret the trace data is through the reports
produced by DB2 Performance Monitor (DB2 PM). If you do not have DB2 PM or
an equivalent program, refer to “Appendix D. Interpreting DB2 trace output” on
page 981 for information about the format of data from DB2 traces.

You can also use the tools for performance measurement described in “Appendix F.
Using tools to monitor performance” on page 1029 to diagnose system problems.
See that appendix also for information on analyzing the DB2 catalog and directory.

Reading accounting reports from DB2 PM
You can obtain DB2 PM reports of accounting data in long or short format and in
various levels of detail. The examples in this book are based on the default layouts,
which might have been modified for your installation. Furthermore, the DB2 PM
reports have been reformatted or modified for this publication. Refer to DB2 PM for
OS/390 Report Reference Volume 1 and DB2 PM for OS/390 Report Reference
Volume 2 for an exact description of each report. See “Accounting for nested
activities” on page 879 for information on time results for triggers, stored
procedures, and user-defined functions.

The accounting report—short
General capabilities: The DB2 PM accounting report, short layout, allows you to
monitor application distribution, resources used by each major group of applications,
and the average DB2 elapsed time for each major group. The report summarizes
application-related performance data and orders the data by selected DB2
identifiers.

Monitoring application distribution helps you to identify the most frequently used
transactions or queries, and is intended to cover the 20% of the transactions or
queries that represent about 80% of the total work load. The TOP list function of
DB2 PM lets you identify the report entries that represent the largest user of a given
resource.

To get an overall picture of the system work load, you can use the DB2 PM
GROUP command to group several DB2 plans together.

You can use the accounting report, short layout, to:

v Monitor the effect of each application or group on the total work load

v Monitor, in each application or group:
– DB2 response time (elapsed time)
– Resources used (processor, I/Os)
– Lock suspensions
– Application changes (SQL used)
– Usage of packages and DBRMs
– Processor, I/O wait, and lock wait time for each package

528 Administration Guide

An accounting report in the short format can list results in order by package. Thus
you can summarize package or DBRM activity independently of the plan under
which the package or DBRM executed.

Only class 1 of the accounting trace is needed for a report of information only by
plan. Classes 2 and 3 are recommended for additional information. Classes 7 and 8
are needed to give information by package or DBRM.

The accounting report—long
Use the DB2 PM accounting report, short layout, to monitor your applications. Use
the DB2 PM accounting report, long layout, when an application seems to have a
problem, and you need a more detailed analysis. For a partial example of an
accounting report, long layout, see Figure 56.

Major items on the report
In analyzing a detailed accounting report, consider the following components of
response time. (Fields of the report that are referred to are labeled in Figure 56.)

PLANNAME: PU22301
AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS
------------ ---------- ---------- ---------- -------------------- ------------ -------- -------------------------
ELAPSED TIME 5.773449 3.619543 N/P LOCK/LATCH(DB2+IRLM) �A� 1.500181 1.09 #OCCURRENCES : 80
NON-NESTED 2.014711 1.533210 N/A SYNCHRON. I/O �B� 0.002096 0.13 #ALLIEDS : 80
STORED PROC 3.758738 2.086333 N/A DATABASE I/O 0.000810 0.09 #ALLIEDS DISTRIB: 80
UDF 0.000000 0.000000 N/A LOG WRITE I/O 0.001286 0.04 #DBATS : 80
TRIGGER 0.000000 0.000000 N/A OTHER READ I/O �D� 0.000000 0.00 #DBATS DISTRIB. : 0

OTHER WRTE I/O �E� 0.000000 0.00 #NO PROGRAM DATA: 0
CPU TIME 0.141721�C� 0.093469 N/P SER.TASK SWTCH �F� 0.860814 1.04 #NORMAL TERMINAT: 80
AGENT 0.141721 O.093469 N/P UPDATE COMMIT 0.010989 0.06 #ABNORMAL TERMIN: 0
NON-NESTED 0.048918 0.004176 N/A OPEN/CLOSE 0.448021 0.20 #CP/X PARALLEL : 0
STORED PROC 0.092802 0.089294 N/A SYSLGRNG REC 0.193708 0.61 #IO PARALLELISM : 0
UDF 0.000000 0.000000 N/A EXT/DEL/DEF 0.160772 0.01 #INCREMENT. BIND: 0
TRIGGER 0.000000 0.000000 N/A OTHER SERVICE 0.047324 0.16 #COMMITS : 80
PAR.TASKS O.000000 0.000000 N/A ARC.LOG(QUIES) �G� 0.000000 0.00 #ROLLBACKS : 0

ARC.LOG READ �H� 0.000000 0.00 MAX SQL CASC LVL: 1
SUSPEND TIME N/A 2.832920 N/A STORED PROC 0.129187 0.04 UPDATE/COMMIT : 8.66
AGENT N/A 2.832920 N/A UDF SCHEDULE 0.000000 0.00 SYNCH I/O AVG:0.0161123
PAR.TASKS N/A 0.000000 N/A DRAIN LOCK �I� 0.000000 0.00

CLAIM RELEASE �J� 0.000000 0.00
NOT ACCOUNT.�L� N/A 0.693154 N/A PAGE LATCH �K� 0.000000 0.00
DB2 ENT/EXIT N/A 8.96 N/A NOTIFY MSGS. 0.000000 0.00
EN/EX-STPROC N/A 41.74 N/A GLOBAL CONT. 0.340642 7.37
EN/EX-UDF N/A N/A N/P FORCE-AT-COMMIT 0.000000 9.67
DCAPY.DESCR. N/A N/A N/P ASYNCH IXL REQUESTS 0.000000
LOG EXTRACT. N/A N/A N/P TOTAL CLASS 3 2.832920
SQL DML AVERAGE TOTAL SQL DCL TOTAL SQL DDL CREATE DROP ALTER LOCKING AVERAGE TOTAL
-------- -------- -------- -------------- -------- ---------- ------ ------ ------ -------------- -------- --------
SELECT 1.00 80 LOCK TABLE 0 TABLE 0 0 0 TIMEOUTS 0.00 0
INSERT 1.00 80 GRANT 0 TEMP TABLE 0 N/A N/A DEADLOCKS 0.00 0
UPDATE 6.66 533 REVOKE 0 AUX TABLE 0 N/A N/A ESCAL.(SHARED) 0.00 0
DELETE 1.00 80 SET CURR.SQLID 0 INDEX 0 0 0 ESCAL.(EXCLUS) 0.00 0

SET HOST VAR. 0 TABLESPACE 0 0 0 MAX LOCKSHELD 8.47 15
DESCRIBE 0.00 0 SET CUR.DEGREE 0 DATABASE 0 0 0 LOCK REQUEST 31.74 2539
DESC.TBL 0.00 0 SET RULES 0 STOGROUP 0 0 0 UNLOCK REQUEST 2.13 170
PREPARE 0.00 0 SET CURR.PATH 0 SYNONYM 0 0 N/A QUERY REQUEST 0.00 0
OPEN 2.00 160 CONNECT TYPE 1 0 VIEW 0 0 N/A CHANGE REQUEST 10.46 837
FETCH 8.66 693 CONNECT TYPE 2 0 ALIAS 0 0 N/A OTHER REQUEST 0.00 0
CLOSE 0.00 0 SET CONNECTION 0 PACKAGE N/A 0 N/A LOCK SUSPENS. 0.31 25

RELEASE 0 PROCEDURE 0 0 0 LATCH SUSPENS. 0.15 12
CALL 0 FUNCTION 0 0 0 OTHER SUSPENS. 0.15 12

DML-ALL 20.32 1626 ASSOC LOCATORS 0 TRIGGER 0 0 N/A TOTAL SUSPENS. 0.46 37
ALLOC CURSOR 0 DIST TYPE 0 O N/A
HOLD LOCATOR 0
FREE LOCATOR 0 TOTAL 0 0 N/A
DCL-ALL 0

RENAME TBL 0

...

Figure 56. Partial accounting report, long layout

Chapter 25. Analyzing performance data 529

Class 1 elapsed time: Compare this with the CICS or IMS transit times:

v In CICS, you can use CMF to find the attach and detach times; use this time as
the transit time.

v In IMS, use the PROGRAM EXECUTION time reported in IMS Performance
Analyzer.

Differences between these CICS or IMS times, and the DB2 accounting times arise
mainly because the DB2 times do not include:

v Time before the first SQL statement

v DB2 create thread

v DB2 terminate thread

Differences can also arise from thread reuse in CICS or IMS, or through multiple
commits in CICS. If the class 1 elapsed time is significantly less than the CICS or
IMS time, check the report from EPDM, IMS Performance Analyzer, or equivalent
reporting tool to find out why. Elapsed time can occur:

v In DB2, during sign-on, create, or terminate thread

v Outside DB2, during CICS or IMS processing

For CICS, the transaction could have been waiting outside DB2 for a thread. Issue
the DSNC DISPLAY STAT command to investigate this possibility. The column W/P,
which is displayed as part of the output from DSNC DISPLAY STAT, contains the
number of times all available threads for the RCT entry were busy and the
transaction had to wait (THREADWAIT=YES or TWAIT=YES) or was diverted to the
pool (THREADWAIT(POOL) or TWAIT=POOL).

Not-in-DB2 time: This is time calculated as the difference between the class 1 and
the class 2 elapsed time. It is time spent outside DB2, but within the DB2
accounting interval. A lengthy time can be caused by thread reuse, which can
increase class 1 elapsed time, or a problem in the application program, CICS, IMS,
or the overall system.

Lock/latch suspension time: This shows contention for DB2 resources. If
contention is high, check the locking summary section of the report, and then
proceed with the locking reports. For more information, see “Analyzing a
concurrency scenario” on page 702.

In the DB2 PM accounting report, see the field LOCK/LATCH(DB2+IRLM) (�A�).

Synchronous I/O suspension time: This is the total application wait time for
synchronous I/Os. It is the total of Database I/O and Log Write I/O. In the DB2 PM
accounting report, check the number reported for SYNCHRON. I/O (�B�).

If the number of synchronous read or write I/Os is higher than expected, check for:

v A change in the access path to data. If you have data from accounting trace
class 8, the number of synchronous and asynchronous read I/Os is available for
individual packages. Determine which package or packages have unacceptable
counts for synchronous and asynchronous read I/Os. Activate the necessary
performance trace classes for the DB2 PM SQL activity reports to identify the
SQL statement or cursor that is causing the problem. If you suspect that your
application has an access path problem, see “Chapter 33. Using EXPLAIN to
improve SQL performance” on page 789.

v Changes in the application. Check the “SQL ACTIVITY” section and compare
with previous data. There might have been some inserts that changed the

530 Administration Guide

|
|
|
|
|

|
|
|

amount of data. Also, check the names of the packages or DBRMs being
executed to determine if the pattern of programs being executed has changed.

v Pages might be out of order so that sequential detection is not used, or data
might have been moved to other pages. Run the REORG utility in these
situations.

v A system-wide problem in the database buffer pool. Refer to “Using DB2 PM to
monitor buffer pool statistics” on page 567.

v A RID pool failure. Refer to “Increasing RID pool size” on page 574.

v A system-wide problem in the EDM pool. Refer to “Tuning the EDM pool” on
page 570.

If I/O time is greater than expected, and not caused by more read I/Os, check for:

v Synchronous write I/Os. See “Using DB2 PM to monitor buffer pool statistics” on
page 567.

v I/O contention. In general, each synchronous read I/O typically takes from 10 to
25 milliseconds, depending on the disk device. This estimate assumes that there
are no prefetch or deferred write I/Os on the same device as the synchronous
I/Os. Refer to “Monitoring I/O activity of data sets” on page 598.

Processor resource consumption: The problem might be caused by DB2 or IRLM
traces, or by a change in access paths. In the DB2 PM accounting report, DB2
processor resource consumption is indicated in the field for class 2 CPU TIME
(�C�).

Other read suspensions: The accumulated wait time for read I/O done under a
thread other than this one. It includes time for:
v Sequential prefetch
v List prefetch
v Sequential detection
v Synchronous read I/O performed by a thread other than the one being reported

As a rule of thumb, an asynchronous read I/O for sequential prefetch or sequential
detection takes 0.4 to 2 milliseconds per page. For list prefetch, the rule of thumb is
1 to 4 milliseconds per page.

In the DB2 PM accounting report, other read suspensions are reported in the field
OTHER READ I/O (�D�).

Other write suspensions: The accumulated wait time for write I/O done under a
thread other than this one. It includes time for:
v Asynchronous write I/O
v Synchronous write I/O performed by a thread other than the one being reported

As a rule of thumb, an asynchronous write I/O takes 1 to 4 milliseconds per page.

In the DB2 PM accounting report, other read suspensions are reported in the field
OTHER WRTE I/O (�E�).

Service task suspensions: The accumulated wait time from switching
synchronous execution units, by which DB2 switches from one execution unit to
another. The most common contributors to service task suspensions are:
v Wait for commit processing for updates (UPDATE COMMIT)
v Wait for OPEN/CLOSE service task (including HSM recall)
v Wait for SYSLGRNG recording service task

Chapter 25. Analyzing performance data 531

|
|

|
|

|

v Wait for data set extend/delete/define service task (EXT/DEL/DEF)
v Wait for other service tasks (OTHER SERVICE)

In the DB2 PM accounting report, the total of this information is reported in the field
SER.TASK SWTCH (�F�). The field is the total of the five fields that follow it. If
several types of suspensions overlap, the sum of their wait times can exceed the
total clock time that DB2 spends waiting. Therefore, when service task suspensions
overlap other types, the wait time for the other types of suspensions is not counted.

Archive log mode (QUIESCE): The accumulated time the thread was suspended
while processing ARCHIVE LOG MODE(QUIESCE). In the DB2 PM accounting
report, this information is reported in the field ARCH.LOG (QUIES) (�G�).

Archive log read suspension: This is the accumulated wait time the thread was
suspended while waiting for a read from an archive log on tape. In the DB2 PM
accounting report, this information is reported in the field ARCHIVE LOG READ
(�H�).

Drain lock suspension: The accumulated wait time the thread was suspended
while waiting for a drain lock. If this value is high, see “Installation options for wait
times” on page 665, and consider running the DB2 PM locking reports for additional
detail. In the DB2 PM accounting report, this information is reported in the field
DRAIN LOCK (�I�).

Claim release suspension: The accumulated wait time the drainer was suspended
while waiting for all claim holders to release the object. If this value is high, see
“Installation options for wait times” on page 665, and consider running the DB2 PM
locking reports for additional details.

In the DB2 PM accounting report, this information is reported in the field CLAIM
RELEASE (�J�).

Page latch suspension: This field shows the accumulated wait time because of
page latch contention. As an example, when the RUNSTATS and COPY utilities are
run with the SHRLEVEL(CHANGE) option, they use a page latch to serialize the
collection of statistics or the copying of a page. The page latch is a short duration
“lock”. If this value is high, the DB2 PM locking reports can provide additional data
to help you determine which object is the source of the contention.

In the DB2 PM accounting report, this information is reported in the field PAGE
LATCH (�K�).

Not- accounted- for DB2 time: The DB2 accounting class 2 elapsed time that is
not recorded as class 2 CPU time or class 3 suspensions. The most common
contributors to this category are:

v MVS paging

v Processor wait time

v On DB2 requester systems, the amount of time waiting for requests to be
returned from either VTAM or TCP/IP, including time spent on the network and
time spent handling the request in the target or server systems

v Time spent waiting for parallel tasks to complete (when query parallelism is used
for the query)

In the DB2 PM accounting report, this information is reported in the field NOT
ACCOUNT (�L�).

532 Administration Guide

A general approach to problem analysis in DB2
The following is a suggested sequence for investigating a response-time problem:

1. If the problem is inside DB2, determine which plan has the longest response
time. If the plan can potentially allocate many different packages or DBRMs,
determine which packages or DBRMs have the longest response time. Or, if you
have a record of past history, determine which transactions show the largest
increases.

Compare class 2 CPU time, class 3 time, and not accounted time. If your
performance monitoring tool does not specify times other than Class 2 and
Class 3, then you can determine the not accounted for time with the following
formula:
Other time = Class 2 elapsed time - Class 2 CPU time - Total class 3 time

2. If the class 2 CPU time is high, investigate by doing the following:

v Check to see if unnecessary trace options are enabled. Excessive
performance tracing can be the reason for a large increase in class 2 CPU
time.

v Check the SQL statement counts on the DB2 PM accounting report. If the
profile of the SQL statements has changed significantly, review the
application.

v Use the statistics report to check buffer pool activity, including the buffer pool
thresholds. If buffer pool activity has increased, be sure that your buffer pools
are properly tuned. For more information on buffer pools, see “Tuning
database buffer pools” on page 549.

v Use EXPLAIN to check the efficiency of the access paths for your application.
Based on the EXPLAIN results:

– Use package-level accounting reports to determine which package or
DBRM has a long elapsed time. In addition, use the class 7 CPU time for
packages to determine which package or DBRM has the largest CPU time
or the greatest increase in CPU time.

– Use the DB2 PM SQL activity report to analyze specific SQL statements.

– If you have a history of the performance of the affected application,
compare current EXPLAIN output to previous access paths and costs.

– Check that RUNSTATS statistics are current.

– Check that databases have been reorganized using the REORG utility.

– Check which indexes are used and how many columns are accessed. Has
your application used an alternative access path because an index was
dropped?

– Examine joins and subqueries for efficiency.

See “Chapter 33. Using EXPLAIN to improve SQL performance” on page 789
for help in understanding access path selection and analyzing access path
problems. DB2 Visual Explain can give you a graphic display on your
workstation of your EXPLAIN output.

v Check the counts in the locking section of the DB2 PM accounting report. If
locking activity has increased, see “Chapter 30. Improving concurrency” on
page 643. For a more detailed analysis, use the deadlock or timeout traces
from statistics trace class 3 and the lock suspension report or trace.

3. If class 3 time is high, check the individual types of suspensions in the “Class 3
Suspensions” section of the DB2 PM accounting report. (The fields referred to
here are in Figure 56 on page 529).

Chapter 25. Analyzing performance data 533

v If LOCK/LATCH (�A�), DRAIN LOCK (�I�), or CLAIM RELEASE (�J�) time is
high, see “Chapter 30. Improving concurrency” on page 643.

v If SYNCHRON. I/O (�B�) time is high, see page 530.

v If OTHER READ I/O (�D�) time is high, check prefetch I/O operations, disk
contention and the tuning of your buffer pools.

v If OTHER WRITE I/O (�E�) time is high, check the I/O path, disk contention,
and the tuning of your buffer pools.

v If SER.TASK SWTCH (�F�) is high, check open and close activity, as well as
commit activity. A high value could also be caused by preformatting data sets
for:
– SYSLGRNG recording service
– Data set extend/delete/define service

Consider also, the possibility that DB2 is waiting for Hierarchical Storage
Manager (HSM) to recall data sets that had been migrated to tape. The
amount of time that DB2 waits during the recall is specified on the RECALL
DELAY parameter on installation panel DSNTIPO.

If accounting class 8 trace was active, each of these suspension times is
available on a per-package or per-DBRM basis in the package block of the DB2
PM accounting report.

4. If NOT ACCOUNT. (�L�) time is high, check for paging activity, processor wait
time, return wait time for requests to be returned from VTAM or TCP/IP, and
wait time for completion of parallel tasks. A high NOT ACCOUNT time is
acceptable if it is caused by wait time for completion of parallel tasks.

v Use RMF reports to analyze paging.

v Check the SER.TASK SWTCH field in the “Class 3 Suspensions” section of
the DB2 PM accounting reports.

Figure 57 on page 535 shows which reports you might use, depending on the
nature of the problem, and the order in which to look at them.

534 Administration Guide

If you suspect that the problem is in DB2, it is often possible to discover its general
nature from the accounting reports. You can then analyze the problem in detail
based on one of the branches shown in Figure 57:

v Follow the first branch, Application or data problem, when you suspect that the
problem is in the application itself or in the related data. Also use this path for a
further breakdown of the response time when no reason can be identified.

v The second branch, Concurrency problem, shows the reports required to
investigate a lock contention problem. This is illustrated in “Analyzing a
concurrency scenario” on page 702.

v Follow the third branch for a Global problem, such as an excessive average
elapsed time per I/O. A wide variety of transactions could suffer similar problems.

Before starting the analysis in any of the branches, start the DB2 trace to support
the corresponding reports. When starting the DB2 trace:

v Refer to DB2 PM for OS/390 Report Reference Volume 1 and DB2 PM for
OS/390 Report Reference Volume 2 for the types and classes needed for each
report.

v To make the trace data available as soon as an experiment has been carried out,
and to avoid flooding the SMF data sets with trace data, use GTF or a
user-defined sequential data set as the destination for DB2 performance trace
data.

Alternatively, use DB2 PM’s Collect Report Data function to collect performance
data. You specify only the report set, not the DB2 trace types or classes you
need for a specific report. Collect Report Data lets you collect data in a TSO data
set that is readily available for further processing. No SMF or GTF handling is
required.

v To limit the amount of trace data collected, you can restrict the trace to particular
plans or users in the reports for SQL activity or locking. However, you cannot so
restrict the records for performance class 4, which traces asynchronous I/O for
specific page sets. You might want to consider turning on selective traces and be
aware of the added costs incurred by tracing.

Application or
data problem

Concurrency
problem

Global
problem

Accounting

Explain

SQL activity

Record trace

Deadlock trace

Timeout trace

Locking

Record trace

Statistics

I/O activity

CICS or IMS
monitor

RMF

Console log

Figure 57. DB2 PM reports used for problem analysis

Chapter 25. Analyzing performance data 535

If the problem is not in DB2, check the appropriate reports from a CICS or IMS
reporting tool.

When CICS or IMS reports identify a commit, the time stamp can help you locate
the corresponding DB2 PM accounting trace report.

You can match DB2 accounting records with CICS accounting records. If you
specify TOKENE=YES on the DSNCRCT macro, the CICS LU 6.2 token is included
in the DB2 trace records, in field QWHCTOKN of the correlation header. To help
match CICS and DB2 accounting records, specify the option TOKENE=YES or
TOKENI=YES in the resource control table. That writes a DB2 accounting record
after every transaction. As an alternative, you can produce DB2 PM accounting
reports that summarize accounting records by CICS transaction ID. Use the DB2
PM function Correlation Translation to select the subfield containing the CICS
transaction ID for reporting.

536 Administration Guide

Chapter 26. Improving response time and throughput

Response time consists of the following three components:
v Processor resource consumption, which is shown on Figure 56 on page 529 as

“CPU TIME”.
v Wait time traced in accounting class 3, which includes:

– I/O wait time (synchronous and asynchronous)
– Lock and latch wait time

v Other time

In general, you can improve the response time and throughput of your DB2
applications and queries by:

v “Reducing I/O operations”

v “Reducing the time needed to perform I/O operations” on page 541

v “Reducing the amount of processor resources consumed” on page 544

The following sections describe ways to accomplish these goals. The chapter
concludes with an overview of how various DB2 response times are reported.

Parallel processing, which is described in “Chapter 34. Parallel operations and
query performance” on page 841, can also improve response times. And, DB2 data
sharing is also a possible solution for increasing throughput in your system, as well
as an opportunity for an improved price for performance ratio. For more information
about data sharing, see DB2 Data Sharing: Planning and Administration.

Reducing I/O operations
Reducing the number of I/O operations is one way to improve the response time of
your applications and queries. This section describes the following ways you can
minimize I/O operations:
v “Use RUNSTATS to keep access path statistics current”
v “Reserve free space in table spaces and indexes” on page 538
v “Make buffer pools large enough for the workload” on page 540
v “Speed up preformatting by allocating in cylinders” on page 540

Using indexes can also minimize I/O operations. For information on indexes and
access path selection see “Overview of index access” on page 806.

Use RUNSTATS to keep access path statistics current
The RUNSTATS utility collects statistics about DB2 objects. These statistics can be
stored in the DB2 catalog and are used during the bind process to choose the path
in accessing data. If you never use RUNSTATS and subsequently rebind your
packages or plans, DB2 will not have the information it needs to choose the most
efficient access path. This can result in unnecessary I/O operations and excessive
processor consumption. See “Gathering monitor and update statistics” on page 775
for more information on using RUNSTATS.

Run RUNSTATS at least once against each table and its associated indexes. How
often you rerun the utility depends on how current you need the catalog data to be.
If data characteristics of the table vary significantly over time, you should keep the
catalog current with those changes. RUNSTATS is most beneficial for the following:

v Table spaces that contain frequently accessed tables

v Tables involved in a sort

© Copyright IBM Corp. 1982, 2001 537

v Tables with many rows

v Tables against which SELECT statements having many search arguments are
performed

Reserve free space in table spaces and indexes

General-use Programming Interface

You can use the PCTFREE and FREEPAGE clauses of the CREATE and ALTER
TABLESPACE statements and CREATE and ALTER INDEX statements to improve
the performance of INSERT and UPDATE operations. The table spaces and
indexes for the DB2 catalog can also be altered to modify FREEPAGE and
PCTFREE. These options are not applicable for LOB table spaces.

You can change the values of PCTFREE and FREEPAGE for existing indexes and
table spaces using the ALTER INDEX and ALTER TABLESPACE statements, but
the change has no effect until you load or reorganize the index or table space.

When you specify a sufficient amount of free space, the advantages during normal
processing are:

Better clustering of rows (giving faster access)
Fewer overflows
Less frequent reorganizations needed
Less information locked by a page lock
Fewer index page splits

The disadvantages are:
More disk space occupied
Less information transferred per I/O
More pages to scan
Possibly more index levels
Less efficient use of buffer pools and storage controller cache

Specifying free space on pages
The PCTFREE clause specifies what percentage of each page in a table space or
index is left free when loading or reorganizing the data. DB2 uses the free space
later on when you insert or update your data; when no free space is available, DB2
holds your additional data on another page. When several records are physically
located out of sequence, performance suffers.

The default for PCTFREE for table spaces is 5 (5 percent of the page is free). If
you have previously used a large PCTFREE to force one row per page, you should
instead use MAXROWS 1 on the CREATE or ALTER TABLESPACE statement.
MAXROWS has the advantage of maintaining the free space even when new data
is inserted.

The default for indexes is 10. The maximum amount of space that is left free in
index nonleaf pages is 10 percent, even if you specify a value higher than 10 for
PCTFREE.

To determine the amount of free space currently on a page, run the RUNSTATS
utility and examine the PERCACTIVE column of SYSIBM.SYSTABLEPART. See
Part 2 of DB2 Utility Guide and Reference for information about using RUNSTATS.

538 Administration Guide

Determining pages of free space
The FREEPAGE clause specifies how often DB2 leaves a full page of free space
when loading data or when reorganizing data or indexes. DB2 uses the free space
later on when you insert or update your data. For example, if you specify 10 for
FREEPAGE, DB2 leaves every 10th page free.

The maximum value you can specify for FREEPAGE is 255; however, in a
segmented table space, the maximum value is 1 less than the number of pages
specified for SEGSIZE.

Recommendations for allocating free space
The goal for allocating free space is to maintain the physical clustering of the data
and to reduce the need to frequently reorganize table spaces and indexes.
However, you do not want to allocate too much disk space.

Use of PCTFREE or FREEPAGE depends on the type of SQL and the distribution
of that activity across the table space or index. When deciding whether to allocate
free space consider the data and each index separately and assess the insert and
update activity on the data and indexes.

When not to use free space: Free space is not necessary if:

v The object is read-only.

If you do not plan to insert or update data in a table, there is no need to leave
free space for either the table or its indexes.

v Inserts are at the end.

For example, if inserts are in ascending order by key of the clustering index or
are caused by LOAD RESUME SHRLEVEL NONE, the free space for both the
table and clustering index should be zero. Generally, free space is beneficial for
a non-clustering index because inserts are usually random. However, if the
non-clustering index contains a column with a timestamp value that causes the
inserts into the index to be in sequence, the free space should be zero.

v Updates that lengthen varying-length columns are few.

For example, if you plan only to update fixed-length columns, non-compressed
records, the free space for the data should be zero.

When to use PCTFREE: Use PCTFREE if inserted rows are distributed evenly and
densely across the key or page range.

If the volume is heavy, use a PCTFREE value greater than the default.

When to use FREEPAGE: Use FREEPAGE if:

v Inserts are concentrated in small areas of the table space or index.

For indexes where most of the inserts will be random, set FREEPAGE so that
when an index split occurs, the new page is often relatively close to the original
page. However, if the majority of the inserts occur at the end of the index, set
FREEPAGE to 0 to maintain sequential order in the index leaf pages.

For table spaces, set FREEPAGE so that new data rows can be inserted into a
nearby page when the target page is full or locked. A nearby page for a
nonsegmented table space is within 16 pages on either side of the target page.
For a segmented table space, a nearby page is within the same segment as the
target page.

v MAXROWS 1 or rows are larger than half a page, because you cannot insert a
second row on a page.

Chapter 26. Improving response time and throughput 539

Additional recommendations:

v For concurrency, use MAXROWS or larger PCTFREE values for small tables and
shared table spaces that use page locking. This reduces the number of rows per
page, thus reducing the frequency that any given page is accessed.

v For the DB2 catalog table spaces and indexes, use the defaults for PCTFREE. If
additional free space is needed, use FREEPAGE.

End of General-use Programming Interface

Make buffer pools large enough for the workload
Make buffer pools as large as you can afford, because:

v It might mean fewer I/O operations and therefore faster access to your data.

v It can reduce I/O contention for the most frequently used tables and indexes.

v It can speed sorting by reducing I/O contention for work files.

However, there are many factors to consider when determining how many buffer
pools to have and how big they should be. See “Determining size and number of
buffer pools” on page 560 for more information.

Speed up preformatting by allocating in cylinders
This section describes a general way to speed up preformatting of data by
allocating in cylinders, and a more specific way you can preformat a table space
before inserting data.

Allocate space in cylinders
Specify your space allocation amounts to ensure allocation by CYLINDER. This can
reduce the time required to do SQL mass inserts and to recover a table space from
the log; it does not affect the time required to recover a table space from an image
copy or to run the REBUILD utility.

When inserting records, DB2 preformats space within a page set as needed. The
allocation amount, which is either CYLINDER or TRACK, determines the amount of
space that is preformatted at any one time. See “Preformatting during LOAD” for a
way you can preformat data using LOAD or REORG.

Because less space is preformatted at one time for the TRACK allocation amount, a
mass insert can take longer when the allocation amount is TRACK than the same
insert when the allocation amount is CYLINDER.

The allocation amount is dependent on device type and the number of bytes you
specify for PRIQTY and SECQTY when you define table spaces and indexes. The
default SECQTY is 10 percent of the PRIQTY, or 3 times the page size, whichever
is larger. This default quantity is an efficient use of storage allocation. Choosing a
SECQTY value that is too small in relation to the PRIQTY value results in track
allocation.

For more information about how space allocation amounts are determined, see the
description of the DEFINE CLUSTER command in DFSMS/MVS: Access Method
Services for the Integrated Catalog.

Preformatting during LOAD
When DB2’s preformatting delays impact the performance or execution time
consistency of applications that do heavy insert processing, and if the table size can
be predicted for a business processing cycle, consider using the PREFORMAT

540 Administration Guide

option of LOAD and REORG. If you preformat during LOAD or REORG, DB2 does
not have to preformat new pages during execution. When the preformatted space is
used and when DB2 has to extend the table space, normal data set extending and
preformatting occurs.

Consider preformatting only if preformatting is causing a measurable delay with the
insert processing or causing inconsistent elapsed times for insert applications. For
more information about the PREFORMAT option, see Part 2 of DB2 Utility Guide
and Reference.

Recommendation: Quantify the results of preformatting in your environment by
assessing the performance both before and after using preformatting.

Reducing the time needed to perform I/O operations
You can reduce the time needed to perform individual I/O operations in several
ways:
v Create additional work file table spaces
v “Distribute data sets efficiently” on page 542
v “Ensure sufficient primary allocation quantity” on page 544

For information on parallel operations, see “Chapter 34. Parallel operations and
query performance” on page 841.

For information on I/O scheduling priority, see “MVS performance options for DB2”
on page 614.

Create additional work file table spaces
If your applications require any of the following, allocate additional work file table
spaces on separate disk volumes in a work file database (database DSNDB07 in a
non data-sharing environment) to help minimize I/O contention:
v Large concurrent sorts or a single large sort (especially of table spaces defined

as LARGE)
v Created temporary tables
v Star joins
v Non-correlated subqueries
v Materialized views

For a single query, the recommendation for the number of work file disk volumes is
to have whichever is more:
v Five
v One-fifth the maximum number of data partitions

For concurrently runnng queries, multiply this value by the number of concurrent
queries.

In addition, in a query parallelism environment, the number of work file disk
volumes should be at least equal to the maximum number of parallel operations
that is seen for queries in the given workload.

Place these volumes on different channel or control unit paths. Monitor the I/O
activity for the work file table spaces, because you might need to further separate
this work file activity to avoid contention. As the amount of work file activity
increases, consider increasing the size of the buffer pool for work files to support
concurrent activities more efficiently. The general recommendation for the work file
buffer pool is to increase the size to minimize the following buffer pool statistics:

Chapter 26. Improving response time and throughput 541

#
#
#

#
#

#
#
#

#
#
#
#

v MERGE PASSES DEGRADED, which should be less than 1% of MERGE PASS
REQUESTED

v WORKFILE REQUESTS REJECTED, which should be less than 1% of
WORKFILE REQUEST ALL MERGE PASSES

v Synchronous read I/O, which should be less than 1% of pages read by prefetch

v Prefetch quantity of 4 or less, which should be near 8

During the installation or migration process, you allocated table spaces for 4KB
buffering, and for 32KB buffering. To create additional work file table spaces, use
SQL statements similar to those in job DSNTIJTM.

Steps to create a work file table space: Use the following steps to create a new
work file table space, xyz. (If you are using DB2-managed data sets, omit the step
to create the data sets.)

1. Define the required data sets using the VSAM DEFINE CLUSTER statement
before creating the table space. You must specify a minimum of 26 4KB pages
for the work file table space. For more information on the size of sort work files
see “Understanding how sort work files are allocated” on page 575. See also
Figure 3 on page 36 for more information on the DEFINE CLUSTER statement.

2. Issue the following command to stop all current users of the work file database:
-STOP DATABASE (DSNDB07)

3. Enter the following SQL statement:
CREATE TABLESPACE xyz IN DSNDB07

BUFFERPOOL BP0
CLOSE NO
USING VCAT DSNC710;

4. Enter the following command:
-START DATABASE (DSNDB07)

Distribute data sets efficiently
Avoid I/O contention and increase throughput through the I/O subsystem by placing
frequently used data sets on fast disk devices and by distributing I/O activity.
Distributing I/O activity is less important when you use disk devices with Parallel
Access Volumes (PAV) support and multiple allegiance support. (For more
information, see “Parallel Access Volumes (PAV)” on page 613 and “Multiple
Allegiance” on page 613.)

Put frequently used data sets on fast devices
Assign the most frequently used data sets to the faster disk devices at your
disposal. For partitioned table spaces, you might choose to have some partitions on
faster devices than other partitions. Placing frequently used data sets on fast disk
devices also improves performance for nonpartitioned table spaces. You might
consider partitioning any nonpartitioned table spaces that have excessive I/O
contention at the data set level.

Distribute the I/O
Allocate frequently used data sets or partitions across your available disk volumes
so that I/O operations are distributed. Even with RAID devices, in which the data
set is spread across the physical disks in an array, it is important that is accessed
at the same time on separate logical volumes to reduce the chance of an I/O
request being queued in MVS.

542 Administration Guide

#
#

#
#

#

#

|
|
|
|

Consider isolating data sets with characteristics that do not complement other data
sets. For example, do not put high volume transaction work that uses synchronous
reads on the same volume as something of lower importance that uses list prefetch.

Consider the partitioning scheme: If it is critical that partitions of your partitioned
table spaces be of relatively the same size (which can be a great benefit for query
parallelism), consider using a ROWID column as all or part of the partitioning key.
For partitions that are of unequal size to such an extent that they are negatively
affecting performance, alter the partitioning index limiting key values and then
reorganize the affected partitions to rebalance the data.

Spread data sets of nonpartitioning indexes:

General-use Programming Interface

If I/O contention on a nonpartitioning index has prevented you from running batch
update jobs in parallel, use the PIECESIZE option of CREATE or ALTER INDEX to
indicate how large DB2 should make the data sets that make up a nonpartitioning
index. As the specification of the maximum addressability of a data set, the piece
size of an index limits how much data DB2 puts into a data set before it is broken
into multiple pieces (data sets). By making the piece size smaller than the default
value, for example, you can end up with many more data sets. If you spread these
data sets across the available I/O paths, you can reduce the physical contention on
the nonpartitioning index.

Choosing a value for PIECESIZE:To choose a PIECESIZE value, divide the size
of the nonpartitioning index by the number of data sets that you want. For example,
to ensure that you have 5 data sets for the nonpartitioning index, and your
nonpartitioning index is 10 MB (and not likely to grow much), specify PIECESIZE
2M. If your nonpartitioning index is likely to grow, choose a larger value.

When choosing a value, remember that the maximum partition size of the table
space determines the maximum number of data sets that the index can use. If the
underlying table space is defined with a DSSIZE of 4G or greater (or with LARGE),
the limit is 254 pieces; otherwise, the limit is 32 pieces. Nonpartitioning indexes that
were created on LARGE table spaces in Version 5 and migrated to Version 7 can
have only 128 pieces. If an attempt is made to allocate more data sets than the
limit, an abend occurs.

Keep your PIECESIZE value in mind when you are choosing values for primary and
secondary quantities. Ideally, although PIECESIZE has no effect on primary and
secondary space allocation, the value of your primary quantity and the secondary
quantities should be evenly divisible into PIECESIZE to avoid wasting space.
Because the underlying data sets are always allocated at the size of PRIQTY and
extended, when possible, with the size of SECQTY, understand the implications of
their values with the PIECESIZE value:

v If PRIQTY is larger than PIECESIZE, a new data set is allocated and used when
the file size exceeds PIECESIZE. Thus, part of the allocated primary storage
goes unused, and no secondary extents are created.

v If PRIQTY is smaller than PIECESIZE and SECQTY is not zero, secondary
extents are created until the total file size equals or exceeds PIECESIZE. After
the allocation of a secondary extent causes the total file size to meet or exceed
PIECESIZE, a new data set is allocated and used. When the total file size
exceeds PIECESIZE, the part of secondary storage that is allocated beyond
PIECESIZE goes unused.

Chapter 26. Improving response time and throughput 543

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

v If PRIQTY is smaller than PIECESIZE and SECQTY is zero, an ″unavailable
resource″ message is returned when the data set fills up. No secondary extents
are created nor are additional data sets allocated.

Identifying suitable indexes: Any secondary index that has a lot of I/O and a high
IOS queue time is a good candidate for breaking up into smaller pieces. Use the
statistics trace to identify I/O intensive data sets. IFCID 199 contains information
about every data set that averages more than one I/O per second during the
statistics interval. IOS queue time that is 2 or 3 times higher than connect time is
considered high. The RMF (Resource Measurement Facility) Device Activity report
provides IOS time and CONN time.

Determining the number of pieces an index is using: You can use one of the
following techniques to determine the number of pieces that an index uses:

v For DB2-managed data sets, use access method services LISTCAT to check the
number of data sets that have been created.

v For user-managed data sets, examine the high-used RBA (HURBA) for each
data set.

End of General-use Programming Interface

Ensure sufficient primary allocation quantity
Specifying sufficient primary allocation for frequently used data sets minimizes I/O
time, because the data is not physically located at different places on the disks.

It can be helpful to list the VTOC occasionally to determine the number of
secondary allocations that have been made for your more frequently used data
sets. Or, you can use IFCID 0258 in the statistics class 3 trace to monitor data set
extensions.

If you discover that the data sets backing frequently used table spaces or indexes
have an excessive number of extents, and if the data sets are user-defined, you
can use access method services to reallocate the affected data sets using a larger
primary allocation quantity. If the data sets were created using STOGROUPs, you
can use the procedure for modifying the definition of table spaces presented in
“Altering table spaces” on page 57.

Specify primary quantity for nonpartitioning indexes: To prevent wasted space
for nonpartitioning indexes, make sure that the value of PRIQTY + (N × SECQTY)
is a value that evenly divides into PIECESIZE. For more information about
PIECESIZE, see Chapter 5 of DB2 SQL Reference.

Reducing the amount of processor resources consumed
Many factors affect the amount of processor resources that DB2 consumes. This
section describes ways to reduce DB2 consumption of these resources.
v Reuse threads for your high-volume transactions
v “Minimize the use of DB2 traces” on page 545
v “Use fixed-length records” on page 546

Consider also caching authorizations for plans, packages, and routines
(user-defined functions and stored procedures). See “Caching authorization IDs for
best performance” on page 120 for more information.

544 Administration Guide

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

Reuse threads for your high-volume transactions
For high volume transactions, reusing threads can help performance significantly.

v For IMS, process multiple input messages in one scheduling of the IMS
processing program by setting PROCLIM to a value greater than 1 and using
class priority scheduling. This shares the cost of thread creation and termination
among more than one transaction. Alternatively, you can reuse threads with wait
for input (WFI), or the IMS fast path and class scheduling. See Part 2 of DB2
Installation Guide for more information.

v For CICS, you can enhance thread reuse through specifications for pool and
entry threads in the RCT. Consider using protected entry threads for high volume
transactions. See “CICS design options” on page 633 for details.

v If you are using the Recoverable Resource Manager Services attachment facility,
see the RRSAF chapter of Part 6 of DB2 Application Programming and SQL
Guide for more information about reusing threads.

Minimize the use of DB2 traces
Using the DB2 trace facility, particularly performance and global trace, can consume
a large amount of processing resources. Suppressing these trace options
significantly reduces additional processing costs.

Global trace
Global trace requires 20 percent to 100 percent additional processor utilization. If
conditions permit at your site, the DB2 global trace should be turned off. You can do
this by specifying NO for the field TRACE AUTO START on panel DSNTIPN at
installation. Then, if the global trace is needed for serviceability, you can start it
using the START TRACE command.

Accounting and statistics traces
Enabling accounting class 2 along with accounting classes 1 and 3 provides
additional detail relating directly to the accounting record IFCID 0003, as well as
recording thread level entry into and exit from DB2. This allows you to separate
DB2 times from application times. Running accounting class 2 does add to the cost
of processing. How much overhead occurs depends on how much SQL the
application issues. Typically, an online transaction incurs an additional 2.5 percent
when running with accounting class 2. A typical batch query application, which
accesses DB2 more often, incurs about 10 percent overhead when running with
accounting class 2. If most of your work is through CICS, you most likely do not
need to run with class 2, because the class 1 and class 2 times are very close.

If you have very light DB2 usage and you are using Measured Usage, then you
need the SMF 89 records. In other situations, be sure that SMF 89 records are not
recorded to avoid this overhead.

Audit trace
The performance impact of auditing is directly dependent on the amount of audit
data produced. When the audit trace is active, the more tables that are audited and
the more transactions that access them, the greater the performance impact. The
overhead of audit trace is typically less than 5 percent.

When estimating the performance impact of the audit trace, consider the frequency
of certain events. For example, security violations are not as frequent as table
accesses. The frequency of utility runs is likely to be measured in executions per
day. On the other hand, authorization changes can be numerous in a transaction
environment.

Chapter 26. Improving response time and throughput 545

Performance trace
Consider turning on only the performance trace classes required to address a
specific performance problem. The combined overhead of all performance classes
runs from about 20 percent to 100 percent.

The overhead for performance trace classes 1 through 3 is typically in the range of
5 percent to 30 percent.

Suppressing the IRLM, MVS, IMS, and CICS trace options also reduces overhead.

Use fixed-length records
Use fixed-length columns rather than varying-length columns, particularly in tables
that contain many columns. This can reduce processor use, but is offset by the
need for more disk space. If you must use varying-length columns, see Table 84 on
page 605 for recommendations about where to place those columns for the best
performance and to reduce logging.

If you use ALTER to add a fixed-length column to a table, that column is treated as
variable-length until the table has been reorganized.

Understanding response time reporting
To correctly monitor response time, you must understand how it is reported.
Response time can be measured in several different ways. Figure 58 on page 547
shows how some of the main measures relate to the flow of a transaction.

In Figure 58 on page 547, the following times can be distinguished:
End user response time

This is the time from the moment the end user presses the enter key until he or
she receives the first response back at the terminal.
DB2 accounting elapsed times

These times are collected in the records from the accounting trace and can be
found in the DB2 PM accounting reports. They are taken over the accounting
interval between the point where DB2 starts to execute the first SQL statement,
and the point preceding thread termination or reuse by a different user (sign-on).

This interval excludes the time spent creating a thread, and it includes a portion
of the time spent terminating a thread.

For parallelism, there are special considerations for doing accounting. See
“Monitoring parallel operations” on page 850 for more information.

Elapsed times for stored procedures or user-defined functions separate the time
spent in the allied address space and the time spent in the stored procedures
address space.

There are two elapsed times:
– Class 1 elapsed time

This time is always presented in the accounting record and shows the
duration of the accounting interval. It includes time spent in DB2 as well as
time spent in the front end. In the accounting reports, it is referred to as
“application time.”

– Class 2 elapsed time

Class 2 elapsed time, produced only if the accounting class 2 is active,
counts only the time spent in the DB2 address space during the accounting
interval. It represents the sum of the times from any entry into DB2 until the
corresponding exit from DB2. It is also referred to as the time spent in DB2.

546 Administration Guide

If class 2 is not active for the duration of the thread, the class 2 elapsed time
does not reflect the entire DB2 time for the thread, but only the time when
the class was active.

DB2 total transit time

In the particular case of an SQL transaction or query, the “total transit time” is
the elapsed time from the beginning of create thread, or sign-on of another
authorization ID when reusing the thread, until either the end of the thread
termination, or the sign-on of another authorization ID.

CICS/IMS
elapsed
time

End user
response
time

1st SQL statement

2nd SQL statement

End of transaction

TP monitor and
application code

User receives
response

Create thread

Application
elapsed
(Class 1)

Wait
(Class 3)

Terminate thread

In DB2
elapsed
(Class 2)

Commit Phase 2

Commit Phase 1

Line transmit

Line transmit

In DB2

TP monitor and
application code

DB2
total
transit
time

User presses
Enter

Figure 58. Transaction response times. Class 1 is standard accounting data. Class 2 is elapsed and processor time in
DB2. Class 3 is elapsed wait time in DB2. Standard accounting data is provided in IFCID 0003, which is turned on
with accounting class 1. When accounting classes 2 and 3 are turned on as well, IFCID 0003 contains additional
information about DB2 times and wait times.

Chapter 26. Improving response time and throughput 547

548 Administration Guide

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools

Proper tuning of your virtual buffer pools, EDM pools, RID pools, and sort pools can
improve the response time and throughput for your applications and provide
optimum resource utilization. Using data compression can also improve buffer pool
hit ratios and reduce table space I/O rates. For more information on compression,
see “Compressing your data” on page 606. This chapter covers the following topics:
v “Tuning database buffer pools”
v “Tuning the EDM pool” on page 570
v “Increasing RID pool size” on page 574
v “Controlling sort pool size and sort processing” on page 574

Tuning database buffer pools
Buffer pools are areas of virtual storage that temporarily store pages of table
spaces or indexes. When an application program accesses a row of a table, DB2
places the page that contains that row in a buffer. If the requested data is already in
a buffer, the application program does not have to wait for it to be retrieved from
disk. Avoiding the need to retrieve data from disk results in faster performance.

If the row is changed, the data in the buffer must be written back to disk eventually.
But that write operation might be delayed until DB2 takes a checkpoint, or until one
of the related write thresholds is reached. (In a data sharing environment, however,
the writing mechanism is somewhat different. See Chapter 6 of DB2 Data Sharing:
Planning and Administration for more information.)

The data remains in the buffer until DB2 decides to use the space for another page.
Until that time, the data can be read or changed without a disk I/O operation.

DB2 allows you to use up to 50 buffer pools that contain 4-KB buffers and up to 10
buffer pools each for 8-KB, 16-KB, and 32-KB buffers. You can set the size of each
of those buffer pools separately when installing DB2. You can change the sizes and
other characteristics of a buffer pool at any time while DB2 is running, by using the
ALTER BUFFERPOOL command.

This section includes the following topics:

v “Buffer pools and hiperpools” on page 550

v “Buffer pools and data spaces” on page 552

v “Terminology: Types of buffer pool pages” on page 553

v “Read operations” on page 554

v “Write operations” on page 554

v “Assigning a table space or index to a virtual buffer pool” on page 555

v “Buffer pool thresholds” on page 555

v “Determining size and number of buffer pools” on page 560

v “Choosing a page-stealing algorithm” on page 562

v “Monitoring and tuning buffer pools using online commands” on page 563

v “Using DB2 PM to monitor buffer pool statistics” on page 567

Buffer Pool Tool: You can use the Buffer Pool Tool feature of DB2 to do “what if”
analysis of your buffer pools.

© Copyright IBM Corp. 1982, 2001 549

Choose backing storage: primary or data space
You have several ways to configure each buffer pool’s backing storage:

v Keep the buffer pool strictly in ssnmDBM1 address space. This buffer pool is a
primary virtual pool to distinguish it from buffer pools in data spaces. This option
performs well, but because it can have a significant impact on your storage, you
might need to look at the other available options for reducing the impact on that
storage.

v Extend the primary pool to hiperspace, which means the primary buffer pool has
space in ssnmDBM1 and in hiperspace, called the hiperpool. See “Buffer pools
and hiperpools” for information about this option.

v Keep the buffer pool in a data space. See “Buffer pools and data spaces” on
page 552 for more information about this option.

Use the virtual pool type (VPTYPE) field of installation panels DSNTIP1, 2, and 6 to
specify where buffer pools should reside. A value of P indicates that the buffer pool
resides in DB2’s primary address space (ssnmDBM1). If you want to extend the
primary pool to hiperspace, specify a non-zero value in the Hiperpool field of the
panel.

Specify D for VPTYPE if you want the virtual buffer pool to reside in a data space.

Altering VPTYPE: You can use the ALTER BUFFERPOOL command to change the
VPTYPE, but this change requires a reallocation of the buffer pool. The procedures
for changing the VPTYPE are described with the command in Chapter 2 of DB2
Command Reference.

Buffer pools and hiperpools
If your DB2 subsystem is on a processor that has the Fast Sync data mover facility
(such as an S/390 G5/G6 enterprise server) or that has the Asynchronous Data
Mover hardware feature installed, you can use hiperspaces to extend DB2’s virtual
buffer pools. A hiperspace is a storage space of up to 2 GB that a program can use
as a data buffer. A hiperspace is addressable in 4 KB blocks; in other words, it is
page addressable. You cannot put a primary buffer pool into both a hiperpool and
data space. For more information on hiperspace, see OS/390 MVS Programming:
Extended Addressability Guide.

DB2 cannot directly manipulate data that resides in hiperspace. But, it can transfer
the data from hiperspace into a virtual buffer pool much faster than it could get it
from disk. To distinguish between hiperpools and buffer pools, remember that
regular DB2 buffer pools are called virtual buffer pools.

Two levels of storage: When you choose to use hiperpools, DB2 maintains two
levels of storage for each buffer pool:

v The first level of storage, the virtual buffer pool, is allocated from DB2’s
ssnmDBM1 address space. A virtual buffer pool is backed by central storage,
expanded storage, or auxiliary storage. The sum of all DB2 virtual buffer pools
cannot exceed 1.6 GB.

v The second level of storage, the hiperpool, uses the MVS hiperspace facility to
utilize expanded storage only (ESO) hiperspace. The sum of all hiperpools
cannot exceed 8 GB.

A hiperpool is an extension to a virtual buffer pool and must always be associated
with a virtual buffer pool. You can define a hiperpool to be larger than its

550 Administration Guide

|
|
|
|

corresponding virtual buffer pool. Figure 59 illustrates the relationship between a
virtual buffer pool and its corresponding hiperpool.

Reducing the size of your virtual buffer pools and allocating hiperpools provides
better control over the use of central storage and can reduce overall contention for
central storage.

A virtual buffer pool and its corresponding hiperpool, if defined, are built dynamically
when the first page set that references those buffer pools is opened.

Advantages of hiperpools: Virtual buffer pools hold the most frequently accessed
data, while hiperpools serve as a cache for data that is accessed less frequently.
When a row of data is needed from a page in a hiperpool, the entire page is read
into the corresponding virtual buffer pool. If the row is changed, the page is not
written back to the hiperpool until it has been written to disk: all read and write
operations to data in the page, and all disk I/O operations, take place in the virtual
buffer pool. The hiperpool holds only pages that have been read into the virtual
buffer pool and might have been discarded; they are kept in case they are needed
again.

Because read operations from disk are not required to access data that resides in
hiperspace, response time is shorter than for disk retrieval. Retrieving pages that
are cached in hiperpools takes only microseconds, rather than the milliseconds
needed for retrieving a page from disk, which reduces transaction and query
response time.

The good storage citizen: using the CASTOUT attribute: Because expanded
storage is a shared system resource, DB2 is not the only user of your MVS
system’s expanded storage. If DB2 monopolizes the available hiperspace,
performance could be adversely affected. The CASTOUT option of ALTER
BUFFERPOOL gives you some control over DB2’s use of hiperspace.

If you specify CASTOUT as YES, your MVS system can steal, or remove, pages
from the hiperpool when the need for expanded storage arises and usage of the

DB2’s DBM1 address spacessnm

Expanded storage

Hiperpool

Buffer
Virtual buffer pool

Buffer page

DASD

.

.

.

.

.

.

.

.

.

.

.

.

Figure 59. Relationship between virtual buffer pool and hiperpool

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 551

hiperpool is low. A stolen page is no longer available to DB2; the data will need to
be retrieved from disk when next referenced. For that reason, a page brought in
from the hiperpool and updated in the virtual buffer pool cannot be written back to
the hiperpool unless it is first written to disk.

Specifying CASTOUT as NO tells MVS to give high priority to keeping the data
cached in the hiperpool. CASTOUT(NO) places a heavy demand on expanded
storage. In general, specify NO to improve response time in only your most critical
applications. For example, it is possible to keep an entire index or table in
hiperspace almost constantly, by assigning it to a virtual buffer pool whose hiperpool
has CASTOUT as NO. Access to those pages is fast, but they might take up a
significant proportion of the available expanded storage.

Recommendation: Choose CASTOUT (YES).

Buffer pools and data spaces
Another option to consider for some of your buffer pools is to have DB2 put them in
data spaces. Like hiperspaces, data spaces are data-only spaces; that is, no
program code can run in those areas. With data spaces, though, the system uses
the same resources to back data space virtual storage as it uses to back address
space virtual storage: a combination of central storage and expanded storage
frames (if available), and auxiliary storage slots. The system can move low-use
pages of data space storage to auxiliary storage and bring them in again. The
paging activity for a data space includes I/O between auxiliary storage paging
devices and central storage.

Figure 60 shows DB2 using a data space for a virtual buffer pool.

DB2’s DBM1 address spacessnm Data space

DASD

Virtual buffer pool

Buffer page
...

Figure 60. Using a data space for DB2 virtual buffer pools

552 Administration Guide

As explained in “Advantages of data spaces”, your DB2 subsystem should run on a
processor that has enough real memory to back the data space buffer pools to
achieve the full benefits of using data spaces.

For more information about data spaces, see OS/390 MVS Programming: Extended
Addressability Guide.

Storage limits for data spaces: Each data space can accommodate almost 2 GB
worth of buffers and any single buffer pool can span multiple data spaces. The sum
of all data space buffers cannot exceed 8 million. This translates to the maximum
sizes described in Table 73:

Table 73. Maximum amount of storage available for data space buffers

If all buffers are this size...
The total amount of data space storage
is...

4 KB 32 GB

8 KB 64 GB

16 KB 128 GB

32 KB 256 GB

Total storage in the ssnmDBM1 address space: Each buffer in a data space
requires about 128 bytes of storage in DB2’s ssnmDBM1 address space. DB2 does
not allow more than 1.6 GB of storage in ssnmDBM1 address space for virtual pool
buffers and data space buffer control storage. Message DSNB508I is issued if the
amount of space exceeds 1.6 GB.

Advantages of data spaces: With the IBM Eserver zSeries 900 (z900) along
with OS/390 Version 2 Release 10 or z/OS Version 1 Release 1 64-bit real storage
support, you can use data space buffer pools to gain significant performance
advantages by allowing you to configure larger buffer pools and to relieve storage
constraints in DB2’s ssnmDBM1 address space. A large data space buffer pool
configuration has the following advantages over a similarly sized virtual buffer pool
and hiperpool configuration:

v DB2 can put changed pages in data spaces. (Pages in hiperpools must be
clean.)

v DB2 can do I/O directly in and out of a data space but not a hiperpool.

v Internal latching and unlatching and LRU management occurs much less
frequently. Latching overhead and LRU management can be a concern when
pages are moved frequently between a virtual buffer pool and its associated
hiperpool.

v The maximum size for data space buffer pools is larger, as described in “Storage
limits for data spaces”.

v Less ssnmDBM1 storage is used for a data space virtual pool when compared
with a primary space virtual pool with its associated hiperpool.

If your DB2 subsystem does not run on a z900 server, the main reason to choose
data spaces is to relieve storage constraints in DB2’s ssnmDBM1 address space
(hiperpools can also be used for this purpose). Otherwise, the use of data spaces
provides no immediate benefit.

Terminology: Types of buffer pool pages
At any moment, a database virtual buffer pool can have three types of pages:

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 553

|
|
|

|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|

|
|
|
|

In-use pages: These are pages that are currently being read or updated. The data
they contain is available for use by other applications.

Updated pages: These are pages whose data has been changed but have not yet
been written to disk. After the updated page has been written to disk, it remains in
the virtual buffer pool available for migration to the corresponding hiperpool. In this
case, the page is not considered to be “updated” until it is changed again.

Available pages: These pages can be considered for new use, to be overwritten
by an incoming page of new data. Both in-use pages and updated pages are
unavailable in this sense; they are not considered for new use.

Read operations
DB2 uses three read mechanisms: normal read, sequential prefetch, and list
sequential prefetch.

Normal read: Normal read is used when just one or a few consecutive pages are
retrieved. The unit of transfer for a normal read is one page.

Sequential prefetch: Sequential prefetch is performed concurrently with other
operations of the originating application program. It brings pages into the virtual
buffer pool before they are required and reads several pages with a single I/O
operation.

Sequential prefetch can be used to read data pages, by table space scans or index
scans with clustered data reference. It can also be used to read index pages in an
index scan. Sequential prefetch allows CP and I/O operations to be overlapped.

See “Sequential prefetch (PREFETCH=S)” on page 824 for a complete description
of sequential prefetch.

List sequential prefetch: List sequential prefetch is used to prefetch data pages
that are not contiguous (such as through non-clustered indexes). List prefetch can
also be used by incremental image copy. For a complete description of the
mechanism, see “List prefetch (PREFETCH=L)” on page 825.

Write operations
Write operations are usually performed concurrently with user requests. Updated
pages are queued by data set until they are written when:

v A checkpoint is taken.

v The percentage of updated pages in a virtual buffer pool for a single data set
exceeds a preset limit called the vertical deferred write threshold (VDWQT). For
more information on this threshold, see “Buffer pool thresholds” on page 555.

v The percentage of unavailable pages in a virtual buffer pool exceeds a preset
limit called the deferred write threshold (DWQT). For more information on this
threshold, see “Buffer pool thresholds” on page 555.

Table 74 lists how many pages DB2 can write in a single I/O operation.

Table 74. Number of pages that DB2 can write in a single I/O operation

Page size Number of pages

4 KB 32

8 KB 16

554 Administration Guide

Table 74. Number of pages that DB2 can write in a single I/O operation (continued)

Page size Number of pages

16 KB 8

32 KB 4

Assigning a table space or index to a virtual buffer pool
How you assign data to buffer pools can have a significant impact on performance.
See “Reasons to choose more than one buffer pool” on page 562 for guidance in
choosing a scheme for assigning data and indexes to buffer pools.

Assigning data to default buffer pools
Installation panel DSNTIP1 lets you set one default buffer pool for user data and
one for user indexes. It is a good idea to choose values other than the defaults,
BP0 for both, for these options, because BP0 must be used by the DB2 catalog and
directory. BP0 is much more difficult to monitor and tune if user data and indexes
also use that buffer pool.

Assigning data to particular buffer pools
You assign a table space or an index to a particular virtual buffer pool by a clause
of the following SQL statements: CREATE TABLESPACE, ALTER TABLESPACE,
CREATE INDEX, ALTER INDEX. The virtual buffer pool is actually allocated the first
time a table space or index assigned to it is opened.

BP0 default size: You cannot use the ALTER statement to change the assignment
of the catalog and directory; they are always assigned to BP0. BP0 is also the
default buffer pool for sorting, but you can change that by assigning the work file
table spaces to another buffer pool. BP0 has a default size of 2000 buffers, and a
minimum of 56 buffers. As with any other buffer pool, you can change the size
using the ALTER BUFFERPOOL command.

Buffer pool thresholds
The information under this heading, up to “Determining size and number of buffer
pools” on page 560, is General-use Programming Interface and Associated
Guidance Information as defined in “Notices” on page 1095.

DB2’s use of a virtual buffer pool or hiperpool is governed by several preset values
called thresholds. Each threshold is a level of use which, when exceeded, causes
DB2 to take some action. When you reach some thresholds, it indicates a problem,
while reaching other thresholds merely indicates normal buffer management. The
level of use is usually expressed as a percentage of the total size of the virtual
buffer pool or hiperpool. For example, the “immediate write threshold” of a virtual
buffer pool (described in more detail later) is set at 97.5%; when the percentage of
unavailable pages in a virtual buffer pool exceeds that value, DB2 writes pages to
disk when updates are completed.

Figure 61 on page 556 shows the relationship between some of the virtual buffer
pool thresholds and the updated, in-use, and available pages.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 555

Thresholds for very small buffer pools: This section describes fixed and variable
thresholds that are in effect for buffer pools that are sized for the best performance;
that is, for buffer pools of 1000 buffers or more. For very small buffer pools, some
of the thresholds are lower to prevent “buffer pool full” conditions, but those
thresholds are not described.

Fixed thresholds
Some thresholds, like the immediate write threshold, you cannot change. Monitoring
buffer pool usage includes noting how often those thresholds are reached. If they
are reached too often, the remedy is to increase the size of the virtual buffer pool,
which you can do with the ALTER BUFFERPOOL command. Increasing the size,
though, can affect other buffer pools, depending on the total amount of central and
expanded storage available for your buffers.

The fixed thresholds are more critical for performance than the variable thresholds.
Generally, you want to set virtual buffer pool sizes large enough to avoid reaching
any of these thresholds, except occasionally.

Each of the fixed thresholds is expressed as a percentage of the buffer pool that
might be occupied by unavailable pages.

The fixed thresholds are (from highest to lowest value):

v Immediate write threshold (IWTH)—97.5%

This threshold is checked whenever a page is to be updated. If it has been
exceeded, the updated page is written to disk as soon as the update completes.
The write is synchronous with the SQL request; that is, the request waits until the
write has been completed and the two operations are not carried out
concurrently.

Reaching this threshold has a significant effect on processor usage and I/O
resource consumption. For example, updating three rows per page in 10
sequential pages ordinarily requires one or two write operations. When IWTH is
exceeded, however, the updates require 30 synchronous writes.

Sometimes DB2 uses synchronous writes even when the IWTH is not exceeded;
for example, when more than two checkpoints pass without a page being written.
Situations such as these do not indicate a buffer shortage.

v Data management threshold (DMTH)—95%

This threshold is checked before a page is read or updated. If the threshold has
not been exceeded, DB2 accesses the page in the virtual buffer pool once for

% Unavailable pages: 90% 95% 97.5%

BPn Fixed thresholds: SPTH DMTH IWTH

Updated pages In-use
pages

Available pages

Being
handled

Normal read
queue

Sequential prefetch
queue

Queued per
data set

Unavailable pages Available pages

Figure 61. Database virtual buffer pool. SPTH, DMTH, and IWTH are the performance critical
thresholds.

556 Administration Guide

each page, no matter how many rows are retrieved or updated in that page. If
the threshold has been exceeded, DB2 accesses the page in the virtual buffer
pool once for each row that is retrieved or updated in that page. In other words,
retrieving or updating several rows in one page causes several page access
operations.

Avoid reaching this threshold, because it has a significant effect on processor
usage.

The DMTH is maintained for each individual virtual buffer pool. When the DMTH
is reached in one virtual buffer pool, DB2 does not release pages from other
virtual buffer pools.

v Sequential prefetch threshold (SPTH)—90%

This threshold is checked at two different times:

– Before scheduling a prefetch operation. If the threshold has been exceeded,
the prefetch is not scheduled.

– During buffer allocation for an already-scheduled prefetch operation. If the
threshold has been exceeded, the prefetch is canceled.

When the sequential prefetch threshold is reached, sequential prefetch is
inhibited until more buffers become available. Operations that use sequential
prefetch, such as those using large and frequent scans, are adversely affected.

Thresholds you can change
You can change some thresholds directly, by using the ALTER BUFFERPOOL
command. Changing a threshold in one virtual buffer pool or hiperpool has no effect
on any other virtual buffer pool or hiperpool.

The variable thresholds are (from highest to lowest default value):

v Sequential steal threshold (VPSEQT)

This threshold is a percentage of the virtual buffer pool that might be occupied by
sequentially accessed pages. These pages can be in any state: updated, in-use,
or available. Hence, any page might or might not count toward exceeding any
other buffer pool threshold.

The default value for this threshold is 80%. You can change that to any value
from 0% to 100% by using the VPSEQT option of the ALTER BUFFERPOOL
command.

This threshold is checked before stealing a buffer for a sequentially accessed
page instead of accessing the page in the virtual buffer pool. If the threshold has
been exceeded, DB2 tries to steal a buffer holding a sequentially accessed page
rather than one holding a randomly accessed page.

Setting the threshold to 0% would prevent any sequential pages from taking up
space in the virtual buffer pool. In this case, prefetch is disabled, and any
sequentially accessed pages are discarded as soon as they are released.

If you set VPSEQT to 0%, the value of HPSEQT is essentially meaningless:
because when sequential pages are not kept in the virtual buffer pool, they have
no chance of ever going to the hiperpool. But there is no restriction against
having a non-zero value for HPSEQT with a zero value for VPSEQT.

Setting the threshold to 100% allows sequential pages to monopolize the entire
virtual buffer pool.

v Hiperpool sequential steal threshold (HPSEQT)

This threshold is a percentage of the hiperpool that might be occupied by
sequentially accessed pages. The effect of this threshold on the hiperpool is
essentially the same as that of the sequential steal threshold on the virtual pool.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 557

The default value for this threshold is 80%. You can change that to any value
from 0% to 100% by using the HPSEQT option of the ALTER BUFFERPOOL
command.

Because changed pages are not written to the hiperpool, HPSEQT is the only
threshold for hiperpools.

v Virtual buffer pool parallel sequential threshold (VPPSEQT)

This threshold is a portion of the virtual buffer pool that might be used to support
parallel operations. It is measured as a percentage of the sequential steal
threshold (VPSEQT). Setting VPPSEQT to zero disables parallel operation.

The default value for this threshold is 50% of the sequential steal threshold
(VPSEQT). You can change that to any value from 0% to 100% by using the
VPPSEQT option on the ALTER BUFFERPOOL command.

v Virtual buffer pool assisting parallel sequential threshold (VPXPSEQT)

This threshold is a portion of the virtual buffer pool that might be used to assist
with parallel operations initiated from another DB2 in the data sharing group. It is
measured as a percentage of VPPSEQT. Setting VPXPSEQT to zero disallows
this DB2 from assisting with Sysplex query parallelism at run time for queries that
use this buffer pool. For more information about Sysplex query parallelism, see
Chapter 6 of DB2 Data Sharing: Planning and Administration.

The default value for this threshold is 0% of the parallel sequential threshold
(VPPSEQT). You can change that to any value from 0% to 100% by using the
VPXPSEQT option on the ALTER BUFFERPOOL command.

v Deferred write threshold (DWQT)

This threshold is a percentage of the virtual buffer pool that might be occupied by
unavailable pages, including both updated pages and pages in use.

The default value for this threshold is 50%. You can change that to any value
from 0% to 90% by using the DWQT option on the ALTER BUFFERPOOL
command.

DB2 checks this threshold when an update to a page is completed. If the
percentage of unavailable pages in the virtual buffer pool exceeds the threshold,
write operations are scheduled for enough data sets (at up to 128 pages per data
set) to decrease the number of unavailable buffers to 10% below the threshold.
For example, if the threshold is 50%, the number of unavailable buffers is
reduced to 40%.

When the deferred write threshold is reached, the data sets with the oldest
updated pages are written asynchronously. DB2 continues writing pages until the
ratio goes below the threshold.

Setting DWQT to 0: If you set DQWT to zero, then, to avoid synchronous writes
to disk, DB2 implicitly uses the minimum value of (1% of the buffer pool, a
specific number of pages). The number of pages is determined by the buffer pool
page size, as shown in Table 75:

Table 75. Number of change pages based on buffer pool size

Buffer pool page size Number of changed pages

4 KB 40

8 KB 24

16 KB 16

32 KB 12

558 Administration Guide

v Vertical deferred write threshold (VDWQT)

This threshold is similar to the deferred write threshold, but it applies to the
number of updated pages for a single page set in the buffer pool. If the
percentage or number of updated pages for the data set exceeds the threshold,
writes are scheduled for that data set, up to 128 pages.

You can specify this threshold in one of two ways:

– As a percentage of the virtual buffer pool that might be occupied by updated
pages from a single page set.

The default value for this threshold is 10%. You can change the percentage to
any value from 0% to 90%.

– As the total number of buffers in the virtual buffer pool that might be occupied
by updated pages from a single page set.

You can specify the number of buffers from 0 to 9999. If you want to use the
number of buffers as your threshold, you must set the percentage threshold to
0.

Changing the threshold: Change the percent or number of buffers by using the
VDWQT keyword on the ALTER BUFFERPOOL command.

Because any buffers that count toward VDWQT also count toward DWQT, setting
the VDWQT percentage higher than DWQT has no effect: DWQT is reached first,
write operations are scheduled, and VDWQT is never reached. Therefore, the
ALTER BUFFERPOOL command does not allow you to set the VDWQT
percentage to a value greater than DWQT. You can specify a number of buffers
for VDWQT than is higher than DWQT, but again, with no effect.

This threshold is overridden by certain DB2 utilities, which use a constant limit of
64 pages rather than a percentage of the virtual buffer pool size. LOAD, REORG,
and RECOVER use a constant limit of 128 pages.

Setting VDWQT to 0: If you set VDQWT to zero for both the percentage and
number of buffers, the minimum number of pages written is the same as for
DWQT, shown in Table 75 on page 558.

Guidelines for setting buffer pool thresholds
How you set buffer pools depends on your workload and the type and size of data
being cached. But always think about the entire system when making buffer pool
tuning decisions. See “Storage controller cache” on page 612 for more information
about storage controller cache and the effect on DB2 performance.

For help in tuning your buffer pools, try the DB2 Bufferpool Tool feature of DB2.

Pages are frequently re-referenced and updated: Suppose that you have a
workload such as a branch table in a bank that contains a few hundred rows and is
updated by every transaction. For such a workload, you want a high value for the
deferred write and vertical deferred write threshold (90%). The result is that I/O is
deferred until DB2 checkpoint and you have a lower I/O rate to disk.

However, if the set of pages updated exceeds the size of the virtual buffer pool,
setting both DWQT and VDWQT to 90% might cause the sequential prefetch
threshold (and possibly the data management threshold and the immediate write
threshold) to be reached frequently. You might need to set DWQT and VDWQT
lower in that case.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 559

Pages are rarely referenced: Suppose that you have a customer table in a bank
that has millions of rows that are accessed randomly or are updated sequentially in
batch. In this case, lowering the DWQT or VDWQT thresholds (perhaps down to 0)
can avoid a surge of write I/Os caused by DB2 checkpoint. Lowering those
thresholds causes the write I/Os to be distributed more evenly over time. Secondly,
this can improve performance for the storage controller cache by avoiding the
problem of flooding the device at DB2 checkpoint.

Query-only buffer pools: For a buffer pool used exclusively for query processing,
it is reasonable to set VPSEQT and HPSEQT to 100%. If parallel query processing
is a large part of the workload, set VPPSEQT and, if applicable, VPXPSEQT, to a
very high value.

Mixed workloads: For a buffer pool used for both query and transaction
processing, the values you set for VPSEQT and HPSEQT should depend on the
respective priority of the two types of processing. The higher you set VPSEQT and
HPSEQT, the better queries tend to perform, at the expense of transactions.

Buffer pools containing LOBs: Put LOB data in buffer pools that are not shared
with other data. For both LOG YES and LOG NO LOBs, use a deferred write
threshold (DWQT) of 0. LOBs specified with LOG NO have their changed pages
written at commit time (force-at-commit processing). If you set DWQT to 0, those
writes happen continuously in the background rather than in a large surge at
commit.

LOBs defined with LOG YES can use deferred write, but by setting DWQT to 0, you
can avoid massive writes at DB2 checkpoints.

Determining size and number of buffer pools

Virtual buffer pool and hiperpool sizes
Initially, you set the sizes (in number of pages) of your virtual buffer pools and
hiperpools on installation panels DSNTIP1, DSNTIP2, and DSNTIP6. Because you
can modify the sizes of virtual buffer pools and hiperpools using the ALTER
BUFFERPOOL command, it is not important to choose an exact size initially.

The buffer pool hit ratio
Considering the real storage and expanded storage that is available to DB2, you
can help some of your applications and queries by making the virtual buffer pools
large enough to increase the buffer hit ratio. Buffer hit ratio is a measure of how
often a page access (a getpage) is satisfied without requiring an I/O operation.

Accounting reports, which are application related, show the hit ratio for specific
applications. An accounting trace report shows the ratio for single threads. The DB2
PM buffer pool statistics report shows the hit ratio for the subsystem as a whole.
For example, the buffer pool hit ratio is shown in field �A� in Figure 64 on page 568.
The buffer hit ratio uses the following formula to determine how many getpage
operations did not require an I/O operation:
Hit ratio = getpages - pages_read_from_DASD / getpages

where pages_read_from_DASD is the sum of the following fields:

v Number of synchronous reads (field �B� in Figure 64 on page 568)

v Number of pages read via sequential prefetch (field �C�)

v Number of pages read via list prefetch (field �D�)

v Number of pages read via dynamic prefetch (field �E�)

560 Administration Guide

Example: If you have 1000 getpages and 100 pages were read from DASD, the
equation would be as follows:
Hit ratio = (1000-100)/1000

The hit ratio in this case is 0.9.

Highest hit ratio: The highest possible value for the hit ratio is 1.0, which is
achieved when every page requested is always in the buffer pool. Reading index
non-leaf pages tend to have a very high hit ratio since they are frequently
re-referenced and thus tend to stay in the buffer pool.

Lowest hit ratio: The lowest hit ratio occurs when the requested page is not in the
buffer pool; in this case, the hit ratio is 0 or less. A negative hit ratio means that
prefetch has brought pages into the buffer pool that are not subsequently
referenced. The pages are not referenced because either the query stops before it
reaches the end of the table space or DB2 must take the pages away to make
room for newer ones before the query can access them.

A low hit ratio is not always bad: While it might seem desirable to make the
buffer hit ratio as close to 1.0 as possible, do not automatically assume a low buffer
pool hit ratio is bad. The hit ratio is a relative value, based on the type of
application. For example, an application that browses huge amounts of data using
table space scans might very well have a buffer pool hit ratio of 0. What you want
to watch for is those cases where the hit ratio drops significantly for the same
application. In those cases, it might be helpful to investigate further.

Hit ratios for additional processes: The hit ratio measurement becomes less
meaningful if the buffer pool is being used by additional processes, such as work
files or utilities. Some utilities and SQL statements use a special type of getpage
request that reserve an empty buffer without requiring that the page be read from
disk.

A getpage is issued for each empty work file page without read I/O during sort input
processing. The hit ratio can be calculated if the work files are isolated in their own
buffer pools. If they are, then the number of getpages used for the hit ratio formula
is divided in half as follows:
Hit ratio = ((getpages / 2) - pages_read_from_DASD) / (getpages / 2)

Buffer pool size guidelines
DB2 handles large virtual buffer pools very efficiently. Searching in large virtual
buffer pools (100 MB or more) does not use any more of the processor’s resources
than searching in smaller pools. There is a slight increase in processing overhead
when buffer pools are in data spaces backed up by real storage. The increase is
larger if the buffer pool is backed by a mixture of real and expanded storage. Never
define buffer pools that are backed by auxiliary storage.

If virtual pool storage is not backed by real storage, the resulting paging activity is
inefficient. If you see paging, increase the amount of real storage, or shrink down
the virtual pools size and use hiperpools.

Problems with paging: Paging occurs when the virtual storage size requirements
for a buffer pool exceeds the real storage capacity for the OS/390 image. In this
case, least recently used data pages in the buffer pool are migrated to expanded or
auxiliary storage. Subsequent access to these pages results in a page fault and the
page must be brought into real storage from auxiliary or expanded storage. Paging
of buffer pool storage, especially that from auxiliary to real, can negatively impact

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 561

DB2 performance. The statistics for PAGE-INS REQUIRED FOR WRITE and
PAGE-INS REQUIRED FOR READ shown in Figure 64 on page 568 are useful in
determining if the buffer pool size setting is too large for available real storage.

If the large buffer pool size results in excessive real storage paging to expanded
storage, consider using hiperpools.

Advantages of large buffer pools
In general, larger buffer pool sizes can:

v Result in a higher buffer pool hit ratio, which can reduce the number of I/O
operations. Fewer I/O operations can reduce I/O contention, which can provide
better response time and reduce the processor resource needed for I/O
operations.

v Give an opportunity to achieve higher transaction rates with the same response
time. For any given response time, the transaction rate depends greatly on buffer
pool size.

v Prevent I/O contention for the most frequently used disks, particularly the catalog
tables and frequently referenced user tables and indexes. In addition, a large
buffer pool is beneficial when a DB2 sort is used during a query, because I/O
contention on the disks containing the work file table spaces is reduced.

Choosing one or many buffer pools
Whether you choose one or many 4-KB buffer pools, make sure to have at least
one 32- KB buffer pool that DB2 can use, even if all tables use 4 KB pages. Some
SQL operations, such as joins, can create a result row that does not fit into a 4 KB
page.

Reasons to choose a single buffer pool: If your system has any or all of the
following conditions, it is probably best to choose a single 4 KB buffer pool:

v It does not have enough total buffer space for more than 10000 4-KB buffers.

v You have no one with the application knowledge necessary to do more
specialized tuning.

v It is a test system.

Reasons to choose more than one buffer pool: The following are some
advantages to having more than one buffer pool:

v You can isolate data in separate buffer pools to favor certain applications, data,
and indexes.

For example, if you have large buffer pools, putting indexes into separate pools
from data might improve performance. You might want to put tables and indexes
that are updated frequently into a buffer pool with different characteristics from
those that are frequently accessed but infrequently updated.

v You can put work files into a separate buffer pool. This can provide better
performance for sort-intensive queries. Applications that use created temporary
tables use work files for those tables. Keeping work files separate allows you to
monitor temporary table activity more easily.

v This process of segregating different activities and data into separate buffer pools
has the advantage of providing good and relatively inexpensive performance
diagnosis data from statistics and accounting traces.

Choosing a page-stealing algorithm
When DB2 must take away a page in the buffer pool to make room for a newer
page, this action is called “stealing” the page from the buffer pool. DB2 usually uses

562 Administration Guide

a least-recently-used (LRU) algorithm for managing pages in storage. That is, it
takes away older pages so that more recently used pages can remain in the virtual
buffer pool.

However, using the ALTER BUFFERPOOL command, you can also choose to have
DB2 use a first-in, first-out (FIFO) algorithm. With this simple algorithm, DB2 does
not keep track of how often a page is referenced—the pages that are oldest are
moved out, no matter how frequently they are referenced. This simple approach to
page stealing results in a small decrease in the cost of doing a getpage operation,
and it can reduce internal DB2 latch contention in environments that require very
high concurrency.

Recommendations:

v In most cases, keep the default, LRU.

v Use FIFO for buffer pools that have no I/O; that is, the table space or index
remains in the buffer pool. Because all the pages are there, there is no need to
pay the additional cost of a more complicated page management algorithm.

v Keep objects that can benefit from the FIFO algorithm in different buffer pools
from those that benefit from the LRU algorithm. See options for PGSTEAL in
ALTER BUFFERPOOL command in DB2 Command Reference.

Monitoring and tuning buffer pools using online commands
The information under this heading, up to “Using DB2 PM to monitor buffer pool
statistics” on page 567, is General-use Programming Interface and Associated
Guidance Information as defined in “Notices” on page 1095.

The DISPLAY BUFFERPOOL and ALTER BUFFERPOOL commands allow you to
monitor and tune buffer pools and hiperpools on line, while DB2 is running, without
the overhead of running traces.

You can use the ALTER BUFFERPOOL command to change the following
attributes:

v Size

v Thresholds

v Virtual pool type (primary or data space)

v Hiperpool castout attribute

v Page stealing algorithm

You can use the DISPLAY BUFFERPOOL command to display the current status of
one or more active or inactive buffer pools. For example, the following command:
DISPLAY BUFFERPOOL(BP1) DETAIL

produces a detailed report of the status of BP1, as shown in Figure 62 on page 564.
The operation captured by this report is the processing of sort work files for a query.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 563

|

In Figure 62, find the following fields:

v SYNC READ I/O (S) (�A�) shows the number of sequential synchronous read I/O
operations. Sequential synchronous read I/Os occur when prefetch is disabled or
when the requested pages are not consecutive. One way to decrease the value
of 326, which might be high for this application, is to increase the buffer pool size
until the number of read I/Os decreases while avoiding paging.

To determine the total number of synchronous read I/Os, add SYNC READ I/O
(S) and SYNC READ I/O (R).

+DISPLAY BPOOL(BP1) DETAIL
DSNB401I + BUFFERPOOL NAME BP1, BUFFERPOOL ID 1, USE COUNT 8
DSNB402I + VIRTUAL BUFFERPOOL SIZE = 6000 BUFFERS

ALLOCATED = 6000 TO BE DELETED = 0
IN-USE/UPDATED = 11

DSNB406I + VIRTUAL BUFFERPOOL TYPE -
CURRENT = PRIMARY
PENDING = PRIMARY

PAGE STEALING METHOD = LRU
DSNB403I + HIPERPOOL SIZE = 0 BUFFERS, CASTOUT = YES

ALLOCATED = 0 TO BE DELETED = 0
BACKED BY ES = 0

DSNB404I + THRESHOLDS -
VP SEQUENTIAL = 80 HP SEQUENTIAL = 80
DEFERRED WRITE = 50 VERTICAL DEFERRED WRT = 10, 0
PARALLEL SEQUENTIAL = 0 ASSISTING PARALLEL SEQT= 0

DSNB409I + INCREMENTAL STATISTICS SINCE 14:57:55 JAN 22, yyyy
DSNB411I + RANDOM GETPAGE = 156 SYNC READ I/O (R) = 3

SEQ. GETPAGE = 132294 SYNC READ I/O (S) =�A� 326
DMTH HIT = 0

DSNB412I + SEQUENTIAL PREFETCH -
�C�

REQUESTS�B� = 8253 PREFETCH I/O = 4461
PAGES READ�D� = 35660

DSNB413I + LIST PREFETCH -
REQUESTS = 0 PREFETCH I/O = 0
PAGES READ = 0

DSNB414I + DYNAMIC PREFETCH -
REQUESTS = 0 PREFETCH I/O = 0
PAGES READ = 0

DSNB415I + PREFETCH DISABLED -
NO BUFFER = 0 NO READ ENGINE = 0

�F�
DSNB420I + SYS PAGE UPDATES =�E�137857 SYS PAGES WRITTEN = 63320

ASYNC WRITE I/O = 2057 SYNC WRITE I/O = 0
DSNB421I + DWT HIT�G� = 27 VERTICAL DWT HIT �H�= 231

NO WRITE ENGINE = 0
DSNB430I + HIPERPOOL ACTIVITY (NOT USING ASYNCHRONOUS

DATA MOVER FACILITY) -
SYNC HP READS = 0 SYNC HP WRITES = 0
ASYNC HP READS = 0 ASYNC HP WRITES = 0
READ FAILURES = 0 WRITE FAILURES = 0

DSNB431I + HIPERPOOL ACTIVITY (USING ASYNCHRONOUS
DATA MOVER FACILITY) -
HP READS = 0 HP WRITES = 0
READ FAILURES = 0 WRITE FAILURES = 0

DSNB440I + PARALLEL ACTIVITY -
PARALLEL REQUEST = 0 DEGRADED PARALLEL= 0

DSN9022I + DSNB1CMD '+DISPLAY BPOOL' NORMAL COMPLETION

Figure 62. Sample output from the DISPLAY BUFFERPOOL command. This sample output
shows buffer pool statistics for the processing of sort work files.

564 Administration Guide

v In message DSNB412I, REQUESTS (�B�) shows the number of times that
sequential prefetch was triggered, and PREFETCH I/O (�C�) shows the number
of times that sequential prefetch occurred. PAGES READ (�D�) shows the
number of pages read using sequential prefetch. If you divide the PAGES READ
value by the PREFETCH I/O, you get 7.99. This is because the prefetch quantity
for sort work files is 8 pages. For operations other than sorts, the prefetch
quantity could be up to 32 pages, depending on the application.

v SYS PAGE UPDATES (�E�) corresponds to the number of buffer updates.

v SYS PAGES WRITTEN (�F�) is the number of pages written to disk.

v DWT HIT (�G�) is the number of times the deferred write threshold (DWQT) was
reached. This number is workload dependent.

v VERTICAL DWT HIT (�H�) is the number of times the vertical deferred write
threshold (VDWQT) was reached. This value is per data set, and it is related to
the number of asynchronous writes.

Because the number of synchronous read I/Os (�A�) and the number of sequential
prefetch I/Os (�C�) are relatively high, you would want to tune the buffer pools by
changing the buffer pool specifications. For example, you could make the buffer
operations more efficient by defining a hiperpool if you have expanded storage on
your machine. To do that, enter the following command:
-ALTER BUFFERPOOL(BP1) VPSIZE(6000) HPSIZE(20000) CASTOUT(NO)

After issuing the previous ALTER BUFFERPOOL command, you can see the
resulting changes in the virtual buffer pool and hiperpool by issuing the DISPLAY
BUFFERPOOL command again. The output is shown in Figure 63 on page 566.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 565

In Figure 63, notice the following fields:

v You can verify the new hiperpool size by checking the HIPERPOOL SIZE field
(�I�).

v In this example, the hiperpool size allocated (ALLOCATED �J�) is larger than the
value for BACKED BY ES (�K�) because the hiperpool was larger than
necessary. The value for ALLOCATED can also be larger than the BACKED BY
ES value when there is not enough expanded storage available to support the
hiperpool size you specified. If the available expanded storage had been
exceeded, there would be a non-zero value in the WRITE FAILURES field (�R�).

+DISPLAY BPOOL(BP1) DETAIL
DSNB401I + BUFFERPOOL NAME BP1, BUFFERPOOL ID 1, USE COUNT 8
DSNB402I + VIRTUAL BUFFERPOOL SIZE = 6000 BUFFERS

ALLOCATED = 6000 TO BE DELETED = 0
IN-USE/UPDATED = 11

DSNB406I + VIRTUAL BUFFERPOOL TYPE -
CURRENT = PRIMARY
PENDING = PRIMARY

PAGE STEALING METHOD = LRU
DSNB403I + HIPERPOOL SIZE�I� = 20000 BUFFERS, CASTOUT = NO

ALLOCATED�J� = 20000 TO BE DELETED = 0
BACKED BY ES�K� = 13929

DSNB404I + THRESHOLDS -
VP SEQUENTIAL = 80 HP SEQUENTIAL = 80
DEFERRED WRITE = 50 VERTICAL DEFERRED WRT = 10,0
PARALLEL SEQUENTIAL = 0 ASSISTING PARALLEL SEQT= 0

DSNB405I + HIPERSPACE NAME(S) - @011D31A
DSNB409I + INCREMENTAL STATISTICS SINCE 16:16:16 JAN 23, yyyy
DSNB411I + RANDOM GETPAGE = 156 SYNC READ I/O (R) = 11

SEQ. GETPAGE = 132294 SYNC READ I/O (S) =�L� 0
DMTH HIT = 0

DSNB412I + SEQUENTIAL PREFETCH -
REQUESTS = 8253 PREFETCH I/O�M� = 103
PAGES READ�N� = 633

DSNB413I + LIST PREFETCH -
REQUESTS = 0 PREFETCH I/O = 0
PAGES READ = 0

DSNB414I + DYNAMIC PREFETCH -
REQUESTS = 0 PREFETCH I/O = 0
PAGES READ = 0

DSNB415I + PREFETCH DISABLED -
NO BUFFER = 0 NO READ ENGINE = 0

DSNB420I + SYS PAGE UPDATES = 137857 SYS PAGES WRITTEN = 63338
ASYNC WRITE I/O = 2141 SYNC WRITE I/O = 2

DSNB421I + DWT HIT = 135 VERTICAL DWT HIT = 226
NO WRITE ENGINE = 2

DSNB430I + HIPERPOOL ACTIVITY (NOT USING ASYNCHRONOUS
DATA MOVER FACILITY) -
SYNC HP READS�O�= 327 SYNC HP WRITES = 0
ASYNC HP READS = 0 ASYNC HP WRITES = 0
READ FAILURES = 0 WRITE FAILURES = 0

DSNB431I + HIPERPOOL ACTIVITY (USING ASYNCHRONOUS
DATA MOVER FACILITY) -

�Q�
HP READS�P� = 35177 HP WRITES = 35657
READ FAILURES = 0 WRITE FAILURES =�R� 0

DSNB440I + PARALLEL ACTIVITY -
PARALLEL REQUEST = 0 DEGRADED PARALLEL= 0

DSN9022I + DSNB1CMD '+DISPLAY BPOOL' NORMAL COMPLETION

Figure 63. Sample output from the DISPLAY BUFFERPOOL command. This output shows
how the buffer pool statistics changed after the ALTER BUFFERPOOL command was issued.

566 Administration Guide

v The value for SYNC READ I/O (�L�), which was 326 before the ALTER
BUFFERPOOL command was issued, has decreased significantly.

v The values for PREFETCH I/O (�M�) and PAGES READ(�N�) have decreased
significantly because most of the requested pages are in the hiperpool, resulting
in fewer pages that need to be fetched from disk through sequential prefetch.

v SYNC HP READS (�O�) corresponds to the SYNC READ I/O (S) (�A�) value in
Figure 62 on page 564.

v HP READS (�P�) shows the number of times data was read from the hiperpool
into the virtual buffer pool.

v HP WRITES (�Q�) shows the number of times data was written to the hiperpool
from the virtual buffer pool.

To obtain buffer pool information on a specific data set, you can use the LSTATS
option of the DISPLAY BUFFERPOOL command. For example, you can use the
LSTATS option to:

v Provide page count statistics for a certain index. With this information, you could
determine whether a query used the index in question, and perhaps drop the
index if it was not used.

v Monitor the response times on a particular data set. If you determine that I/O
contention is occurring, you could redistribute the data sets across your available
disks.

This same information is available with IFCID 0199 (statistics class 8).

For more information on the ALTER BUFFERPOOL or DISPLAY BUFFERPOOL
commands, see Chapter 2 of DB2 Command Reference.

Using DB2 PM to monitor buffer pool statistics
You can find information about the database buffer pools in the statistics report
produced by DB2 PM, as Figure 64 on page 568 shows.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 567

The formula for the buffer pool hit ratio (fields �A� through �E�) is explained in “The
buffer pool hit ratio” on page 560

Increase the virtual buffer pool size or reduce the workload if:

v Sequential prefetch is inhibited. PREF.DISABLED-NO BUFFER (�F�) shows how
many times sequential prefetch is disabled because the sequential prefetch
threshold (90% of the pages in the buffer pool are unavailable) has been
reached.

v You detect poor update efficiency. You can determine update efficiency by
checking the values in both of the following fields:
– BUFF.UPDATES/PAGES WRITTEN (�H�)
– PAGES WRITTEN PER WRITE I/O (�J�)

In evaluating the values you see in these fields, keep in mind that there are no
absolute acceptable or unacceptable values. Each installation’s workload is a
special case. To assess the update efficiency of your system, monitor for overall
trends rather than for absolute high values for these ratios.

TOT4K READ OPERATIONS QUANTITY TOT4K WRITE OPERATIONS QUANTITY
--------------------------- -------- --------------------------- --------
BPOOL HIT RATIO (%)�A� 73.12 BUFFER UPDATES 220.4K

PAGES WRITTEN 35169.00
GETPAGE REQUEST 1869.7K BUFF.UPDATES/PAGES WRITTEN �H� 6.27
GETPAGE REQUEST-SEQUENTIAL 1378.5K
GETPAGE REQUEST-RANDOM 491.2K SYNCHRONOUS WRITES �I�

ASYNCHRONOUS WRITES 5084.00
SYNCHRONOUS READS �B� 54187.00
SYNCHRON. READS-SEQUENTIAL 35994.00 PAGES WRITTEN PER WRITE I/O �J� 5.78
SYNCHRON. READS-RANDOM 18193.00

HORIZ.DEF.WRITE THRESHOLD 2.00
GETPAGE PER SYN.READ-RANDOM 27.00 VERTI.DEF.WRITE THRESHOLD 0.00

DM THRESHOLD �K� 0.00
SEQUENTIAL PREFETCH REQUEST 41800.00 WRITE ENGINE NOT AVAILABLE �L� 0.00
SEQUENTIAL PREFETCH READS 14473.00
PAGES READ VIA SEQ.PREFETCH �C�444.0K SYNC.HPOOL WRITE 0.00
S.PRF.PAGES READ/S.PRF.READ 30.68 ASYNC.HPOOL WRITE 5967.00

HPOOL WRITE FAILED 0.00
LIST PREFETCH REQUESTS 9046.00 ASYN.DA.MOVER HPOOL WRITE-S 523.2K
LIST PREFETCH READS 2263.00 ASYN.DA.MOVER HPOOL WRITE-F 0.00
PAGES READ VIA LST PREFETCH�D�3046.00
L.PRF.PAGES READ/L.PRF.READ 1.35 PAGE-INS REQUIRED FOR WRITE 45.00

DYNAMIC PREFETCH REQUESTED 6680.00
DYNAMIC PREFETCH READS 142.00
PAGES READ VIA DYN.PREFETCH�E�1333.00
D.PRF.PAGES READ/D.PRF.READ 9.39

PREF.DISABLED-NO BUFFER �F� 0.00
PREF.DISABLED-NO READ ENG �G� 0.00

SYNC.HPOOL READ 7194.00
ASYNC.HPOOL READ 1278.00
HPOOL READ FAILED 0.00
ASYN.DA.MOVER HPOOL READ-S 58983.00
ASYN.DA.MOVER HPOOL READ-F 0.00

PAGE-INS REQUIRED FOR READ 460.4K

Figure 64. DB2 PM database buffer pool statistics (modified)

568 Administration Guide

The following factors impact buffer updates per pages written and pages written
per write I/O:
– Sequential nature of updates
– Number of rows per page
– Row update frequency

For example, a batch program that processes a table in skip sequential mode
with a high row update frequency in a dedicated environment can achieve very
good update efficiency. In contrast, update efficiency tends to be lower for
transaction processing applications, because transaction processing tends to be
random.

The following factors affect the ratio of pages written per write I/O:

– Checkpoint frequency. The CHECKPOINT FREQ field on panel DSNTIPN
specifies the number of consecutive log records written between DB2 system
checkpoints. At checkpoint time, I/Os are scheduled to write all updated pages
on the deferred write queue to disk. If system checkpoints occur too
frequently, the deferred write queue does not grow large enough to achieve a
high ratio of pages written per write I/O.

– Frequency of active log switch. DB2 takes a system checkpoint each time the
active log is switched. If the active log data sets are too small, checkpoints
occur often, which prevents the deferred write queue from growing large
enough to achieve a high ratio of pages written per write I/O. For
recommendations on active log data set size, see “Log capacity” on page 602.

– Buffer pool size. The deferred write thresholds (VDWQT and DWQT) are a
function of buffer pool size. If the buffer pool size is decreased, these
thresholds are reached more frequently, causing I/Os to be scheduled more
often to write some of the pages on the deferred write queue to disk. This
prevents the deferred write queue from growing large enough to achieve a
high ratio of pages written per write I/O.

– Number of data sets, and the spread of updated pages across them. The
maximum number of pages written per write I/O is 32, subject to a limiting
scope of 150 pages (roughly one cylinder). For example, if your application
updates page 2 and page 149 in a series of pages, the two changed pages
could potentially be written with one write I/O. But if your application updates
page 2 and page 155 within a series of pages, writing the two changed pages
would require two write I/Os because of the 150-page limit. Updated pages
are placed in a deferred write queue based on the data set. For batch
processing it is possible to achieve a high ratio of pages written per write I/O,
but for transaction processing the ratio is typically lower.

For LOAD, REORG, and RECOVER, the maximum number of pages written
per write I/O is 64, and there is no limiting scope.

v SYNCHRONOUS WRITES (�I�) is a high value. This field counts the number of
immediate writes. However, immediate writes are not the only type of
synchronous write; thus, it is difficult to provide a monitoring value for the number
of immediate writes.

Ignore SYNCHRONOUS WRITES when DM THRESHOLD is zero.

v DM THRESHOLD (�K�) is reached. This field shows how many times a page was
immediately released because the data management threshold was reached. The
quantity listed for this field should be zero.

Also note the following fields:

v WRITE ENGINE NOT AVAILABLE (�L�)

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 569

This field records the number of times that asynchronous writes were deferred
because DB2 reached its maximum number of concurrent writes. You cannot
change this maximum value. This field has a nonzero value occasionally.

v PREF.DISABLED-NO READ ENG (�G�)

This field records the number of times that a sequential prefetch was not
performed because the maximum number of concurrent sequential prefetches
was reached. Instead, normal reads were done. You cannot change this
maximum value.

Tuning the EDM pool
During the installation process, DSNTINST CLIST calculates the size of the EDM
pool. The EDM pool contains:

v Database descriptors (DBDs)

v Skeleton cursor tables (SKCTs)

v Cursor tables (CTs), or copies of the SKCTs

v Skeleton package tables (SKPTs)

v Package tables (PTs), or copies of the SKPTs

v An authorization cache block for each plan, excluding plans that you created
specifying CACHESIZE(0)

v Skeletons of dynamic SQL if your installation has YES for the CACHE DYNAMIC
SQL field of installation panel DSNTIP4

If you have YES for the CACHE DYNAMIC SQL and have a size specified for the
DATASPACE, the skeletons are kept in the DATASPACE and some internal
structures are kept in the EDM pool. See “Allied thread allocation” on page 620 for
information on how SKCTs, CTs, and DBDs are handled.

You can check the calculated size of the EDM pool on panel DSNTIPC. Refer to
DB2 Installation Guide for more information on specifying the size of the EDM pool.

For data sharing, you might need to increase the EDM pool storage estimate. For
more information, see Chapter 2 of DB2 Data Sharing: Planning and Administration.

Because of an internal process that changes the size of plans initially bound in one
release and then are rebound in a later release, you should carefully monitor the
size of the EDM pool and increase its size, if necessary. For information about how
to estimate the size of the EDM pool, see DB2 Installation Guide.

EDM pool space handling
When pages are needed for the EDM pool, any pages that are available are
allocated first. If the available pages do not provide enough space to satisfy the
request, pages are “stolen” from an inactive SKCT, SKPT, DBD, or dynamic SQL
skeleton. If there is still not enough space, an SQL error code is sent to the
application program.

You should design the EDM pool to contain:

v The CTs, PTs, and DBDs in use

v The SKCTs for the most frequently used applications

v The SKPTs for the most frequently used applications

v The DBDs referred to by these applications

v The cache blocks for your plans that have caches

570 Administration Guide

v The skeletons of the most frequently used dynamic SQL statements, if your
system has enabled the dynamic statement cache

By designing the EDM pool this way, you can avoid allocation I/Os, which can
represent a significant part of the total number of I/Os for a transaction. You can
also reduce the processing time necessary to check whether users attempting to
execute a plan are authorized to do so.

An EDM pool that is too small causes:

v Increased I/O activity in DSNDB01.SCT02, DSNDB01.SPT01, and
DSNDB01.DBD01.

v Increased response times, due to loading the SKCTs, SKPTs, and DBDs. If
caching of dynamic SQL is used and the needed SQL statement is not in the
EDM pool, that statement has to be prepared again.

v Fewer threads used concurrently, due to a lack of storage.

Implications for database design
When you design your databases, be aware that a very large number of objects in
your database means a larger DBD for that database. And when you drop objects,
storage is not automatically reclaimed in that DBD, which can mean that DB2 must
take more locks for the DBD. To reclaim storage in the DBD, use the MODIFY
utility, as described in Part 2 of DB2 Utility Guide and Reference.

Large DBDs can cause problems when not enough contiguous space is available to
load them into the EDM pool. You can store large DBDs in 32K pieces to avoid
loading problems. Large DBDs created in a release of DB2 prior to Version 6 will
not be stored in 32K pieces until a DDL causes the DBD to be written out.

Monitoring and tuning the EDM pool
The DB2 statistics record provides information on the EDM pool. Figure 65 on
page 572 shows how DB2 PM presents this information in the statistics report.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 571

The important values to monitor are:

Efficiency of the pool: You can measure the efficiency of the EDM pool by using
the following ratios:

DBD HIT RATIO (%) �C�
CT HIT RATIO (%) �D�
PT HIT RATIO (%) �E�

These ratios for the EDM pool depend upon your location’s work load. In most DB2
subsystems, a value of 5 or more is acceptable. This means that at least 80% of
the requests were satisfied without I/O.

The number of free pages is shown in FREE PAGES (�B�) in Figure 65. If this value
is more than 20% of PAGES IN EDM POOL (�A�) during peak periods, the EDM
pool size is probably too large. In this case, you can reduce its size without
affecting the efficiency ratios significantly.

EDM pool hit ratio for cached dynamic SQL: If you have caching turned on for
dynamic SQL, the EDM pool statistics have information that can help you determine

EDM POOL QUANTITY
--------------------------- --------
PAGES IN EDM POOL �A� 2500.00

HELD BY DBDS 245.00
HELD BY CTS 24.00
HELD BY SKCTS 12.00
HELD BY SKPTS 0.00
HELD BY PTS 0.00
FREE PAGES �B� 1917.96

% PAGES IN USE 11.64
% NON STEAL. PAGES IN USE 0.14

FAILS DUE TO POOL FULL 0.00

DBD REQUESTS 135.18
DBD NOT IN EDM POOL 0.00
DBD HIT RATIO (%) �C� N/C
CT REQUESTS 1.42
CT NOT IN EDM POOL 0.00
CT HIT RATIO (%) �D� N/C
PT REQUESTS 0.00
PT NOT IN EDM POOL 0.00
PT HIT RATIO (%) �E� N/C

PAGES FOR DYN SQL CACHE 10.82
PAGES IN DATASPACE 0.00
FREE PAGES IN DATASPACE 0.00
FAILS DUE TO DATASPACE FULL 0.00

DYNAMIC SQL STMT QUANTITY
--------------------------- --------
PREPARE REQUESTS �F� 4912.42

FULL PREPARES �G� 10.89
SHORT PREPARES 0.00

GLOBAL CACHE HIT RATIO (%) �H� 1.00

IMPLICIT PREPARES 0.00
STMT INVALID (MAXKEEPD) 0.00
STMT INVALID (DDL) 0.00
LOCAL CACHE HIT RATIO (%) 1.00

Figure 65. EDM pool utilization in the DB2 PM statistics report

572 Administration Guide

how successful your applications are at finding statements in the cache. See
mapping macro DSNDQISE for descriptions of these fields.

PREPARE REQUESTS (�F�) in Figure 65 records the number of requests to search
the cache. FULL PREPARES (�G�) records the number of times that a statement
was inserted into the cache, which can be interpreted as the number of times a
statement was not found in the cache. To determine how often the dynamic
statement was used from the cache, check the value in GLOBAL CACHE HIT
RATIO (�H�). The value is calculated with the following formula:
(PREPARE REQUESTS − FULL PREPARES) ⁄ PREPARE REQUESTS = hit ratio

EDM pool space utilization and performance: For smaller EDM pools, space
utilization or fragmentation is normally more critical than for larger EDM pools. For
larger EDM pools, performance is normally more critical. DB2 emphasizes
performance and uses less optimum EDM storage allocation when the EDM pool
size exceeds 40 megabytes. For systems with large EDM pools that are greater
than 40 megabytes to continue to use optimum EDM storage allocation at the cost
of performance, you can set the keyword EDMBFIT in the DSNTIJUZ job to YES.
The EDMBFIT keyword adjusts the search algorithm on systems with EDM pools
that are larger than 40 megabytes. The default NO tells DB2 to use a first-fit
algorithm while YES tells DB2 to use a better-fit algorithm. YES is a better choice
when EDMPOOL full conditions occur for even a very large EDM pool or the
number of current threads is not very high for an EDM pool size that exceeds 40
megabytes.

Tips for managing EDM pool storage
Here are guidelines for helping keep EDM pool storage under control.

Use packages
By using multiple packages you can increase the effectiveness of EDM pool storage
management by having smaller objects in the pool.

Use RELEASE(COMMIT) when appropriate
Using the bind option RELEASE(COMMIT) for infrequently used packages and
plans can cause objects to be removed from the EDM pool sooner.

Release thread storage
If your EDM pool storage grows continually, consider having DB2 periodically free
unused thread storage. To do this, specify YES for CONTRACT THREAD STG on
installation panel DSNTIPE. This option can affect performance and is best used
when your system has many long-running threads and your EDM storage is
constrained.

Understand the impact of using DEGREE(ANY)
A plan or package that is bound with DEGREE(ANY) can require 50 to 70% more
storage for the CTs and PTs in the EDM pool than one bound with DEGREE(1). If
you change a plan or package to DEGREE(ANY), check the change in the column
AVGSIZE in SYSPLAN or SYSPACKAGE to determine the increase required.

Put dynamic statement cache in a data space
When you use dynamic statement caching, the EDM storage that is used to contain
cached dynamic statements is moved to a data space by default. (Field EDMPOOL
DATA SPACE SIZE on installation panel DSNTIPC specifies the amount of storage
that is moved; if a value is specified in this field, DB2 uses a calculated value.)
However, as explained under “Advantages of data spaces” on page 553, the use of
a data space is recommended only if you are constrained on storage in ssnmDBM1
or have a processor with an operating system that supports more than 2 GB of real

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 573

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

storage. To prevent a data space from being used, set field EDMPOOL DATA
SPACE SIZE to zero. If the use of a data space is appropriate and you want to
change the amount of EDM storage that is moved there, set field EDMPOOL DATA
SPACE SIZE to the desired value.

Increasing RID pool size
The RID pool is used for all record identifier (RID) processing. It is used for
enforcing unique keys while updating multiple rows. and for sorting RIDs during the
following operations:

List prefetch, including single index list prefetch

Access via multiple indexes

Hybrid joins

To favor the selection and efficient completion of those access paths, increase the
maximum RID pool size. However, if there is not enough RID pool storage, it is
possible that the statement might revert to a table space scan.

A RID pool size of 0 disables those access paths. If you specify a RID pool size of
0, plans or packages that were previously bound with a non-zero RID pool size
might experience significant performance degradation. Rebind any plans or
packages that include SQL statements that use RID processing.

The default RID pool size is 4 MB. You can override this value on panel DSNTIPC.

To determine if a transaction used the RID pool, see the RID Pool Processing
section of the DB2 PM accounting trace record.

The RID pool, which all concurrent work shares, is limited to a maximum of 1000
MB. The RID pool is created at system initialization, but no space is allocated until
RID storage is needed. It is then allocated above the 16 MB line in 16 KB blocks as
needed, until the maximum size you specified on installation panel DSNTIPC is
reached.

The general formula for computing RID pool size is:
Number of concurrent RID processing activities ×

average number of RIDs × 2 × 5 bytes per RID

For example, three concurrent RID processing activities, with an average of 4000
RIDs each, would require 120 KB of storage, because:
3 × 4000 × 2 × 5 = 120KB

Whether your SQL statements that use RID processing complete efficiently or not
depends on other concurrent work using the RID pool.

Controlling sort pool size and sort processing
Sort is invoked when a cursor is opened for a SELECT statement that requires
sorting. The maximum size of the sort work area allocated for each concurrent sort
user depends on the value you specified for the SORT POOL SIZE field on
installation panel DSNTIPC. The default value is 1 MB.

574 Administration Guide

|
|
|
|

Estimating the maximum size of the sort pool
You can change the maximum size of the sort pool by using the installation panels
in UPDATE mode. A rough formula for determining the maximum size is as follows:
16000 × (12 + sort key length + sort data length + 4 (if hardware sort))

For sort key length and sort data length, use values that represent the maximum
values for the queries you run. To determine these values, refer to fields
QW0096KL (key length) and QW0096DL (data length) in IFCID 0096, as mapped
by macro DSNDQW01. You can also determine these values from an SQL activity
trace.

If a column is in the ORDER BY clause that is not in the select clause, that column
should be included in the sort data length and the sort key length as shown in the
following example:
SELECT C1, C2, C3
FROM tablex
ORDER BY C1, C4;

If C1, C2, C3, and C4 are each 10 bytes in length for an MVS/ESA system, you
could estimate the sort pool size as follows:
16000 × (12 + 4 + 20 + (10 + 10 + 10 + 10)) =1216000 bytes

where: 16000 = maximum number of sort nodes
12 = size (in bytes) of each node
4 = number of bytes added for each node if

sort facility hardware used
20 = sort key length (ORDER BY C1, C4)

10+10+10+10 = sort data length (each column is 10 bytes in length)

Understanding how sort work files are allocated
The sort begins with the input phase when ordered sets of rows are written to work
files. At the end of the input phase, when all the rows have been sorted and
inserted into the work files, the work files are merged together, if necessary, into
one work file containing the sorted data. The merge phase is skipped if there is only
one work file at the end of the input phase. In some cases, intermediate merging
might be needed if the maximum number of sort work files has been allocated.

The work files used in sort are logical work files, which reside in work file table
spaces in your work file database (which is DSNDB07 in a non data-sharing
environment). DB2 uses the buffer pool when writing to the logical work file. The
number of work files that can be used for sorting is limited only by the buffer pool
size when you have the sort assist hardware.

If you do not have the sort hardware, up to 140 logical work files can be allocated
per sort, and up to 255 work files can be allocated per user.

It is possible for a sort to complete in the buffer pool without I/Os. This is the ideal
situation, but it might be unlikely, especially if the amount of data being sorted is
large. The sort row size is actually made up of the columns being sorted (the sort
key length) and the columns the user selects (the sort data length). Having a very
large virtual pool for sort activity can help avoid disk I/Os—consider using data
spaces if your DB2 subsystem runs on a z900 server. (See “Advantages of data
spaces” on page 553 for more details.)

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 575

|
|
|
|

When your application needs to sort data, the work files are allocated on a least
recently used basis for a particular sort. For example, if five logical work files
(LWFs) are to be used in the sort, and the installation has three work file table
spaces (WFTSs) allocated, then:
v LWF 1 would be on WFTS 1.
v LWF 2 would be on WFTS 2.
v LWF 3 would be on WFTS 3.
v LWF 4 would be on WFTS 1.
v LWF 5 would be on WFTS 2.

To support large sorts, DB2 can allocate a single logical work file to several physical
work file table spaces.

Improving the performance of sort processing
The following factors affect the performance of DB2 sort processing:

v The larger the sort pool, the more efficient the sort is.

v Minimize I/O contention on the I/O paths to the physical work files. Also, make
sure that physical work files are allocated on different I/O paths and packs to
minimize I/O contention.

v Allocate additional physical work files in excess of the defaults, and put those
work files in their own buffer pool.

Segregating work file activity enables you to better monitor and tune sort
performance. It also allows DB2 to handle sorts more efficiently because these
buffers are available only for sort without interference from other DB2 work.

Applications using created temporary tables use work file space until a COMMIT
or ROLLBACK occurs. (If a cursor is defined WITH HOLD, then the data is held
past the COMMIT.) If sorts are happening concurrently with the temporary table’s
existence, then you probably need more space to handle the additional use of
the work files.

For information about defining additional work file table spaces, refer to “Create
additional work file table spaces” on page 541.

v Applications should only sort those columns that need to be sorted, as these key
fields appear twice in the sort row size. The smaller the sort row size, the more
rows can fit it.

v Because varying-length columns are padded to their maximum length, do not
select VARCHAR columns unless they are required.

Other factors that influence sort performance include the following:

v The better sorted the data is, the more efficient the sort is.

v If the buffer pool deferred write threshold (DWQT) or data set deferred write
threshold (VDWQT) are reached, writes are scheduled. For a large sort using
many logical work files, this is difficult to avoid, even if a very large buffer pool is
specified.

v If I/Os occur in the sorting process, in the merge phase DB2 uses sequential
prefetch to bring pages into the buffer pool with a prefetch quantity of eight
pages. However, if the buffer pool is constrained, then DB2 uses a prefetch
quantity of four pages or less, or disables prefetch entirely because of the
unavailability of enough pages.

v If your DB2 subsystem is running on a processor that has the sort facility
hardware instructions, you will see an improvement in the performance of SQL

576 Administration Guide

|
|
|
|
|

statements that contain any of the following: ORDER BY clause, GROUP BY
clause, CREATE INDEX statement, DISTINCT clause of fullselect, and joins and
queries that use sort.

For any SQL statement that initiates sort activity, the DB2 PM SQL activity reports
provide information on the efficiency of the sort involved.

Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools 577

578 Administration Guide

Chapter 28. Improving resource utilization

When system resources are shared among transactions, end user queries, and
batch programs, it is important to control how those resources are used. You need
to separate data and set priorities carefully. You might choose to emphasize
resource use, performance, concurrency, or data security.

Choose the controls that best match your goals. You may, for example, want to
minimize resource usage, maximize throughput or response time, ensure a certain
level of service to some users, or avoid conflicts between users. Your goal might be
to favor a certain class of users or to achieve the best overall system performance.

The number of I/Os and the I/O elapsed times are also important performance
considerations in a database system. When you design or tune your database, you
should optimize the number of I/Os by using an efficient buffer pool design, and
minimize I/O elapsed times by carefully selecting the placement of the DB2 data
sets.

Many of the things you currently do for a single DB2 to improve response time or
reduce processor consumption also hold true in the data sharing environment.
Thus, most of the information in this chapter holds true for data sharing as well. For
more information about tuning in a data sharing environment, see Chapter 6 of DB2
Data Sharing: Planning and Administration.

This chapter covers the following topics:

v “Controlling resource usage”

v “Resource limit facility (governor)” on page 581

v “Managing the opening and closing of data sets” on page 593

v “Planning the placement of DB2 data sets” on page 597

v “DB2 logging” on page 599

v “Improving disk utilization: space and device utilization” on page 606

v “Improving main storage utilization” on page 609

v “Performance and the storage hierarchy” on page 611

v “MVS performance options for DB2” on page 614

Controlling resource usage
DB2 includes a resource limit facility (governor), which helps control the use of DB2
resources. Other facilities, such as MVS workload management (SRM and WLM),
and the QMF governor, complement the DB2 governor. Because DB2 is integrated
with the operating system and transaction subsystems, control definitions are used
in most cases. This integration simplifies the task of controlling resources for the
user.

Each of the objectives presented in Table 76 on page 580 is matched with a control
facility that you can use to achieve the objective.

© Copyright IBM Corp. 1982, 2001 579

Table 76. Controlling the use of resources

Objective How to accomplish it Where it is described

Prioritize resources MVS workload management “Prioritize resources”, “MVS
performance options for DB2”
on page 614 and “Using
Workload Manager to set
performance objectives” on
page 629

Limit resources for
each job

Time limit on job or step (through
MVS or JCL)

“Limit resources for each job”

Limit resources for
TSO sessions

Time limit for TSO logon “Limit resources for TSO
sessions” on page 581

Limit resources for
IMS and CICS

IMS and CICS controls “Limit resources for IMS and
CICS” on page 581

Limit resources for a
stored procedure

ASUTIME column of
SYSIBM.SYSROUTINES catalog
table.

“Limit resources for a stored
procedure” on page 581

Limit dynamic
statement execution
time

QMF governor and DB2 resource
limit facility

“Resource limit facility
(governor)” on page 581

Reduce locking
contention

DB2 locking parameters, DISPLAY
DB LOCKS, lock trace data,
database design

“Chapter 30. Improving
concurrency” on page 643

Evaluate long-term
resource usage

Accounting trace data, DB2 PM
reports

“DB2 Performance Monitor
(DB2 PM)” on page 1039

Predict resource
consumption

DB2 EXPLAIN statement, Visual
Explain, DB2 Estimator, predictive
governing capability

“Chapter 33. Using EXPLAIN
to improve SQL performance”
on page 789 and “Predictive
governing” on page 589

Control use of
parallelism

DB2 resource limit facility, SET
CURRENT DEGREE statement

“Disabling query parallelism”
on page 854

Prioritize resources
The OS/390 WorkLoad Manager (WLM) controls the execution of DB2 work based
on the priorities that you set. See OS/390 MVS Initialization and Tuning Guide for
more information about setting priorities on work.

In CICS environments, DB2 work is performed in subtasks; therefore, the work is
managed at that level. You can set the priority of the DB2 work relative to the CICS
main task through the resource control table.

In other environments such as batch and TSO, which typically have a single task
requesting DB2 services, the task-level processor dispatching priority is irrelevant.
Access to processor and I/O resources for synchronous portions of the request is
governed solely by OS/390 workload manager.

Limit resources for each job
Because most of the resource usage occurs within the standard job structure, you
can control processor usage by changing the TIME parameter for the job or step.
The time limit applies even when DB2 is sorting the result rows. If the time limit is

580 Administration Guide

exceeded, the job step abends, and any uncommitted work is rolled back. If you
want to control the total amount of resources used, rather than the amount used by
a single query, then use this control.

Refer to the OS/390 MVS JCL User's Guide for more information on setting
resource limits.

Limit resources for TSO sessions
Time limits can apply to either TSO sessions or to batch jobs. Your MVS system
programmer can provide a time parameter on the logon procedure or on a job
statement in the logon preprompt exit. This time limit is for the session, rather than
for an individual query or a single program. If you want to control the amount of
resources used for an entire TSO session, rather than the amount used by a single
query, then use this control.

You can find more information about setting the resource limit for a TSO session in
these manuals:
v OS/390 TSO/E Programming Guide
v OS/390 TSO/E Customization

Limit resources for IMS and CICS
You can use various IMS commands (including PROCLIM, or processing limit) to
limit the resources used by a transaction, a class, a program, a database, or a
subsystem. For more information, see IMS Command Reference.

For a detailed description of performance factors in a CICS system, see CICS/ESA
Performance Guide.

Limit resources for a stored procedure
DB2 stored procedures are especially designed for high volume online transactions.
To establish limits for stored procedures, you can:

v Set a processor limit for each stored procedure, by updating the ASUTIME
column of the SYSIBM.SYSROUTINES catalog table. This limit allows DB2 to
cancel procedures that loop.

v Set a limit for the number of times a procedure can terminate abnormally, by
specifying a value in the MAX ABEND COUNT field on installation panel
DSNTIPX. This limit prevents a problem procedure from overwhelming the
system with abend dump processing.

For information about controlling the amount of storage used by stored procedures
address spaces, see “Controlling address space storage” on page 874.

Resource limit facility (governor)
DB2’s resource limit facility (governor) lets you perform the following activities:

v Set warning and error thresholds by which the governor can inform users (via
your application programs) that a certain processing limit might be exceeded for
a particular dynamic SELECT, INSERT, UPDATE, or DELETE statement. This is
called predictive governing.

v Stop a currently executing dynamic SQL statement (SELECT, INSERT, UPDATE,
or DELETE) that exceeds the processor limit that you have specified for that
statement. This is sometimes called reactive governing, to differentiate its
function from that of predictive governing, a function that is also handled by the

Chapter 28. Improving resource utilization 581

resource limit facility. The resource limit facility does not control static SQL
statements whether or not they are executed locally or remotely.

v Restrict bind and rebind activities to avoid performance impacts on production
data.

v Restrict particular parallelism modes for dynamic queries.

Data sharing: See Chapter 6 of DB2 Data Sharing: Planning and Administration for
information about special considerations for using the resource limit facility in a data
sharing group.

This section includes the following topics:

v “Using resource limit tables (RLSTs)”

v “Governing dynamic queries” on page 587

v “Restricting bind operations” on page 592

v “Restricting parallelism modes” on page 592

Using resource limit tables (RLSTs)
Use one or more resource limit specification tables (RLSTs) to give governing
information to DB2.

If you are a system administrator, you must determine how your location intends to
use the governor and create several local procedures. Establish a procedure for
creating and maintaining your RLSTs, and for establishing limits for any newly
written applications. Develop procedures for console operators, such as switching
RLSTs every day at a certain time.

Creating an RLST
Resource limit specification tables can reside in any database; however, because a
database has some special attributes while the resource limit facility is active, it is
best to put RLSTs in their own database.

When you install DB2, installation job DSNTIJSG creates a database, table space,
table, and descending index for the resource limit specification. You can tailor those
statements. For more information about job DSNTIJSG, see Part 2 of DB2
Installation Guide.

To create a new resource limit specification table, use the following statements, also
included in installation job DSNTIJSG. You must have sufficient authority to define
objects in the DSNRLST database and to specify authid, which is the authorization
ID specified on field RESOURCE AUTHID of installation panel DSNTIPP.

Creating the table: Use the following statement:
CREATE TABLE authid.DSNRLSTxx

(AUTHID CHAR(8) NOT NULL WITH DEFAULT,
PLANNAME CHAR(8) NOT NULL WITH DEFAULT,
ASUTIME INTEGER,
-------3-column format --------
LUNAME CHAR(8) NOT NULL WITH DEFAULT,
-------4-column format --------
RLFFUNC CHAR(1) NOT NULL WITH DEFAULT,
RLFBIND CHAR(1) NOT NULL WITH DEFAULT,
RLFCOLLN CHAR(18) NOT NULL WITH DEFAULT,
RLFPKG CHAR(8) NOT NULL WITH DEFAULT),
-------8-column format --------
RLFASUERR INTEGER,
RLFASUWARN INTEGER,

582 Administration Guide

RLF_CATEGORY_B CHAR(1) NOT NULL WITH DEFAULT)
-------11-column format --------
IN DSNRLST.DSNRLSxx;

The name of the table is authid.DSNRLSTxx, where xx is any 2-character
alphanumeric value, and authid is specified when DB2 is installed. Because the two
characters xx must be entered as part of the START command, they must be
alphanumeric—no special or DBCS characters.

All future column names defined by IBM will appear as RLFxxxxx. To avoid future
naming conflicts, begin your own column names with characters other than RLF.

Creating the index: To create an index for the 11-column format, use the
following SQL:
CREATE UNIQUE INDEX authid.DSNARLxx

ON authid.DSNRLSTxx
(RLFFUNC, AUTHID DESC, PLANNAME DESC,
RLFCOLLN DESC, RLFPKG DESC, LUNAME DESC)
CLUSTER CLOSE NO;

The xx in the index name (DSNARLxx) must match the xx in the table name
(DSNRLSTxx) and it must be a descending index.

Populating the RLST: Use the SQL statements INSERT, UPDATE, and DELETE
to populate the resource limit specification table. The limit that exists when a job
makes its first dynamic SELECT, INSERT, UPDATE, or DELETE statement applies
throughout the life of the job. If you update the resource limit specification table
while a job is executing, that job’s limit does not change; instead, the updates are
effective for all new jobs and for those that have not issued their first dynamic
SELECT, INSERT, UPDATE, or DELETE statement.

To insert, update, or delete from the resource limit specification table, you need only
the usual table privileges on the RLST. No higher authority is required.

Starting and stopping the RLST: Activate any particular RLST by using the DB2
command START RLIMIT ID=xx where xx is the 2-character identifier you specified
on the name DSNRLSTxx. This command gives you the flexibility to use a different
RLST for prime shift than you do for evening shift, as in Figure 66; however, only
one can be active at a time. At installation time, you can specify a default RLST to
be used each time DB2 is restarted. For more information on resource limit facility
subsystem parameters, see Part 2 of DB2 Installation Guide.

Prime shift

SYSIBM.DSNRLST01

AUTHID

BADUSER
ROBYN

PLANNAME

PLANA

ASUTIME

0
100000
300000

50000

LUNAME

LUDBD1
LUDBD1
LUDBD1
LUDBD1

Night shift

SYSIBM.DSNRLST02

AUTHID

BADUSER
ROBYN

PLANNAME

PLANA

ASUTIME

0
NULL
NULL

300000

LUNAME

LUDBD1
LUDBD1
LUDBD1
LUDBD1

Figure 66. Examples of RLST for day and night shifts. During the night shift, AUTHID ROBYN and all PLANA users
from LUDBD1 run without limit.

Chapter 28. Improving resource utilization 583

If the governor is active and you restart it without stopping it, any jobs that are
active continue to use their original limits, and all new jobs use the limits in the new
table.

If you stop the governor while a job is executing, the job runs with no limit, but its
processing time continues to accumulate. If you later restart the governor, the new
limit takes effect for an active job only when the job passes one of several internal
checkpoints. A typical dynamic statement, which builds a result table and fetches
from it, passes those checkpoints at intervals that can range from moments to
hours. As a result, your change to the governor might not stop an active job within
the time you expect.

Use the DB2 command CANCEL THREAD to stop an active job that does not pick
up the new limit when you restart the governor.

Restricted activity on the RLST: While the governor is active, you cannot
execute the following SQL statements on the RLST, or the table space and
database in which the RLST is contained:

v DROP DATABASE

v DROP INDEX

v DROP TABLE

v DROP TABLESPACE

v RENAME TABLE

You cannot stop a database or table space that contains an active RLST; nor can
you start the database or table space with ACCESS(UT).

Descriptions of the RLST columns
Here is a complete description for all RLST columns. In no case will all columns in
a particular row be populated; the columns you must populate depend on what
function is performed by that row (determined by the value in RLFFUNC) and how
narrowly you want to qualify values. For example, you can qualify broadly by
leaving the AUTHID column blank, which means that the row applies to all
authorization IDs. Or, you can qualify very narrowly by specifying a different row for
each authorization ID for which the function applies.

Search order: DB2 tries to find the most exact match when it determines which
row to use for a particular function. The search order depends on which function is
being requested (type of governing, bind operations, or parallelism restrictions). The
search order is described under each of those functions.

AUTHID
The resource specification limits apply to this primary authorization ID. A
blank means that the limit specifications in this row apply to all authorization
IDs for the location that is specified in LUNAME.

PLANNAME
The resource specification limits apply to this plan. If you are specifying a
function that applies to plans (RLFFUNC=blank or '6'), a blank means that
the limit specifications in this row apply to all plans for the location that is
specified in LUNAME. Qualify by plan name only if the dynamic statement
is issued from a DBRM bound in a plan, not a package; otherwise, DB2
does not find this row. If the RLFFUNC column contains a function for
packages ('1,' '2,' or '7'), this column must be blank; if it is not blank, the
row is ignored.

584 Administration Guide

ASUTIME
The number of processor service units allowed for any single dynamic
SELECT, INSERT, UPDATE, or DELETE statement. Use this column for
reactive governing.

Other possible values and their meanings are:

null No limit

0 (zero) or a negative value
No dynamic SELECT, INSERT, UPDATE, or DELETE statements
are permitted.

The governor samples the processing time in service units. Service units
are independent of processor changes. The processing time for a particular
SQL statement varies according to the processor on which it is executed,
but the service units required remains roughly constant. The service units
consumed are not exact between different processors because the
calculations for service units are dependent on measurement averages
performed before new processors are announced. A relative metric is used
so that the RLST values do not need to be modified when processors are
changed. However, in some cases, DB2 workloads can differ from the
measurement averages. In these cases, RLST value changes may be
necessary. For information about how to calculate service units, see
“Calculating service units” on page 591.

LUNAME
The LU name of the location where the request originated. A blank value in
this column represents the local location, not all locations. The value
PUBLIC represents all of the DBMS locations in the network; these
locations do not need to be DB2 subsystems. PUBLIC is the only value for
TCP/IP connections.

RLFFUNC
Specifies how the row is used. The values that have an effect are:

blank The row reactively governs dynamic SELECT, INSERT, UPDATE, or
DELETE statements by plan name.

’1’ The row reactively governs bind operations.

’2’ The row reactively governs dynamic SELECT, INSERT, UPDATE, or
DELETE statements by package or collection name.

’3’ The row disables query I/O parallelism.

’4’ The row disables query CP parallelism.

’5’ The row disables Sysplex query parallelism.

’6’ The row predictively governs dynamic SELECT, INSERT, UPDATE,
or DELETE statements by plan name.

’7’ The row predictively governs dynamic SELECT, INSERT, UPDATE,
or DELETE statements by package or collection name.

All other values are ignored.

RLFBIND
Shows whether bind operations are allowed. An 'N' implies that bind
operations are not allowed. Any other value means that bind operations are
allowed. This column is used only if RLFFUNC is set to '1'.

Chapter 28. Improving resource utilization 585

RLFCOLLN
Specifies a package collection. A blank value in this column means that the
row applies to all package collections from the location that is specified in
LUNAME. Qualify by collection name only if the dynamic statement is
issued from a package; otherwise DB2 does not find this row. If
RLFFUNC=blank, '1,' or '6', then RLFCOLLN must be blank.

RLFPKG
Specifies a package name. A blank value in this column means that the row
applies to all packages from the location that is specified in LUNAME.
Qualify by package name only if the dynamic statement is issued from a
package; otherwise DB2 does not find this row. If RLFFUNC=blank, '1', or
'6', then RLFPKG must be blank.

RLFASUERR
Used for predictive governing (RLFFUNC= '6' or '7'), and only for
statements that are in cost category A. The error threshold number of
system resource manager processor service units allowed for a single
dynamic SELECT, INSERT, UPDATE, or DELETE statement. If the
predicted processor cost (in service units) is greater than the error
threshold, an SQLCODE -495 is returned to the application.

Other possible values and their effects are:

null No error threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, or DELETE statements
receive SQLCODE -495.

RLFASUWARN
Used for predictive governing (RELFFUNC= '6' or '7'), and only for
statements that are in cost category A. The warning threshold number of
processor service units that are allowed for a single dynamic SELECT,
INSERT, UPDATE, or DELETE statement. If the predicted processor cost
(in service units) is greater than the warning threshold, an SQLCODE +495
is returned to the application.

Other possible values and their effects are:

null No warning threshold

0 (zero) or a negative value
All dynamic SELECT, INSERT, UPDATE, or DELETE statements
receive SQLCODE +495.

Important: Make sure the value for RLFASUWARN is less than that for
RLFASUERR. If the warning value is higher, the warning is never reported.
The error takes precedence over the warning.

RLF_CATEGORY_B
Used for predictive governing (RLFFUNC='6' or '7'). Tells the governor the
default action to take when the cost estimate for a given statement falls into
cost category B, which means that the predicted cost is indeterminate and
probably too low. You can tell if a statement is in cost category B by running
EXPLAIN and checking the COST_CATEGORY column of the
DSN_STATEMNT_TABLE.

The acceptable values are:

blank By default, prepare and execute the SQL statement.

586 Administration Guide

Y Prepare and execute the SQL statement.

N Do not prepare or execute the SQL statement. Return SQLCODE
-495 to the application.

W Complete the prepare, return SQLCODE +495, and allow the
application logic to decide whether to execute the SQL statement or
not.

Governing dynamic queries
You can use two modes of governing to control the amount of system resources
that a dynamic SELECT, INSERT, UPDATE, or DELETE uses. These modes are
called reactive and predictive. You can use either mode or both together.

Specifying reactive governing: Specify either of the following values in the
RLFFUNC column of the RLST:

blank Govern by plan name

’2’ Govern by package name

Any statement that exceeds a limit you set in the RLST terminates with a -905
SQLCODE and a corresponding '57014' SQLSTATE. You can establish a single limit
for all users, different limits for individual users, or both. Limits do not apply to
primary or secondary authorization IDs with installation SYSADM or installation
SYSOPR authority. For queries entering DB2 from a remote site, the local site limits
are used.

Specifying predictive governing: Specify either of the following values in the
RLFFUNC column of the RLST:

’6’ Govern by plan name

’7’ Govern by package name

See “Qualifying rows in the RLST” for more information about how to qualify rows in
the RLST. See “Predictive governing” on page 589 for more information about using
predictive governing.

This section includes the following topics:

v “Qualifying rows in the RLST”

v “Predictive governing” on page 589

v “Combining reactive and predictive governing” on page 590

v “Governing statements from a remote site” on page 591

v “Calculating service units” on page 591

Qualifying rows in the RLST
DB2 tries to find the closest match when determining limits for a particular dynamic
statement. In summary, the search order of matching is as follows:

1. Exact match

2. Authorization ID

3. Plan name, or collection name and package name

4. LU name

5. No row match

Chapter 28. Improving resource utilization 587

Governing by plan or package name: Governing by plan name and package
name are mutually exclusive.

v Plan name

The RLF governs the DBRMs in the MEMBER list specified on the BIND PLAN
command. The RLFFUNC, RLFCOLLN, and RLFPKG columns must contain
blanks. For example:

Table 77. Qualifying rows by plan name

RLFFUNC AUTHID PLANNAME LUNAME ASUTIME

(blank) JOE PLANA (blank) (null)

(blank) (blank) WSPLAN SAN_JOSE 15000

(blank) (blank) (blank) PUBLIC 10000

The first row in Table 77 shows that when Joe runs PLANA at the local location,
there are no limits for any dynamic statements in that plan.

The second row shows that if anyone runs WSPLAN from SAN_JOSE, the
dynamic statements in that plan are restricted to 15000 SUs each.

The third row is entered as a cap for any unknown authorization IDs or plan
names from any location in the network, including the local location. (An
alternative would be to let the default values on installation panel DSNTIPR and
DSNTIPO serve as caps.)

v Collection and package name

The RLF governs the packages used during the execution of the SQL application
program. PLANNAME must contain blank, and RLFFUNC must contain ’2’.

Table 78. Qualifying rows by collection or package name

RLFFUNC AUTHID RLFCOLLN RLFPKG LUNAME ASUTIME

2 JOE COLL1 (blank) (blank) 40000

2 (blank) (blank) DSNESPCS PUBLIC 15000

The first row in Table 78 shows that when Joe runs any package in collection 1
from the local location, dynamic statements are restricted to 40000 SUs.

The second row indicates that if anyone from any location (including the local
location) runs SPUFI package DSNESPCS, dynamic statements are limited to
15000 SUs.

Governing by LU name: Specify an originating system’s LU name in the
LUNAME column, or, specify PUBLIC for all remote LUs. An LUNAME with a value
other than PUBLIC takes precedence over PUBLIC. If you leave LUNAME blank,
DB2 assumes that you mean the local location only and none of your incoming
distributed requests will qualify. PUBLIC is the only value for TCP/IP connections.

Setting a default for when no row matches: If no row in the RLST matches the
currently executing statement, then DB2 uses the default set on the RLST ACCESS
ERROR field of installation panel DSNTIPO (for queries that originate locally) or
DSNTIPR (for queries that originate remotely). This default applies to reactive
governing only.

For predictive governing, if no row matches, then there is no predictive governing.

588 Administration Guide

Predictive governing
DB2’s predictive governing capability has an advantage over the reactive governor
in that it avoids wasting processing resources by giving you the ability to prevent a
query from running when it appears that it exceeds processing limits. With the
reactive governor, those resources are already used before the query is stopped.

See Figure 67 for an overview of how predictive governing works.

At prepare time for a dynamic SELECT, INSERT UPDATE, or DELETE statement,
DB2 searches the active RLST to determine if the processor cost estimate exceeds
the error or warning threshold that you set in RLFASUWARN and RLFASUERR
columns for that statement. DB2 compares the cost estimate for a statement to the
thresholds you set, and the following actions occur:

v If the cost estimate is in cost category A and the error threshold is exceeded,
DB2 returns a -495 SQLCODE to the application, and the statement is not
prepared or run.

v If the estimate is in cost category A and the warning threshold is exceeded, a
+495 SQLCODE is returned at prepare time. The prepare is completed, and the
application or user decides whether to run the statement.

v If the estimate is in cost category B, DB2 takes the action you specify in the
RLF_CATEGORY_B column; that is, it either prepares and executes the
statement, does not prepare or execute the statement, or returns a warning
SQLCODE, which lets the application decide what to do.

v If the estimate is in cost category B and the warning threshold is exceeded, a
+495 SQLCODE is returned at prepare time. The prepare is completed, and the
application or user decides whether to run the statement.

Example: Table 79 on page 590 is an RLST with two rows that use predictive
governing.

Calculate cost (during PREPARE)

Category A?
Category B

Cost >
RLFASUERR?

Cost >
RLFASUWARN?

-495 SQLCODE

-495 SQLCODE

RLF
CATEGORY

B?

Execute

Y

'Y'

'N'

N

N

N

'W'

Execute

Application decides

Application
decides

+495 SQLCODE

+495 SQLCODE

Y

Y

Figure 67. Processing for predictive governing

Chapter 28. Improving resource utilization 589

Table 79. Predictive governing example

RLFFUNC AUTHID RLFCOLLN RLFPKG RLFASUWARN RLFASUERR RLF_
CATEGORY_
B

7 (blank) COLL1 C1PKG1 900 1500 Y

7 (blank) COLL2 C2PKG1 900 1500 W

The rows in the RLST for this example cause DB2 to act as follows for all dynamic
INSERT, UPDATE, DELETE, and SELECT statements in the packages listed in this
table (C1PKG1 and C2PKG1):

v Statements in cost category A that are predicted to be less than 900 SUs will
execute.

v Statements in cost category A that are predicted to be between 900 and 1500
SUs receive a +495 SQLCODE.

v Statements in cost category A that are predicted to be greater than 1500 SUs
receive SQLCODE -495, and the statement is not executed.

Cost category B: The two rows differ only in how statements in cost category B
are treated. For C1PKG1, the statement will execute. For C2PKG2, the statements
receive a +495 SQLCODE and the user or application must decide whether to
execute the statement.

Combining reactive and predictive governing
A dynamic statement can be governed both before and after the statement is
executed. For example, if the processing cost estimate is in cost category B and
you decide to run the statement, you can use the RLST to terminate the statement
after a certain amount of processor time, the same as it does today. To use both
modes of governing, you need two rows in the RLST as shown in Table 80.

Table 80. Combining reactive and predictive governing

RLFFUNC AUTHID PLANNAME ASUTIME RLFASUWARN RLFASUERR RLF_
CATEGORY_
B

6 USER1 PLANA 0 800 1000 W

(blank) USER1 PLANA 1100 0 0 (blank)

The rows in the RLST for this example cause DB2 to act as follows for a dynamic
SQL statement that runs under PLANA:

Predictive mode:

v If the statement is in COST_CATEGORY A and the cost estimate is greater than
1000 SUs, USER1 receives SQLCODE -495 and the statement is not executed.

v If the statement is in COST_CATEGORY A and the cost estimate is greater than
800 SUs but less than 1000 SUs, USER1 receives SQLCODE +495.

v If the statement is in COST_CATEGORY B, USER1 receives SQLCODE +495.

Reactive mode: In either of the following cases, a statement is limited to 1100
SUs:

v The cost estimate for a statement in COST_CATEGORY A is less than 800 SUs

590 Administration Guide

v The cost estimate for a COST_CATEGORY A is greater than 800 and less than
1000 or is in COST_CATEGORY B and the user chooses to execute the
statement

Governing statements from a remote site
For distributed processing, keep in mind the following guidelines:

v For dynamic statements coming from requesters using DRDA protocols, you
must govern by package name (RLFFUNC=2 or RLFFUNC=7), which means that
PLANNAME must be blank. Specify the originating system’s LU name in the
LUNAME column, or specify PUBLIC for all remote LUs. If you leave LUNAME
blank, DB2 assumes that you mean the local location only and none of your
incoming distributed requests will qualify.

v For dynamic statements coming from requesters using DB2 private protocol, you
must govern by plan name (RLFFUNC=(blank) or ’6’), which means that
RLFCOLLN and RLFPKG must be blank. Specify the originating system’s LU
name in the LU column, or specify PUBLIC for all remote LUs. Again, a value
other than PUBLIC takes precedence over PUBLIC. PLANNAME can be blank or
the name of the plan created at the requester’s location. RLFPKG and
RLFCOLLN must be blank.

v For dynamic statements coming from requesters using TCP/IP, you cannot
specify the LU name. You must use PUBLIC.

v If no row is present in the RLST to govern access from a remote location, the
limit is the default set on the RLST ACCESS ERROR field of installation panel
DSNTIPR.

Calculating service units
The easiest way to get SU times for the ASUTIME, RLFASUWARN, or
RLFASUERR columns is to use the value in the PROCSU column of
DSN_STATEMNT_TABLE as your starting point. You can also get the value from
the IFCID 0022 record.

However, if you don’t have statement table information or if there are adhoc queries
for which you have no information, you can use the following formula to calculate
SU time:
SU time = processor time × service units per second value

The value for service units per second depends on the processor model. You can
find this value for your processor model in OS/390 MVS Initialization and Tuning
Guide, where SRM is discussed.

For example, if processor A is rated at 900 service units per second and you do not
want any single dynamic SQL statement to use more than 10 seconds of processor
time, you could set ASUTIME as follows:
ASUTIME time = 10 seconds × 900 service units/second = 9000 service units

Later, you could upgrade to processor B, which is rated at 1000 service units per
second. If the value you set for ASUTIME remains the same (9000 service units),
your dynamic SQL is only allowed 9 seconds for processing time but an equivalent
number of processor service units:
ASUTIME = 9 seconds × 1000 service units/second = 9000 service units

As this example illustrates, after you establish an ASUTIME (or RLFASUWARN or
RLFASUERR) for your current processor, there is no need to modify it when you
change processors.

Chapter 28. Improving resource utilization 591

Restricting bind operations
To restrict bind operations, use RLF function 1 (RLFFUNC=’1’) and qualify rows by
authorization ID and LU name. The same precedence search order applies:

1. AUTHID and LUNAME match

2. AUTHID matches

3. LUNAME matches

A value of PUBLIC for LUNAME applies to all authorization IDs at all locations,
while a blank LUNAME governs bind operations for IDs at the local location
only.

4. If no entry matches, or if your RLST cannot be read, then the resource limit
facility does not disable bind operations.

Example
Table 81 is an example of an RLST that disables bind operations for all but three
authorization IDs. Notice that BINDER from the local site is able to bind but that
BINDER from San Francisco is not able to bind. Everyone else from all locations,
including the local one, is disabled from doing binds.

Table 81. Restricting bind operations

RLFFUNC AUTHID LUNAME RLFBIND

1 BINDGUY PUBLIC

1 NIGHTBND PUBLIC

1 (blank) PUBLIC N

1 BINDER SANFRAN N

1 BINDER (blank)

Restricting parallelism modes
The RLST lets you disable parallelism for dynamic queries. You might want to do
this if, for example, one mode of parallelism for a particular query performs better or
one mode for a particular query does not perform well. For governing query
parallelism, remember the following guidelines:

v The resource limit facility only governs query parallelism for dynamic queries
when the value of the CURRENT DEGREE special register is 'ANY'.

v To disable all query parallelism for a dynamic query, you need rows in your RLST
to cover all possible modes of parallelism for your system. You need one row
with RLFFUNC='3' and one row with RLFFUNC='4', and, if Sysplex query
parallelism is possible in your system, then you must add an additional row
containing RLFFUNC='5'. If parallelism is disabled for a query, the query runs
sequentially.

v Qualifying by plan or by package are not separate functions as they are for
predictive and reactive governing. If you want to qualify by plan name, the query
must be executed from a plan or DB2 will not find the row. If you want to qualify
by package name, the query must be executed from a package or DB2 will not
find the row.

If you want to qualify rows by authorization ID only, you can leave all three
columns blank: RLFCOLLN, RLFPKG, and RLFPLAN.

v If no entry can be found in your RLST that applies to parallelism, or if your RLST
cannot be read, then the resource limit facility does not disable query parallelism.

592 Administration Guide

Table 82. Example RLST to govern query parallelism

RLFFUNC AUTHID LUNAME RLFCOLLN RLFPKG

3 (blank) PUBLIC blank IOHOG

4 (blank) PUBLIC blank CPUHOG

5 (blank) PUBLIC blank CPUHOG

If the RLST in Table 82 is active, it causes the following effects:

v Disables I/O parallelism for all dynamic queries in IOHOG.

v Disables CP parallelism and Sysplex query parallelism for all dynamic queries in
CPUHOG.

Managing the opening and closing of data sets
Having the needed data sets open and available for use is important for the
performance of transactions. However, the number of open data sets affects the
amount of available storage, and number of open data sets in read-write state
affects restart time. This section describes how DB2 manages this open and close
activity and gives some recommendations about how you can influence this
processing.

This section includes the following topics:

v “Determining the maximum number of open data sets”

v “Understanding the CLOSE YES and CLOSE NO options” on page 595

v “Switching to read-only for infrequently updated page sets” on page 596

Determining the maximum number of open data sets
DB2 defers closing and deallocating the table spaces or indexes until the number of
open data sets reaches one of the following limits:

v The MVS limit for the number of concurrently open data sets.

v 99% of the value that you specified for DSMAX.

When DSMAX is reached, DB2 closes a number of data sets not in use equal to
3% of the value DSMAX. Thus, DSMAX controls not only the limit of open data
sets, but also the number of data sets that are closed when that limit is reached.

How DB2 determines DSMAX
Initially, DB2 calculates DSMAX as follows:

v Let concdb be the number of concurrent databases specified on installation panel
DSNTIPE.

v Let tables be the number of tables per database specified on installation panel
DSNTIPD.

v Let indexes be the number of indexes per table. The installation CLIST sets this
variable to 2.

v Let tblspaces be the number of table spaces per database specified on
installation panel DSNTIPD.

DB2 calculates the number of open data sets with the following formula:
concdb × {(tables × indexes) + tblspaces}

Modifying DSMAX
The formula used by DB2 does not take partitioned or LOB table spaces into
account. Those table spaces can have many data sets. If you have many

Chapter 28. Improving resource utilization 593

|
|
|
|

partitioned table spaces or LOB table spaces, you might need to increase DSMAX.
Don’t forget to consider the data sets for nonpartitioning indexes defined on
partitioned table spaces. If those indexes are defined with a small PIECESIZE,
there could be many data sets. You can modify DSMAX by updating field DSMAX -
MAXIMUM OPEN DATA SETS on installation panel DSNTIPC.

Calculating the size of DSMAX: To reduce the open and close activity of data
sets, it is important to set DSMAX correctly. DSMAX should be larger than the
maximum number of data sets that are open and in use at one time. For the most
accurate count of open data sets, refer to the OPEN/CLOSE ACTIVITY section of
the DB2 PM statistics report. Make sure the statistics trace was run at a peak
period, so that you can obtain the most accurate maximum figure.

To calculate the total number of data sets (rather than the number that are open
during peak periods), you can do the following:

1. To find the number of simple and segmented table spaces and the
accompanying indexes, add the results of the following two queries. These
calculations assume that you have one data set per each simple, segmented, or
LOB table space, and one data set per nonpartitioning index. Adjust accordingly
if you have more than that.

These catalog queries are included in DSNTESP in SDSNSAMP. You can use
them as input to SPUFI.

General-use Programming Interface

Query 1
SELECT CLOSERULE, COUNT(*)
FROM SYSIBM.SYSTABLESPACE
WHERE PARTITIONS < 1
GROUP BY CLOSERULE;

End of General-use Programming Interface

General-use Programming Interface

Query 2
SELECT CLOSERULE, COUNT(*)
FROM SYSIBM.SYSINDEXES T1, SYSIBM.SYSINDEXPART T2
WHERE T1.NAME = T2.IXNAME
AND T1.CREATOR = T2.IXCREATOR
AND T2.PARTITION < 1
GROUP BY CLOSERULE;

End of General-use Programming Interface

2. To find the number of data sets for partitioned table spaces, use the following
query, which returns the number of partitioned table spaces and the number of
partitions.

General-use Programming Interface

Query 3
SELECT CLOSERULE, COUNT(*), SUM(PARTITIONS)
FROM SYSIBM.SYSTABLESPACE
WHERE PARTITIONS > 0
GROUP BY CLOSERULE;

594 Administration Guide

End of General-use Programming Interface

Partitioned table spaces can require up to 254 data sets for the data, 254 data
sets for the partitioning index, and one data set for each piece of the
nonpartitioning index.

3. To find the total number of data sets, add:

v The numbers that result from Query 1 and Query 2

v Two times the sum of the partitions as obtained from Query 3. (This allows
for data partitions and indexes.)

These queries give you the number of CLOSE NO and CLOSE YES data sets.
While CLOSE NO data sets tend to stay open when they have been opened, they
might never be opened. CLOSE YES data sets are open when they are in use, and
they stay open for a period of time after they have been used. For more information
about how the CLOSE value affects when data sets are closed, see “Understanding
the CLOSE YES and CLOSE NO options”.

Recommendations
As with many recommendations in DB2, you must weigh the cost of performance
versus availability when choosing a value for DSMAX. Consider the following:

v For best performance, you should leave enough margin in your specification of
DSMAX so that frequently used data sets can remain open after they are no
longer referenced. If data sets are opened and closed frequently, such as every
few seconds, you can improve performance by increasing DSMAX.

v The number of open data sets on your subsystem that are in read/write state
affects checkpoint costs and log volumes. To control how long data sets stay
open in a read/write state, specify values for the RO SWITCH CHKPTS and RO
SWITCH TIME fields of installation panel DSNTIPN. See “Switching to read-only
for infrequently updated page sets” on page 596 for more information.

v Consider segmented table spaces to reduce the number of data sets.

To reduce open and close activity, you can try reducing the number of data sets
by combining tables into segmented table spaces. This approach is most useful
for development or end-user systems where there are a lot of smaller tables that
can be combined into single table spaces.

Understanding the CLOSE YES and CLOSE NO options

General-use Programming Interface

This section describes how DB2 manages data set closing and how the CLOSE
value for a table space or index affects the process of closing an object’s data sets.
The term page set refers to a table space or index.

The process of closing
DB2 dynamically manages page sets using two levels of page set closure—logical
close and physical close.

Logical close: This occurs when the application has been deallocated from that
page set. This is at either commit or deallocation time, depending on the
RELEASE(COMMIT/DEALLOCATE) option of the BIND command, and is driven by
the use count. When a page set is logically closed, the page set use count is
decremented. When the page set use count is zero, the page set is considered not
in use; this makes it a candidate for physical close.

Chapter 28. Improving resource utilization 595

Physical close: This happens when DB2 closes and deallocates the data sets for
the page set. SYSLGRNX is updated when a table space or an index defined with
COPY YES in read/write mode is physically closed.

When the data sets are closed
As described in “Determining the maximum number of open data sets” on page 593,
the number of open data sets determines when it is necessary to close data sets.
When DB2 closes data sets, all data sets for a particular table space, index, or
partition are closed.

The value you specify for CLOSE determines the order in which page sets are
closed. When the open data set count becomes greater than 99% of DSMAX, DB2
first closes page sets defined with CLOSE YES. The least recently used page sets
are closed first. To do this, DB2 must keep track of page set usage. This least
recently used method is effective; you should have substantially fewer CLOSE NO
data sets than DSMAX.

If the number of open data sets cannot be limited by closing page sets or partitions
defined with CLOSE YES, DB2 then must close page sets or partitions defined with
CLOSE NO. The least recently used CLOSE NO data sets are closed first.

Delaying the physical closure of page sets or partitions until necessary is called
deferred close. Deferred closing of a page set or partition that is no longer being
used means that another application or user can access the table space and
employ the accompanying indexes without DB2 reopening the data sets. Thus,
deferred closing of page sets or partitions can improve your applications’
performance by avoiding I/O processing.

Recommendation: For a table space whose data is continually referenced, in most
cases it does not matter whether it is defined with CLOSE YES or CLOSE NO; the
data sets remain open. This is also true, but less so, for a table space whose data
is not referenced for short periods of time; because DB2 uses deferred close to
manage data sets, the data sets are likely to be open when they are used again.

You could find CLOSE NO appropriate for page sets that contain data you do not
frequently use but is so performance-critical that you cannot afford the delay of
opening the data sets.

If the number of open data sets is a concern, choose CLOSE YES for page sets
with many partitions or data sets.

End of General-use Programming Interface

Switching to read-only for infrequently updated page sets
For both CLOSE YES and CLOSE NO page sets, DB2 automatically converts
infrequently updated page sets or partitions from read-write to read-only state
according to the values you specify in the RO SWITCH CHKPTS and RO SWITCH
TIME fields of installation panel DSNTIPN.

RO SWITCH CHKPTS is the number of consecutive DB2 checkpoints since a page
set or partition was last updated; the default is 5. RO SWITCH TIME is the amount
of elapsed time since a page set or partition was last updated; the default is 10
minutes. If either condition is met, the page set or partition is converted from
read-write to read-only state.

596 Administration Guide

Updating SYSLGRNX: For both CLOSE YES and CLOSE NO page sets,
SYSLGRNX entries are updated when the page set is converted from read-write
state to read-only state. When this conversion occurs for table spaces, the
SYSLGRNX entry is closed and any updated pages are externalized to disk. For
indexes defined as COPY NO, there is no SYSLGRNX entry, but the updated pages
are externalized to disk.

Performance benefits of read-only switching: An infrequently used page set’s
conversion from read-write to read-only state results in the following performance
benefits:

v Improved data recovery performance because SYSLGRNX entries are more
precise, closer to the last update transaction commit point. As a result, the
RECOVER utility has fewer log records to process.

v Minimized logging activities. Log records for page set open, checkpoint, and
close operations are only written for updated page sets or partitions. Log records
are not written for read-only page sets or partitions.

Recommendations for RO SWITCH TIME and RO SWITCH CHKPTS: In most
cases, the default values are adequate. However, if you find that the amount of R/O
switching is causing a performance problem for the updates to SYSLGRNX,
consider increasing the value of RO SWITCH TIME, perhaps to 30 minutes.

Planning the placement of DB2 data sets
To improve performance, plan the placement of DB2 data sets carefully.
Concentrate mainly on data sets for system files (especially the active logs), for the
DB2 catalog and directory, and for user data and indexes. The objective is to
balance I/O activity between different volumes, control units, and channels, which
minimizes the I/O elapsed time and I/O queuing.

This section includes the following topics:

v “Estimating concurrent I/O requests”

v “Crucial DB2 data sets”

v “Changing catalog and directory size and location” on page 598

v “Monitoring I/O activity of data sets” on page 598

v “Work file data sets” on page 599

Estimating concurrent I/O requests
DB2 has a multi-tasking structure in which each user’s request runs under a
different task control block (TCB). In addition, the DB2 system itself has its own
TCBs and SRBs for logging and database writes. When your DB2 system is loaded
with data, you can estimate the maximum number of concurrent I/O requests as:

MAX USERS + 600 sequential prefetches + 300 asynchronous writes

This figure is important when you calculate the number of data paths for your DB2
subsystem.

Crucial DB2 data sets
First, decide which data sets are crucial to DB2’s functioning. To gather this
information, use the I/O reports from the DB2 performance trace. If these reports
are not available, consider these the most important data sets:

Chapter 28. Improving resource utilization 597

For transactions:

v DSNDB01.SCT02 and its index

v DSNDB01.SPT01 and its index

v DSNDB01.DBD01

v DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH table

v DSNDB06.SYSPKAGE

v Active logs

v Most frequently used user table spaces and indexes

For queries:

v DSNDB01.DBD01

v DSNDB06.SYSPLAN table space and indexes on SYSPLANAUTH

v DSNDB06.SYSPKAGE

v DSNDB06.SYSDBASE table space and its indexes

v DSNDB06.SYSVIEWS table space and the index on SYSVTREE

v Work file table spaces

v QMF system table data sets

v Most frequently used user table spaces and indexes

These lists do not include other data sets that are less crucial to DB2’s
performance, such as those that contain program libraries, control blocks, and
formats. Those types of data sets have their own design recommendations. But
check whether the data sets have used secondary allocations. For best
performance, stay within the primary allocations.

Changing catalog and directory size and location
Consider changing the size or location of your DB2 catalog or directory if necessary
for your site. See “Appendix F. Using tools to monitor performance” on page 1029
for guidelines on when to do this.

To change the size or location of DB2 catalog or directory data sets for any one of
the situations listed above, you must run the RECOVER utility on the appropriate
database, or the REORG utility on the appropriate table space. A hierarchy of
recovery dependencies determines the order in which you should try to recover
data sets. This order is discussed in the description of the RECOVER utility in Part
2 of DB2 Utility Guide and Reference.

Monitoring I/O activity of data sets
The best way to monitor your I/O activity against database data sets is through
IFCID 0199 (statistics class 8). This IFCID can give you information such as the
average write I/O delay or the maximum delay for a particular data set over the last
statistics reporting interval. The same information is also reported in the DISPLAY
BUFFERPOOL command with the LSTATS option.

More detailed information is available, with more overhead, with the I/O trace
(performance class 4). If you want information about I/O activity to the log and
BSDS data sets, use performance class 5.

You can also use RMF to monitor data set activity. SMF record type 42-6 provides
activity information and response information for a data set over a time interval.

598 Administration Guide

|
|

These time intervals include the components of I/O time, such as IOS queue time.
Using RMF incurs about the same overhead as statistics class 8.

For information on how to tune your environment to improve I/O performance, see
“Reducing the time needed to perform I/O operations” on page 541 and 530.

Work file data sets
Work file data sets are used for sorting, for materializing views and nested table
expressions, for temporary tables, and for other activities. DB2 does not distinguish
or place priorities on these uses of the work file data sets. Excessive activity from
one type of use can interfere and detract from the performance of others. It is
important to monitor how work files use devices, both in terms of space use and I/O
response times.

More about temporary work file result tables: Part 2 of DB2 Installation Guide
contains information about how to estimate the disk storage required for temporary
work file result tables. The storage is similar to that required for regular tables.
When a temporary work file result table is populated using an INSERT statement, it
uses work file space.

No other process can use the same work file space as that temporary work file
table until the table goes away. The space is reclaimed when the application
process commits or rolls back, or when it is deallocated, depending which
RELEASE option was used when the plan or package was bound.

To best monitor these result tables, keep work files in a separate buffer pool. Use
IFCID 0311 in performance trace class 8 to distinguish these tables from other uses
of the work file.

DB2 logging
DB2 logs changes made to data, and other significant events, as they occur. You
can find background information on the DB2 log in “Chapter 18. Managing the log
and the bootstrap data set” on page 331. When you focus on logging performance
issues, remember that the characteristics of your workload have a direct effect on
log write performance. Long-running batch jobs that commit infrequently have a lot
more data to write at commit than a typical transaction.

Don’t forget to consider the cost of reading the log as well. The cost of reading the
log directly affects how long a restart or a recovery occurs because DB2 must read
the log data before applying the log records back to the table space.

This section includes the following topics:

v “Logging performance issues and recommendations”

v “Log capacity” on page 602

v “Controlling the amount of log data” on page 604

Logging performance issues and recommendations
This section provides background on logging operations. By understanding the
day-to-day activity on the log, you can more effectively pinpoint when problems
occur and better understand how to tune for best performance.

Log writes
Log writes are divided into two categories: synchronous and asynchronous.

Chapter 28. Improving resource utilization 599

|
|

Asynchronous writes: Asynchronous writes are the most common. These
asynchronous writes occur when data is updated. Before- and after-image records
are usually moved to the log output buffer, and control is returned to the application.
However, if no log buffer is available, the application must wait for one to become
available.

Synchronous writes: Synchronous writes usually occur at commit time when an
application has updated data. This write is called 'forcing' the log because the
application must wait for DB2 to force the log buffers to disk before control is
returned to the application. If the log data set is not busy, all log buffers are written
to disk. If the log data set is busy, the requests are queued until it is freed.

Writing to two logs: Dual logging is shown in Figure 68.

If there are two logs (recommended for availability), the write to the first log, in
general, must complete before the write to the second log begins. The first time a
log control interval is written to disk, the write I/Os to the log data sets are
performed in parallel. However, if the same 4 KB log control interval is again written
to disk, then the write I/Os to the log data sets must be done serially to prevent any
possibility of losing log data in case of I/O errors on both copies simultaneously.

Two-phase commit log writes: Because they use two-phase commit, applications
that use the CICS, IMS, and RRS attachment facilities force writes to the log twice,
as shown in Figure 68. The first write forces all the log records of changes to be
written (if they have not been written previously because of the write threshold
being reached). The second write writes a log record that takes the unit of recovery
into an in-commit state.

Recommendations: Recommendations for improving log write performance:

v Choose a large size for OUTPUT BUFFER size: The OUTPUT BUFFER field
of installation panel DSNTIPL lets you specify the size of the output buffer used
for writing active log data sets. The maximum size of this buffer (OUTBUFF) is
400000 KB. Choose as large a size as your system can tolerate to decrease the
number of forced I/O operations that occur because there are no more buffers. A
large size can also reduce the number of wait conditions. A non-zero value for
�D� in Figure 69 on page 601 is an indicator that your output buffer is too small.
Ensure that the size you choose is backed up by real storage to avoid paging to
expanded storage, which can negatively affect performance.

I/O

I/OI/O

I/O

Force
End of Phase 1

Force
Beginning of Phase 2

End of COMMIT

Log 1

Log 2

Waiting for logging

Time line

Waiting for logging

Application

Figure 68. Dual logging during two-phase commit

600 Administration Guide

|
|

v Choose fast devices for log data sets: The devices assigned to the active log
data sets must be fast ones. Because of its very high sequential performance,
ESS is particularly recommended in environments in which the write activity is
high to avoid logging bottlenecks.

v Avoid device contention: Place the copy of the bootstrap data set and, if using
dual active logging, the copy of the active log data sets, on volumes that are
accessible on a path different than that of their primary counterparts.

v Preformat new active log data sets: Whenever you allocate new active log
data sets, preformat them using the DSNJLOGF utility described in Part 3 of DB2
Utility Guide and Reference. This action avoids the overhead of preformatting the
log, which normally occurs at unpredictable times.

Log reads
During a rollback, restart, and database recovery, the performance impact of log
reads is evident. DB2 must read from the log and apply changes to the data on
disk. Every process that requests a log read has an input buffer dedicated to that
process. DB2 searches for log records in the following order:

1. Output buffer

2. Active log data set

3. Archive log data set

If the log records are in the output buffer, DB2 reads the records directly from that
buffer. If the log records are in the active or archive log, DB2 moves those log
records into the input buffer used by the reading process (such as a recovery job or
a rollback).

LOG ACTIVITY QUANTITY /MINUTE /THREAD /COMMIT
--------------------------- -------- ------- ------- -------
READS SATISFIED-OUTPUT BUFF 0.00 0.00 N/C 0.00
READS SATISFIED-OUTP.BUF(%) N/C
READS SATISFIED-ACTIVE LOG 0.00 0.00 N/C 0.00
READS SATISFIED-ACTV.LOG(%) N/C
READS SATISFIED-ARCHIVE LOG 0.00 0.00 N/C 0.00
READS SATISFIED-ARCH.LOG(%) N/C

TAPE VOLUME CONTENTION WAIT 0.00 0.00 N/C 0.00
READ DELAYED-UNAVAIL.RESOUR 0.00 0.00 N/C 0.00
ARCHIVE LOG READ ALLOCATION 0.00 0.00 N/C 0.00
ARCHIVE LOG WRITE ALLOCAT. 0.00 0.00 N/C 0.00
CONTR.INTERV.OFFLOADED-ARCH 0.00 0.00 N/C 0.00
LOOK-AHEAD MOUNT ATTEMPTED 0.00 0.00 N/C 0.00
LOOK-AHEAD MOUNT SUCCESSFUL 0.00 0.00 N/C 0.00

UNAVAILABLE OUTPUT LOG BUFF 0.00 0.00 N/C 0.00
OUTPUT LOG BUFFER PAGED IN 0.00 0.00 N/C 0.00

LOG RECORDS CREATED �A� 969.5K 3229.17 N/C 6.16
LOG CI CREATED �B� 21483.52 71.61 N/C 0.14
LOG WRITE I/O REQ (COPY1&2) 125.3K 417.45 N/C 0.80
LOG CI WRITTEN (COPY1&2) 128.5K 428.08 N/C 0.82
LOG RATE FOR 1 LOG (MB/Sec) N/A 0.84 N/A N/A
LOG WRITE SUSPENDED 314.6K 1047.76 N/C 2.00

Figure 69. Log statistics in the DB2 PM statistics report

Chapter 28. Improving resource utilization 601

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

It is always fastest for DB2 to read the log records from the active log rather than
the archive log. Access to archived information can be delayed for a considerable
length of time if a unit is unavailable or if a volume mount is required (for example,
a tape mount).

Recommendations:

v Archive to disk: If the archive log data set resides on disk, it can be shared by
many log readers. In contrast, an archive on tape cannot be shared among log
readers. Although it is always best to avoid reading archives altogether, if a
process must read the archive, that process is serialized with anyone else who
must read the archive tape volume. For example, every rollback that accesses
the archive log must wait for any previous rollback work that accesses the same
archive tape volume to complete.

v Avoid device contention on the log data sets: Place your active log data sets
on different volumes and I/O paths to avoid I/O contention in periods of high
concurrent log read activity.

When there are multiple concurrent readers of the active log, DB2 can ease
contention by assigning some readers to a second copy of the log. Therefore, for
performance and error recovery, use dual logging and place the active log data
sets on a number of different volumes and I/O paths. Whenever possible, put
data sets within a copy or within different copies on different volumes and I/O
paths. Ensure that no data sets for the first copy of the log are on the same
volume as data sets for the second copy of the log.

Log capacity
The capacity you specify for the active log affects DB2 performance significantly. If
you specify a capacity that is too small, DB2 might need to access data in the
archive log during rollback, restart, and recovery. Accessing an archive takes a
considerable amount of time.

The following subsystem parameters affect the capacity of the active log. In each
case, increasing the value you specify for the parameter increases the capacity of
the active log. See Part 2 of DB2 Installation Guide for more information on
updating the active log parameters. The parameters are:

v The NUMBER OF LOGS field on installation panel DSNTIPL controls the number
of active log data sets you create.

v The ARCHIVE LOG FREQ field on installation panel DSNTIPL is where you
provide an estimate of how often active log data sets are copied to the archive
log.

v The UPDATE RATE field on installation panel DSNTIPL is where you provide an
estimate of how many database changes (inserts, update, and deletes) you
expect per hour.

The DB2 installation CLIST uses UPDATE RATE and ARCHIVE LOG FREQ to
calculate the data set size of each active log data set.

v The CHECKPOINT FREQ field on installation panel DSNTIPN specifies the
number of log records that DB2 writes between checkpoints or the number of
minutes between checkpoints.

This section goes into more detail on the relationships among these parameters
and their effects on operations and performance.

Total capacity and the number of logs
Determining the configuration of your active log data sets is challenging. That is,
you need to have sufficient capacity in the active log to avoid reading the archives,

602 Administration Guide

and you need to consider how that total capacity should be divided. Having too
many or too few active log data sets has ramifications. This information is
summarized in Table 83.

Table 83. The effects of installation options on log data sets. You can modify the size of the
data sets in installation job DSNTIJIN

Value for ARCHIVE
LOG FREQ

Value for NUMBER OF
LOGS Result

Low High Many small data sets. Can cause
operational problems when archiving to
tape. Checkpoints occur too frequently.

High Low Few large data sets. Can result in a
shortage of active log data sets.

Choosing a checkpoint frequency: At least one checkpoint is taken each time
DB2 switches to a new active log data set. If the data sets are too small,
checkpoints occur too frequently. As a result, database writes are not efficient. As a
rule of thumb, provide enough active log space for at least 10 checkpoint intervals.

For estimation purposes, assume that a single checkpoint writes 24 KB (or 6 control
intervals) of data to the log. A checkpoint interval is defined by the number you
specify for checkpoint frequency (the CHECKPOINT FREQ subsystem parameter).
You can specify the interval in terms of the number of log records that are written
between checkpoints or the number of minutes between checkpoints. Avoid taking
more than one checkpoint per minute by raising the CHECKPOINT FREQ value so
that the checkpoint interval becomes at least one minute during peak periods. You
can change CHECKPOINT FREQ dynamically with the SET LOG or SET
SYSPARM command.

Tips on setting the size of active log data sets: You can modify installation job
DSNTIJIN to change the size of your active log data set. Some things to consider:

v When you calculate the size of the active log data set, identify the longest unit of
work in your application programs. For example, if a batch application program
commits only once every 20 minutes, the active log data set should be twice as
large as the update information produced during this period by all of the
application programs that are running.

Allow time for possible operator interventions, I/O errors, and tape drive
shortages if off-loading to tape. DB2 supports up to 20 tape volumes for a single
archive log data set. If your archive log data sets are under the control of
DFSMShsm, also consider the Hierarchical Storage Manager recall time, if the
data set has been migrated by Hierarchical Storage Manager.

For more information on determining and setting the size of your active log data
sets, refer to DB2 Installation Guide.

v When archiving to disk, set the primary space quantity and block size for the
archive log data set so that you can offload the active log data set without forcing
the use of secondary extents in the archive log data set. This action avoids
space abends when writing the archive log data set.

v Make the number of records for the active log be divisible by the blocking factor
of the archive log (disk or tape).

DB2 always writes complete blocks when it creates the archive log copy of the
active log data set. If you make the archive log blocking factor evenly divisible
into the number of active log records, DB2 does not have to pad the archive log

Chapter 28. Improving resource utilization 603

|
|

data set with nulls to fill the block. This action can prevent REPRO errors if you
should ever have to REPRO the archive log back into the active log data set,
such as during disaster recovery.

To determine the blocking factor of the archive log, divide the value specified on
the BLOCK SIZE field of installation panel DSNTIPA by 4096 (that is, BLOCK
SIZE / 4096). Then modify the DSNTIJIN installation job so that the number of
records in the DEFINE CLUSTER field for the active log data set is a multiple of
the blocking factor.

v If you offload to tape, consider adjusting the size of each of your active log data
sets to contain the same amount of space as can be stored on a nearly full tape
volume. This minimizes tape handling and volume mounts and maximizes the
use of the tape resource.

If you change the size of your active log data set to fit on one tape volume,
remember that the bootstrap data set is copied to the tape volume along with the
copy of the active log data set. Therefore, decrease the size of your active log
data set to offset the space required on the archive tape for the bootstrap data
set.

Controlling the amount of log data
Certain processes cause a large amount of information to be logged, requiring a
large amount of log space.

Utilities
The utility operations REORG and LOAD LOG(YES) cause all reorganized or
loaded data to be logged. For example, if a table space contains 200 million rows of
data, this data, along with control information, is logged when this table space is the
object of a REORG utility job. If you use REORG with the DELETE option to
eliminate old data in a table and run CHECK DATA to delete rows that are no
longer valid in dependent tables, you can use LOG(NO) to control log volume.

Recommendation: When populating a table with many records or reorganizing
table spaces or indexes, specify LOG(NO) and take an inline copy or take a full
image copy immediately after the LOAD or REORG.

Specify LOG(YES) when adding less than 1% of the total table space. This creates
additional logging, but eliminates the need for a full image copy.

SQL
The amount of logging performed for applications depends on how much data is
changed. Certain SQL statements are quite powerful, making it easy to modify a
large amount of data with a single statement. These statements include:

v INSERT with a fullselect

v Mass deletes and mass updates (except for deleting all rows for a table in a
segmented table space)

v Data definition statements log an entire database descriptor for which the change
was made. For very large DBDs, this can be a significant amount of logging.

v Modification to a row that contains a LOB column defined as LOG YES.

For nonsegmented table spaces, each of these statements results in the logging of
all database data that change. For example, if a table contains 200 million rows of
data, that data and control information are logged if all of the rows are deleted in a
table using the SQL DELETE statement. No intermediate commit points are taken
during this operation.

604 Administration Guide

For segmented table spaces, a mass delete results in the logging of the data of the
deleted records when any of the following conditions are true:

v The table is the parent table of a referential constraint.

v The table is defined as DATA CAPTURE(CHANGES), which causes additional
information to be logged for certain SQL operations.

v A delete trigger is defined on the table.

Recommendations:

v For mass delete operations, consider using segmented table spaces. If
segmented table spaces are not an option, create one table per table space and
use LOAD REPLACE with no rows in the input data set to empty the entire table
space.

v For inserting a large amount of data, instead of using an SQL INSERT
statement, use the LOAD utility with LOG(NO) and take an inline copy.

v For updates, consider your workload when defining a table’s columns. The
amount of data that is logged for update depends on whether the row contains all
fixed-length columns or not. For fixed-length rows, changes are logged only from
the beginning of the first updated column to the end of the last updated column.

For varying-length rows, data is logged from the first changed byte to the end of
the last updated column. (A varying-length row contains one or more
varying-length columns.)

To determine your workload type, read-intensive or update-intensive, check the
log data rate. Use the formula in “Calculating average log record size” on
page 606 to determine the average log size and divide that by 60 to get the
average number of log bytes written per second.

– If you log less than 1 MB per second, the workload is read-intensive.

– If you log more than 1 MB per second, it is an update-intensive workload.

Table 84 summarizes the recommendations for the type of row and type of
workload you run.

Table 84. Recommendations for database design to reduce log quantities

Row type

Workload

Read-intensive Update-intensive

Fixed-length Keep frequently updated columns
close to each other.

Varying-length Keep varying-length columns at the
end of the row to improve read
performance.

Keep all frequently updated
columns near the end of the row.
However, if only fixed-length
columns will be updated, keep
those columns close to each other
at the beginning of the row.

v If you have many data definition statements (CREATE, ALTER, DROP) for a
single database, issue them within a single unit of work to avoid logging the
changed DBD for each data definition statement. However, be aware that the
DBD is locked until the COMMIT is issued.

v Use LOG NO for any LOBs that require frequent updating and for which the
tradeoff of nonrecoverability of LOB data from the log is acceptable. (You can still
use the RECOVER utility on LOB table spaces to recover control information that
ensures physical consistency of the LOB table space.)

Chapter 28. Improving resource utilization 605

|
|

|

|
|

|

|
|
|

|
|
|
|

Because LOB table spaces defined as LOG NO are nonrecoverable from the
DB2 log, make a recovery plan for that data. For example, if you run batch
updates, be sure to take an image copy after the updates are complete.

Calculating average log record size
One way to determine how much log volume you need is to calculate the average
size of log records written. To do this, you need values from the statistics report
shown in Figure 69 on page 601: the LOG RECORDS CREATED counter (�A�) and
the number of control intervals created in the active log counter (�B�). Use the
following formula:
�B� × 4 KB /�A� = avg size of log record

Improving disk utilization: space and device utilization
To use disk space more efficiently, you can:

v Change your allocation of data sets to keep data sets within primary allocations.
To understand how DB2 extends data sets, see “Allocating and extending data
sets”.

v Manage them with the Hierarchical Storage Management functional component
(DFSMShsm) of DFSMS, as described in “Managing your DB2 data sets with
DFSMShsm™” on page 37.

v Compress your data, as described in “Compressing your data”.

v Choose a page size that gives you good disk use and I/O performance
characteristics, as described in “Choosing a page size” on page 43.

To manage the use of disk, you can use RMF to monitor how your devices are
used. Watch for usage rates that are higher than 30% to 35%, and for disk devices
with high activity rates. Log devices could have usage rates of up to 50% without
having serious performance problems.

Allocating and extending data sets
Primary and secondary allocation sizes are the main factors that affect the amount
of disk space that DB2 uses.

In general, the primary allocation must be large enough to handle the storage
needs that you anticipate. The secondary allocation must be large enough for your
applications to continue operating until the data set is reorganized.

If the secondary allocation space is too small, the data set might have to be
extended more times to satisfy those activities that need a large space.

IFCID 0258 allows you to monitor data set extension activities by providing
information, such as the primary allocation quantity, maximum data set size, high
allocated space before and after extension activity, number of extents before and
after the extend, maximum volumes of a VSAM data set, and number of volumes
before and after the extend. Access IFCID 0258 in Statistics Class 3 (SC03)
through an IFI READA request.

See “Chapter 4. Creating storage groups and managing DB2 data sets” on page 31
for more information about extending data sets.

Compressing your data
You can compress data in a table space or partition by specifying COMPRESS YES
on CREATE TABLESPACE or ALTER TABLESPACE and then running the LOAD or

606 Administration Guide

REORG utility. When you compress data, bit strings that occur frequently are
replaced by shorter strings. Information about the mapping of bit strings to their
replacements is stored in a compression dictionary. Computer processing is
required to compress data before it is stored and to decompress the data when it is
retrieved from storage. In many cases, using the COMPRESS clause can
significantly reduce the amount of disk space needed to store data, but the
compression ratio you achieve depends on the characteristics of your data.

With compressed data, you might see some of the following performance benefits,
depending on the SQL work load and the amount of compression:

v Higher buffer pool hit ratios

v Fewer I/Os

v Fewer getpage operations

As described under “Determining the effectiveness of compression” on page 609,
you can use the DSN1COMP utility to determine how well your data will compress.
Data in a LOB table space or a table space that is defined in a TEMP database (a
table space for declared temporary tables) cannot be compressed.

Deciding whether to compress
Consider these points before compressing data:

v Data row size

DB2 compresses the data of one record at a time. (The prefix of the record is not
compressed.) As row lengths become shorter, compression yields diminishing
returns because 8 bytes of overhead are required to store each record in a data
page. On the other hand, when row lengths are very long, compression of the
data portion of the row may yield little or no reduction in data set size because
DB2 rows cannot span data pages. In the case of very long rows, using a larger
page size can enhance the benefits of compression, especially if the data is
accessed primarily in a sequential mode.

If compressing the record produces a result that is no shorter than the original,
DB2 does not compress the record.

v Table space size

Compression can work very well for large table spaces. With small table spaces,
the size of the compression dictionary (8 KB to 64 KB) can offset the space
savings that compression provides.

v Processing costs

Compressing data can result in a higher processor cost, depending on the SQL
work load. However, if you use IBM’s synchronous data compression hardware,
processor time is significantly less than if you use just the DB2-provided software
simulation or an edit or field procedure to compress the data.

Decompressing a row of data costs significantly less than compressing that same
row. This rule applies regardless of whether the compression uses the
synchronous data compression hardware or the software simulation that is built
into DB2.

The data access path that DB2 uses affects the processor cost for data
compression. In general, the relative overhead of compression is higher for table
space scans and is less costlier for index access.

v I/O costs

When rows are accessed sequentially, fewer I/Os might be required to access
data that is stored in a compressed table space. However, there is a tradeoff
between reduced I/O resource consumption and the extra processor cost for
decoding the data.

Chapter 28. Improving resource utilization 607

– If random I/O is necessary to access the data, the number of I/Os will not
decrease significantly, unless the associated buffer pool is larger than the
table and the other applications require little concurrent buffer pool usage.

– Some types of data compress better than others. Data that contains
hexadecimal characters or strings that occur with high frequency compresses
quite well, while data that contains random byte frequencies might not
compress at all. For example, textual and decimal data tends to compress
well because certain byte strings occur frequently.

v Data patterns

The frequency of patterns in the data determines the compression savings. Data
with many repeated strings (such as state and city names or numbers with
sequences of zeros) results in good compression savings.

v Table space design

Each table space or partition that contains compressed data has a compression
dictionary, which is built by using the LOAD utility with the REPLACE or
RESUME NO options or the REORG TABLESPACE utility. The dictionary
contains a fixed number of entries, usually 4096, and resides with the data. The
dictionary content is based on the data at the time it was built, and does not
change unless the dictionary is rebuilt or recovered, or compression is disabled
with ALTER TABLESPACE.

If you use LOAD to build the compression dictionary, the first n rows loaded in
the table space determine the contents of the dictionary. The value of n is
determined by how much your data can be compressed.

If you have a table space with more than one table and the data used to build
the dictionary comes from only one or a few of those tables, the data
compression might not be optimal for the remaining tables. Therefore, put a table
you want to compress into a table space by itself, or into a table space that only
contains tables with similar kinds of data.

REORG uses a sampling technique to build the dictionary. This technique uses
the first n rows from the table space and then continues to sample rows for the
remainder of the UNLOAD phase. In most cases, this sampling technique
produces a better dictionary than does LOAD, and using REORG might produce
better results for table spaces that contain tables with dissimilar kinds of data.

For more information about using LOAD or REORG to create a compression
dictionary, see Part 2 of DB2 Utility Guide and Reference.

v Existing exit routines

An exit routine is executed before compressing or after decompressing, so you
can use DB2 data compression with your existing exit routines. However, do not
use DB2 data compression in conjunction with DSN8HUFF. (DSN8HUFF is a
sample edit routine that compresses data using the Huffman algorithm, which is
provided with DB2). This adds little additional compression at the cost of
significant extra CPU processing.

v Logging effects

If a data row is compressed, all data that is logged because of SQL changes to
that data is compressed. Thus, you can expect less logging for insertions and
deletions; the amount of logging for updates varies. Applications that are
sensitive to log-related resources can experience some benefit with compressed
data.

External routines that read the DB2 log cannot interpret compressed data without
access to the compression dictionary that was in effect when the data was
compressed. However, using IFCID 306, you can cause DB2 to write log records

608 Administration Guide

of compressed data in decompressed format. You can retrieve those
decompressed records by using the IFI function READS.

v Distributed data

DB2 decompresses data before transmitting it to VTAM.

Tuning recommendation
There are some cases where using compressed data results in an increase in the
number of getpages, lock requests, and synchronous read I/Os. Sometimes,
updated compressed rows cannot fit in the home page, and they must be stored in
the overflow page. This can cause additional getpage and lock requests. If a page
contains compressed fixed-length rows with no free space, an updated row
probably has to be stored in the overflow page.

To avoid the potential problem of more getpage and lock requests, add more free
space within the page. Start with 10 percent additional free space and adjust
further, as needed. If, for example, 10 percent free space was used without
compression, then start with 20 percent free space with compression for most
cases. This recommendation is especially important for data that is heavily updated.

Determining the effectiveness of compression
Before compressing data, you can use the DSN1COMP stand-alone utility to
estimate how well it will compress. After data is compressed, use compression
reports and catalog statistics to determine how effectively it was compressed.

v DSN1COMP

Use stand-alone utility DSN1COMP to find out how much space it will save and
how much processing it will require to compress your data. Run DSN1COMP on
a data set that contains a table space, a table space partition, or an image copy.
DSN1COMP generates a report of compression statistics but does not compress
the data. For instructions on using DSN1COMP, see Part 3 of DB2 Utility Guide
and Reference.

v Compression reports

Examine the compression reports after you use REORG or LOAD to build the
compression dictionary and compress the data. Both utilities issue a report
message (DSNU234I or DSNU244I). This report message gives information
about how well the data is compressed and how much space is saved. (REORG
with the KEEPDICTIONARY option does not produce the report.)

v Catalog statistics

In addition to the compression reports, these columns in the catalog tables
contain information about data compression:

– PAGESAVE column of the SYSIBM.SYSTABLEPART tells you the percentage
of pages that are saved by compressing the data.

– PCTROWCOMP columns of SYSIBM.SYSTABLES and
SYSIBM.SYSTABSTATS tells you the percentage of the rows that were
compressed in the table or partition the last time RUNSTATS was run. Use
the RUNSTATS utility to update these catalog columns.

Improving main storage utilization
This section provides specific information for both real and virtual storage tuning.
With DB2, the amount of real storage often needs to be close to the amount of
virtual storage. For a general overview of some factors relating to virtual storage
planning, see Part 2 of DB2 Installation Guide.

Use the techniques listed below to reduce your use of virtual storage.

Chapter 28. Improving resource utilization 609

Minimize storage needed for locks: You can save main storage by using the
LOCKSIZE TABLESPACE option on the CREATE TABLESPACE statements for
large tables, which affects concurrency. This option is most practical when
concurrent read activity without a write intent, or a single write process, is used.

You can use LOCKSIZE PAGE or LOCKSIZE ROW more efficiently when you
commit your data more frequently or when you use cursor stability with
CURRENTDATA NO. For more information on specifying LOCKSIZE TABLESPACE,
see “Monitoring of DB2 locking” on page 700.

Reduce the number of open data sets: You can reduce the number of open data
sets by:
v Including multiple tables in segmented table spaces
v Using fewer indexes
v Reducing the value you use for DSMAX

Reduce the unnecessary use of DB2 sort: DB2 sort uses buffer pool 0 and
database DSNDB07, which holds the temporary work files. However, to obtain more
specific information for tuning, you can assign the temporary work file table spaces
in DSNDB07 to another buffer pool. Using DB2 sort increases the load on the
processor, on virtual and real storage, and on I/O devices. Hints for reducing the
need to sort are described in “Overview of index access” on page 806.

Provide for type 2 inactive threads: As described in “Using type 2 inactive
threads” on page 626, distributed threads that are allowed to go inactive use less
storage than active threads. Type 2 inactive threads take even less storage than
type 1 inactive threads. Type 1 inactive threads are around 70 KB of storage in the
ssnmDBM1 address space per thread. Type 2 inactive threads, on the other hand,
are only about 8 KB per thread, and that storage is in the DDF address space
(ssnmDIST) rather than in ssnmDBM1.

Ensure ECSA size is adequate: The extended common service area (ECSA) is a
system area that DB2 shares with other programs. Shortage of ECSA at the system
level leads to use of the common service area.

DB2 places some load modules and data into the common service area. These
modules require primary addressability to any address space, including the
application’s address space. Some control blocks are obtained from common
storage and require global addressability. For more information, see Part 2 of DB2
Installation Guide.

Ensure EDM pool space is being used efficiently: Monitor your use of EDM pool
storage using DB2 statistics and see “Tips for managing EDM pool storage” on
page 573, which includes information about using data spaces for EDM pool
storage used for dynamic statement caching.

Use less buffer pool storage: Using fewer and smaller virtual buffer pools reduces
the amount of central storage space DB2 requires. Virtual buffer pool size can also
affect the number of I/O operations performed; the smaller the virtual buffer pool,
the more I/O operations needed. Also, some SQL operations, such as joins, can
create a result row that will not fit on a 4 KB page. For information about this, see
“Make buffer pools large enough for the workload” on page 540.

See “Buffer pools and data spaces” on page 552 for information about putting virtual
buffer pools in data spaces, another way to reduce storage in DB2’s address space.

610 Administration Guide

Control maximum number of LE tokens: When a function is executed and needs
to access storage used by LE/370, it obtains an LE token from the pool. LE/370
provides a common runtime environment for programming languages. A token is
taken each time one of the following functions is executed:

v Log functions (LOG, LN, LOG10)

v Trigonometry functions (ACOS, ASIN, ATAN, ATANH, ATAN2, COS, COSH, SIN,
SINH, TAN, and TANH)

v EXP

v POWER

v RAND

v ADD_MONTHS

v LAST_DAY

v NEXT_DAY

v ROUND_TIMESTAMP

v TRUNC_TIMESTAMP

v LOWER

v TRANSLATE

v UPPER

Upon completion of the call to LE, the token is returned to the pool. The MAXIMUM
LE TOKENS (LEMAX) field on the DSNTIP7 panel controls the maximum number of
LE tokens that are active at any time. The LEMAX default value is 20 with a range
of 0 to 50. If the value is zero, no tokens are available. If a large number of
functions are executing at the same time, all the token may be used. Thus, if a
statement needs a token and none is available, the statement is queued. If the
statistics trace QLENTRDY is very large, indicating a delay for an application
because an LE token is not immediately available, the LEMAX may be too small. If
the statistics trace QLETIMEW for cumulative time spent is very large, the LEMAX
may be too small. Increase the number of tokens for the MAXIMUM LE TOKENS
field on the DSNTIP7 panel. For more information on DSNTIP7, see Part 2 of DB2
Installation Guide.

Performance and the storage hierarchy
To meet the diverse needs of application data, a range of storage options is
available, each with different access speeds, capacities, and costs per megabyte.
This broad selection of storage alternatives supports requirements for enhanced
performance and expanded online storage options, providing more options in terms
of performance and price.

The levels in the DB2 storage hierarchy include central storage and expanded
storage, storage controller cache, disk, and auxiliary storage.

Real storage
Real storage refers to the processor storage where program instructions reside
while they are executing. Data in DB2’s virtual buffer pools resides in virtual
storage, which is backed by real, expanded, and auxiliary storage. The maximum
amount of real storage that one DB2 subsystem can use is about 2 GB.

Chapter 28. Improving resource utilization 611

|

|

|

|

|

Expanded storage
Expanded storage is optional high-speed processor storage. Data is moved in 4 KB
blocks between central storage and expanded storage. Data cannot be transferred
to or from expanded storage without passing through central storage.

If your DB2 subsystem is on a processor that has the Fast Sync data mover facility
(such as an S/390 G5/G6 enterprise server) or that has the Asynchronous Data
Mover hardware feature installed, DB2 can use up to 8 GB of expanded storage by
creating hiperpools. For more information on how DB2 uses hiperpools, see “Buffer
pools and hiperpools” on page 550.

Storage controller cache
DB2 can take advantage of storage controller cache. To understand how DB2 can
use storage controller cache, you need to understand how that cache storage fits
into the storage hierarchy. DB2’s primary “cache” is the central storage and
expanded storage in the processor used for such things as virtual buffer pools, the
EDM pool and the sort pool.

DB2’s large capacity for buffers in processor storage and its write avoidance and
sequential access techniques allow applications to avoid a substantial amount of
read and write I/O, combining single accesses into sequential access, so that the
disk devices are used more effectively.

The storage controller cache acts as a secondary buffer. It is not useful to store the
same data in processor storage and the storage controller cache. To be useful, the
storage controller cache must be significantly larger than the buffers in real storage,
store different data, or provide another performance advantage.

In addition, using the cache enables other performance and availability
enhancements, such as DASD Fast Write, concurrent copy, and dual copy. You can
use DFSMS to provide dynamic management of the cache storage.

The amount of storage controller cache
The amount of cache to use for DB2 depends primarily on the relative importance
of price and performance. It is not often effective to have large memory resources
for both DB2 buffers and storage controller cache. If you decide to concentrate on
the storage controller cache for performance gains, then use the maximum
available cache size. If the cache is substantially larger than the DB2 buffer pools,
DB2 can make effective use of the cache to reduce I/O times for random I/O.

What constitutes a large cache is based on your configuration. Table 85 lists some
configurations and their recommended large cache sizes:

Table 85. Sample configurations and cache sizes

Configuration ″Large″ cache size

RAMAC 2 of 180 GB 1 GB

RVA T82 of 420 GB 2 GB

RSA 3 of 1258 GB 4 GB

ESS of 8 GB 16 GB

For sequential I/O, the improvement the cache provides is generally small.
However, DB2 data compression and parallel I/O streams can contribute to faster
I/O times. Compressing data reduces the amount of data that is sent across the

612 Administration Guide

|
|
|
|

||

channel, through the controller, and onto disk. Compression also allows you to
reduce buffer pool size without reducing buffer pool hit ratios.

Sequential cache installation option
DB2 provides the option to use or bypass the cache for sequential prefetch. On
panel DSNTIPE, you can specify whether to use the sequential mode to read
cached data from a 3990 Model or Model 6, ESS, or RVA cache. If you specify
SEQ, DB2 sequential prefetch (including sequential detection) uses the cache. If
you specify BYPASS, which is the default, DB2 sequential prefetch bypasses the
cache. List prefetch always bypasses the cache.

Recommendation: If you have current disk devices with good cache sizes (greater
than 1GB), specify SEQ for the cache option on panel DSNTIPE, especially if the
units are ESS or RVA. This option can improve performance because data can be
transferred between disk and cache by the cylinder rather than by the track.

Sort work files: Sort work files can have a large number of concurrent processes
that can overload a storage controller with a small cache and thereby degrade
system performance. For instance, one large sort could use 100 sequential files,
needing 60 MB of storage. Unless the cache sizes are large, you might need to
specify BYPASS or use DFSMS controls to prevent the use of the cache during sort
processing. Separate units for sort work can give better performance.

Utility cache option
If you are using storage controller caching, and you have the nonpartitioning
indexes on RAMAC family disks, consider specifying YES on the UTILITY CACHE
OPTION field of installation panel DSNTIPE. This allows DB2 to use sequential
prestaging when reading data from disk for the following utilities.

v LOAD PART integer RESUME

v REORG TABLESPACE PART

For these utilities, prefetch reads remain in the cache longer, thus possibly
improving performance of subsequent writes.

Parallel Access Volumes (PAV)
The Parallel Access Volumes (PAV) feature allows multiple concurrent I/Os on a
given device when the I/O requests originate from the same system. PAVs make it
possible to store multiple partitions on the same volume with almost no loss of
performance. In older disk subsystems, if more than one partition is placed on the
same volume (intentionally or otherwise), attempts to read the partitions result in
contention, which shows up as I/O subsystem queue (IOSQ) time. Without PAVs,
poor placement of a single data set can almost double the elapsed time of a
parallel query.

Multiple Allegiance
The Multiple Allegiance feature allows multiple active concurrent I/Os on a given
device when the I/O requests originate from different systems. PAVs and multiple
allegiance dramatically improve I/O performance for parallel work on the same
volume by nearly eliminating IOSQ or PEND time and drastically lowering elapsed
time for transactions and queries.

Fast Write
The Fast Write function can be very effective for synchronous writes. It is
recommended especially for use with the DB2 log, improving response times for the
log writes that occur at the end of each transaction. For example, for dual logging,
response times for the four log writes that occur at commit can be reduced from
approximately 50 milliseconds total to approximately 10 milliseconds. In addition,

Chapter 28. Improving resource utilization 613

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

the shorter lock duration required for logging pages of data can provide improved
concurrency. Storing adequate amounts of log data on disk is crucial for restart and
recovery performance.

MVS performance options for DB2
You can set MVS performance options for DB2 in two ways:

v Using system resources manager (SRM). This is called “compatibility mode”

v Using goal mode

In goal mode, MVS’s workload manager controls the dispatching priority based
on goals you supply. Workload manager raises or lowers the priority as needed
to meet the specified goal. A major objective of goal mode is to remove the need
to fine tune the exact priorities of every piece of work in the system and to focus
instead on business objectives.

There are three kinds of goals: response-time, velocity, and discretionary.
Response times are appropriate goals for “end user” applications, such as QMF
users running under the TSO address space goals, or users of CICS using the
CICS work load goals. You can also set response time goals for distributed
users, as described in “Using Workload Manager to set performance objectives”
on page 629. For more information about setting response time goals for users,
see OS/390 MVS Planning: Workload Management.

For DB2 address spaces, velocity goals are more appropriate. A small amount of
the work done in DB2 is counted toward this velocity goal (most of it applies to the
end user goal described above). Velocity goals indicate how quickly you want your
work to be processed.

This section describes ways to set DB2 address space performance options:
v “Using SRM (compatibility mode)”
v “Determining MVS workload management velocity goals” on page 616
v “How DB2 assigns I/O priorities” on page 618

Using SRM (compatibility mode)
You can run in compatibility mode with few or no changes to existing SRM values.

Setting address space priority
Review the following SRM options when installing or tuning a DB2 subsystem (see
also DB2 Installation Guide). Be aware that there are special considerations for
where you place the address space for the distributed data facility. Generally, set
MVS processor dispatching priorities in the following order, from highest to lowest
priority:

1. VTAM and TCP/IP address spaces

2. IRLM address space (IRLMPROC)

Attention: It is extremely important that IRLM’s priority be higher than DB2’s.
Serious performance problems can occur if it is not.

3. IMS control address space or CICS terminal owning region

4. DB2 system services address space (ssnmMSTR), DB2 database services
address space (ssnmDBM1), distributed data facility address space
(ssnmDIST), and WLM-established stored procedures address spaces

The DB2 system services and database services address spaces appear near
the top of the list because, though work done under DB2 is usually a small part
of the total, delaying it can delay other users. For example, writes to the log
might become a bottleneck if not performed with high priority.

614 Administration Guide

|

|
|
|

|
|
|
|

MVS considers the distributed data facility address space and WLM-established
stored procedure addresses spaces to be service address spaces. As such, to
enable new work to be scheduled in them, they need the same priority as the
DB2 system services and database services address spaces. For the DDF
address space, after the work is classified into an enclave, priorities or goals
can be set for the work.

For the WLM-established address spaces, when the work is started, it runs at
the same priority of the stored procedure caller (IMS or CICS, for example).

5. Distributed work (SUBSYS=DDF)

Ensure that you create the SUBSYS=DDF service class definitions. Otherwise,
the distributed work loads will default to the priority of the DDF address space
(ssnmDIST), which will be too high.

6. DB2-established stored procedures address space (ssnmSPAS)

Because stored procedures that run in ssnmSPAS run at the priority of
ssnmSPAS, set the priority of ssnmSPAS similarly to that of the calling
application.

7. CICS application owning regions

8. IMS dependent regions or TSO address spaces

I/O scheduling priority
DB2 can schedule read and write I/O’s according to an application’s address space
or enclave as described in “How DB2 assigns I/O priorities” on page 618. To enable
this feature, you must do both of the following:

v Enable MVS I/O priority scheduling by specifying IOQ=PRTY in the IEAIPSxx
member of SYS1.PARMLIB.

v Use the IOP parameter to set the I/O priority for the address space of a
performance group. The IOP parameter is in the IEAIPSxx member of
SYS1.PARMLIB.

If you specify IOQ=PRTY, it is critical that you specify the proper IOP value for each
address space. If IOQ=PRTY is specified and the IOP parameter is not set for an
address space, the I/O scheduling priority for that address space defaults to the
address space’s processor scheduling priority; in other words, the IOP value
defaults to the dispatching priority (DP) value.

If you do not specify values for the IOP parameter, CICS and IMS regions might
have lower I/O scheduling priority than DB2’s ssnmDBM1 address space. An I/O
scheduling priority lower than ssnmDBM1’s I/O scheduling priority could result in
inconsistent I/O response time for transaction applications.

For more information on the IOP and IOQ parameters, see OS/390 MVS
Initialization and Tuning Reference.

Recommendations:

v To improve response time for transaction processing, set the CICS- and
IMS-dependent IOP values higher than DB2’s ssnmDBM1 address space. To
favor transaction processing over query users, set the IOP values for CICS and
IMS MPP regions higher than those for TSO and batch users.

v Ensure that ssnmDBM1 has a higher priority than TSO and batch to help ensure
that deferred write I/Os are scheduled before prefetch read I/Os, thereby
preventing a shortage of available buffers.

Chapter 28. Improving resource utilization 615

|
|
|
|
|
|

|
|

|

|
|
|

|

|
|
|

Storage isolation
DB2 allows page faults to occur without significantly affecting overall system
performance. Therefore, DB2 storage does not need to be protected with the SRM
storage isolation. However, if other subsystems use SRM storage isolation, provide
it also for the DB2 and IRLM address spaces.

Workload control
Performance groups and performance-group periods can be used effectively to
prioritize the TSO, batch, QMF, and distributed work loads. This way, long queries
can be dispatched with lower priority and can be swapped-out, allowing short
queries to complete. However, this approach causes DB2 resources used by these
low priority queries to be held for more time. Watch for lock contention and lock
suspensions caused by swapped-out users; perhaps your work load can be
managed to avoid resource usage swap-outs.

Determining MVS workload management velocity goals
To determine velocity goals, you can start by determining an address space’s
velocity while you are running your systems in compatibility mode. You can define a
report performance group for the address space, or group of address spaces, in
which you are interested, and review the RMF Monitor I workload activity report,
which shows the execution velocity of that report performance group in compatibility
mode. Gather this information during peak work times.

As a starting point, you can then define a service goal with the same value for the
work defined in a service class.

This section tells you how to set velocity goals in two situations: 1) an interim
situation in which you have not yet determined response time goals for applications
or in which you do not have the prerequisite software to do so, and 2) you have
determined response time goals and are ready to fully implement MVS WLM goal
mode.

Recommendations for an interim situation
If your installation is not yet managing CICS, IMS, or DDF transactions according to
MVS WLM response time goals, or if you have not yet gotten the required release
levels to do so, consider the following service class definitions.

v The MVS workload manager default service class for started tasks (SYSSTC) for
the following address spaces:

VTAM and TCP/IP address spaces

IRLM address space (IRLMPROC)

Attention: The VTAM, TCP/IP, and IRLM address spaces must always have
a higher dispatching priority than all of the DBMS address spaces, their
attached address spaces, and their subordinate address spaces. Do not allow
WLM to reduce the priority of VTAM, TCP/IP, or IRLM to or below that of the
other DBMS address spaces.

v A service class with a medium to high velocity goal with a name you define, such
as PRODCNTL, for the following:

IMS control address space

DB2 (all address spaces, except for the DB2-established stored procedures
address space).

Set any work done by distributed tasks (SUBSYS=DDF) in a lower service
class than the service class for these DB2 address spaces, which should be
in the same service class.

CICS terminal-owning regions

616 Administration Guide

|

|
|
|
|
|

|
|
|

v A service class with a lower velocity or importance than PRODCNTL with a name
you define, such as PRODREGN, for the following:

IMS-dependent regions

CICS application-owning regions

The DB2-established stored procedures address space (ssnmSPAS) and any
WLM-established stored procedures address spaces

v Set the DB2 distributed data address space (ssnmDIST) in the same service
class as ssnmDBM1.

Recommendations for full implementation of MVS WLM
If your installation is managing CICS, IMS, or DDF transactions according to MVS
WLM response time goals and if you are set up to use WLM-established stored
procedures address spaces, use following service classes for velocity:

v The default SYSSTC service class for:

VTAM and TCP/IP address spaces

IRLM address space (IRLMPROC)

Attention: The VTAM, TCP/IP, and IRLM address spaces must always have
a higher dispatching priority than all of the DBMS address spaces, their
attached address spaces, and their subordinate address spaces. Do not allow
WLM to reduce the priority of VTAM, TCP/IP, or IRLM to or below that of the
other DBMS address spaces.

v A high velocity goal for a service class whose name you define, such as
PRODREGN, for the following:

DB2 (all address spaces, except for the DB2-established stored procedures
address space)

CICS (all region types)

IMS (all region types except BMPs)

The velocity goals for CICS and IMS regions are only important during startup or
restart. After transactions begin running, WLM ignores the CICS or IMS velocity
goals and assigns priorities based on the goals of the transactions that are running
in the regions. A high velocity goal is good for ensuring that startups and restarts
are performed as quickly as possible.

Similarly, when you set response time goals for DDF threads or for stored
procedures in a WLM-established address space, the only work controlled by the
DDF or stored procedure velocity goals are the DB2 service tasks (work performed
for DB2 that cannot be attributed to a single user). The user work runs under
separate goals for the enclave, as described in “Using Workload Manager to set
performance objectives” on page 629.

For the DB2-established stored procedures address space, use a velocity goal that
reflects the requirements of your distributed work. Depending on what type of
distributed work you do, this might be equal to or lower than the goal for
PRODREGN.

IMS BMPs can be treated along with other batch jobs or given a velocity goal,
depending on what business and functional requirements you have at your site.

Other considerations
v IRLM must be eligible for the SYSSTC service class. To make IRLM eligible for

SYSSTC, do not classify IRLM to one of your own service classes.

Chapter 28. Improving resource utilization 617

|

|
|
|

v If you need to change a goal, changing the velocity by 2 or 3% is not noticeable.
Velocity goals don’t translate directly to priority. Higher velocity tends to have
higher priority, but this is not always the case.

v WLM in goal mode can assign I/O priority (based on I/O delays) separately from
processor priority. In compatibility mode, WLM assigns I/O priority based on what
you specify in the IPS PARMLIB member. Goal mode does not use the IPS
PARMLIB member.

See “How DB2 assigns I/O priorities” for information about how read and write
I/O priorities are determined.

v MVS workload management dynamically manages storage isolation to meet the
goals you set.

How DB2 assigns I/O priorities
DB2 informs MVS about which address space’s priority is to be associated with a
particular I/O request. Then MVS workload manager handles the management of
the request from there, as described earlier in this section. Table 86 and Table 87
describe to which enclave or address space DB2 associates I/O read and write
requests.

Table 86. How read I/O priority is determined

Request type Synchronous reads Prefetch reads

Local Application’s address space Application’s address space

DDF or Sysplex
query
parallelism
(assistant only)

Enclave priority Enclave priority

Table 87. How write I/O priority is determined

Request type Synchronous writes Deferred writes

Local Application’s address space ssnmDBM1 address space

DDF DDF address space ssnmDBM1 address priority

618 Administration Guide

Chapter 29. Managing DB2 threads

Threads are an important DB2 resource. When you install DB2, you choose a
maximum number of active allied and database access threads that can be
allocated concurrently. Choosing a good number for this is important to keep
applications from queuing and to provide good response time.

When writing an application, you should know when threads are created and
terminated and when they can be reused, because thread allocation can be a
significant part of the cost in a short transaction.

This chapter provides a general introduction on how DB2 uses threads. It includes
the following sections:

v A discussion of how to choose the maximum number of concurrent threads, in
“Setting thread limits”

v A description of the steps in creating and terminating an allied thread, in “Allied
thread allocation” on page 620

v An explanation of the differences between allied threads and database access
threads (DBATs) and a description of how DBATs are created, including how they
become active or inactive and how to set performance goals for individual DDF
threads, under “Database access threads” on page 624

v Design options for reducing thread allocations and improving performance
generally, under “CICS design options” on page 633, “IMS design options” on
page 639, and “TSO design options” on page 640

Setting thread limits
You set the limit of the number of allied and database access threads that can be
allocated concurrently using fields MAX USERS and MAX REMOTE ACTIVE on
installation panel DSNTIPE. The combined maximum allowed for MAX USERS and
MAX REMOTE ACTIVE is 2000.

Set these values to provide good response time without wasting resources, such as
virtual and real storage. The value you specify depends upon your machine size,
your work load, and other factors. When specifying values for these fields, consider
the following:

v Fewer threads than needed under utilize the processor and cause queuing for
threads.

v More threads than needed do not improve the response time. They require more
real storage for the additional threads and might cause more paging and, hence,
performance degradation.

If real storage is the limiting factor, set MAX USERS and MAX REMOTE ACTIVE
according to the available storage. For more information on storage, refer to Part 2
of DB2 Installation Guide.

Thread limits for TSO and call attachment: For the TSO and call attachment
facilities, you limit the number of threads indirectly by choosing values for the MAX
TSO CONNECT and MAX BATCH CONNECT fields of installation panel DSNTIPE.
These values limit the number of connections to DB2. The number of threads and
connections allowed affects the amount of work that DB2 can process.

© Copyright IBM Corp. 1982, 2001 619

Allied thread allocation
This section describes at a high level the steps in allocating an allied thread, and
some of the factors related to the performance of those steps. This section does not
explain how a database access thread is allocated. For more information on
database access threads, see “Database access threads” on page 624.

Step 1: Thread creation
During thread creation with ACQUIRE(ALLOCATE), the resources needed to
execute the application are acquired. During thread creation with ACQUIRE(USE),
only the thread is created.

The following list shows the main steps in thread creation.

1. Check the maximum number of threads.

DB2 checks whether the maximum number of active threads, specified as MAX
USERS for local threads or MAX REMOTE ACTIVE for remote threads on the
Storage Sizes panel (DSNTIPE) when DB2 was installed, has been exceeded. If
it has been exceeded, the request waits. The wait for threads is not traced, but
the number of requests queued is provided in the performance trace record with
IFCID 0073.

2. Check the plan authorization.

The authorization ID for an application plan is checked in the SYSPLANAUTH
catalog table (IFCID 0015). If this check fails, the table SYSUSERAUTH is
checked for the SYSADM special privilege.

3. For an application plan, load the control structures associated with the plan.

The control block for an application plan is divided into sections. The header
and directory contain control information; SQL sections contain SQL statements
from the application. A copy of the plan’s control structure is made for each
thread executing the plan. Only the header and directory are loaded when the
thread is created.

4. Load the descriptors necessary to process the plan.

Some of the control structures describe the DB2 table spaces, tables, and
indexes used by the application. If ACQUIRE(ALLOCATE) is used, all the
descriptors referred to in the plan are loaded now. If the plan is bound with
ACQUIRE(USE), they are loaded when SQL statements are executed.

Performance factors in thread creation
The most relevant factors from a system performance point of view are:

Thread reuse: Thread creation is a significant cost for small and medium
transactions. When execution of a transaction is terminated, the thread can
sometimes be reused by another transaction using the same plan. For more
information on thread reuse, see “Providing for thread reuse” on page 623.

ACQUIRE option of BIND: ACQUIRE(ALLOCATE) causes all the resources
referred to in the application to be allocated when the thread is created.
ACQUIRE(USE) allocates the resources only when an SQL statement is about to
be executed. In general, ACQUIRE(USE) is recommended. However, if most of the
SQL is used in every execution of the transaction, ACQUIRE(ALLOCATE) is
cheaper.

EDM pool size: The size of the EDM pool influences the number of I/Os needed to
load the control structures necessary to process the plan or package. To avoid a

620 Administration Guide

large number of allocation I/Os, the EDM pool must be large enough to contain the
structures that are needed. See “Tuning the EDM pool” on page 570 for more
information.

Step 2: Resource allocation
Some of the structures necessary to process the statement are stored in 4 KB
pages. If they are not already present, those are read into database buffer pool BP0
and copied from there into the EDM pool. If the plan was bound with
ACQUIRE(USE), it acquires resources when the statement is about to execute.

1. Load the control structures necessary to process the SQL section.

If it is not already in the EDM pool, DB2 loads the control structure’s section
corresponding to this SQL statement.

2. Load structures necessary to process statement.

Load any structures referred to by this SQL statement that are not already in the
EDM pool.

3. Allocate and open data sets.

When the control structure is loaded, DB2 locks the resources used.

Performance factors in resource allocation
The most important factors are the same as that for thread creation.

Step 3: SQL statement execution
If the statement resides in a package, the directory and header of the package’s
control structure is loaded at the time of the first execution of a statement in the
package. The control structure for the package is allocated at statement execution
time. This is contrasted with the control structures for plans bound with
ACQUIRE(ALLOCATE), which are allocated at thread creation time. The header of
the plan’s control structures is allocated at thread creation time regardless of
ACQUIRE(ALLOCATE) or ACQUIRE(USE).

When the package is allocated, DB2 checks authorization using the package
authorization cache or the SYSPACKAUTH catalog table. DB2 checks to see that
the plan owner has execute authority on the package. On the first execution, the
information is not in the cache; therefore, the catalog is used. Thereafter, the cache
is used. For more information about package authorization caching, see “Caching
authorization IDs for best performance” on page 120.

Authorization checking also occurs at statement execution time.

A summary record, produced at the end of the statement (IFCID 0058), contains
information about each scan performed. Included in the record is the following
information:
v The number of rows updated
v The number of rows processed
v The number of rows deleted
v The number of rows examined
v The number of pages requested through a getpage operation
v The number of rows evaluated during the first stage (stage 1) of processing
v The number of rows evaluated during the second stage (stage 2) of processing
v The number of getpage requests issued to enforce referential constraints
v The number of rows deleted or set null to enforce referential constraints
v The number of rows inserted

Chapter 29. Managing DB2 threads 621

Performance factors in SQL statement execution
From a system performance perspective, the most important factor is the size of the
database buffer pool. If the buffer pool is large enough, some index and data pages
can remain there and can be accessed again without an additional I/O operation.
For more information on buffer pools, see “Chapter 27. Tuning DB2 buffer, EDM,
RID, and sort pools” on page 549.

Step 4: Commit and thread termination
Commit processing can occur many times while a thread is active. For example, an
application program running under the control structure of the thread could issue an
explicit COMMIT or SYNCPOINT several times during its execution. When the
application program or the thread terminates, an implicit COMMIT or SYNCPOINT
is issued.

When a COMMIT or SYNCPOINT is issued from an IMS application running with
DB2, the two-phase commit process begins if DB2 resources have been changed
since the last commit point. In a CICS or RRSAF application, the two-phase commit
process begins only if DB2 resources have changed and a non-DB2 resource has
changed within the same commit scope. For more information on the commit
process for IMS and CICS applications, see “Consistency with other systems” on
page 359.

The significant events that show up in a performance trace of a commit and thread
termination operation are as follows:

1. Commit phase 1

In commit phase 1 (IFCID 0084), DB2 writes an end of phase 1 record to the
log (IFCIDs 0032 and 0033). There are two I/Os, one to each active log data set
(IFCIDs 0038 and 0039).

2. Commit phase 2

In commit phase 2 (IFCID 0070), DB2 writes a beginning of phase 2 record to
the log. Again, the trace shows two I/Os. Page and row locks (except those
protecting the current position of cursors declared with the WITH HOLD option),
held to a commit point, are released. An unlock (IFCID 0021) with a requested
token of zeros frees any lock for the specified duration. A summary lock record
(IFCID 0020) is produced, which gives the maximum number of page locks held
and the number of lock escalations. DB2 writes an end of phase 2 record to the
log.

If RELEASE(COMMIT) is used, the following events also occur:

v Table space locks are released.

v All the storage used by the thread is freed, including storage for control
blocks, CTs and PTs, and working areas.

v The use counts of the DBDs are decreased by one. If space is needed in the
EDM pool, a DBD can be freed when its use count reaches zero.

v Those table spaces and index spaces with no claimers are made candidates
for deferred close. See “Understanding the CLOSE YES and CLOSE NO
options” on page 595 for more information on deferred close.

3. Thread termination

When the thread is terminated, the accounting record is written. It does not
report transaction activity that takes place before the thread is created.

If RELEASE(DEALLOCATE) is used to release table space locks, the DBD use
count is decreased, and the thread storage is released.

622 Administration Guide

Variations on thread management
Minor differences exist in the transaction flow in different environments and for SQL
statements originating dynamically.

TSO and call attachment facility differences
The TSO attachment facility and call attachment facility (CAF) can be used to
request that SQL statements from CICS, IMS, or RRSAF be executed in TSO
foreground and batch. The processes differ from CICS or IMS transactions in that:

v There is no sign-on. The user is identified when the TSO address space is
connected.

v Commit requires only a single phase and only one I/O operation to each log.
Single phase commit records are IFCID 0088 and 0089.

v Threads cannot be reused, because the thread is allocated to the user address
space.

Thread management for Recoverable Resource Manager
Services Attachment Facility (RRSAF)
With RRSAF, you have sign-on capabilities, the ability to reuse threads, and the
ability to coordinate commit processing across different resource managers. For
more information, see Part 6 of DB2 Application Programming and SQL Guide.

Differences for SQL under QMF
QMF uses CAF to create a thread when a request for work, such as a SELECT
statement, is issued. A thread is maintained until the end of the session only if the
requester and the server reside in different DB2 subsystems. If the requester and
the server are both in the local DB2 subsystem, the thread is not maintained.

For more information on QMF connections, see Query Management Facility:
Installing and Managing QMF on OS/390 and z/OS.

Providing for thread reuse
In general, you want transactions to reuse threads when transaction volume is high
and the cost of creating threads is significant, but thread reuse is also useful for a
lower volume of priority transactions. For a transaction of five to ten SQL
statements (10 I/O operations), the cost of thread creation can be 10% of the
processor cost. But the steps needed to reuse threads can incur costs of their own.

Later in this chapter, the following sections cover thread reuse for specific
situations:

v “Reusing threads for remote connections” on page 629 provides information on
the conditions for thread reuse for database access threads.

v “CICS design options” on page 633 tells how to write CICS transactions to reuse
threads.

v “IMS design options” on page 639 tells how to write IMS transactions to reuse
threads.

Bind options for thread reuse
In DB2, you can prepare allied threads for reuse by binding the plan with the
ACQUIRE(USE) and RELEASE(DEALLOCATE) options; otherwise, the allocation
cost is not eliminated but only slightly reduced. Be aware of the following effects:

v ACQUIRE(ALLOCATE) acquires all resources needed by the plan, including
locks, when the thread is created; ACQUIRE(USE) acquires resources only when
they are needed to execute a particular SQL statement. If most of the SQL
statements in the plan are executed whenever the plan is executed,

Chapter 29. Managing DB2 threads 623

ACQUIRE(ALLOCATE) costs less. If only a few of the SQL statements are likely
to be executed, ACQUIRE(USE) costs less and improves concurrency. But with
thread reuse, if most of your SQL statements eventually get issued,
ACQUIRE(USE) might not be as much of an improvement.

v RELEASE(DEALLOCATE) does not free cursor tables (SKCTs) at a commit
point; hence, the cursor table could grow as large as the plan. If you are using
created temporary tables, the logical work file space is not released until the
thread is deallocated. Thus, many uses of the same created temporary table do
not cause reallocation of the logical work files, but be careful about holding onto
this resource for long periods of time if you do not plan to use it.

Using reports to tell when threads were reused
The NORMAL TERM., ABNORMAL TERM., and IN DOUBT sections of the DB2 PM
accounting report, shown in Figure 70, can help you identify, by plan, when threads
were reused. In the figure:

v NEW USER (�A�) tells how many threads were not terminated at the end of the
previous transaction or query, and hence reused.

v DEALLOCATION (�B�) tells how many threads were terminated at the end of the
query or transaction.

v APPL. PROGR. END (�C�) groups all the other reasons for accounting. Since the
agent did not abend, these are considered normal terminations.

This technique is accurate in IMS but not in CICS, where threads are reused
frequently by the same user. For CICS, also consider looking at the number of
commits and aborts per thread. For CICS:

v NEW USER (�A�) is thread reuse with a different authorization ID or transaction
code.

v RESIGN-ON (�D�) is thread reuse with the same authorization ID if
TOKENE=YES.

Database access threads
This section describes:

v “Understanding allied threads and database access threads” on page 625

v “Setting thread limits for database access threads” on page 625

v “Using inactive threads” on page 626

v “Establishing a remote connection” on page 628

v “Reusing threads for remote connections” on page 629

v “Using Workload Manager to set performance objectives” on page 629

For information on performance considerations for distributed processing, see
“Tuning distributed applications” on page 858.

NORMAL TERM. TOTAL ABNORMAL TERM. TOTAL IN DOUBT TOTAL
---------------- ----- ------------------ ----- ----------------- ------
NEW USER �A� 17 APPL.PROGR. ABEND 0 APPL.PGM. ABEND 0
DEALLOCATION �B� 0 END OF MEMORY 0 END OF MEMORY 0
APPL.PROGR. END �C� 0 RESOL.IN DOUBT 0 END OF TASK 0
RESIGNON �D� 0 CANCEL FORCE 0 CANCEL FORCE 0
DBAT INACTIVE 0
RRS COMMIT 0

Figure 70. DB2 PM accounting report - information about thread termination

624 Administration Guide

Understanding allied threads and database access threads
Database access threads are created to access data at a DB2 server on behalf of a
requester using either DRDA or DB2 private protocol. A database access thread is
created when an SQL request is received from the requester. Allied threads perform
work at a requesting DB2.

Database access threads differ from allied threads in the following ways:

v Database access threads can be always active or both active and inactive,
depending on what you specified for the DDF THREADS field on installation
panel DSNTIPR.

v Database access threads run in enclave SRB mode.

v When database access threads can be both active and inactive, a thread is
terminated after 200 transactions have used it, or after the thread has been idle
in the pool for the amount of time specified in the POOL THREAD TIMEOUT field
on installation panel DSNTIP5.

v If inbound translation is used, the sign-on audit trace record (0087) is cut to audit
the change of authorization IDs. There is no BEGIN SIGN-ON (0086) record in
this case.

Setting thread limits for database access threads
When you install DB2, you choose a maximum number of active threads that can
be allocated concurrently; the MAX USERS field on panel DSNTIPE represents the
maximum number of allied threads, and the MAX REMOTE ACTIVE field on panel
DSNTIPE represents the maximum number of database access threads. Together,
the values you specify for these fields cannot exceed 2000.

In the MAX REMOTE CONNECTED field of panel DSNTIPE, you can specify up to
150 000 as the maximum number concurrent remote connections that can
concurrently exist within DB2. This upper limit is only obtained if you specify the
recommended value INACTIVE for the DDF THREADS field of installation panel
DSNTIPR. Figure 71 on page 626 illustrates the relationship among the number of
active threads in the system and the total number of connections.

Chapter 29. Managing DB2 threads 625

|
|
|
|

Using inactive threads
A database access thread that does not hold any cursors is called an inactive
thread. (Because inactive threads can become active, another name for these types
of threads might be sometimes active.) DB2 supports two types of inactive threads:
type 1 and type 2. The differences between the types are that type 2 inactive
threads are only available for DRDA connections, use less storage than type 1
inactive threads, and use a pool of database access threads that can be switched
among connections as needed.

Using type 2 inactive threads
DB2 always tries to make inactive threads type 2, but in some cases cannot do so.
The conditions listed in Table 88 determine if a thread can be a type 2 or a type 1.

Table 88. Requirements for type 1 and type 2 inactive threads

If there is...
Thread can be type 2? Thread can be type

1?

A hop to another location Yes Yes

A connection using DB2 private—protocol
access

No Yes

A package that is bound with
RELEASE(COMMIT)

Yes Yes

A package that is bound with
RELEASE(DEALLOCATE)

Yes No

A held cursor, a held LOB locator, or a
package bound with
KEEPDYNAMIC(YES)

No No

A declared temporary table that is active
(the table was not explicitly dropped
through the DROP TABLE statement)

No No

Up to 2000: Maximum remote active
threads and users

Up to 150,000: Maximum remote
connected threads
(includes inactive threads)

Figure 71. Relationship between active threads and maximum number of connections.

626 Administration Guide

When the conditions listed in Table 88 on page 626 are true, the thread can become
inactive when a COMMIT is issued. After a ROLLBACK, a thread can become
inactive even if it had open cursors defined WITH HOLD or a held LOB locator
because ROLLBACK closes all cursors and LOB locators.

Determining if a thread can become inactive
After a COMMIT or ROLLBACK, DB2 determines if a thread can become inactive
and, if so, if that thread can become a type 1 or type 2 inactive thread based on the
conditions shown in Table 88 on page 626.

If a thread is eligible to become a type 2 inactive thread, the thread is made
inactive and the database access thread is eligible to be used by another
connection.

If a thread must become a type 1 inactive thread, DB2 first compares the number of
current type 1 inactive threads to the value that is specified for your installation for
MAX TYPE 1 INACTIVE and either makes the thread inactive or allows it to remain
active:

1. If the current number of type 1 inactive threads is below the value in MAX TYPE
1 INACTIVE, the thread becomes inactive. It cannot be used by another
connection.

2. If the current number of type 1 inactive threads meets or exceeds the value in
MAX TYPE 1 INACTIVE, the thread remains active. However, too many active
threads (that is, more than MAX REMOTE ACTIVE) can cause the thread and
its connection to be terminated.

Understanding the advantages of inactive threads
Letting threads go inactive has the following advantages:

v You can leave an application that is running on a workstation connected to DB2
from the time the application is first activated until the workstation is shut down
and thus avoid the delay of repeated connections.

v DB2 can support a larger number of DDF threads (150 000 instead of 1999).

v Less storage is used for each DDF thread. (A type 2 inactive thread uses
significantly less storage than a type 1 inactive thread.)

v You get an accounting trace record (IFCID 0003) each time a thread becomes
inactive rather than once for the entire time you are connected. When an inactive
thread becomes active, the accounting fields for that thread are initialized again.
As a result, the accounting record contains information about active threads only.
This makes it easier to study how distributed applications are performing.

v Each time a thread becomes inactive, workload manager resets the information it
maintains on that thread. The next time that thread is activated, workload
manager begins managing to the goals you have set for transactions that run in
that service class. If you use multiple performance periods, it is possible to favor
short-running units of work that use fewer resources while giving fewer resources
over time to long running units of work. See “Establishing performance periods
for DDF threads” on page 632 for more information.

v If using WLM goal mode, you can use response time goals, which is not
recommended when using threads that are always active.

v It makes it more practical to take advantage of the ability to time out idle active
threads, as described in “Timing out idle active threads” on page 628.

v Type 2 inactive threads can be reused, as they can be in CICS and IMS. Thread
reuse lets DDF use a small pool of DB2 threads to support a large group of
network clients.

Chapter 29. Managing DB2 threads 627

|

v The response times reported by RMF include inactive periods between requests.
These times are shown as idle.

Enabling threads to become inactive
You must specify INACTIVE on the DDF THREADS field of installation panel
DSNTIPR to allow threads to become inactive. To limit the number of type 1
inactive threads that can be created, specify a value in the MAX TYPE 1 INACTIVE
field of installation panel DSNTIPR. The default is 0, which means that any thread
that does not qualify for being a type 2 inactive thread remains active.

Recommendation: Use type 2 inactive threads if you can. If you can’t, set MAX
TYPE 1 INACTIVE to the maximum number of concurrent connections that access
another location using private—protocol access.

Timing out idle active threads
Active server threads that have remained idle for a specified period of time (in
seconds) can be canceled by DB2. When you install DB2, you choose a maximum
IDLE THREAD TIMEOUT period, from 0 to 9999 seconds. The timeout period is an
approximation. If a server thread has been waiting for a request from the requesting
site for this period of time, it is canceled unless it is an inactive or an in doubt
thread. A value of 0, the default, means that the server threads cannot be canceled
because of an idle thread timeout.

Recommendation: Use this option with the option INACTIVE for the DDF
THREADS field on DSNTIPR. If you specify a timeout interval with ACTIVE, an
application would have to start its next unit of work within the timeout period
specification, or risk being canceled.

TCP/IP keep_alive interval for the DB2 subsystem:For TCP/IP connections, it is
a good idea to specify the IDLE THREAD TIMEOUT value in conjunction with a
TCP/IP keep_alive interval of 5 minutes or less to make sure that resources are not
locked for a long time when a network outage occurs. You can override the TCP/IP
stack keep_alive interval on a single DB2 subsystem by specifying a value in the
field TCP/IP KEEPALIVE on installation panel DSNTIPS.

Establishing a remote connection
The following steps occur when establishing a connection for a database access
thread:

1. Connection or signon.

SNA network connections support connection and signon processing. TCP/IP
network connections support just connection processing.

2. If you specified INACTIVE for the DDF THREADS, DB2 checks the MAX
REMOTE CONNECTED limit you specified on panel DSNTIPE to see if it has
been reached.

If the limit has been reached, DB2 does not create an active or an inactive
thread; the create thread request is rejected, and the connection is deallocated.

If the MAX REMOTE CONNECTED limit has not been reached, the connection
process continues.

3. DB2 compares the MAX REMOTE ACTIVE limit you specified on panel
DSNTIPE with the current number of active database access threads.

v If the MAX REMOTE ACTIVE limit is reached, DB2 queues the connection
request until an unused database access thread can be assigned to establish
the remote connection. When an unused database access thread becomes
available, the connection is established.

628 Administration Guide

v If the MAX REMOTE ACTIVE limit is not reached, the connection is
established and a database access thread is created.

4. DB2 verifies the user through DCE, RACF or the communications database.

SNA network connections support DCE, RACF, or the communications
database. TCP/IP network connections support DCE or RACF user verification.

5. DB2 checks the user’s authorization to connect to DDF through RACF or the
communications database.

SNA network connections can use RACF or the communications database to
check authorization. TCP/IP network connections can use RACF to check
authorization.

6. If the connection is using SNA, DB2 can use the communications database to
translate the remote user ID to a DB2 authorization ID.

7. DB2 creates the MVS enclave.

The “Global DDF Activity” section of the DB2 PM statistics report shows information
about database access threads.

Reusing threads for remote connections
The cost to create a thread can be significant and, as described in “Providing for
thread reuse” on page 623, reusing threads is a way to avoid that cost. DB2 for
OS/390 and z/OS can reuse threads at the requester and at the server. At the
requester, a thread can be reused for an application that uses the CICS, IMS, or
RRS attachment facility as described later in this chapter. As a server, DB2 can
assign that connection to a thread from among a pool of type 2 inactive threads.
Those threads can be shared and reused by thousands of client connections, which
lets DB2 support very large client networks at minimal cost. (Type 1 inactive threads
are only eligible to be reused by the same connection.)

If your server is not DB2 for OS/390 and z/OS, or some other server that can reuse
threads, then reusing threads for your requesting CICS, IMS, or RRS applications is
not a benefit for distributed access. Thread reuse occurs when sign-on occurs with
a new authorization ID. If that request is bound for a server that does not support
thread reuse, that change in the sign-on ID causes the connection between the
requester and server to be released so that it can be rebuilt again for the new ID.

Using Workload Manager to set performance objectives
MVS supports enclave system request blocks (SRBs). An MVS enclave lets each
thread have its own performance objective. Using MVS’s workload management
support, you can establish MVS performance objectives for individual DDF server
threads, including threads that run in WLM-established stored procedures address
spaces. (Stored procedures that run in the DB2-established stored procedures
address space always run at the performance objective of that address space.) For
details on using workload management, see OS/390 MVS Planning: Workload
Management.

The MVS performance objective of the DDF address space or the WLM-established
stored procedures address spaces does not govern the performance objective of
the user thread. As described in “MVS performance options for DB2” on page 614,
you should assign the DDF address space and WLM-established stored procedures
address spaces to an MVS performance objective that is similar to the DB2
database services address space (ssnmDBM1). The MVS performance objective of
the DDF and stored procedures address spaces determines how quickly DB2 is

Chapter 29. Managing DB2 threads 629

able to perform operations associated with managing the distributed DB2 work load,
such as adding new users or removing users that have terminated their
connections.

Workload manager has two modes:

v Compatibility mode

v Goal mode

Many of the concepts and actions required to manage enclaves are common to
both compatibility and goal modes; those are described first. Considerations specific
for compatibility mode are described in “Considerations for compatibility mode” on
page 632.

Attention: If you do not classify your DDF transactions into service classes, they
are assigned to the default class, the discretionary class, which is at a very low
priority.

Classifying DDF threads
You can classify DDF threads by, among other things, authorization ID and stored
procedure name. The stored procedure name is only used as a classification if the
first statement issued by the client after the CONNECT is an SQL CALL statement.
Use the workload manager administrative application to define the service classes
you want MVS to manage. These service classes are associated with performance
objectives. When a WLM-established stored procedure call originates locally, it
inherits the performance objective of the caller, such as TSO or CICS.

Classification attributes: Each of the WLM classification attributes has a two or
three character abbreviation that you can use when entering the attribute on the
WLM menus. The following WLM classification attributes pertain to DB2 DDF
threads:

AI Accounting information. The value of the DB2 accounting string associated
with the DDF server thread, described by QMDAAINF in the DSNDQMDA
mapping macro.

CI The DB2 correlation ID of the DDF server thread, described by QWHCCV
in the DSNDQWHC mapping macro.

CN The DB2 collection name of the first SQL package accessed by the DRDA
requester in the unit of work.

LU The VTAM LUNAME of the system that issued the SQL request.

NET The VTAM NETID of the system that issued the SQL request.

PC Process name. This attribute can be used to classify the application name
or the transaction name. The value is defined by QWHCEUTX in the
DSNDQWHC mapping macro.

PK The name of the first DB2 package accessed by the DRDA requester in the
unit of work.

PN The DB2 plan name associated with the DDF server thread. For DB2
private protocol requesters and DB2 DRDA requesters that are at Version 3
or subsequent releases, this is the DB2 plan name of the requesting
application. For other DRDA requesters, use ’DISTSERV’ for PN.

PRC Stored procedure name. This classification only applies if the first SQL
statement from the client is a CALL statement.

SI Subsystem instance. The DB2 server’s MVS subsystem name.

630 Administration Guide

||
|
|

SSC Subsystem collection name. When the DB2 subsystem is a member of a
DB2 data sharing group, this attribute can be used to classify the data
sharing group name. The value is defined by QWHADSGN in the
DSNDQWHA mapping macro.

UI User ID. The DDF server thread’s primary authorization ID, after inbound
name translation.

Figure 72 shows how you can associate DDF threads and stored procedures with
service classes.

In Figure 72, the following classifications are shown:

v All DB2P applications accessing their first SQL package in the collection ONLINE
are in service class PRDONLIN.

v All DB2P applications that call stored procedure PAYPROC first are in service
class PRDONLIN.

v All work performed by DB2P user SYSADM is in service class PRDONLIN.

v Users other than SYSADM that run the DB2P PACKAGE QMFOS2 are in the
PRDQUERY class. (The QMFOS2 package is not in collection ONLINE.

v All other work on the production system is in service class PRBBATCH.

v All users of the test DB2 system are assigned to the TESTUSER class except for
work that first calls stored procedure PAYPROCT, which is in service class
TESTPAYR.

Don’t create too many stored procedures address spaces: Workload manager
creates one or more stored procedures address spaces for every combination of
caller’s service class and WLM environment name for which work exists. The
number of tasks in an address space is also specified to help control the number of
address spaces created. See “Assigning procedures and functions to WLM
application environments” on page 875 for more information.

Subsystem-Type Xref Notes Options Help
--

Create Rules for the Subsystem Type Row 1 to 5 of 5

Subsystem Type DDF (Required)
Description Distributed DB2
Fold qualifier names? Y (Y or N)

Enter one or more action codes: A=After B=Before C=Copy D=Delete
M=Move I=Insert rule IS=Insert Sub-rule R=Repeat

-------Qualifier------------- -------Class--------
Action Type Name Start Service Report

DEFAULTS: PRDBATCH ________
____ 1 SI DB2P ___ PRDBATCH ________
____ 2 CN ONLINE ___ PRDONLIN ________
____ 2 PRC PAYPROC ___ PRDONLIN ________
____ 2 UI SYSADM ___ PRDONLIN ________
____ 2 PK QMFOS2 ___ PRDQUERY ________
____ 1 SI DB2T ___ TESTUSER ________
____ 2 PRC PAYPROCT ___ TESTPAYR ________

****************************** BOTTOM OF DATA *****************************

Figure 72. Classifying DDF threads using Workload Manager. You assign performance goals
to service classes using the services classes menu of WLM.

Chapter 29. Managing DB2 threads 631

||
|
|
|

|
|

|
|

Establishing performance periods for DDF threads
You can establish performance periods for DDF threads, including threads that run
in the WLM-established stored procedures address space. By establishing multiple
performance periods, you can cause the thread’s performance objectives to change
based upon the thread’s processor consumption. Thus, a long-running unit of work
can move down the priority order and let short-running transactions get in and out
at a higher priority.

To design performance strategies for these threads, take into account the events
that cause a DDF thread to reset its MVS performance period. The MVS
performance period is reset by terminating the MVS enclave for the thread and
creating a new MVS enclave for the thread, as described in “Using RMF to monitor
distributed processing” on page 870.

Because threads that are always active do not terminate the enclave and thus do
not reset the performance period to period 1, a long-running thread will always end
up in the last performance period. Any new business units of work that use that
thread will suffer the performance consequences. This makes performance periods
unattractive for long-running threads. For always active threads, therefore, use
velocity goals and use a single-period service class.

Basic procedure for establishing performance objectives
To establish performance objectives for DDF threads and the related address
spaces, use the following steps:

1. Create a workload manager service definition that assigns service classes to the
DDF threads under subsystem type DDF and to the DDF address space under
subsystem type STC. If you are using WLM-established stored procedures
address spaces, assign a service class to them under subsystem type STC.

2. Install the service definition using the MVS workload manager menus and
activate a policy (VARY WLM,POLICY=policy).

3. If your system is running in compatibility mode, follow the additional steps
described in “Considerations for compatibility mode”.

Considerations for compatibility mode
In compatibility mode, threads are given a service class by the classification rules in
the active WLM service policy. The MVS ICS maps service classes (SRVCLASS) to
a performance group number (PGN), which determines the performance group of
the enclave. When workload manager operates in compatibility mode, take the
following actions to establish performance objectives for DDF threads:

1. Define MVS performance groups (PGNs) for DDF threads in the IPS PARMLIB
member. Do the same for WLM-established stored procedures address spaces
if you are using them.

2. Create MVS ICS PARMLIB definitions to map the service classes assigned in
the workload manager classification rules to the corresponding performance
groups, using SUBSYS=DDF and the SRVCLASS keyword. The subsystem
default performance group for SUBSYS=DDF is ignored.

3. Create MVS PARMLIB definitions to assign a performance group to the
WLM-established stored procedures address spaces if you are using them. The
same performance group can be assigned to these stored procedures address
spaces as is assigned to DDF.

4. Activate the updated parmlib members (SET IPS=xx, ICS=yy).

Each of the PGN values in the MVS ICS must be defined in the IPS PARMLIB
member. The PGN definition can include information on the performance period,

632 Administration Guide

which is used by SRM to change the performance objective of a DDF thread based
on the amount of processor resource the DDF thread consumes.

Stored procedures and user-defined functions: When you run in compatibility
mode, you have to take on more performance management issues. With functions
and procedures that run in WLM-established address spaces, for example, WLM
cannot automatically start a new address space to handle additional high-priority
requests, as it can when using goal mode. You must monitor the performance of the
stored procedures and user-defined functions to determine how many
WLM-managed address spaces to start manually.

Considerations for goal mode
In goal mode, threads are assigned a service class by the classification rules in the
active WLM service policy. Each service class period has a performance objective
(goal), and workload manager raises or lowers that period’s access to system
resources as needed to meet the specified goal. For example, the goal might be
“application APPL8 should run in less than 3 seconds of elapsed time 90% of the
time”.

Assign the DDF address space and any WLM-established address spaces for
stored procedures and user-defined functions to the same service class as the DB2
database services address space (ssnmDBM1). Define this service class with a
velocity goal.

Stored procedures and user-defined functions: When you are in goal mode,
WLM automatically starts WLM-established address spaces for stored procedures
and user-defined functions to help meet the service class goals you set. This is
assuming you have defined the application environment, as described in “Assigning
procedures and functions to WLM application environments” on page 875.

No matter what your service class goals are, it is possible for the request to start an
address space to time out, based on the timeout value you specify on the
TIMEOUT VALUE field of installation DSNTIPX. If the timeout value is too small,
you might need to increase it to account for a busy system.

CICS design options
This section applies to CICS Transaction Server for OS/390 Release 1 and previous
versions of CICS. If you are using CICS Transaction Server for OS/390 Release 2,
or later releases, see:

v CICS Resource Definition Guide for information on RDO (Resource Definition
Online) definition of the resource control table (RCT)

v CICS DB2 Guide for information about DB2 performance considerations and
setup of the CICS attachment facility

The information under this heading, up to “IMS design options” on page 639, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1095.

This section includes the following topics:
v “Overview of RCT options” on page 634
v “Plans for CICS applications” on page 634
v “Thread creation, reuse, and termination” on page 634
v “Recommendations for RCT definitions” on page 637
v “Recommendations for accounting information for CICS threads” on page 639

Chapter 29. Managing DB2 threads 633

|
|
|

|
|

|
|

Overview of RCT options
You can tune your CICS attachment facility by entering values in the resource
control table (RCT) with the following macros and options:

v DSNCRCT TYPE=INIT macro:

THRDMAX The maximum total number of CICS DB2 threads.

PURGEC The normal length of the purge cycle, specified in minutes and
seconds.

TXIDSO User sign-on preferences with transaction ID changes.

TOKENI See the description of TOKENE, below.

v DSNCRCT TYPE=ENTRY and TYPE=POOL macros:

DPMODE Thread TCB priority relative to the CICS main TCB.

THRDM The maximum number of threads.

THRDA The current maximum number of threads. This value can be
changed dynamically, up to the value specified in THRDM.

THRDS The number of protected threads.

TWAIT The transaction disposition when THRDA has already been
reached (wait, abend, or divert to the pool).

AUTH The authorization ID to be used by the CICS attachment facility
when signing on to DB2.

TOKENE=(YES|NO)
YES means that DB2 produces an accounting record for every
CICS transaction, even those transactions that are reusing
threads. For more information about using TOKENE, see
“Recommendations for accounting information for CICS threads”
on page 639.

For more information about specifying the CICS attachment facility macros, see
Part 2 of DB2 Installation Guide.

Plans for CICS applications
You can use either packages or dynamic plan selection to manage your CICS
applications, but packages offer more flexibility. See DB2 Application Programming
and SQL Guide for more information about using packages. See “Routines for
dynamic plan selection in CICS” on page 946 for more information about writing
dynamic plan selection exit routines.

Thread creation, reuse, and termination
A thread is a structure that allows a non-DB2 address space to request work from
DB2. CICS threads are anchored in a TCB. The CICS attachment facility sets up a
number of TCBs in the CICS address space that application programs can use for
SQL calls.

Types of threads: The attachment facility has 2 types of threads:

v An unprotected thread is terminated immediately after the transaction is through
with it (at SYNCPOINT or EOT). An unprotected thread can be reused before it is
terminated if a waiting transaction (TWAIT=YES) uses the same plan.

634 Administration Guide

v A protected thread remains for a time after the transaction is through with it to
increase the chances of thread reuse. That time is determined by the purge
cycle, normally 30 seconds.

States of threads: The following terms identify the state a thread is in:

v Identified indicates that the TCB is known to DB2.

v Signed on indicates that DB2 has processed and approved the authorization ID
for the thread for the plan name.

v Created indicates that DB2 has allocated the plan and can process the SQL
requests.

You can see these various states when you issue the DB2 command DISPLAY
THREAD. See Figure 25 on page 293 for an example of how CICS threads appear
in the output.

It is possible for a thread that has been created to be signed on again without
re-creating the thread. This is known as reusing the thread.

Number of threads: To limit the number of threads in a CICS environment, you
should limit the transactions from CICS before they make DB2 requests. Controls in
CICS determine how many tasks can be created for a transaction class. Use these
controls to limit the number of CICS tasks accessing DB2 to the number of
available threads as determined by the value in the MAX USERS field of installation
panel DSNTIPE. By limiting this number, you avoid having threads queue at create
thread time. See “Recommendations for CICS system definitions” on page 639 for
information.

When CICS threads are created
When a transaction needs a thread, an existing thread can be reused, or a new
thread can be created. If no existing thread is available, and if the maximum
number of threads (THRDA) has not been reached, a thread is created.

This section describes both the creation of the TCBs and the sign-on activity.

Creating thread TCBs: When the CICS attachment facility is started, some TCBs
could be attached to threads for each RCT entry. The number of TCBs for each
entry attached when the CICS attachment facility is started is given by THRDS.
Those threads are protected.

If THRDA is greater than THRDS, some TCBs are not attached when the
attachment facility is started, but only when needed by a task. The number of TCBs
for each entry attached only when needed by a thread is given by THRDA -
THRDS. Those threads are not protected.

Sign-on processing: Threads sign on for the following reasons:
v To tell DB2 who the user is
v To create accounting trace records
v To put a thread back into its initial state.

Sign-on occurs at the first SQL call when any of the following is true:

v The authorization ID changed.

v The transaction ID changed and TXIDSO=YES.

v The parameter TOKENE is YES. For more information about TOKENE, see
“Recommendations for accounting information for CICS threads” on page 639.

Chapter 29. Managing DB2 threads 635

v The last transaction left a held cursor open.

v The last transaction left one of the modifiable special registers in use.

v The last transaction is holding a LOB locator.

Using TXIDSO to control sign-on processing: With CICS, you can use the
option TXIDSO in the RCT with TYPE=INIT to specify your preference for sign-on:

v TXIDSO=YES means that the thread must sign-on even when the only thing that
has changed is the transaction ID.

v TXIDSO=NO means that if only the transaction ID has changed, the thread can
be reused with no sign-on.

This option affects only pool threads and those RCT entry threads with multiple
transaction IDs in one entry.

When CICS threads are released and available for reuse
An existing thread can be reused by a new transaction with the same plan and on
the same RCT entry. The thread is released for reuse (or for termination) at the end
of a task (EOT) or at SYNCPOINT.

v A transaction that is not terminal-driven releases its thread at the end of a task.

v A transaction that is terminal-driven can release its thread at SYNCPOINT, if
certain conditions are true. DB2 uses the following logic to determine whether a
thread can be released at SYNCPOINT, or if it must wait until EOT:

1. Is the thread terminal-driven?

If the answer is yes, go to the next step. If the answer is no, the thread
cannot be released until EOT.

2. Are the following special registers in their initial state?
CURRENT APPLICATION ENCODING SCHEME
CURRENT PACKAGESET
CURRENT PRECISION
CURRENT RULES
CURRENT SERVER
CURRENT SQLID

If the answer is yes, go to the next step. If the answer is no, the thread
cannot be released until EOT.

3. Has the special register CURRENT DEGREE never been changed during the
life of the thread?

If it has not been changed, go to the next step. If it has been changed, the
thread cannot be released until EOT.

4. Have all declared temporary tables defined as ON COMMIT PRESERVE
ROWS been explicitly dropped by using the DROP TABLE statement?

If the answer is yes, go to the next step. If the answer is no, the thread
cannot be released until EOT.

5. Are all cursors declared WITH HOLD closed?

If the answer is yes, this thread can be released at SYNCPOINT. If the
answer is no, and this is a local connection, this thread cannot be released
until EOT.

If the answer is no, and this is a remote connection, look at the
DISCONNECT bind option:

AUTOMATIC
All connections (even those with open cursors) are released at
commit, and the thread can be released. However, the thread is NOT

636 Administration Guide

|

reusable if you have a type 1 connection and the value of the BIND
option CURRENTSERVER is a remote location.

EXPLICIT
Does the application use the SQL statement RELEASE ALL? If the
answer is yes, the thread can be released. If the answer is no, the
thread cannot be released until EOT.

CONDITIONAL
The thread cannot be reused until EOT if there are any open cursors
defined WITH HOLD.

When CICS threads terminate
This section describes when the two types of threads terminate.

Protected thread termination: When a protected thread (TYPE=ENTRY) is
released, it waits for two consecutive purge cycles and terminates if it is unused at
the end of the second purge cycle.

The purge cycle is 5 minutes long when the CICS attachment facility first initializes.
With CICS Version 4 (or later), you can determine the length of the normal purge
cycle using the RCT parameter PURGEC=(minutes,seconds). The maximum
specifiable length of a purge cycle is 59 minutes, 59 seconds. The minimum length
is 30 seconds, which is the default.

Threads remain available for reuse for an average of (purge cycle time × 1.5).

Unprotected thread termination: Unprotected threads terminate as soon as the
thread is released, unless another transaction with the same plan is queued for the
thread.

TCB detachment: After a TCB has been attached to a thread, the TCB is available
until the attachment facility is stopped. TCBs are detached only when the number of
active TCBs reaches THRDMAX - 2. Thus when the thread is terminated, the
associated TCB is not detached.

Recommendations for RCT definitions
Set the following RCT parameters:

v Make the sum of the THRDA values from all COMD, ENTRY, and POOL threads
less than THRDMAX - 2. Otherwise, a thread and its associated TCB, whether
protected or not, are terminated when the number of threads is THRDMAX - 2. If
not explicitly specified, the COMD thread has a default THRDA value of one.

v For TYPE=POOL, set THRDA equal to the sum of the expected number of
threads for the pool. THRDA should be the sum of:
– Transactions with THRDA=0 that are forced to the pool
– Transactions that can overflow to the pool
– Transactions defined by the pool

v Use TYPE=ENTRY with THRDA=n and THRDS=n for high volume transaction
groups. Those transactions reuse threads. If queuing for a thread is acceptable,
use TWAIT=YES and make n large enough to handle the normal transaction load
with minimal queuing. If queuing for a thread is not acceptable, use
TWAIT=POOL.

v Use TYPE=ENTRY with THRDA=n, THRDS=0, and TWAIT=YES for a
transaction or group for which you want to do any of the following:

Chapter 29. Managing DB2 threads 637

– Control the maximum number of concurrent transactions, n. If n is 1, you are
serializing the transaction or group. You can achieve similar results with the
CICS controls, as described in “Recommendations for CICS system
definitions” on page 639.

– Force serialization.

– Avoid “flooding” the pool threads with possibly high-volume transactions.

– Provide dedicated entries for high priority transactions with a volume that does
not justify the use of protected threads. However, compared to a THRDS>0
entry, you are not likely to achieve thread reuse unless the transaction rate is
high. In this case, using some number of protected entry threads might be a
better choice.

v For transactions that can use default TYPE=POOL parameters, allow them to
default to the pool. The fewer TYPE=ENTRY definitions you have, the less
maintenance there is on the RCT.

v Use TYPE=ENTRY with THRDA=0, THRDS=0, and TWAIT=POOL for those
transactions that need something special besides the default TYPE=POOL
definitions. For example, you might want a transaction to run in the POOL but
use TOKENE=YES.

Setting thread TCB priority using DPMODE: The RCT DPMODE parameter
controls the priority of the thread TCBs. In general, specify the default
DPMODE=HIGH for high-priority and high-volume transactions. The purpose is to
execute these transactions quickly, removing them from CICS and DB2. This helps
save virtual storage, and allows the transaction to release its locks to avoid causing
other transactions to deadlock or timeout.

However, if there is a risk that one or more SQL statements in the transaction will
consume a great deal of processor time, allowing the thread TCB to monopolize the
processor, the CICS main TCB might not be dispatched. (Processor monopolization
such as this causes the most impact on single-CP machines.)

The result of concurrent high priority CICS activity in DB2 can cause transactions to
appear to run longer in DB2. In such cases, CICS tracing shows the task as
“waiting for a DB2 ECB”, while the DB2 accounting trace reports the task as “not in
DB2” time. The reason this occurs is that CICS has not had a chance to dispatch
the task that DB2 has posted or the task is waiting for a thread to become
available.

Do not misread this situation and then set DPMODE=HIGH, because then the
problem will get worse. Instead, weigh the importance of the concurrent CICS
activity versus the DB2 activity and adjust the task priorities and the DPMODE
setting accordingly (DPMODE=LOW or DPMODE=EQUAL).

Recommendations for DPMODE: In general, use the following:

v DPMODE=HIGH for high-priority and high-volume transactions

v DPMODE=EQUAL for transactions that are more CICS-intensive than
DB2-intensive (such as short, simple SQL statements)

v DPMODE=LOW for long running and low-priority, short SQL transactions,
especially non-terminal-driven transactions.

638 Administration Guide

Recommendations for CICS system definitions
The following specification controls how many tasks can be created for a
transaction class: CEDA DEFINE TRANCLASS() GROUP() MAXACTIVE() in the
CSD.

Use the following recommendations for setting CMXT or MAXACTIVE:

v When TWAIT=YES and there are unprotected threads, use the value of THRDA
plus one.

v When TWAIT=POOL, use THRDA plus n where n is the number of transactions
that you want to be able to overflow to the pool.

v When TWAIT=NO, decide whether to allow more than the value in THRDA.

Recommendations for accounting information for CICS threads
DB2 cuts accounting records when a thread signs on and when it terminates. CICS
cuts accounting records at end-of-task. The CICS LU6.2 token gives you a way to
correlate records between CICS and DB2.

Using TOKENE to ensure proper accounting for tasks: Because it is possible
for CICS tasks to reuse existing threads without signing on, one DB2 accounting
record might contain data for several CICS tasks. If you specify YES in the
DSNCRCT TYPE=ENTRY macro’s TOKENE option, the CICS attachment facility
passes the CICS LU6.2 token to DB2. It also forces DB2 to sign-on each new
transaction so as to cut the accounting records. CICS generates an LU6.2 token for
every CICS transaction, including both terminal and non-terminal-driven tasks.

Specify YES in the RCT TYPE=INIT macro’s TOKENI option to set this default for
all RCT entries.

The CICS accounting token is displayed on the DB2 PM Accounting Trace and the
DB2 PM Online Monitor Thread Identification panel.

Specifying YES slightly increases the overhead of an SQL request that reuses
threads, because of the additional sign-on activity.

IMS design options
The IMS attachment facility gives you the following design options:

v Control the number of IMS regions connected to DB2. For IMS, this is also the
maximum number of concurrent threads.

v Optimize the number of concurrent threads used by IMS.

A dependent region with a subsystem member (SSM) that is not empty is
connected to DB2 at start up time. Regions with a null SSM cannot create a
thread to DB2. A thread to DB2 is created at the first execution of an SQL
statement in an IMS application schedule; it is terminated when the application
terminates.

The maximum number of concurrent threads used by IMS can be controlled by
the number of IMS regions that can connect to DB2 by transaction class
assignments. You can control the number by doing the following:

– Minimize the number of regions needing a thread by the way in which you
assign applications to regions.

– Provide an empty SSM member for regions that will not connect to DB2.

v Provide efficient thread reuse for high volume transactions.

Chapter 29. Managing DB2 threads 639

Thread creation and termination is a significant cost in IMS transactions. IMS
transactions identified as wait for input (WFI) can reuse threads: they create a
thread at the first execution of an SQL statement and reuse it until the region is
terminated. In general, though, use WFI only for transactions that reach a region
utilization of at least 75%.

Some degree of thread reuse can also be achieved with IMS class scheduling,
queuing, and a PROCLIM count greater than one. IMS Fast Path (IFP)
dependent regions always reuse the DB2 thread.

TSO design options
You can tune your TSO attachment facility by choosing values for the following
parameters on the Storage Sizes installation panel (DSNTIPE):

MAX TSO CONNECT The maximum number of TSO foreground
connections (including DB2I, QMF, and foreground
applications)

MAX BATCH CONNECT The maximum number of TSO background
connections (including batch jobs and utilities)

Because DB2 must be stopped to set new values, consider setting a higher MAX
BATCH CONNECT for batch periods. The statistics record (IFCID 0001) provides
information on the create thread queue. The DB2 PM statistics report (in Figure 73)
shows that information under the SUBSYSTEM SERVICES section.

For TSO or batch environments, having 1% of the requests queued is probably a
good number to aim for by adjusting the MAX USERS value of installation panel
DSNTIPE. Queuing at create thread time is not desirable in the CICS and IMS
environments. If you are running IMS or CICS in the same DB2 subsystem as TSO
and batch, use MAX BATCH CONNECT and MAX TSO CONNECT to limit the
number of threads taken by the TSO and batch environments. The goal is to allow
enough threads for CICS and IMS so that their threads do not queue. To determine
the number of allied threads queued, see the QUEUED AT CREATE THREAD field
(�A�) of the DB2 PM statistics report.

SUBSYSTEM SERVICES QUANTITY
--------------------------- --------
IDENTIFY 30757.00
CREATE THREAD 30889.00
SIGNON 0.00
TERMINATE 61661.00
ROLLBACK 644.00

COMMIT PHASE 1 0.00
COMMIT PHASE 2 0.00
READ ONLY COMMIT 0.00

UNITS OF RECOVERY INDOUBT 0.00
UNITS OF REC.INDBT RESOLVED 0.00

SYNCHS(SINGLE PHASE COMMIT) 30265.00
QUEUED AT CREATE THREAD �A� 0.00
SUBSYSTEM ALLIED MEMORY EOT 1.00
SUBSYSTEM ALLIED MEMORY EOM 0.00
SYSTEM EVENT CHECKPOINT 0.00

Figure 73. Thread queuing in the DB2 PM statistics report

640 Administration Guide

QMF design options
QMF has the following significant performance options:

v The DSQSIROW parameter of the ISPSTART command

v SPACE parameter of the user QMF profile (Q.PROFILES)

v QMF region size and the spill file attributes

v TRACE parameter of the user QMF profile (Q.PROFILES)

For more information on these aspects of QMF and how they affect performance,
see Query Management Facility: Installing and Managing QMF on OS/390 and
z/OS.

Chapter 29. Managing DB2 threads 641

642 Administration Guide

Chapter 30. Improving concurrency

This chapter begins with an overview of concurrency and locks in the following
sections:
v “Definitions of concurrency and locks”,
v “Effects of DB2 locks” on page 644, and
v “Basic recommendations to promote concurrency” on page 646.

After the basic recommendations, the chapter tells what you can do about two
major techniques that DB2 uses to control concurrency: transaction locks and
claims and drains.

v Transaction locks mainly control access by SQL statements. Those locks are
the ones over which you have the most control.

– “Aspects of transaction locks” on page 650 describes the various types of
transaction locks that DB2 uses and how they interact.

– “Lock tuning” on page 664 describes what you can change to control locking.
Your choices include:
- “Startup procedure options” on page 665
- “Installation options for wait times” on page 665
- “Other options that affect locking” on page 670
- “Bind options” on page 675
- “Isolation overriding with SQL statements” on page 689
- “The statement LOCK TABLE” on page 690

Under those headings, lock (with no qualifier) refers to transaction lock.

v Latches are conceptually similar to locks in that they control serialization. They
can improve concurrency because they are usually held for shorter duration than
locks and they cannot “deadlatch”. However, page latches can wait, and this wait
time is reported in accounting trace class 3. Because latches are not under your
control, they are not described in any detail.

v Claims and drains provide another mechanism to control serialization. SQL
applications and some utilities make claims for objects when they first access
them. Operations that drain can take control of an object by quiescing the
existing claimers and preventing new claims. After a drainer completes its
operations, claimers can resume theirs. DB2 utilities, commands, and some SQL
statements can act as drainers.

“Claims and drains for concurrency control” on page 695 describes claims and
drains in more detail and explains how to plan utility jobs and other activities to
maximize efficiency.

The chapter ends by describing how you can monitor DB2’s use of locks and how
you can analyze a sample problem in section “Monitoring of DB2 locking” on
page 700.

DB2 extends its concurrency controls to multiple subsystems for data sharing. For
information about that, see DB2 Data Sharing: Planning and Administration.

Definitions of concurrency and locks
Definition: Concurrency is the ability of more than one application process to
access the same data at essentially the same time.

© Copyright IBM Corp. 1982, 2001 643

|
|

Example: An application for order entry is used by many transactions
simultaneously. Each transaction makes inserts in tables of invoices and invoice
items, reads a table of data about customers, and reads and updates data about
items on hand. Two operations on the same data, by two simultaneous
transactions, might be separated only by microseconds. To the users, the
operations appear concurrent.

Conceptual background: Concurrency must be controlled to prevent lost updates
and such possibly undesirable effects as unrepeatable reads and access to
uncommitted data.

Lost updates. Without concurrency control, two processes, A and B, might both
read the same row from the database, and both calculate new values for one of
its columns, based on what they read. If A updates the row with its new value,
and then B updates the same row, A’s update is lost.

Access to uncommitted data. Also without concurrency control, process A
might update a value in the database, and process B might read that value
before it was committed. Then, if A’s value is not later committed, but backed
out, B’s calculations are based on uncommitted (and presumably incorrect) data.

Unrepeatable reads. Some processes require the following sequence of events:
A reads a row from the database and then goes on to process other SQL
requests. Later, A reads the first row again and must find the same values it
read the first time. Without control, process B could have changed the row
between the two read operations.

To prevent those situations from occurring unless they are specifically allowed, DB2
might use locks to control concurrency.

What do locks do? A lock associates a DB2 resource with an application process
in a way that affects how other processes can access the same resource. The
process associated with the resource is said to “hold” or “own” the lock. DB2 uses
locks to ensure that no process accesses data that has been changed, but not yet
committed, by another process.

What do you do about locks? To preserve data integrity, your application process
acquires locks implicitly, that is, under DB2 control. It is not necessary for a process
to request a lock explicitly to conceal uncommitted data. Therefore, sometimes you
need not do anything about DB2 locks. Nevertheless processes acquire, or avoid
acquiring, locks based on certain general parameters. You can make better use of
your resources and improve concurrency by understanding the effects of those
parameters.

Effects of DB2 locks
The effects of locks that you want to minimize are suspension, timeout, and
deadlock.

Suspension
Definition: An application process is suspended when it requests a lock that is
already held by another application process and cannot be shared. The suspended
process temporarily stops running.

Order of precedence for lock requests: Incoming lock requests are queued.
Requests for lock promotion, and requests for a lock by an application process that
already holds a lock on the same object, precede requests for locks by new
applications. Within those groups, the request order is “first in, first out”.

644 Administration Guide

Example: Using an application for inventory control, two users attempt to reduce
the quantity on hand of the same item at the same time. The two lock requests are
queued. The second request in the queue is suspended and waits until the first
request releases its lock.

Effects: The suspended process resumes running when:

v All processes that hold the conflicting lock release it.

v The requesting process times out or deadlocks and the process resumes to deal
with an error condition.

Timeout
Definition: An application process is said to time out when it is terminated because
it has been suspended for longer than a preset interval.

Example: An application process attempts to update a large table space that is
being reorganized by the utility REORG TABLESPACE with SHRLEVEL NONE. It is
likely that the utility job will not release control of the table space before the
application process times out.

Effects: DB2 terminates the process, issues two messages to the console, and
returns SQLCODE -911 or -913 to the process (SQLSTATEs '40001' or '57033').
Reason code 00C9008E is returned in the SQLERRD(3) field of the SQLCA. If
statistics trace class 3 is active, DB2 writes a trace record with IFCID 0196.

COMMIT and ROLLBACK operations do not time out. The command STOP
DATABASE, however, may time out and send messages to the console, but it will
retry up to 15 times.

For more information about setting the timeout interval, see “Installation options
for wait times” on page 665.

Deadlock
Definition: A deadlock occurs when two or more application processes each hold
locks on resources that the others need and without which they cannot proceed.

Example: Figure 74 on page 646 illustrates a deadlock between two transactions.

Chapter 30. Improving concurrency 645

Effects: After a preset time interval (the value of DEADLOCK TIME), DB2 can roll
back the current unit of work for one of the processes or request a process to
terminate. That frees the locks and allows the remaining processes to continue. If
statistics trace class 3 is active, DB2 writes a trace record with IFCID 0172. Reason
code 00C90088 is returned in the SQLERRD(3) field of the SQLCA. (The codes
that describe DB2’s exact response depend on the operating environment; for
details, see Part 5 of DB2 Application Programming and SQL Guide.)

It is possible for two processes to be running on distributed DB2 subsystems, each
trying to access a resource at the other location. In that case, neither subsystem
can detect that the two processes are in deadlock; the situation resolves only when
one process times out.

Basic recommendations to promote concurrency
Recommendations are grouped roughly by their scope, as:
v “Recommendations for system options”
v “Recommendations for database design” on page 647
v “Recommendations for application design” on page 648

Recommendations for system options
Reduce swapping: If a task is waiting or is swapped out and the unit of work has
not been committed, then it still holds locks. When a system is heavily loaded,
contention for processing, I/O, and storage can cause waiting. Consider reducing
the number of initiators, increasing the priority for the DB2 tasks, and providing
more processing, I/O, or storage resources.

Job EMPLJCHG

Suspend

Suspend

(3)

(4)

Table N

(1)

(2)

OK

OKTable M

000300 Page B

000010 Page A

Job PROJNCHG

Notes:

1. Jobs EMPLJCHG and PROJNCHG are two transactions. Job EMPLJCHG
accesses table M, and acquires an exclusive lock for page B, which contains
record 000300.

2. Job PROJNCHG accesses table N, and acquires an exclusive lock for page A,
which contains record 000010.

3. Job EMPLJCHG requests a lock for page A of table N while still holding the lock
on page B of table M. The job is suspended, because job PROJNCHG is
holding an exclusive lock on page A.

4. Job PROJNCHG requests a lock for page B of table M while still holding the
lock on page A of table N. The job is suspended, because job EMPLJCHG is
holding an exclusive lock on page B. The situation is a deadlock.

Figure 74. A deadlock example

646 Administration Guide

Make way for the IRLM: Make sure that the IRLM has a high MVS dispatching
priority or is assigned to the SYSSTC service class. It should come next after VTAM
and before DB2.

If you can define more ECSA, then start the IRLM with PC=NO rather than
PC=YES. You can make this change without changing your application process.
This change can also reduce processing time.

Restrict updating of partitioning key columns: In systems with high concurrency
and long running transactions, allowing updating of partitioning key columns when
the update moves the row from one partition to another can cause concurrency
problems. Allow updating only when the row stays in the same partition by setting
the UPDATE PART KEY COLS field in DSNTIP4 to SAME.

Recommendations for database design
Keep like things together: Cluster tables relevant to the same application into the
same database, and give each application process that creates private tables a
private database in which to do it. In the ideal model, each application process uses
as few databases as possible.

Keep unlike things apart: Give users different authorization IDs for work with
different databases; for example, one ID for work with a shared database and
another for work with a private database. This effectively adds to the number of
possible (but not concurrent) application processes while minimizing the number of
databases each application process can access.

Plan for batch inserts: If your application does sequential batch insertions,
excessive contention on the space map pages for the table space can occur. This
problem is especially apparent in data sharing, where contention on the space map
means the added overhead of page P-lock negotiation. For these types of
applications, consider using the MEMBER CLUSTER option of CREATE
TABLESPACE. This option causes DB2 to disregard the clustering index (or implicit
clustering index) when assigning space for the SQL INSERT statement. For more
information about using this option in data sharing, see Chapter 6 of DB2 Data
Sharing: Planning and Administration. For the syntax, see Chapter 5 of DB2 SQL
Reference.

Use LOCKSIZE ANY until you have reason not to: LOCKSIZE ANY is the default
for CREATE TABLESPACE. It allows DB2 to choose the lock size, and DB2 usually
chooses LOCKSIZE PAGE and LOCKMAX SYSTEM for non-LOB table spaces. For
LOB table spaces, it chooses LOCKSIZE LOB and LOCKMAX SYSTEM. You
should use LOCKSIZE TABLESPACE or LOCKSIZE TABLE only for read-only table
spaces or tables, or when concurrent access to the object is not needed. Before
you choose LOCKSIZE ROW, you should estimate whether there will be an
increase in overhead for locking and weigh that against the increase in concurrency.

Examine small tables: For small tables with high concurrency requirements,
estimate the number of pages in the data and in the index. If the index entries are
short or they have many duplicates, then the entire index can be one root page and
a few leaf pages. In this case, spread out your data to improve concurrency, or
consider it a reason to use row locks.

Partition the data: Online queries typically make few data changes, but they occur
often. Batch jobs are just the opposite; they run for a long time and change many
rows, but occur infrequently. The two do not run well together. You might be able to

Chapter 30. Improving concurrency 647

|
|
|

separate online applications from batch, or two batch jobs from each other. To
separate online and batch applications, provide separate partitions. Partitioning can
also effectively separate batch jobs from each other.

Fewer rows of data per page: By using the MAXROWS clause of CREATE or
ALTER TABLESPACE, you can specify the maximum number of rows that can be
on a page. For example, if you use MAXROWS 1, each row occupies a whole
page, and you confine a page lock to a single row. Consider this option if you have
a reason to avoid using row locking, such as in a data sharing environment where
row locking overhead can be excessive.

Recommendations for application design
Access data in a consistent order: When different applications access the same
data, try to make them do so in the same sequence. For example, make both
access rows 1,2,3,5 in that order. In that case, the first application to access the
data delays the second, but the two applications cannot deadlock. For the same
reason, try to make different applications access the same tables in the same order.

Commit work as soon as is practical: To avoid unnecessary lock contentions,
issue a COMMIT statement as soon as possible after reaching a point of
consistency, even in read-only applications. To prevent unsuccessful SQL
statements (such as PREPARE) from holding locks, issue a ROLLBACK statement
after a failure. Statements issued through SPUFI can be committed immediately by
the SPUFI autocommit feature.

Taking commit points frequently in a long running unit of recovery (UR) has the
following benefits:

v Reduces lock contention

v Improves the effectiveness of lock avoidance, especially in a data sharing
environment

v Reduces the elapsed time for DB2 system restart following a system failure

v Reduces the elapsed time for a unit of recovery to rollback following an
application failure or an explicit rollback request by the application

v Provides more opportunity for utilities, such as online REORG, to break in

Consider using the UR CHECK FREQ field or the UR LOG WRITE CHECK field of
installation panel DSNTIPN to help you identify those applications that are not
committing frequently. UR CHECK FREQ, which identifies when too many
checkpoints have occurred without a UR issuing a commit, is helpful in monitoring
overall system activity. UR LOG WRITE CHECK enables you to detect applications
that might write too many log records between commit points, potentially creating a
lengthy recovery situation for critical tables.

Even though an application might conform to the commit frequency standards of the
installation under normal operational conditions, variation can occur based on
system workload fluctuations. For example, a low-priority application might issue a
commit frequently on a system that is lightly loaded. However, under a heavy
system load, the use of the CPU by the application may be pre-empted, and, as a
result, the application may violate the rule set by the UR CHECK FREQ parameter.
For this reason, add logic to your application to commit based on time elapsed
since last commit, and not solely based on the amount of SQL processing
performed. In addition, take frequent commit points in a long running unit of work
that is read-only to reduce lock contention and to provide opportunities for utilities,
such as online REORG, to access the data.

648 Administration Guide

|
|
|
|
|
|
|

Retry an application after deadlock or timeout: Include logic in a batch program
so that it retries an operation after a deadlock or timeout. Such a method could help
you recover from the situation without assistance from operations personnel. Field
SQLERRD(3) in the SQLCA returns a reason code that indicates whether a
deadlock or timeout occurred.

Close cursors: If you define a cursor using the WITH HOLD option, the locks it
needs can be held past a commit point. Use the CLOSE CURSOR statement as
soon as possible in your program to cause those locks to be released and the
resources they hold to be freed at the first commit point that follows the CLOSE
CURSOR statement. Whether page or row locks are held for WITH HOLD cursors
is controlled by the RELEASE LOCKS parameter on panel DSNTIP4.

Free locators: If you have executed, the HOLD LOCATOR statement, the LOB
locator holds locks on LOBs past commit points. Use the FREE LOCATOR
statement to release these locks.

Bind plans with ACQUIRE(USE): ACQUIRE(USE), which indicates that DB2 will
acquire table and table space locks when the objects are first used and not when
the plan is allocated, is the best choice for concurrency. Packages are always
bound with ACQUIRE(USE), by default. ACQUIRE(ALLOCATE) can provide better
protection against timeouts. Consider ACQUIRE(ALLOCATE) for applications that
need gross locks instead of intent locks or that run with other applications that may
request gross locks instead of intent locks. Acquiring the locks at plan allocation
also prevents any one transaction in the application from incurring the cost of
acquiring the table and table space locks. If you need ACQUIRE(ALLOCATE), you
might want to bind all DBRMs directly to the plan.

Bind with ISOLATION(CS) and CURRENTDATA(NO) typically: ISOLATION(CS)
lets DB2 release acquired row and page locks as soon as possible.
CURRENTDATA(NO) lets DB2 avoid acquiring row and page locks as often as
possible. After that, in order of decreasing preference for concurrency, use these
bind options:

1. ISOLATION(CS) with CURRENTDATA(YES), when data returned to the
application must not be changed before your next FETCH operation.

2. ISOLATION(RS), when data returned to the application must not be changed
before your application commits or rolls back. However, you do not care if other
application processes insert additional rows.

3. ISOLATION(RR), when data evaluated as the result of a query must not be
changed before your application commits or rolls back. New rows cannot be
inserted into the answer set.

For updatable scrollable cursors, ISOLATION(CS) provides the additional advantage
of letting DB2 use optimistic concurrency control to further reduce the amount of
time that locks are held. For more information about optimistic concurrency control,
see “Advantages and disadvantages of the isolation values” on page 680.

Use ISOLATION(UR) cautiously: UR isolation acquires almost no locks on rows or
pages. It is fast and causes little contention, but it reads uncommitted data. Do not
use it unless you are sure that your applications and end users can accept the
logical inconsistencies that can occur.

Use global transactions:The Recoverable Resource Manager Services attachment
facility (RRSAF) relies on an OS/390 component called OS/390 Transaction
Management and Recoverable Resource Manager Services (OS/390 RRS). OS/390

Chapter 30. Improving concurrency 649

|
|
|
|
|
|
|

|
|
|
|

RRS provides system-wide services for coordinating two-phase commit operations
across MVS products. For RRSAF applications and IMS transactions that run under
OS/390 RRS, you can group together a number of DB2 agents into a single global
transaction. A global transaction allows multiple DB2 agents to participate in a
single global transaction and thus share the same locks and access the same data.
When two agents that are in a global transaction access the same DB2 object
within a unit of work, those agents will not deadlock with each other. The following
restrictions apply:

v There is no Parallel Sysplex support for global transactions.

v Because each of the ″branches″ of a global transaction are sharing locks,
uncommitted updates issued by one branch of the transaction are visible to other
branches of the transaction.

v Claim/drain processing is not supported across the branches of a global
transaction, which means that attempts to issue CREATE, DROP, ALTER,
GRANT, or REVOKE may deadlock or timeout if they are requested from
different branches of the same global transaction.

v Attempts to update a partitioning key may deadlock or timeout because of the
same restrictions on claim/drain processing.

v LOCK TABLE may deadlock or timeout across the branches of a global
transaction.

For information on how to make an agent part of a global transaction for RRSAF
applications, see Section 7 of DB2 Application Programming and SQL Guide.

Aspects of transaction locks
Transaction locks have the following four basic aspects:
v “The size of a lock”
v “The duration of a lock” on page 654
v “The mode of a lock” on page 654
v “The object of a lock” on page 656

Knowing the aspects helps you understand why a process suspends or times out or
why two processes deadlock. To change the situation, you also need to know:

v “DB2’s choice of lock types” on page 659

The size of a lock

Definition
The size (sometimes scope or level) of a lock on data in a table describes the
amount of data controlled. The possible sizes of locks are table space, table,
partition, page, and row. This section contains information about locking for
non-LOB data. See “LOB locks” on page 691 for information on locking for LOBs.

Hierarchy of lock sizes
The same piece of data can be controlled by locks of different sizes. A table space
lock (the largest size) controls the most data, all the data in an entire table space. A
page or row lock controls only the data in a single page or row.

As Figure 75 on page 651 suggests, row locks and page locks occupy an equal
place in the hierarchy of lock sizes.

650 Administration Guide

General effects of size
Locking larger or smaller amounts of data allows you to trade performance for
concurrency. Using page or row locks instead of table or table space locks has the
following effects:

v Concurrency usually improves, meaning better response times and higher
throughput rates for many users.

v Processing time and use of storage increases. That is especially evident in batch
processes that scan or update a large number of rows.

Using only table or table space locks has the following effects:

v Processing time and storage usage is reduced.

v Concurrency can be reduced, meaning longer response times for some users but
better throughput for one user.

Effects of table spaces of different types
v The LOCKPART clause of CREATE and ALTER TABLESPACE lets you control

how DB2 locks partitioned table spaces. The default, LOCKPART NO, means
that one lock is used to lock the entire partitioned table space when any partition
is accessed. LOCKPART NO is the value you want in most cases.

With LOCKPART YES, individual partitions are locked only as they are accessed.

Row lock Row lock Row lockPage lock Page lock Page lock

Segmented table space Simple table space LOB table space

Table space lockTable space lock

Table lock

Row lockRow lock

Row lock Row lock Row lock

Page lockPage lock

Page lock Page lock Page lock

Partitioned table space

Partitioned table space lock

Partitioned table space with LOCKPART YES

Partition lock Partition lockPartition lock

LOB table space lock

LOB lock

Figure 75. Sizes of objects locked

Chapter 30. Improving concurrency 651

One case for using LOCKPART YES is for some data sharing applications, as
described in Chapter 6 of DB2 Data Sharing: Planning and Administration. There
are also benefits to non-data-sharing applications that use partitioned table
spaces. For these applications, it might be desirable to acquire gross locks (S, U,
or X) on partitions to avoid numerous lower level locks and yet still maintain
concurrency. When locks escalate and the table space is defined with
LOCKPART YES, applications that access different partitions of the same table
space do not conflict during update activity.

Restrictions: If any of the following conditions are true, DB2 must lock all
partitions when LOCKPART YES is used:
– The plan is bound with ACQUIRE(ALLOCATE).
– The table space is defined with LOCKSIZE TABLESPACE.
– LOCK TABLE IN EXCLUSIVE MODE or LOCK TABLE IN SHARE MODE is

used (without the PART option).

No matter how LOCKPART is defined, utility jobs can control separate partitions
of a table space or index space and can run concurrently with operations on
other partitions.

v A simple table space can contain more than one table. A lock on the table
space locks all the data in every table. A single page of the table space can
contain rows from every table. A lock on a page locks every row in the page, no
matter what tables the data belongs to. Thus, a lock needed to access data from
one table can make data from other tables temporarily unavailable. That effect
can be partly undone by using row locks instead of page locks. But that step
does not relieve the sweeping effect of a table space lock.

v In a segmented table space, rows from different tables are contained in different
pages. Locking a page does not lock data from more than one table. Also, DB2
can acquire a table lock, which locks only the data from one specific table.
Because a single row, of course, contains data from only one table, the effect of
a row lock is the same as for a simple or partitioned table space: it locks one row
of data from one table.

v In a LOB table space, pages are not locked. Because there is no concept of a
row in a LOB table space, rows are not locked. Instead, LOBs are locked. See
“LOB locks” on page 691 for more information.

Differences between simple and segmented table spaces
Figure 76 on page 653 illustrates the difference between the effects of page locks
on simple and segmented table spaces. Suppose that tables T1 and T2 reside in
table space TS1. In a simple table space, a single page can contain rows from both
T1 and T2. If User 1 and User 2 acquire incompatible locks on different pages, such
as exclusive locks for updating data, neither can access all the rows in T1 and T2
until one of the locks is released. (User 1 and User 2 can both hold a page lock on
the same page when the mode of the locks are compatible, such as locks for
reading data.)

As the figure also shows, in a segmented table space, a table lock applies only to
segments assigned to a single table. Thus, User 1 can lock all pages assigned to
the segments of T1 while User 2 locks all pages assigned to segments of T2.
Similarly, User 1 can lock a page of T1 without locking any data in T2.

652 Administration Guide

|
|
|
|
|

For information about controlling the size of locks, see:
v “LOCKSIZE clause of CREATE and ALTER TABLESPACE” on page 671
v “The statement LOCK TABLE” on page 690

. . .

. . .

. . .

. . .

Simple table space:

Table space
locking

Table space

every table in
the table space.

lock applies to

Page locking

Page lock
applies to data
from every table
on the page.

Segmented table space:

Table locking

Table lock
applies to only
one table in
the table space.

Page locking

Page lock
applies to data
from only
one table.

Rows from T1:

Rows from T2:

User 1
Lock on TS1

Page 1 Page 2 Page 3 Page 4

User 1
Lock on page 1

User 2
Lock on page 3

Segment for table T1

Page 1 Page 2

Segment for table T2

Page 3 Page 4

User 1
Lock on table T1

User 2
Lock on table T2

Segment for table T1

Page 1 Page 2

Segment for table T2

Page 3 Page 4

User 1
Lock on table T1

User 2
Lock on table T2

Page 4Page 3Page 2Page 1

Figure 76. Page locking for simple and segmented table spaces

Chapter 30. Improving concurrency 653

The duration of a lock

Definition
The duration of a lock is the length of time the lock is held. It varies according to
when the lock is acquired and when it is released.

Effects
For maximum concurrency, locks on a small amount of data held for a short
duration are better than locks on a large amount of data held for a long duration.
However, acquiring a lock requires processor time, and holding a lock requires
storage; thus, acquiring and holding one table space lock is more economical than
acquiring and holding many page locks. Consider that trade-off to meet your
performance and concurrency objectives.

Duration of partition, table, and table space locks: Partition, table, and table
space locks can be acquired when a plan is first allocated, or you can delay
acquiring them until the resource they lock is first used. They can be released at
the next commit point or be held until the program terminates.

On the other hand, LOB table space locks are always acquired when needed and
released at a commit or held until the program terminates. See “LOB locks” on
page 691 for information about locking LOBs and LOB table spaces.

Duration of page and row locks: If a page or row is locked, DB2 acquires the lock
only when it is needed. When the lock is released depends on many factors, but it
is rarely held beyond the next commit point.

For information about controlling the duration of locks, see “Bind options” on
page 675.

The mode of a lock

Definition
The mode (sometimes state) of a lock tells what access to the locked object is
permitted to the lock owner and to any concurrent processes.

The possible modes for page and row locks and the modes for partition, table, and
table space locks are listed below. See “LOB locks” on page 691 for more
information about modes for LOB locks and locks on LOB table spaces.

When a page or row is locked, the table, partition, or table space containing it is
also locked. In that case, the table, partition, or table space lock has one of the
intent modes: IS, IX, or SIX. The modes S, U, and X of table, partition, and table
space locks are sometimes called gross modes. In the context of reading, SIX is a
gross mode lock because you don’t get page or row locks; in this sense, it is like an
S lock.

Example: An SQL statement locates John Smith in a table of customer data and
changes his address. The statement locks the entire table space in mode IX and
the specific row that it changes in mode X.

Modes of page and row locks
Modes and their effects are listed in the order of increasing control over resources.

S (SHARE) The lock owner and any concurrent processes can read, but not

654 Administration Guide

change, the locked page or row. Concurrent processes can acquire
S or U locks on the page or row or might read data without
acquiring a page or row lock.

U (UPDATE) The lock owner can read, but not change, the locked page or row.
Concurrent processes can acquire S locks or might read data
without acquiring a page or row lock, but no concurrent process can
acquire a U lock.

U locks reduce the chance of deadlocks when the lock owner is
reading a page or row to determine whether to change it, because
the owner can start with the U lock and then promote the lock to an
X lock to change the page or row.

X (EXCLUSIVE)
The lock owner can read or change the locked page or row. A
concurrent process can access the data if the process runs with UR
isolation. (A concurrent process that is bound with cursor stability
and CURRENTDATA(NO) can also read X-locked data if DB2 can
tell that the data is committed.)

Modes of table, partition, and table space locks
Modes and their effects are listed in the order of increasing control over resources.

IS (INTENT SHARE) The lock owner can read data in the table, partition,
or table space, but not change it. Concurrent
processes can both read and change the data. The
lock owner might acquire a page or row lock on any
data it reads.

IX (INTENT EXCLUSIVE) The lock owner and concurrent processes can read
and change data in the table, partition, or table
space. The lock owner might acquire a page or row
lock on any data it reads; it must acquire one on
any data it changes.

S (SHARE) The lock owner and any concurrent processes can
read, but not change, data in the table, partition, or
table space. The lock owner does not need page or
row locks on data it reads.

U (UPDATE) The lock owner can read, but not change, the
locked data; however, the owner can promote the
lock to an X lock and then can change the data.
Processes concurrent with the U lock can acquire S
locks and read the data, but no concurrent process
can acquire a U lock. The lock owner does not
need page or row locks.

U locks reduce the chance of deadlocks when the
lock owner is reading data to determine whether to
change it. U locks are acquired on a table space
when locksize is TABLESPACE and the statement
is SELECT FOR UPDATE OF. Similarly, U locks are
acquired on a table when lock size is TABLE and
the statement is SELECT FOR UPDATE OF.

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the
table, partition, or table space. Concurrent
processes can read data in the table, partition, or

Chapter 30. Improving concurrency 655

table space, but not change it. Only when the lock
owner changes data does it acquire page or row
locks.

X (EXCLUSIVE) The lock owner can read or change data in the
table, partition, or table space. A concurrent process
can access the data if the process runs with UR
isolation or if data in a LOCKPART(YES) table
space is running with CS isolation and
CURRENTDATA(NO). The lock owner does not
need page or row locks.

Lock mode compatibility
The major effect of the lock mode is to determine whether one lock is compatible
with another.

Definition: Locks of some modes do not shut out all other users. Assume that
application process A holds a lock on a table space that process B also wants to
access. DB2 requests, on behalf of B, a lock of some particular mode. If the mode
of A’s lock permits B’s request, the two locks (or modes) are said to be compatible.

Effects of incompatibility: If the two locks are not compatible, B cannot proceed.
It must wait until A releases its lock. (And, in fact, it must wait until all existing
incompatible locks are released.)

Compatible lock modes: Compatibility for page and row locks is easy to define.
Table 89 shows whether page locks of any two modes, or row locks of any two
modes, are compatible (Yes) or not (No). No question of compatibility of a page lock
with a row lock can arise, because a table space cannot use both page and row
locks.

Table 89. Compatibility of page lock and row lock modes
Lock Mode S U X

S Yes Yes No
U Yes No No
X No No No

Compatibility for table space locks is slightly more complex. Table 90 shows
whether or not table space locks of any two modes are compatible.

Table 90. Compatibility of table and table space (or partition) lock modes
Lock Mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No
IX Yes Yes No No No No
S Yes No Yes Yes No No
U Yes No Yes No No No

SIX Yes No No No No No
X No No No No No No

The object of a lock

Definition and examples
The object of a lock is the resource being locked.

You might have to consider locks on any of the following objects:

656 Administration Guide

v User data in target tables. A target table is a table that is accessed specifically
in an SQL statement, either by name or through a view. Locks on those tables
are the most common concern, and the ones over which you have most control.

v User data in related tables. Operations subject to referential constraints can
require locks on related tables. For example, if you delete from a parent table,
DB2 might delete rows from the dependent table as well. In that case, DB2 locks
data in the dependent table as well as in the parent table.

Similarly, operations on rows that contain LOB values might require locks on the
LOB table space and possibly on LOB values within that table space. See “LOB
locks” on page 691 for more information.

If your application uses triggers, any triggered SQL statements can cause
additional locks to be acquired.

v DB2 internal objects. Most of these you are never aware of, but you might
notice the following locks on internal objects:

– Portions of the DB2 catalog. For more information, see “Locks on the DB2
catalog”.

– The skeleton cursor table (SKCT) representing an application plan.

– The skeleton package table (SKPT) representing a package. For more
information on skeleton tables, see “Locks on the skeleton tables (SKCT and
SKPT)” on page 658.

– The database descriptor (DBD) representing a DB2 database. For more
information, see “Locks on the database descriptors (DBDs)” on page 658.

Indexes and data-only locking
No index page locks are acquired during processing. Instead, DB2 uses a
technique called data-only locking to serialize changes. Index page latches are
acquired to serialize changes within a page and guarantee that the page is
physically consistent. Acquiring page latches ensures that transactions accessing
the same index page concurrently do not see the page in a partially changed state.

The underlying data page or row locks are acquired to serialize the reading and
updating of index entries to ensure the data is logically consistent, meaning that the
data is committed and not subject to rollback or abort. The data locks can be held
for a long duration such as until commit. However, the page latches are only held
for a short duration while the transaction is accessing the page. Because the index
pages are not locked, hot spot insert scenarios (which involve several transactions
trying to insert different entries into the same index page at the same time) do not
cause contention problems in the index.

A query that uses index-only access might lock the data page or row, and that lock
can contend with other processes that lock the data. However, using lock avoidance
techniques can reduce the contention. See “Lock avoidance” on page 686 for more
information about lock avoidance.

Locks on the DB2 catalog
SQL data definition statements, GRANT statements, and REVOKE statements
require locks on the DB2 catalog. If different application processes are issuing
these types of statements, catalog contention can occur. You can take action to
avoid contention.

Contention within table space SYSDBASE: SQL statements that update the
catalog table space SYSDBASE contend with each other when those statements
are on the same table space. Those statements are:

CREATE, ALTER, and DROP TABLESPACE, TABLE, and INDEX
CREATE and DROP VIEW, SYNONYM, and ALIAS

Chapter 30. Improving concurrency 657

COMMENT ON and LABEL ON
GRANT and REVOKE of table privileges

Recommendation: Reduce the concurrent use of statements that update
SYSDBASE for the same table space.

Contention independent of databases: The following limitations on concurrency
are independent of the referenced database:

v CREATE and DROP statements for a table space or index that uses a storage
group contend significantly with other such statements.

v CREATE, ALTER, and DROP DATABASE, and GRANT and REVOKE database
privileges all contend with each other and with any other function that requires a
database privilege.

v CREATE, ALTER, and DROP STOGROUP contend with any SQL statements
that refer to a storage group and with extensions to table spaces and indexes
that use a storage group.

v GRANT and REVOKE for plan, package, system, or use privileges contend with
other GRANT and REVOKE statements for the same type of privilege and with
data definition statements that require the same type of privilege.

Locks on the skeleton tables (SKCT and SKPT)
The SKCT of a plan, or the SKPT of a package, is locked while the plan or package
is running. The following operations require incompatible locks on the SKCT or
SKPT, whichever is applicable, and cannot run concurrently:

v Binding, rebinding, or freeing the plan or package

v Dropping a resource or revoking a privilege that the plan or package depends on

v In some cases, altering a resource that the plan or package depends on

Locks on the database descriptors (DBDs)
Whether a process locks a target DBD depends largely on whether the DBD is
already in the EDM pool.

If the DBD is not in the EDM pool, most processes acquire locks on the
database descriptor table space (DBD01). That has the effect of locking the
DBD and can cause conflict with other processes.

If the DBD is in the EDM pool, the lock on the DBD depends on the type of
process, as shown in Table 91.

Table 91. Contention for locks on a DBD in the EDM pool

Process
Type Process

Lock
acquired

Conflicts with
process type

1 Static DML statements (SELECT, DELETE,
INSERT, UPDATE)

None None

Note: Static DML statements can conflict with other processes because of locks on data.

2 Dynamic DML statements S 3

Note: If caching of dynamic SQL is turned on, no lock is taken on the DBD when a
statement is prepared for insertion in the cache or for a statement in the cache.

3 Data definition statements (ALTER, CREATE,
DROP)

X 2,3,4

4 Utilities S 3

658 Administration Guide

DB2’s choice of lock types
Overview: For the locks acquired on target tables by different types of SQL data
manipulation statements, see:

v “Modes of locks acquired for SQL statements”

The lock acquired because of an SQL statement is not always a constant
throughout the time of execution. For two situations in which DB2 can change
acquired locks during execution, see:
v “Lock promotion” on page 662
v “Lock escalation” on page 662

For a summary of the locks acquired by other operations, see:

v “Modes of transaction locks for various processes” on page 664

Modes of locks acquired for SQL statements
Table 92 on page 660 shows the modes of locks that a process acquires. The mode
depends on:
v The type of processing being done
v The value of LOCKSIZE for the target table
v The value of ISOLATION with which the plan or package is bound
v The method of access to data

For details about:

v LOCKSIZE, see “LOCKSIZE clause of CREATE and ALTER TABLESPACE” on
page 671

v ISOLATION, see “The ISOLATION option” on page 678

v Access methods, see “Chapter 33. Using EXPLAIN to improve SQL performance”
on page 789

Reading the table: The following SQL statements and sample steps provide a
way to understand the table that shows the modes of locks.
EXEC SQL DELETE FROM DSN8710.EMP WHERE CURRENT OF C1;

Use the following sample steps to understand the table:

1. Find the section of the table for DELETE operations using a cursor. It is on
page 661.

2. Find the row for the appropriate values of LOCKSIZE and ISOLATION. Table
space DSN8710 is defined with LOCKSIZE ANY. If the value of ISOLATION was
not specifically chosen, it is RR by default.

3. Find the subrow for the expected access method. The operation probably uses
the index on employee number. Because the operation deletes a row, it must
update the index. Hence, you can read the locks acquired in the subrow for
“Index, updated”:
v An IX lock on the table space
v An IX lock on the table (but see the step that follows)
v An X lock on the page containing the row that is deleted

4. Check the notes to the entries you use, at the end of the table. For this sample
operation, see:

v Note 2, on the column heading for “Table”. If the table is not segmented,
there is no separate lock on the table.

v Note 3, on the column heading for “Data Page or Row”. Because LOCKSIZE
for the table space is ANY, DB2 can choose whether to use page locks, table
locks, or table space locks. Typically it chooses page locks.

Chapter 30. Improving concurrency 659

Table 92. Modes of locks acquired for SQL statements. Numbers in parentheses () refer to numbered notes beginning
on page 661.

LOCKSIZE ISOLATION Access Method (1)

Lock Mode

Table space
(10) Table (2)

Data page or row
(3)

Processing statement: SELECT with read-only or ambiguous cursor, or with no cursor. UR isolation is
allowed and requires none of these locks.

TABLESPACE CS RS RR Any S n/a n/a

TABLE (2) CS RS RR Any IS S n/a

PAGE, ROW, or
ANY

CS or RS
Index, any use IS(4) (11) IS(4) S(5)

Table space scan IS(4) (11) IS(4) S(5)

PAGE, ROW, or
ANY

RR

Index/data probe IS(4) IS(4) S

Index scan (6) IS(4) or S S, IS(4), or n/a S or n/a

Table space scan (6) IS(2) or S S or n/a n/a

Processing statement: INSERT ... VALUES(...) or INSERT ... fullselect (7)

TABLESPACE CS RS RR Any X n/a n/a

TABLE (2) CS RS RR Any IX X n/a

PAGE, ROW, or
ANY

CS RS RR Any IX IX X

Processing statement: UPDATE or DELETE, without cursor. Data page and row locks apply only to
selected data.

TABLESPACE CS RS RR Any X n/a n/a

TABLE (2) CS RS RR Any IX X n/a

PAGE, ROW, or
ANY

CS

Index selection IX IX
For delete: X. For
update: U→X.

Index/data selection IX IX U→X

Table space scan IX IX U→X

PAGE, ROW, or
ANY

RS

Index selection IX IX
For update: S or
U(9)→X. For
delete: [S→X] or X.

Index/data selection IX IX S or U(9)→X

Table space scan IX IX S or U(9)→X

PAGE, ROW, or
ANY

RR

Index selection IX IX
For update: [S or
U(9)→X] or X. For
delete: [S→X] or X.

Index/data selection IX IX S or U(9)→X

Table space scan IX(2) or X X or n/a n/a

Processing Statement: SELECT with FOR UPDATE OF. Data page and row locks apply only to selected
data.

TABLESPACE CS RS RR Any U n/a n/a

TABLE (2) CS RS RR Any IS or IX U n/a

PAGE, ROW, or
ANY

CS
Index, any use IX IX U

Table space scan IX IX U

PAGE, ROW, or
ANY

RS
Index, any use IX IX S, U, or X(9)

Table space scan IX IX S, U, or X(9)

660 Administration Guide

Table 92. Modes of locks acquired for SQL statements (continued). Numbers in parentheses () refer to numbered
notes beginning on page 661.

LOCKSIZE ISOLATION Access Method (1)

Lock Mode

Table space
(10) Table (2)

Data page or row
(3)

PAGE, ROW, or
ANY

RR

Index/data probe IX IX S, U, or X(9)

Index scan (6) IX or X X, IX, or n/a S, U, X(9), or n/a

Table space scan (6) IX(2) or X X or n/a S, U, X(9), or n/a

Processing Statement: UPDATE or DELETE with cursor

TABLESPACE Any Any X n/a n/a

TABLE (2) Any Any IX X n/a

PAGE, ROW, or
ANY

CS, RS, or
RR

Index, updated IX IX X

Index not updated IX IX X

Notes for Table 92 on page 660

1. All access methods are either scan-based or probe-based. Scan-based means
the index or table space is scanned for successive entries or rows.
Probe-based means the index is searched for an entry as opposed to a range
of entries, which a scan does. ROWIDs provide data probes to look for a
single data row directly. The type of lock used depends on the backup access
method. Access methods may be index-only, data-only, or index-to-data.

Index-only The index alone identifies qualifying rows and
the return data.

Data-only: The data alone identifies qualifying rows and
the return data, such as a table space scan or
the use of ROWID for a probe.

Index-to-data The index is used or the index plus data are
used to evaluate the predicate:

v Index selection: index is used to evaluate
predicate and data is used to return values.

v Index/data selection: index and data are
used to evaluate predicate and data is used
to return values.

2. Used for segmented table spaces only.

3. These locks are taken on pages if LOCKSIZE is PAGE or on rows if
LOCKSIZE is ROW. When the maximum number of locks per table space
(LOCKMAX) is reached, locks escalate to a table lock for tables in a
segmented table space, or to a table space lock for tables in a non-segmented
table space. Using LOCKMAX 0 in CREATE or ALTER TABLESPACE disables
lock escalation.

4. If the table or table space is started for read-only access, DB2 attempts to
acquire an S lock. If an incompatible lock already exists, DB2 acquires the IS
lock.

5. SELECT statements that do not use a cursor, or that use read-only or
ambiguous cursors and are bound with CURRENTDATA(NO), might not
require any lock if DB2 can determine that the data to be read is committed.
This is known as lock avoidance.

Chapter 30. Improving concurrency 661

6. Even if LOCKMAX is 0, the bind process can promote the lock size to TABLE
or TABLESPACE. If that occurs, SQLCODE +806 is issued.

7. The locks listed are acquired on the object into which the insert is made. A
subselect acquires additional locks on the objects it reads, as if for SELECT
with read-only cursor or ambiguous cursor, or with no cursor.

8. The U lock is taken if index columns are updated.

9. Whether the lock is S or U is determined by an installation option. For a full
description, see “The option U LOCK FOR RR/RS” on page 673. If you use the
WITH clause to specify the isolation as RR or RS, you can use the KEEP
UPDATE LOCKS option to obtain and hold an X lock instead of a U or S lock.

10. Includes partition locks, if selective partition locking is used. Does not include
LOB table space locks. See “LOB locks” on page 691 for information about
locking LOB table spaces.

11. If the table space is defined with LOCKPART YES, it is possible that locks can
be avoided on the partitions.

Lock promotion

Definition: Lock promotion is the action of exchanging one lock on a resource for
a more restrictive lock on the same resource, held by the same application process.

Example: An application reads data, which requires an IS lock on a table space.
Based on further calculation, the application updates the same data, which requires
an IX lock on the table space. The application is said to promote the table space
lock from mode IS to mode IX.

Effects: When promoting the lock, DB2 first waits until any incompatible locks held
by other processes are released. When locks are promoted, it is in the direction of
increasing control over resources: from IS to IX, S, or X; from IX to SIX or X; from
S to X; from U to X; and from SIX to X.

Lock escalation

Definition: Lock escalation is the act of releasing a large number of page, row or
LOB locks, held by an application process on a single table or table space, to
acquire a table or table space lock, or a set of partition locks, of mode S or X
instead. When it occurs, DB2 issues message DSNI031I, which identifies the table
space for which lock escalation occurred, and some information to help you identify
what plan or package was running when the escalation occurred.

Lock counts are always kept on a table or table space level. For an application
process that is accessing LOBs, the LOB lock count on the LOB table space is
maintained separately from the base table space, and lock escalation occurs
separately from the base table space.

When escalation occurs for a table space defined with LOCKPART YES, only
partitions that are currently locked are escalated. Unlocked partitions remain
unlocked. After lock escalation occurs, any unlocked partitions that are
subsequently accessed are locked with a gross lock.

For an application process that is using Sysplex query parallelism, the lock count is
maintained on a member basis, not globally across the group for the process. Thus,
escalation on a table space or table by one member does not cause escalation on
other members.

662 Administration Guide

Example: Assume that a segmented table space is defined with LOCKSIZE ANY
and LOCKMAX 2000. DB2 can use page locks for a process that accesses a table
in the table space and can escalate those locks. If the process attempts to lock
more than 2000 pages in the table at one time, DB2 promotes its intent locks on
the table to mode S or X and then releases its page locks.

If the process is using Sysplex query parallelism and a table space that it accesses
has a LOCKMAX value of 2000, lock escalation occurs for a member only if more
than 2000 locks are acquired for that member.

When it occurs: Lock escalation balances concurrency with performance by using
page or row locks while a process accesses relatively few pages or rows, and then
changing to table space, table, or partition locks when the process accesses many.
When it occurs, lock escalation varies by table space, depending on the values of
LOCKSIZE and LOCKMAX, as described in
v “LOCKSIZE clause of CREATE and ALTER TABLESPACE” on page 671
v “LOCKMAX clause of CREATE and ALTER TABLESPACE” on page 672

Lock escalation is suspended during the execution of SQL statements for ALTER,
CREATE, DROP, GRANT, and REVOKE.

See “Controlling LOB lock escalation” on page 695 for information about lock
escalation for LOBs.

Recommendations: The DB2 statistics and performance traces can tell you how
often lock escalation has occurred and whether it has caused timeouts or
deadlocks. As a rough estimate, if one quarter of your lock escalations cause
timeouts or deadlocks, then escalation is not effective for you. You might alter the
table to increase LOCKMAX and thus decrease the number of escalations.

Alternatively, if lock escalation is a problem, use LOCKMAX 0 to disable lock
escalation. However, acquiring too many locks can cause DB2 to fail if IRLM runs
out of storage for the locks. If you use LOCKSIZE ANY LOCKMAX 0 to disable lock
escalation, DB2 might acquire an X lock on the table space instead of any page or
row locks. To avoid the table space lock in these cases, alter the table space to
increase LOCKMAX to a large value.

Example: Assume that a table space is used by transactions that require high
concurrency and that a batch job updates almost every page in the table space. For
high concurrency, you should probably create the table space with LOCKSIZE
PAGE and make the batch job commit every few seconds.

LOCKSIZE ANY is a possible choice, if you take other steps to avoid lock
escalation. If you use LOCKSIZE ANY, specify a LOCKMAX value large enough so
that locks held by transactions are not normally escalated. Also, LOCKS PER
USER must be large enough so that transactions do not reach that limit.

If the batch job is:

v Concurrent with transactions, then it must use page or row locks and commit
frequently: for example, every 100 updates. Review LOCKS PER USER to avoid
exceeding the limit. The page or row locking uses significant processing time.
Binding with ISOLATION(CS) may discourage lock escalation to an X table space
lock for those applications that read a lot and update occasionally. However, this
may not prevent lock escalation for those applications that are update intensive.

Chapter 30. Improving concurrency 663

|
|
|
|
|

|
|
|

v Non-concurrent with transactions, then it need not use page or row locks. The
application could explicitly lock the table in exclusive mode, described under “The
statement LOCK TABLE” on page 690.

Modes of transaction locks for various processes
The rows in Table 93 show a sample of several types of DB2 processes. The
columns show the most restrictive mode of locks used for different objects and the
possible conflicts between application processes.

Table 93. Modes of DB2 transaction locks

Process
Catalog table

spaces

Skeleton tables
(SKCT and

SKPT)

Database
descriptor (DBD)

(1)
Target table

space (2)

Transaction with static SQL IS (3) S n/a (4) Any (5)

Query with dynamic SQL IS (6) S S Any (5)

BIND process IX X S n/a

SQL CREATE TABLE statement IX n/a X n/a

SQL ALTER TABLE statement IX X (7) X n/a

SQL ALTER TABLESPACE statement IX X (9) X n/a

SQL DROP TABLESPACE statement IX X (8) X n/a

SQL GRANT statement IX n/a n/a n/a

SQL REVOKE statement IX X (8) n/a n/a

Notes for Table 93:

1. In a lock trace, these locks usually appear as locks on the DBD.

2. The target table space is one of the following table spaces:
v Accessed and locked by an application process
v Processed by a utility
v Designated in the data definition statement

3. The lock is held briefly to check EXECUTE authority.

4. If the required DBD is not already in the EDM pool, locks are acquired on table
space DBD01, which effectively locks the DBD.

5. For details, see Table 92 on page 660.

6. Except while checking EXECUTE authority, IS locks on catalog tables are held
until a commit point.

7. The plan or package using the SKCT or SKPT is marked invalid if a referential
constraint (such as a new primary key or foreign key) is added or changed, or
the AUDIT attribute is added or changed for a table.

8. The plan or package using the SKCT or SKPT is marked invalid as a result of
this operation.

9. These locks are not held when ALTER TABLESPACE is changing the following
options: PRIQTY, SECQTY, PCTFREE, FREEPAGE, CLOSE, and ERASE.

Lock tuning
This section describes what you can change to affect transaction locks, under:
v “Startup procedure options” on page 665
v “Installation options for wait times” on page 665
v “Other options that affect locking” on page 670
v “Bind options” on page 675

664 Administration Guide

|

v “Isolation overriding with SQL statements” on page 689
v “The statement LOCK TABLE” on page 690

Startup procedure options
The values of these options are passed to the startup procedure for the DB2
internal resource lock manager (IRLM) when you issue the MVS command START
irlmproc.

Using options for DB2 locking
The options relevant to DB2 locking are:

SCOPE Whether IRLM is used for data sharing (GLOBAL) or not (LOCAL).
Use LOCAL unless you are using data sharing. If you use data
sharing, specify GLOBAL.

DEADLOK The two values of this option specify:

1. The number of seconds between two successive scans for a
local deadlock

2. The number of local scans that occur before a scan for global
deadlock starts

PC Whether the IRLM locks are in the IRLM private address space
(YES) or in the extended common storage area (NO). If YES, DB2
uses cross memory for IRLM requests.

MAXCSA The maximum amount of storage in the ECSA and CSA that IRLM
uses for locks. In a display of the IRLM storage, this storage is
called “accountable” storage, because it is accountable against the
value you set for MAXCSA.

ECSA is a shared area of which DB2 is not the only user; it is used
until no space is left, and then CSA is used. Lock requests that
need more storage are rejected and the corresponding unit of work
is rolled back.

Estimating the storage needed for locks
For a conservative figure, assume:

v 250 bytes of storage for each lock.

v All concurrent threads hold the maximum number of row or page locks (LOCKS
PER USER on installation panel DSNTIPJ). The number of table and table space
locks is negligible.

v The maximum number of concurrent threads are active.

Then calculate: Storage = 250 × (LOCKS PER USER) × (MAX USERS).

That value is calculated when DB2 is installed. A warning message is issued if the
value of MAXCSA is less than the calculated value. That result might mean
rejecting lock requests.

Installation options for wait times
These options determine how long it takes DB2 to identify that a process must be
timed out or is deadlocked. They affect locking in your entire DB2 subsystem.

The following fields of the installation panels are relevant to transaction locks:
v “DEADLOCK TIME on installation panel DSNTIPJ” on page 666
v “RESOURCE TIMEOUT on installation panel DSNTIPI” on page 666
v “IDLE THREAD TIMEOUT on installation panel DSNTIPR” on page 668

Chapter 30. Improving concurrency 665

The following field is relevant to drain locks:

v “UTILITY TIMEOUT on installation panel DSNTIPI” on page 668

DEADLOCK TIME on installation panel DSNTIPJ

Effect: DB2 scans for deadlocked processes at regular intervals. This field sets
the length of the interval, in seconds.

Default: 5 seconds.

Recommendation: Determining the best value for deadlock detection is
dependent on your workload. Deadlock detection can cause latch suspensions;
therefore, for systems in which deadlocking is not a problem, have deadlock
detection run less frequently for the best performance and concurrency (but don’t
choose a number greater than 5). However, if your system is prone to deadlocks,
you want those detected as quickly as possible. In that case, choose 1.

RESOURCE TIMEOUT on installation panel DSNTIPI

Effect: Specifies a minimum number of seconds before a timeout can occur. A
small value can cause a large number of timeouts. With a larger value, suspended
processes more often resume normally, but they remain inactive for longer periods.

Default: 60 seconds.

Recommendation: If you can allow a suspended process to remain inactive for
60 seconds, use the defaults for both RESOURCE TIMEOUT and DEADLOCK
TIME. To specify a different inactive period, you must consider how DB2 times out a
process that is waiting for a transaction lock, as described in “Wait time for
transaction locks”, below.

Wait time for transaction locks
In a scanning schedule to determine whether a process waiting for a transaction
lock has timed out, DB2 uses the following two factors:
v A timeout period
v An operation multiplier

The timeout period: From the value of RESOURCE TIMEOUT and DEADLOCK
TIME, DB2 calculates a timeout period as shown below. Assume that DEADLOCK
TIME is 5 and RESOURCE TIMEOUT is 18.

1. Divide RESOURCE TIMEOUT by DEADLOCK TIME (18/5 = 3.6). IRLM limits
the result of this division to 255.

2. Round the result to the next largest integer (Round up 3.6 to 4).

3. Multiply the DEADLOCK TIME by that integer (4 × 5 = 20).

The result, the timeout period (20 seconds), is always at least as large as the value
of RESOURCE TIMEOUT (18 seconds), except when the RESOURCE TIMEOUT
divided by DEADLOCK TIME exceeds 255.

The timeout multiplier: Requests from different types of processes wait for
different multiples of the timeout period. In a data sharing environment, you can add
another multiplier to those processes to wait for retained locks.

In some cases, you can modify the multiplier value. Table 94 on page 667 indicates
the multiplier by type of process, and whether you can change it.

666 Administration Guide

Table 94. Timeout multiplier by type

Type Multiplier Modifiable?

IMS MPP, IMS Fast Path Message Processing, CICS,
QMF, CAF, TSO batch and online

1 No

IMS BMPs 4 Yes

IMS DL/I batch 6 Yes

IMS Fast Path Non-message processing 6 No

BIND subcommand processing 3 No

STOP DATABASE command processing 10 No

Utilities 6 Yes

Retained locks for all types 0 Yes

See “UTILITY TIMEOUT on installation panel DSNTIPI” on page 668 for information
about modifying the utility timeout multiplier. See “Additional multiplier for retained
locks” for information about creating an additional multiplier for retained lock
timeout.

Changing the multiplier for IMS BMP and DL/I batch: You can modify the
multipliers for IMS BMP and DL/I batch by modifying the following subsystem
parameters on installation panel DSNTIPI:

IMS BMP TIMEOUT The timeout multiplier for IMS BMP connections. A
value from 1-254 is acceptable. The default is 4.

DL/I BATCH TIMEOUT The timeout multiplier for IMS DL/I batch
connections. A value from 1-254 is acceptable. The
default is 6.

Additional multiplier for retained locks: For data sharing, you can specify an
additional timeout multiplier to be applied to the connection’s normal timeout
multiplier. This multiplier is used when the connection is waiting for a retained lock,
which is a lock held by a failed member of a data sharing group. A zero means
don’t wait for retained locks. Chapter 2 of DB2 Data Sharing: Planning and
Administration for more information about retained locks.

The scanning schedule: Figure 77 on page 668 illustrates the following example
of scanning to detect a timeout:

v DEADLOCK TIME has the default value of 5 seconds.

v RESOURCE TIMEOUT was chosen to be 18 seconds. Hence, the timeout period
is 20 seconds, as described above.

v A bind operation starts 4 seconds before the next scan. The operation multiplier
for a bind operation is 3.

The scans proceed through the following steps:

1. A scan starts 4 seconds after the bind operation requests a lock. As determined
by the DEADLOCK TIME, scans occur every 5 seconds. The first scan in the
example detects that the operation is inactive.

2. IRLM allows at least one full interval of DEADLOCK TIME as a “grace period”
for an inactive process. After that, its lock request is judged to be waiting. At 9
seconds, the second scan detects that the bind operation is waiting.

Chapter 30. Improving concurrency 667

3. The bind operation continues to wait for a multiple of the timeout period. In the
example, the multiplier is 3 and the timeout period is 20 seconds. The bind
operation continues to wait for 60 seconds longer.

4. The scan that starts 69 seconds after the bind operation detects that the
process has timed out.

Effect: An operation can remain inactive for longer than the value of RESOURCE
TIMEOUT.

If you are in a data sharing environment, the deadlock and timeout detection
process is longer than that for non-data-sharing systems. See Chapter 6 of DB2
Data Sharing: Planning and Administration for more information about global
detection processing and elongation of the timeout period.

Recommendation: Consider the length of inaction time when choosing your own
values of DEADLOCK TIME and RESOURCE TIMEOUT.

IDLE THREAD TIMEOUT on installation panel DSNTIPR

Effect: Specifies a period for which an active distributed thread can hold locks
without doing any processing. After that period, a regular scan (at 3-minute
intervals) detects that the thread has been idle for the specified period, and DB2
cancels the thread.

The cancellation applies only to active threads. If your installation permits
distributed threads to be inactive and hold no resources, those threads are allowed
to remain idle indefinitely.

Default: 0. That value disables the scan to time out idle threads. The threads can
then remain idle indefinitely.

Recommendation: If you have experienced distributed users leaving an
application idle while it holds locks, pick an appropriate value other than 0 for this
period. Because the scan occurs only at 3-minute intervals, your idle threads will
generally remain idle for somewhat longer than the value you specify.

UTILITY TIMEOUT on installation panel DSNTIPI

Effect: Specifies an operation multiplier for utilities waiting for a drain lock, for a
transaction lock, or for claims to be released.

0 seconds: BIND starts BIND times out at seconds=69
Elapsed time=69 seconds

Timeout period

Time in seconds

Deadlock time
Grace period

A deadlock example: Deadlock time
Resource timeout
Timeout period

=
=
=

5 seconds
18 seconds
20 seconds

0 4 9 14 19 24 29 34 39 44 49 54 59 64 69

Figure 77. An example of scanning for timeout

668 Administration Guide

Default: 6.

Recommendation: With the default value, a utility generally waits longer for a
resource than does an SQL application. To specify a different inactive period, you
must consider how DB2 times out a process that is waiting for a drain, as described
in “Wait time for drains”.

Wait time for drains
A process that requests a drain might wait for two events:

1. Acquiring the drain lock. If another user holds the needed drain lock in an
incompatible lock mode, then the drainer waits.

2. Releasing all claims on the object. Even after the drain lock is acquired, the
drainer waits until all claims are released before beginning to process.

If the process drains more than one claim class, it must wait for those events to
occur for each claim class it drains.

Hence, to calculate the maximum amount of wait time:
1. Start with the wait time for a drain lock.
2. Add the wait time for claim release.
3. Multiply the result by the number of claim classes drained.

Wait times for drain lock and claim release: Both wait times are based on the
timeout period that is calculated in “RESOURCE TIMEOUT on installation panel
DSNTIPI” on page 666. For the REORG utility with the SHRLEVEL REFERENCE or
SHRLEVEL CHANGE option, you can use utility parameters to specify the wait time
for a drain lock and to indicate if additional attempts should be made to acquire the
drain lock. For more information, see DB2 Utility Guide and Reference.

Drainer Each wait time is:
Utility (timeout period) × (value of UTILITY TIMEOUT)
Other process timeout period

Maximum wait time: Because the maximum wait time for a drain lock is the same
as the maximum wait time for releasing claims, you can calculate the total
maximum wait time as follows:

For utilities:
2 × (timeout period) × (UTILITY TIMEOUT) × (number of claim classes)
For other processes:
2 × (timeout period) × (operation multiplier) × (number of claim classes)

Example: How long might the LOAD utility be suspended before being timed out?
LOAD must drain 3 claim classes. If:

Timeout period = 20
Value of UTILITY TIMEOUT = 6

Then:
Maximum wait time = 2 × 20 × 6 × 3

or:
Maximum wait time = 720 seconds

Wait times less than maximum: The maximum drain wait time is the longest
possible time a drainer can wait for a drain, not the length of time it always waits.

Chapter 30. Improving concurrency 669

|
|
|
|

Example: Table 95 lists the steps LOAD takes to drain the table space and the
maximum amount of wait time for each step. A timeout can occur at any step. At
step 1, the utility can wait 120 seconds for the repeatable read drain lock. If that
lock is not available by then, the utility times out after 120 seconds. It does not wait
720 seconds.

Table 95. Maximum drain wait times: LOAD utility

Step Maximum Wait
Time (seconds)

1. Get repeatable read drain lock 120

2. Wait for all RR claims to be released 120

3. Get cursor stability read drain lock 120

4. Wait for all CS claims to be released 120

5. Get write drain lock 120

6. Wait for all write claims to be released 120

Total 720

Other options that affect locking
You can use various options to control such things as how many locks are used
and which mode is used for certain locks. This section describes the following
installation options and SQL statement clauses:
v “LOCKS PER USER field of installation panel DSNTIPJ”
v “LOCKSIZE clause of CREATE and ALTER TABLESPACE” on page 671
v “LOCKMAX clause of CREATE and ALTER TABLESPACE” on page 672
v “LOCKS PER TABLE(SPACE) field of installation panel DSNTIPJ” on page 673
v “The option U LOCK FOR RR/RS” on page 673
v “Option to release locks for cursors defined WITH HOLD” on page 673
v “Option XLOCK for searched updates/deletes” on page 674
v “Option to avoid locks during predicate evaluation” on page 674

See “Effects of table spaces of different types” on page 651 for information about
the LOCKPART clause of CREATE and ALTER TABLESPACE.

LOCKS PER USER field of installation panel DSNTIPJ

Effect: Specifies the maximum number of page, row, or LOB locks that can be
held by a single process at any one time. It includes locks for both the DB2 catalog
and directory and for user data.

When a request for a page, row, or LOB lock exceeds the specified limit, it receives
SQLCODE -904: “resource unavailable” (SQLSTATE '57011'). The requested lock
cannot be acquired until some of the existing locks are released.

Default: 10000

Recommendation: The default should be adequate for 90 percent of the work
load when using page locks. If you use row locks on very large tables, you might
want a higher value. If you use LOBs, you might need a higher value.

Review application processes that require higher values to see if they can use table
space locks rather than page, row, or LOB locks. The accounting trace shows the
maximum number of page, row, or LOB locks a process held while running.

670 Administration Guide

|

LOCKSIZE clause of CREATE and ALTER TABLESPACE
The information under this heading, up to “LOCKMAX clause of CREATE and
ALTER TABLESPACE” on page 672, is General-use Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

Effect: Specifies the size for locks held on a table or table space by any
application process that accesses it. The options are:

LOCKSIZE TABLESPACE
A process acquires no table, page, row, or LOB locks within the table space.
That improves performance by reducing the number of locks maintained, but
greatly inhibits concurrency.

LOCKSIZE TABLE
A process acquires table locks on tables in a segmented table space. If the
table space contains more than one table, this option can provide acceptable
concurrency with little extra cost in processor resources.

LOCKSIZE PAGE
A process acquires page locks, plus table, partition, or table space locks of
modes that permit page locks (IS, IX, or SIX). The effect is not absolute: a
process can still acquire a table, partition, or table space lock of mode S or X,
without page locks, if that is needed. In that case, the bind process issues a
message warning that the lock size has been promoted as described under
“Lock promotion” on page 662.

LOCKSIZE ROW
A process acquires row locks, plus table, partition, or table space locks of
modes that permit row locks (IS, IX, or SIX). The effect is not absolute: a
process can still acquire a table or table space lock of mode S or X, without row
locks, if that is needed. In that case, the bind process issues a message
warning that the lock size has been promoted as described under “Lock
promotion” on page 662.

LOCKSIZE ANY
DB2 chooses the size of the lock, usually LOCKSIZE PAGE.

LOCKSIZE LOB
If a LOB must be accessed, a process acquires LOB locks and the necessary
LOB table space locks (IS or IX). This option is valid only for LOB table spaces.
See “LOB locks” on page 691 for more information about LOB locking.

DB2 attempts to acquire an S lock on table spaces that are started with read-only
access. If the LOCKSIZE is PAGE or ROW, and DB2 cannot get the S lock, it
requests an IS lock. If a partition is started with read-only access, and the table
space is defined with LOCKPART YES, then DB2 attempts to get an S lock on the
partition that is started RO. For a complete description of how the LOCKSIZE
clause affects lock attributes, see “DB2’s choice of lock types” on page 659.

Default: LOCKSIZE ANY

Catalog record: Column LOCKRULE of table SYSIBM.SYSTABLESPACE.

Recommendation: If you do not use the default, base your choice upon the
results of monitoring applications that use the table space.

Row locks or page locks? The question of whether to use row or page locks
depends on your data and your applications. If you are experiencing contention on

Chapter 30. Improving concurrency 671

data pages of a table space now defined with LOCKSIZE PAGE, consider
LOCKSIZE ROW. But consider also the trade-offs.

The resource required to acquire, maintain, and release a row lock is about the
same as that required for a page lock. If your data has 10 rows per page, a table
space scan or an index scan can require nearly 10 times as much resource for row
locks as for page locks. But locking only a row at a time, rather than a page, might
reduce the chance of contention with some other process by 90%, especially if
access is random. (Row locking is not recommended for sequential processing.)

In many cases, DB2 can avoid acquiring a lock when reading data that is known to
be committed. Thus, if only 2 of 10 rows on a page contain uncommitted data, DB2
must lock the entire page when using page locks, but might ask for locks on only
the 2 rows when using row locks. Then, the resource required for row locks would
be only twice as much, not 10 times as much, as that required for page locks.

On the other hand, if two applications update the same rows of a page, and not in
the same sequence, then row locking might even increase contention. With page
locks, the second application to access the page must wait for the first to finish and
might time out. With row locks, the two applications can access the same page
simultaneously, and might deadlock while trying to access the same set of rows.

In short, no single answer fits all cases.

LOCKMAX clause of CREATE and ALTER TABLESPACE
The information under this heading, up to “LOCKS PER TABLE(SPACE) field of
installation panel DSNTIPJ” on page 673, is General-use Programming Interface
and Associated Guidance Information, as defined in “Notices” on page 1095.

Effects of the options: You can specify these values not only for tables of user
data but also, by using ALTER TABLESPACE, for tables in the DB2 catalog.

LOCKMAX n
Specifies the maximum number of page or row locks that a single application
process can hold on the table space before those locks are escalated as
described in “Lock escalation” on page 662. For LOB table spaces, this value
specifies the number of LOB locks that the application process can hold before
escalating. For an application that uses Sysplex query parallelism, a lock count
is maintained on each member.

LOCKMAX SYSTEM
Specifies that n is effectively equal to the system default set by the field LOCKS
PER TABLE(SPACE) of installation panel DSNTIPJ.

LOCKMAX 0
Disables lock escalation entirely.

Default: Depends on the value of LOCKSIZE, as follows:

LOCKSIZE Default for LOCKMAX

ANY SYSTEM

other 0

Catalog record: Column LOCKMAX of table SYSIBM.SYSTABLESPACE.

Recommendations: If you do not use the default, base your choice upon the
results of monitoring applications that use the table space.

672 Administration Guide

Aim to set the value of LOCKMAX high enough that, when lock escalation occurs,
one application already holds so many locks that it significantly interferes with
others. For example, if an application holds half a million locks on a table with a
million rows, it probably already locks out most other applications. Yet lock
escalation can prevent it from potentially acquiring another half million locks.

If you alter a table space from LOCKSIZE PAGE or LOCKSIZE ANY to LOCKSIZE
ROW, consider increasing LOCKMAX to allow for the increased number of locks
that applications might require.

If you use LOCKSIZE ANY LOCKMAX 0 to disable lock escalation, DB2 might
acquire an X lock on the table space instead of any page or row locks. To avoid the
table space lock in these cases, alter the table space to increase LOCKMAX to a
large value.

LOCKS PER TABLE(SPACE) field of installation panel DSNTIPJ

Effect: The value becomes the default value (SYSTEM) for the LOCKMAX clause
of the SQL statements CREATE TABLESPACE and ALTER TABLESPACE.

Default: 1000

Recommendation: Use the default or, if you are migrating from a previous
release of DB2, continue to use the existing value. When you create or alter a table
space, especially when you alter one to use row locks, use the LOCKMAX clause
explicitly for that table space.

The option U LOCK FOR RR/RS
This option, on installation panel DSNTIPI, determines the mode of the lock first
acquired on a row or page, table, partition, or table space for certain statements
bound with RR or RS isolation. Those statements include:

v SELECT with FOR UPDATE OF

If you specify the SELECT using WITH RS KEEP UPDATE LOCKS or WITH RR
KEEP UPDATE LOCKS, an X lock is held on the rows or pages.

v UPDATE and DELETE, without a cursor

Option Value Lock Mode

NO (default) S

YES U or X

YES can avoid deadlocks but reduces concurrency.

Option to release locks for cursors defined WITH HOLD

Effect: The RELEASE LOCKS field of installation panel DSNTIP4 lets you indicate
that you want DB2 to release a data page or row lock after a COMMIT is issued for
cursors defined WITH HOLD. This lock is not necessary for maintaining cursor
position.

Default: YES

Recommendation: The default, YES, causes DB2, at commit time, to release the
data page or row lock for the row on which the cursor is positioned. This lock is
unnecessary for maintaining cursor position. To improve concurrency, specify YES.
Specify NO only for those cases in which existing applications rely on that particular
data lock.

Chapter 30. Improving concurrency 673

|
|
|
|

Option XLOCK for searched updates/deletes

Effect: A subsystem parameter XLKUPDLT lets you disable update lock (ULOCK)
on searched UPDATEs and DELETEs so that you do not have to issue a second
lock request to upgrade the lock from U to X (exclusive lock) for each updated row.

Default: NO

Recommendation: This feature is primarily beneficial in a data sharing
environment. It should be used when most or all searched UPDATEs/DELETEs use
an index or can be evaluated by stage 1 processing. When NO is specified, DB2
uses an S lock or a U lock when scanning for qualifying rows. The lock on any
qualifying row or page is then upgraded to an X lock before performing the update
or delete. For non-qualifying rows or pages, the lock is released if ISOLATION(CS)
is used. For ISOLATION(RS) or ISOLATION(RR), an S lock is retained on the row
or page until the next commit point. This option is best for achieving the highest
rates of concurrency.

When YES is specified, DB2 uses an X lock on rows or pages that qualify during
stage 1 processing. With ISOLATION(CS), the lock is released if the row or page is
not updated or deleted because it is rejected by stage 2 processing. With
ISOLATION(RR) or ISOLATION(RS), DB2 acquires an X lock on all rows that fall
within the range of the selection expression. Thus, a lock upgrade request is not
needed for qualifying rows though the lock duration is changed from manual to
commit. The lock duration change is not as costly as a lock upgrade.

Option to avoid locks during predicate evaluation

Effect: The EVALUATE UNCOMMITTED field of installation panel DSNTIP4
indicates if predicate evaluation can occur on uncommitted data of other
transactions. The option applies only to stage 1 predicate processing that uses
table access (table space scan, index-to-data access, and RID list processing) for
queries with isolation level RS or CS.

Although this option influences whether predicate evaluation can occur on
uncommitted data, it does not influence whether uncommitted data is returned to an
application. Queries with isolation level RS or CS will return only committed data.
They will never return the uncommitted data of other transactions, even if predicate
evaluation occurs on such. If data satisfies the predicate during evaluation, the data
is locked as needed, and the predicate is re-evaluated as needed before the data is
returned to the application.

A value of NO specifies that predicate evaluation occurs only on committed data (or
on the application’s own uncommitted changes). NO ensures that all qualifying data
is always included in the answer set.

A value of YES specifies that predicate evaluation can occur on uncommitted data
of other transactions. With YES, data might be excluded from the answer set. Data
that does not satisfy the predicate during evaluation but then, because of undo
processing (ROLLBACK or statement failure), reverts to a state that does satisfy the
predicate is missing from the answer set. A value of YES enables DB2 to take
fewer locks during query processing. The number of locks avoided depends on:
v The query’s access path
v The number of evaluated rows that do not satisfy the predicate
v The number of those rows that are on overflow pages

Default: NO

674 Administration Guide

|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

Recommendation: Specify YES to improve concurrency if your applications can
tolerate returned data to falsely exclude any data that would be included as the
result of undo processing (ROLLBACK or statement failure).

Bind options
The information under this heading, up to “Isolation overriding with SQL statements”
on page 689, is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

These options determine when an application process acquires and releases its
locks and to what extent it isolates its actions from possible effects of other
processes acting concurrently.

These options of bind operations are relevant to transaction locks:
v “The ACQUIRE and RELEASE options”
v “The ISOLATION option” on page 678
v “The CURRENTDATA option” on page 685

The ACQUIRE and RELEASE options

Effects: The ACQUIRE and RELEASE options of bind determine when DB2 locks
an object (table, partition, or table space) your application uses and when it
releases the lock. (The ACQUIRE and RELEASE options do not affect page, row, or
LOB locks.) The options apply to static SQL statements, which are bound before
your program executes. If your program executes dynamic SQL statements, the
objects they lock are locked when first accessed and released at the next commit
point though some locks acquired for dynamic SQL may be held past commit
points. See “The RELEASE option and dynamic statement caching” on page 676.

Option Effect

ACQUIRE(ALLOCATE) Acquires the lock when the object is allocated. This
option is not allowed for BIND or REBIND
PACKAGE.

ACQUIRE(USE) Acquires the lock when the object is first accessed.

RELEASE(DEALLOCATE) Releases the lock when the object is deallocated
(the application ends). The value has no effect on
dynamic SQL statements, which always use
RELEASE(COMMIT), unless you are using dynamic
statement caching. For information about the
RELEASE option with dynamic statement caching,
see “The RELEASE option and dynamic statement
caching” on page 676.

RELEASE(COMMIT) Releases the lock at the next commit point, unless
there are held cursors or held locators. If the
application accesses the object again, it must
acquire the lock again.

Example: An application selects employee names and telephone numbers from a
table, according to different criteria. Employees can update their own telephone
numbers. They can perform several searches in succession. The application is
bound with the options ACQUIRE(USE) and RELEASE(DEALLOCATE), for these
reasons:

v The alternative to ACQUIRE(USE), ACQUIRE(ALLOCATE), gets a lock of mode
IX on the table space as soon as the application starts, because that is needed if

Chapter 30. Improving concurrency 675

|
|
|

an update occurs. But most uses of the application do not update the table and
so need only the less restrictive IS lock. ACQUIRE(USE) gets the IS lock when
the table is first accessed, and DB2 promotes the lock to mode IX if that is
needed later.

v Most uses of this application do not update and do not commit. For those uses,
there is little difference between RELEASE(COMMIT) and
RELEASE(DEALLOCATE). But administrators might update several phone
numbers in one session with the application, and the application commits after
each update. In that case, RELEASE(COMMIT) releases a lock that DB2 must
acquire again immediately. RELEASE(DEALLOCATE) holds the lock until the
application ends, avoiding the processing needed to release and acquire the lock
several times.

Effect of LOCKPART YES: Partition locks follow the same rules as table space
locks, and all partitions are held for the same duration. Thus, if one package is
using RELEASE(COMMIT) and another is using RELEASE(DEALLOCATE), all
partitions use RELEASE(DEALLOCATE).

The RELEASE option and dynamic statement caching: Generally, the
RELEASE option has no effect on dynamic SQL statements with one exception.
When you use the bind options RELEASE(DEALLOCATE) and
KEEPDYNAMIC(YES), and your subsystem is installed with YES for field CACHE
DYNAMIC SQL on panel DSNTIP4, DB2 retains prepared SELECT, INSERT,
UPDATE, and DELETE statements in memory past commit points. For this reason,
DB2 can honor the RELEASE(DEALLOCATE) option for these dynamic statements.
The locks are held until deallocation, or until the commit after the prepared
statement is freed from memory, in the following situations:

v The application issues a PREPARE statement with the same statement identifier.

v The statement is removed from memory because it has not been used.

v An object that the statement is dependent on is dropped or altered, or a privilege
needed by the statement is revoked.

v RUNSTATS is run against an object that the statement is dependent on.

If a lock is to be held past commit and it is an S, SIX, or X lock on a table space or
a table in a segmented table space, DB2 sometimes demotes that lock to an intent
lock (IX or IS) at commit. DB2 demotes a gross lock if it was acquired for one of the
following reasons:

v DB2 acquired the gross lock because of lock escalation.

v The application issued a LOCK TABLE.

v The application issued a mass delete (DELETE FROM ... without a WHERE
clause).

For table spaces defined as LOCKPART YES, lock demotion occurs as with other
table spaces; that is, the lock is demoted at the table space level, not the partition
level.

Defaults: The defaults differ for different types of bind operations:

Operation Default values

BIND PLAN ACQUIRE(USE) and RELEASE(COMMIT).

BIND PACKAGE There is no option for ACQUIRE; ACQUIRE(USE) is
always used. At the local server the default for
RELEASE is the value used by the plan that

676 Administration Guide

includes the package in its package list. At a
remote server the default is COMMIT.

REBIND PLAN or PACKAGE The existing values for the plan or package being
rebound.

Recommendation: Choose a combination of values for ACQUIRE and RELEASE
based on the characteristics of the particular application.

The RELEASE option and DDL operations for remote requesters: When you
perform DDL operations on behalf of remote requesters and
RELEASE(DEALLOCATE) is in effect, be aware of the following condition. When a
package that is bound with RELEASE(DEALLOCATE) accesses data at a server, it
might prevent other remote requesters from performing CREATE, ALTER, DROP,
GRANT, or REVOKE operations at the server.

To allow those operations to complete, you can use the command STOP DDF
MODE(SUSPEND). The command suspends server threads and terminates their
locks so that DDL operations from remote requesters can complete. When these
operations complete, you can use the command START DDF to resume the
suspended server threads. However, even after the command STOP DDF
MODE(SUSPEND) completes successfully, database resources might be held if
DB2 is performing any activity other than inbound DB2 processing. You might have
to use the command CANCEL THREAD to terminate other processing and thereby
free the database resources.

Advantages and disadvantages of the combinations

ACQUIRE(ALLOCATE) / RELEASE(DEALLOCATE): In some cases, this
combination can avoid deadlocks by locking all needed resources as soon as the
program starts to run. This combination is most useful for a long-running application
that runs for hours and accesses various tables, because it prevents an untimely
deadlock from wasting that processing.

v All tables or table spaces used in DBRMs bound directly to the plan are locked
when the plan is allocated.

v All tables or table spaces are unlocked only when the plan terminates.

v The locks used are the most restrictive needed to execute all SQL statements in
the plan regardless of whether the statements are actually executed.

v Restrictive states are not checked until the page set is accessed. Locking when
the plan is allocated insures that the job is compatible with other SQL jobs.
Waiting until the first access to check restrictive states provides greater
availability; however, it is possible that an SQL transaction could:

– Hold a lock on a table space or partition that is stopped

– Acquire a lock on a table space or partition that is started for DB2 utility
access only (ACCESS(UT))

– Acquire an exclusive lock (IX, X) on a table space or partition that is started
for read access only (ACCESS(RO)), thus prohibiting access by readers

Disadvantages: This combination reduces concurrency. It can lock resources in
high demand for longer than needed. Also, the option ACQUIRE(ALLOCATE) turns
off selective partition locking; if you are accessing a table space defined with
LOCKPART YES, all partitions are locked.

Restriction: This combination is not allowed for BIND PACKAGE. Use this
combination if processing efficiency is more important than concurrency. It is a good

Chapter 30. Improving concurrency 677

choice for batch jobs that would release table and table space locks only to
reacquire them almost immediately. It might even improve concurrency, by allowing
batch jobs to finish sooner. Generally, do not use this combination if your
application contains many SQL statements that are often not executed.

ACQUIRE(USE) / RELEASE(DEALLOCATE): This combination results in the
most efficient use of processing time in most cases.

v A table, partition, or table space used by the plan or package is locked only if it is
needed while running.

v All tables or table spaces are unlocked only when the plan terminates.

v The least restrictive lock needed to execute each SQL statement is used, with
the exception that if a more restrictive lock remains from a previous statement,
that lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks.
Because all locks are acquired in a sequence that is predictable only in an actual
run, more concurrent access delays might occur.

ACQUIRE(USE) / RELEASE(COMMIT): This combination is the default
combination and provides the greatest concurrency, but it requires more processing
time if the application commits frequently.

v A table or table space is locked only when needed. That locking is important if
the process contains many SQL statements that are rarely used or statements
that are intended to access data only in certain circumstances.

v Table, partition, or table space locks are released at the next commit point
unless the cursor is defined WITH HOLD. See “The effect of WITH HOLD for a
cursor” on page 688 for more information.

v The least restrictive lock needed to execute each SQL statement is used except
when a more restrictive lock remains from a previous statement. In that case,
that lock is used without change.

Disadvantages: This combination can increase the frequency of deadlocks.
Because all locks are acquired in a sequence that is predictable only in an actual
run, more concurrent access delays might occur.

ACQUIRE(ALLOCATE) / RELEASE(COMMIT): This combination is not allowed; it
results in an error message from BIND.

The ISOLATION option

Effects: Specifies the degree to which operations are isolated from the possible
effects of other operations acting concurrently. Based on this information, DB2
releases S and U locks on rows or pages as soon as possible.

Option Effect

ISOLATION(RR)
Repeatable read: A row or page lock is held for all accessed rows,
qualifying or not, at least until the next commit point. If the application
process returns to the same page and reads the same row again, another
application cannot have changed the rows nor have inserted any new
qualifying rows.

The repeatability of the read is guaranteed only until the application
commits. Even if a cursor is held on a specific row or page, the result set
can change after a commit.

678 Administration Guide

|
|

ISOLATION(RS)
Read stability: A row or page lock is held for pages or rows that are
returned to an application at least until the next commit point. If a row or
page is rejected during stage 2 processing, its lock is still held, even though
it is not returned to the application.

If the application process returns to the same page and reads the same row
again, another application cannot have changed the rows, although
additional qualifying rows might have been inserted by another application
process. A similar situation can also occur if a row or page that is not
returned to the application is updated by another application process. If the
row now satisfies the search condition, it appears.

When determining whether a row satisfies the search condition, DB2 can
avoid taking the lock altogether if the row contains uncommitted data. If the
row does not satisfy the predicate, lock avoidance is possible when the
value of the EVALUATE UNCOMMITTED field of installation panel
DSNTIP4 is YES. For details, see “Option to avoid locks during predicate
evaluation” on page 674.

ISOLATION(CS)
Cursor stability: A row or page lock is held only long enough to allow the
cursor to move to another row or page. For data that satisfies the search
condition of the application, the lock is held until the application locks the
next row or page. For data that does not satisfy the search condition, the
lock is immediately released.

The data returned to an application that uses ISOLATION(CS) is committed,
but if the application process returns to the same page, another application
might have since updated or deleted the data, or might have inserted
additional qualifying rows. This is especially true if DB2 returns data from a
result table in a work file.

For example, if DB2 has to put an answer set in a result table (such as for
a sort), DB2 releases the lock immediately after it puts the row or page in
the result table in the work file. Using cursor stability, the base table can
change while your application is processing the result of the sort output.

In some cases, DB2 can avoid taking the lock altogether, depending on the
value of the CURRENTDATA bind option or the value of the EVALUATE
UNCOMMITTED field on installation panel DSNTIP4.

v Lock avoidance on committed data: If DB2 can determine that the data it
is reading has already been committed, it can avoid taking the lock
altogether. For rows that do not satisfy the search condition, this lock
avoidance is possible with CURRENTDATA(YES) or
CURRENTDATA(NO). For rows that satisfy the search condition, lock
avoidance is possible only when you use the option
CURRENTDATA(NO). For more details, see “The CURRENTDATA
option” on page 685.

v Lock avoidance on uncommitted data: For rows that do not satisfy the
search condition, lock avoidance is possible when the value of
EVALUATE UNCOMMITTED is YES. For details, see “Option to avoid
locks during predicate evaluation” on page 674.

ISOLATION(UR)
Uncommitted read: The application acquires no page or row locks and can

Chapter 30. Improving concurrency 679

|
|
|
|
|
|

|
|
|

|
|
|
|

run concurrently with most other operations.9 But the application is in
danger of reading data that was changed by another operation but not yet
committed. A UR application can acquire LOB locks, as described in “LOB
locks” on page 691.

For restrictions on isolation UR, see “Restrictions” on page 684 for more
information.

Default: The default differs for different types of bind operations:

Operation Default value

BIND PLAN ISOLATION(RR)

BIND PACKAGE The value used by the plan that includes the
package in its package list

REBIND PLAN or PACKAGE The existing value for the plan or package being
rebound

For more detailed examples, see Part 4 of DB2 Application Programming and SQL
Guide.

Recommendations: Choose a value of ISOLATION based on the characteristics
of the particular application.

Advantages and disadvantages of the isolation values
The various isolation levels offer less or more concurrency at the cost of more or
less protection from other application processes. The values you choose should be
based primarily on the needs of the application. This section presents the isolation
levels in order from the one offering the least concurrency (RR) to that offering the
most (UR).

ISOLATION (RR)
Allows the application to read the same pages or rows more than once
without allowing any UPDATE, INSERT, or DELETE by another process. All
accessed rows or pages are locked, even if they do not satisfy the
predicate.

Figure 78 on page 681 shows that all locks are held until the application
commits. In the following example, the rows held by locks L2 and L4 satisfy
the predicate.

9. The exceptions are mass delete operations and utility jobs that drain all claim classes.

680 Administration Guide

Applications that use repeatable read can leave rows or pages locked for
longer periods, especially in a distributed environment, and they can claim
more logical partitions than similar applications using cursor stability.

Applications that use repeatable read and access a nonpartitioning index
cannot run concurrently with utility operations that drain all claim classes of
the nonpartitioning index, even if they are accessing different logical
partitions. For example, an application bound with ISOLATION(RR) cannot
update partition 1 while the LOAD utility loads data into partition 2.
Concurrency is restricted because the utility needs to drain all the
repeatable-read applications from the nonpartitioning index to protect the
repeatability of the reads by the application.

Because so many locks can be taken, lock escalation might take place.
Frequent commits release the locks and can help avoid lock escalation.

With repeatable read, lock promotion occurs for table space scan to prevent
the insertion of rows that might qualify for the predicate. (If access is via
index, DB2 locks the key range. If access is via table space scans, DB2
locks the table, partition, or table space.)

An installation option determines the mode of lock chosen for a cursor
defined with the clause FOR UPDATE OF and bound with repeatable read.
For details, see “The option U LOCK FOR RR/RS” on page 673.

ISOLATION (RS)
Allows the application to read the same pages or rows more than once
without allowing qualifying rows to be updated or deleted by another
process. It offers possibly greater concurrency than repeatable read,
because although other applications cannot change rows that are returned
to the original application, they can insert new rows or update rows that did
not satisfy the original application’s search condition. Only those rows or
pages that satisfy the stage 1 predicate (and all rows or pages evaluated
during stage 2 processing) are locked until the application commits.
Figure 79 on page 682 illustrates this. In the example, the rows held by
locks L2 and L4 satisfy the predicate.

Application

Request row Request next row

DB2

Lock

L L1

Lock

L2

Lock

L3

Lock

L4

Lock

Time line

Figure 78. How an application using RR isolation acquires locks. All locks are held until the
application commits.

Chapter 30. Improving concurrency 681

|
|
|
|
|
|
|
|

Applications using read stability can leave rows or pages locked for long
periods, especially in a distributed environment.

If you do use read stability, plan for frequent commit points.

An installation option determines the mode of lock chosen for a cursor
defined with the clause FOR UPDATE OF and bound with read stability. For
details, see “The option U LOCK FOR RR/RS” on page 673.

ISOLATION (CS)
Allows maximum concurrency with data integrity. However, after the process
leaves a row or page, another process can change the data. With
CURRENTDATA(NO), the process doesn’t have to leave a row or page to
allow another process to change the data. If the first process returns to
read the same row or page, the data is not necessarily the same. Consider
these consequences of that possibility:

v For table spaces created with LOCKSIZE ROW, PAGE, or ANY, a
change can occur even while executing a single SQL statement, if the
statement reads the same row more than once. In the following example:
SELECT * FROM T1

WHERE COL1 = (SELECT MAX(COL1) FROM T1);

data read by the inner SELECT can be changed by another transaction
before it is read by the outer SELECT. Therefore, the information
returned by this query might be from a row that is no longer the one with
the maximum value for COL1.

v In another case, if your process reads a row and returns later to update
it, that row might no longer exist or might not exist in the state that it did
when your application process originally read it. That is, another
application might have deleted or updated the row. If your application is
doing non-cursor operations on a row under the cursor, make sure
the application can tolerate “not found” conditions.

Similarly, assume another application updates a row after you read it. If
your process returns later to update it based on the value you originally
read, you are, in effect, erasing the update made by the other process. If
you use isolation (CS) with update, your process might need to lock
out concurrent updates. One method is to declare a cursor with the
clause FOR UPDATE OF.

Application

Request row Request next row

DB2

Time line

Lock Unlock Lock Unlock Lock

L L L1 L1 L2

Lock Unlock Lock

L3 L3 L4

Figure 79. How an application using RS isolation acquires locks when no lock avoidance
techniques are used. Locks L2 and L4 are held until the application commits. The other locks
aren’t held.

682 Administration Guide

Product-sensitive Programming Interface

For packages and plans that contain updatable scrollable cursors,
ISOLATION(CS) lets DB2 use optimistic concurrency control. DB2 can use
optimistic concurrency control to shorten the amount of time that locks are
held in the following situations:

v Between consecutive fetch operations

v Between fetch operations and subsequent positioned update or delete
operations

Figure 80 and Figure 81 show processing of positioned update and delete
operations without optimistic concurrency control and with optimistic
concurrency control.

Optimistic concurrency control consists of the following steps:

1. When the application requests a fetch operation to position the cursor
on a row, DB2 locks that row, executes the FETCH, and releases the
lock.

2. When the application requests a positioned update or delete operation
on the row, DB2 performs the following steps:

a. Locks the row.

b. Reevaluates the predicate to ensure that the row still qualifies for
the result table.

Figure 80. Positioned updates and deletes without optimistic concurrency control

Figure 81. Positioned updates and deletes with optimistic concurrency control

Chapter 30. Improving concurrency 683

|
|
|
|

|

|
|

|
|
|
||

|

|
|
|

|
|

|

|
|

c. For columns that are in the result table, compares current values in
the row to the values of the row when step 1 was executed.
Performs the positioned update or delete operation only if the values
match.

End of Product-sensitive Programming Interface

ISOLATION (UR)
Allows the application to read while acquiring few locks, at the risk of
reading uncommitted data. UR isolation applies only to read-only
operations: SELECT, SELECT INTO, or FETCH from a read-only result
table.

There is an element of uncertainty about reading uncommitted data.

Example: An application tracks the movement of work from station to
station along an assembly line. As items move from one station to another,
the application subtracts from the count of items at the first station and
adds to the count of items at the second. Assume you want to query the
count of items at all the stations, while the application is running
concurrently.

What can happen if your query reads data that the application has changed
but has not committed?

If the application subtracts an amount from one record before adding it
to another, the query could miss the amount entirely.

If the application adds first and then subtracts, the query could add the
amount twice.

If those situations can occur and are unacceptable, do not use UR isolation.

Restrictions: You cannot use UR isolation for the types of statement listed
below. If you bind with ISOLATION(UR), and the statement does not specify
WITH RR or WITH RS, then DB2 uses CS isolation for:
v INSERT, UPDATE, and DELETE
v Any cursor defined with FOR UPDATE OF

When can you use uncommitted read (UR)? You can probably use UR
isolation in cases like the following ones:

v When errors cannot occur.

Example: A reference table, like a table of descriptions of parts by part
number. It is rarely updated, and reading an uncommitted update is
probably no more damaging than reading the table 5 seconds earlier. Go
ahead and read it with ISOLATION(UR).

Example: The employee table of Spiffy Computer, our hypothetical user.
For security reasons, updates can be made to the table only by members
of a single department. And that department is also the only one that can
query the entire table. It is easy to restrict queries to times when no
updates are being made and then run with UR isolation.

v When an error is acceptable.

Example: Spiffy wants to do some statistical analysis on employee data.
A typical question is, “What is the average salary by sex within education
level?” Because reading an occasional uncommitted record cannot affect
the averages much, UR isolation can be used.

v When the data already contains inconsistent information.

684 Administration Guide

|
|
|
|

Example: Spiffy gets sales leads from various sources. The data is often
inconsistent or wrong, and end users of the data are accustomed to
dealing with that. Inconsistent access to a table of data on sales leads
does not add to the problem.

Do NOT use uncommitted read (UR):
When the computations must balance
When the answer must be accurate
When you are not sure it can do no damage

Plans and packages that use UR isolation: Auditors and others might need to
determine what plans or packages are bound with UR isolation. For queries that
select that information from the catalog, see “What ensures that concurrent users
access consistent data?” on page 228.

Restrictions on concurrent access: An application using UR isolation cannot run
concurrently with a utility that drains all claim classes. Also, the application must
acquire the following locks:

v A special mass delete lock acquired in S mode on the target table or table space.
A “mass delete” is a DELETE statement without a WHERE clause; that operation
must acquire the lock in X mode and thus cannot run concurrently.

v An IX lock on any table space used in the work file database. That lock prevents
dropping the table space while the application is running.

v If LOB values are read, LOB locks and a lock on the LOB table space. If the
LOB lock is not available because it is held by another application in an
incompatible lock state, the UR reader skips the LOB and moves on to the next
LOB that satisfies the query.

The CURRENTDATA option
The CURRENTDATA option has different effects, depending on if access is local or
remote:

v For local access, the option tells whether the data upon which your cursor is
positioned must remain identical to (or “current with”) the data in the local base
table. For cursors positioned on data in a work file, the CURRENTDATA option
has no effect. This effect only applies to read-only or ambiguous cursors in plans
or packages bound with CS isolation.

A cursor is “ambiguous” if DB2 cannot tell whether it is used for update or
read-only purposes. If the cursor appears to be used only for read-only, but
dynamic SQL could modify data through the cursor, then the cursor is
ambiguous. If you use CURRENTDATA to indicate an ambiguous cursor is
read-only when it is actually targeted by dynamic SQL for modification, you’ll get
an error. See “Problems with ambiguous cursors” on page 687 for more
information about ambiguous cursors.

v For a request to a remote system, CURRENTDATA has an effect for ambiguous
cursors using isolation levels RR, RS, or CS. For ambiguous cursors, it turns
block fetching on or off. (Read-only cursors and UR isolation always use block
fetch.) Turning on block fetch offers best performance, but it means the cursor is
not current with the base table at the remote site.

Local access: Locally, CURRENTDATA(YES) means that the data upon which
the cursor is positioned cannot change while the cursor is positioned on it. If the
cursor is positioned on data in a local base table or index, then the data returned
with the cursor is current with the contents of that table or index. If the cursor is

Chapter 30. Improving concurrency 685

positioned on data in a work file, the data returned with the cursor is current only
with the contents of the work file; it is not necessarily current with the contents of
the underlying table or index.

Figure 82 shows locking with CURRENTDATA(YES).

As with work files, if a cursor uses query parallelism, data is not necessarily current
with the contents of the table or index, regardless of whether a work file is used.
Therefore, for work file access or for parallelism on read-only queries, the
CURRENTDATA option has no effect.

If you are using parallelism but want to maintain currency with the data, you have
the following options:

v Disable parallelism (Use SET DEGREE = ’1’ or bind with DEGREE(1)).

v Use isolation RR or RS (parallelism can still be used).

v Use the LOCK TABLE statement (parallelism can still be used).

For local access, CURRENTDATA(NO) is similar to CURRENTDATA(YES) except
for the case where a cursor is accessing a base table rather than a result table in a
work file. In those cases, although CURRENTDATA(YES) can guarantee that the
cursor and the base table are current, CURRENTDATA(NO) makes no such
guarantee.

Remote access: For access to a remote table or index, CURRENTDATA(YES)
turns off block fetching for ambiguous cursors. The data returned with the cursor is
current with the contents of the remote table or index for ambiguous cursors. See
“Ensuring block fetch” on page 861 for information about the effect of
CURRENTDATA on block fetch.

Lock avoidance: With CURRENTDATA(NO), you have much greater opportunity
for avoiding locks. DB2 can test to see if a row or page has committed data on it. If
it has, DB2 does not have to obtain a lock on the data at all. Unlocked data is
returned to the application, and the data can be changed while the cursor is
positioned on the row. (For SELECT statements in which no cursor is used, such as
those that return a single row, a lock is not held on the row unless you specify
WITH RS or WITH RR on the statement.)

To take the best advantage of this method of avoiding locks, make sure all
applications that are accessing data concurrently issue COMMITs frequently.

Application

Request
row or page

Request next
row or page

DB2

Time line

Lock Unlock Lock Unlock Lock
L L L1 L1 L2

Unlock Lock Unlock Lock
L2 L3 L3 L4

Figure 82. How an application using isolation CS with CURRENTDATA(YES) acquires locks.
This figure shows access to the base table. The L2 and L4 locks are released after DB2
moves to the next row or page. When the application commits, the last lock is released.

686 Administration Guide

Figure 83 shows how DB2 can avoid taking locks and Table 96 summarizes the
factors that influence lock avoidance.

Table 96. Lock avoidance factors. “Returned data” means data that satisfies the predicate.
“Rejected data” is that which does not satisfy the predicate.

Isolation CURRENTDATA Cursor type

Avoid
locks on
returned
data?

Avoid
locks on
rejected
data?

UR N/A Read-only N/A N/A

CS

YES

Read-only

No

Yes

Updatable

Ambiguous

NO

Read-only Yes

Updatable No

Ambiguous Yes

RS N/A

Read-only

No YesUpdatable

Ambiguous

RR N/A

Read-only

No NoUpdatable

Ambiguous

Problems with ambiguous cursors: As shown in Table 96, ambiguous cursors
can sometimes prevent DB2 from using lock avoidance techniques. However,
misuse of an ambiguous cursor can cause your program to receive a -510
SQLCODE:

v The plan or package is bound with CURRENTDATA(NO)

v An OPEN CURSOR statement is performed before a dynamic DELETE WHERE
CURRENT OF statement against that cursor is prepared

v One of the following conditions is true for the open cursor:

– Lock avoidance is successfully used on that statement.

– Query parallelism is used.

Application

Request
row or page

Request next
row or page

DB2

Time line

Test and avoid locks Test and avoid locks

Figure 83. Best case of avoiding locks using CS isolation with CURRENTDATA(NO). This
figure shows access to the base table. If DB2 must take a lock, then locks are released when
DB2 moves to the next row or page, or when the application commits (the same as
CURRENTDATA(YES)).

Chapter 30. Improving concurrency 687

– The cursor is distributed, and block fetching is used.

In all cases, it is a good programming technique to eliminate the ambiguity by
declaring the cursor with one of the clauses FOR FETCH ONLY or FOR UPDATE
OF.

When plan and package options differ
A plan bound with one set of options can include packages in its package list that
were bound with different sets of options. In general, statements in a DBRM bound
as a package use the options that the package was bound with, and statements in
DBRMs bound to a plan use the options that the plan was bound with.

For example, the plan value for CURRENTDATA has no effect on the packages
executing under that plan. If you do not specify a CURRENTDATA option explicitly
when you bind a package, the default is CURRENTDATA(YES).

The rules are slightly different for the bind options RELEASE and ISOLATION. The
values of those two options are set when the lock on the resource is acquired and
usually stay in effect until the lock is released. But a conflict can occur if a
statement that is bound with one pair of values requests a lock on a resource that
is already locked by a statement that is bound with a different pair of values. DB2
resolves the conflict by resetting each option with the available value that causes
the lock to be held for the greatest duration.

If the conflict is between RELEASE(COMMIT) and RELEASE(DEALLOCATE), then
the value used is RELEASE(DEALLOCATE).

Table 97 shows how conflicts between isolation levels are resolved. The first column
is the existing isolation level, and the remaining columns show what happens when
another isolation level is requested by a new application process.

Table 97. Resolving isolation conflicts
UR CS RS RR

UR n/a CS RS RR
CS CS n/a RS RR
RS RS RS n/a RR
RR RR RR RR n/a

The effect of WITH HOLD for a cursor
For a cursor defined as WITH HOLD, the cursor position is maintained past a
commit point. Hence, locks and claims needed to maintain that position are not
released immediately, even if they were acquired with ISOLATION(CS) or
RELEASE(COMMIT).

For locks and claims needed for cursor position, the rules described above differ as
follows:

Page and row locks: If you specify NO on field RELEASE LOCKS on installation
panel DSNTIP4, described in “Option to release locks for cursors defined WITH
HOLD” on page 673, a page or row lock, if the lock is not successfully avoided
through lock avoidance, is held past the commit point. This page or row lock is not
necessary for cursor position, but the NO option is provided for compatibility with
applications that might rely on this lock. However, an X or U lock is demoted to an
S lock at that time. (Because changes have been committed, exclusive control is no
longer needed.) After the commit point, the lock is released at the next commit
point, provided that no cursor is still positioned on that page or row.

688 Administration Guide

A YES for RELEASE LOCKS means that no data page or row locks are held past
commit.

Table, table space, and DBD locks: All necessary locks are held past the commit
point. After that, they are released according to the RELEASE option under which
they were acquired: for COMMIT, at the next commit point after the cursor is closed;
for DEALLOCATE, when the application is deallocated.

Claims: All claims, for any claim class, are held past the commit point. They are
released at the next commit point after all held cursors have moved off the object or
have been closed.

Isolation overriding with SQL statements
The information under this heading, up to “The statement LOCK TABLE” on
page 690 is General-use Programming Interface and Associated Guidance
Information, as defined in “Notices” on page 1095.

Function of the WITH clause: You can override the isolation level with which a
plan or package is bound by the WITH clause on certain SQL statements.

Example: This statement:
SELECT MAX(BONUS), MIN(BONUS), AVG(BONUS)

INTO :MAX, :MIN, :AVG
FROM DSN8710.EMP

WITH UR;

finds the maximum, minimum, and average bonus in the sample employee table.
The statement is executed with uncommitted read isolation, regardless of the value
of ISOLATION with which the plan or package containing the statement is bound.

Rules for the WITH clause: The WITH clause:

v Can be used on these statements:
– Select-statement
– SELECT INTO
– Searched delete
– INSERT from fullselect
– Searched update

v Cannot be used on subqueries.

v Can specify the isolation levels that specifically apply to its statement. (For
example, because WITH UR applies only to read-only operations, you cannot
use it on an INSERT statement.)

v Overrides the isolation level for the plan or package only for the statement in
which it appears.

Using KEEP UPDATE LOCKS on the WITH clause: You can use the clause
KEEP UPDATE LOCKS clause when you specify a SELECT with FOR UPDATE
OF. This option is only valid when you use WITH RR or WITH RS. By using this
clause, you tell DB2 to acquire an X lock instead of an U or S lock on all the
qualified pages or rows.

Here is an example:
SELECT ...
FOR UPDATE OF WITH RS KEEP UPDATE LOCKS;

Chapter 30. Improving concurrency 689

With read stability (RS) isolation, a row or page rejected during stage 2 processing
still has the X lock held on it, even though it is not returned to the application.

With repeatable read (RR) isolation, DB2 acquires the X locks on all pages or rows
that fall within the range of the selection expression.

All X locks are held until the application commits. Although this option can reduce
concurrency, it can prevent some types of deadlocks and can better serialize
access to data.

The statement LOCK TABLE
The information under this heading, up to “Claims and drains for concurrency
control” on page 695 is General-use Programming Interface and Associated
Guidance Information, as defined in “Notices” on page 1095.

For information about using LOCK TABLE on an auxiliary table, see “The LOCK
TABLE statement” on page 695.

The purpose of LOCK TABLE
Use the LOCK TABLE statement to override DB2’s rules for choosing initial lock
attributes. Two examples are:
LOCK TABLE table-name IN SHARE MODE;
LOCK TABLE table-name PART n IN EXCLUSIVE MODE;

Executing the statement requests a lock immediately, unless a suitable lock exists
already, as described below. The bind option RELEASE determines when locks
acquired by LOCK TABLE or LOCK TABLE with the PART option are released.

You can use LOCK TABLE on any table, including auxiliary tables of LOB table
spaces. See “The LOCK TABLE statement” on page 695 for information about
locking auxiliary tables.

LOCK TABLE has no effect on locks acquired at a remote server.

When to use LOCK TABLE
The statement is often appropriate for a particularly high-priority application. The
statement can improve performance if LOCKMAX disables lock escalation or sets a
high threshold for it.

For example, suppose that you intend to execute an SQL statement to change job
code 21A to code 23 in a table of employee data. The table is defined with:
v The name PERSADM1.EMPLOYEE_DATA
v LOCKSIZE ROW
v LOCKMAX 0, which disables lock escalation

Because the change affects about 15% of the employees, the statement can
require many row locks of mode X. To avoid the overhead for locks, first execute:
LOCK TABLE PERSADM1.EMPLOYEE_DATA IN EXCLUSIVE MODE;

If EMPLOYEE_DATA is a partitioned table space that is defined with LOCKPART
YES, you could choose to lock individual partitions as you update them. The PART
option is available only for table spaces defined with LOCKPART YES. See “Effects
of table spaces of different types” on page 651 for more information about
LOCKPART YES. An example is:
LOCK TABLE PERSADM1.EMPLOYEE_DATA PART 1 IN EXCLUSIVE MODE;

690 Administration Guide

When the statement is executed, DB2 locks partition 1 with an X lock. The lock has
no effect on locks that already exist on other partitions in the table space.

The effect of LOCK TABLE
Table 98 shows the modes of locks acquired in segmented and nonsegmented table
spaces for the SHARE and EXCLUSIVE modes of LOCK TABLE. Auxiliary tables of
LOB table spaces are considered nonsegmented table spaces and have the same
locking behavior.

Table 98. Modes of locks acquired by LOCK TABLE. LOCK TABLE on partitions behave the
same as nonsegmented table spaces.

LOCK TABLE IN
Nonsegmented
Table Space

Segmented Table Space

Table Table Space

EXCLUSIVE MODE X X IX

SHARE MODE S or SIX S or SIX IS

Note: The SIX lock is acquired if the process already holds an IX lock. SHARE MODE has
no effect if the process already has a lock of mode SIX, U, or X.

LOB locks
The locking activity for LOBs is described separately from transaction locks
because the purpose of LOB locks is different than that of regular transaction locks.

Terminology: A lock that is taken on a LOB value in a LOB table space is called a
LOB lock.

In this section: The following topics are described:

v “Relationship between transaction locks and LOB locks”

v “Hierarchy of LOB locks” on page 693

v “LOB and LOB table space lock modes” on page 693

v “Duration of locks” on page 693

v “Instances when locks on LOB table space are not taken” on page 694

v “Control of the number of locks” on page 694

v “The LOCK TABLE statement” on page 695

v “The LOCKSIZE clause for LOB table spaces” on page 695

Relationship between transaction locks and LOB locks
As described in DB2 Application Programming and SQL Guide, LOB column values
are stored in a different table space, a LOB table space, from the values in the
base table. An application that reads or updates a row in a table that contains LOB
columns obtains its normal transaction locks on the base table. The locks on the
base table also control concurrency for the LOB table space. When locks are not
acquired on the base table, such as for ISO(UR), DB2 maintains data consistency
by using locks on the LOB table space. Even when locks are acquired on the base
table, DB2 still obtains locks on the LOB table space.

DB2 also obtains locks on the LOB table space and the LOB values stored in that
LOB table space, but those locks have the following primary purposes:

v To determine whether space from a deleted LOB can be reused by an inserted or
updated LOB

Chapter 30. Improving concurrency 691

Storage for a deleted LOB is not reused until no more readers (including held
locators) are on the LOB and the delete operation has been committed.

v To prevent deallocating space for a LOB that is currently being read

A LOB can be deleted from one application’s point-of-view while a reader from
another application is reading the LOB. The reader continues reading the LOB
because all readers, including those readers that are using uncommitted read
isolation, acquire S-locks on LOBs to prevent the storage for the LOB they are
reading from being deallocated. That lock is held until commit. A held LOB
locator or a held cursor cause the LOB lock and LOB table space lock to be held
past commit.

In summary, the main purpose of LOB locks is for managing the space used by
LOBs and to ensure that LOB readers do not read partially updated LOBs.
Applications need to free held locators so that the space can be reused.

Table 99 shows the relationship between the action that is occurring on the LOB
value and the associated LOB table space and LOB locks that are acquired.

Table 99. Locks that are acquired for operations on LOBs. This table does not account for
gross locks that can be taken because of LOCKSIZE TABLESPACE, the LOCK TABLE
statement, or lock escalation.

Action on LOB value LOB table space
lock LOB lock Comment

Read (including UR) IS S Prevents storage from being
reused while the LOB is
being read or while locators
are referencing the LOB

Insert IX X Prevents other processes
from seeing a partial LOB

Delete IS S To hold space in case the
delete is rolled back. (The X
is on the base table row or
page.) Storage is not
reusable until the delete is
committed and no other
readers of the LOB exist.

Update IS->IX Two LOB
locks: an
S-lock for the
delete and an
X-lock for the
insert.

Operation is a delete
followed by an insert.

Update the LOB to null
or zero-length

IS S No insert, just a delete.

Update a null or
zero-length LOB to a
value

IX X No delete, just an insert.

ISOLATION(UR) or ISOLATION(CS): When an application is reading rows using
uncommitted read or lock avoidance, no page or row locks are taken on the base
table. Therefore, these readers must take an S LOB lock to ensure that they are not
reading a partial LOB or a LOB value that is inconsistent with the base row.

692 Administration Guide

|

Hierarchy of LOB locks
Just as page locks (or row locks) and table space locks have a hierarchical
relationship, LOB locks and locks on LOB table spaces have a hierarchical
relationship. (See Figure 75 on page 651 for a picture of the hierarchical
relationship.) If the LOB table space is locked with a gross lock, then LOB locks are
not acquired. In a data sharing environment, the lock on the LOB table space is
used to determine whether the lock on the LOB must be propagated beyond the
local IRLM.

LOB and LOB table space lock modes

Modes of LOB locks
The following LOB lock modes are possible:

S (SHARE) The lock owner and any concurrent processes can read, update, or
delete the locked LOB. Concurrent processes can acquire an S lock
on the LOB. The purpose of the S lock is to reserve the space used
by the LOB.

X (EXCLUSIVE)
The lock owner can read or change the locked LOB. Concurrent
processes cannot access the LOB.

Modes of LOB table space locks
The following locks modes are possible on the LOB table space:

IS (INTENT SHARE)
The lock owner can update LOBs to null or zero-length, or read or
delete LOBs in the LOB table space. Concurrent processes can
both read and change LOBs in the same table space. The lock
owner acquires a LOB lock on any data that it reads or deletes.

IX (INTENT EXCLUSIVE)
The lock owner and concurrent processes can read and change
data in the LOB table space. The lock owner acquires a LOB lock
on any data it accesses.

S (SHARE) The lock owner and any concurrent processes can read and delete
LOBs in the LOB table space. The lock owner does not need LOB
locks.

SIX (SHARE with INTENT EXCLUSIVE)
The lock owner can read and change data in the LOB table space.
If the lock owner is inserting (INSERT or UPDATE), the lock owner
obtains a LOB lock. Concurrent processes can read or delete data
in the LOB table space (or update to a null or zero-length LOB).

X (EXCLUSIVE)
The lock owner can read or change LOBs in the LOB table space.
The lock owner does not need LOB locks. Concurrent processes
cannot access the data.

Duration of locks

Duration of locks on LOB table spaces
Locks on LOB table spaces are acquired when they are needed; that is, the
ACQUIRE option of BIND has no effect on when the table space lock on the LOB

Chapter 30. Improving concurrency 693

|
|

table space is taken. The table space lock is released according to the value
specified on the RELEASE option of BIND (except when a cursor is defined WITH
HOLD or if a held LOB locator exists).

Duration of LOB locks
Locks on LOBs are taken when they are needed and are usually released at
commit. However, if that LOB value is assigned to a LOB locator, the S lock
remains until the application commits.

If the application uses HOLD LOCATOR, the LOB lock is not freed until the first
commit operation after a FREE LOCATOR statement is issued, or until the thread is
deallocated.

A note about held cursors: If a cursor is defined WITH HOLD, LOB locks are held
through commit operations.

A note about INSERT with fullselect: Because LOB locks are held until commit
and because locks are put on each LOB column in both a source table and a target
table, it is possible that a statement such as an INSERT with a fullselect that
involves LOB columns can accumulate many more locks than a similar statement
that does not involve LOB columns. To prevent system problems caused by too
many locks, you can:

v Ensure that you have lock escalation enabled for the LOB table spaces that are
involved in the INSERT. In other words, make sure that LOCKMAX is non-zero
for those LOB table spaces.

v Alter the LOB table space to change the LOCKSIZE to TABLESPACE before
executing the INSERT with fullselect.

v Increase the LOCKMAX value on the table spaces involved and ensure that the
user lock limit is sufficient.

v Use LOCK TABLE statements to lock the LOB table spaces. (Locking the
auxiliary table that is contained in the LOB table space locks the LOB table
space.)

Instances when locks on LOB table space are not taken
A lock might not be acquired on a LOB table space at all. For example, if a row is
deleted from a table and the value of the LOB column is null, the LOB table space
associated with that LOB column is not locked. DB2 does not access the LOB table
space if the application:

v Selects a LOB that is null or zero length

v Deletes a row where the LOB is null or zero length

v Inserts a null or zero length LOB

v Updates a null or zero-length LOB to null or zero-length

Control of the number of locks
This section describes how you can control the number of LOB locks that are taken.

Controlling the number of LOB locks that are acquired for a user
LOB locks are counted toward the total number of locks allowed per user. Control
this number by the value you specify on the LOCKS PER USER field of installation
panel DSNTIPJ. The number of LOB locks that are acquired during a unit of work is
reported in IFCID 0020.

694 Administration Guide

|

Controlling LOB lock escalation
As with any table space, use the LOCKMAX clause of the CREATE or ALTER
TABLESPACE statement to control the number of LOB locks that are acquired
within a particular LOB table space before the lock is escalated. See “LOCKMAX
clause of CREATE and ALTER TABLESPACE” on page 672 for more information.
When the number of LOB locks reaches the maximum you specify in the
LOCKMAX clause, the LOB locks escalate to a gross lock on the LOB table space,
and the LOB locks are released.

Information about LOB locks and lock escalation is reported in IFCID 0020.

The LOCK TABLE statement
“The statement LOCK TABLE” on page 690 describes how and why you might use
a LOCK TABLE statement on a table. The reasons for using LOCK TABLE on an
auxiliary table are somewhat different than that for regular tables.

v You can use LOCK TABLE to control the number of locks acquired on the
auxiliary table.

v You can use LOCK TABLE IN SHARE MODE to prevent other applications from
inserting LOBs.

With auxiliary tables, LOCK TABLE IN SHARE MODE does not prevent any
changes to the auxiliary table. The statement does prevent LOBs from being
inserted into the auxiliary table, but it does not prevent deletes. Updates are
generally restricted also, except where the LOB is updated to a null value or a
zero-length string.

v You can use LOCK TABLE IN EXCLUSIVE MODE to prevent other applications
from accessing LOBs.

With auxiliary tables, LOCK TABLE IN EXCLUSIVE MODE also prevents access
from uncommitted readers.

v Either statement eliminates the need for lower-level LOB locks.

The LOCKSIZE clause for LOB table spaces
The LOCKSIZE TABLE, PAGE, and ROW options are not valid for LOB table
spaces. The other options act as follows:

LOCKSIZE TABLESPACE
A process acquires no LOB locks.

LOCKSIZE ANY
DB2 chooses the size of the lock. For a LOB table space, this is usually
LOCKSIZE LOB.

LOCKSIZE LOB
If LOBs are accessed, a process acquires LOB locks and the necessary LOB
table space locks (IS or IX).

Claims and drains for concurrency control
DB2 utilities, commands, and some ALTER, CREATE, and DROP statements can
take over access to some objects independently of any transaction locks that are
held on the object.

Objects subject to takeover
DB2 utilities, commands, and some ALTER, CREATE, and DROP statements can
take over access to the following table and index spaces:

Chapter 30. Improving concurrency 695

|
|
|

|
|

v Simple and segmented table spaces
v Partitions of table spaces
v LOB table spaces
v Nonpartitioned index spaces
v Partitions of index spaces
v Logical partitions of nonpartitioning index

The effects of those takeovers are described in the following sections:
v “Definition of claims and drains”
v “Usage of drain locks” on page 697
v “Utility locks on the catalog and directory” on page 697
v “Compatibility of utilities” on page 698
v “Concurrency during REORG” on page 699
v “Utility operations with nonpartitioning indexes” on page 700

Definition of claims and drains

Definition
A claim is a notification to DB2 that an object is being accessed.

Example
When an application first accesses an object, within a unit of work, it makes a claim
on the object. It releases the claim at the next commit point.

Effects of a claim
Unlike a transaction lock, a claim normally does not persist past the commit point.
To access the object in the next unit of work, the application must make a new
claim.

However, there is an exception. If a cursor defined with the clause WITH HOLD is
positioned on the claimed object, the claim is not released at a commit point. For
more about cursors defined as WITH HOLD, see “The effect of WITH HOLD for a
cursor” on page 688.

A claim indicates to DB2 that there is activity on or interest in a particular page set
or partition. Claims prevent drains from occurring until the claim is released.

Three classes of claims
Claim Class Actions Allowed

Write Reading, updating, inserting, and deleting

Repeatable read Reading only, with repeatable read (RR) isolation

Cursor stability read Reading only, with read stability (RS), cursor
stability (CS), or uncommitted read (UR) isolation

Definition
A drain is the action of taking over access to an object by preventing new claims
and waiting for existing claims to be released.

Example
A utility can drain a partition when applications are accessing it.

Effects of a drain
The drain quiesces the applications by allowing each one to reach a commit point,
but preventing any of them, or any other applications, from making a new claim.
When no more claims exist, the process that drains (the drainer) controls access to

696 Administration Guide

the drained object. The applications that were drained can still hold transaction
locks on the drained object, but they cannot make new claims until the drainer has
finished.

Claim classes drained
A drainer does not always need complete control. It could drain:

Only the write claim class
Only the repeatable read claim class
All claim classes

For example, the CHECK INDEX utility needs to drain only writers from an index
space and its associated table space. RECOVER, however, must drain all claim
classes from its table space. The REORG utility can drain either writers (with
DRAIN WRITERS) or all claim classes (with DRAIN ALL).

Usage of drain locks

Definition
A drain lock prevents conflicting processes from trying to drain the same object at
the same time. Processes that drain only writers can run concurrently; but a
process that drains all claim classes cannot drain an object concurrently with any
other process. To drain an object, a drainer first acquires one or more drain locks
on the object, one for each claim class it needs to drain. When the locks are in
place, the drainer can begin at the next commit point or after the release of all held
cursors.

A drain lock also prevents new claimers from accessing an object while a drainer
has control of it.

Types of drain locks
Three types of drain locks on an object correspond to the three claim classes:

Write
Repeatable read
Cursor stability read

In general, after an initial claim has been made on an object by a user, no other
user in the system needs a drain lock. When the drain lock is granted, no drains on
the object are in process for the claim class needed, and the claimer can proceed.10

Utility locks on the catalog and directory
When the target of a utility is an object in the catalog or directory, such as a catalog
table, the utility either drains or claims the object.

When the target is a user-defined object, the utility claims or drains it but also uses
the directory and, perhaps, the catalog; for example, to check authorization. In
those cases, the utility uses transaction locks on catalog and directory tables. It
acquires those locks in the same way as an SQL transaction does.

10. The claimer of an object requests a drain lock in two exceptional cases:

v A drain on the object is in process for the claim class needed. In this case, the claimer waits for the drain lock.

v The claim is the first claim on an object before its data set has been physically opened. Here, acquiring the drain lock ensures
that no exception states prohibit allocating the data set.

When the claimer gets the drain lock, it makes its claim and releases the lock before beginning its processing.

Chapter 30. Improving concurrency 697

The UTSERIAL lock: Access to the SYSUTILX table space in the directory is
controlled by a unique lock called UTSERIAL. A utility must acquire the UTSERIAL
lock to read or write in SYSUTILX, whether SYSUTILX is the target of the utility or
is used only incidentally.

Compatibility of utilities

Definition
Two utilities are considered compatible if they do not need access to the same
object at the same time in incompatible modes.

Compatibility rules
The concurrent operation of two utilities is not typically controlled by either drain
locks or transaction locks, but merely by a set of compatibility rules.

Before a utility starts, it is checked against all other utilities running on the same
target object. The utility starts only if all the others are compatible.

The check for compatibility obeys the following rules:

v The check is made for each target object, but only for target objects. Typical
utilities access one or more table spaces or indexes, but if two utility jobs use
none of the same target objects, the jobs are always compatible.

An exception is a case in which one utility must update a catalog or directory
table space that is not the direct target of the utility. For example, the LOAD
utility on a user table space updates DSNDB06.SYSCOPY. Therefore, other
utilities that have DSNDB06.SYSCOPY as a target might not be compatible.

v Individual data and index partitions are treated as distinct target objects. Utilities
operating on different partitions in the same table or index space are compatible.

v When two utilities access the same target object, their most restrictive access
modes determine whether they are compatible. For example, if utility job 1 reads
a table space during one phase and writes during the next, it is considered a
writer. It cannot start concurrently with utility 2, which allows only readers on the
table space. (Without this restriction, utility 1 might start and run concurrently with
utility 2 for one phase; but then it would fail in the second phase, because it
could not become a writer concurrently with utility 2.)

For details on which utilities are compatible, refer to each utility’s description in DB2
Utility Guide and Reference.

Figure 84 on page 699 illustrates how SQL applications and DB2 utilities can
operate concurrently on separate partitions of the same table space.

698 Administration Guide

Concurrency during REORG
If you are getting deadlocks when you use REORG with the SHRLEVEL CHANGE
option, run the REORG utility with the DRAIN ALL option. The default is DRAIN
WRITERS, which is done in the log phase. The specification of DRAIN ALL
indicates that both writers and readers will be drained when the MAXRO threshold
is reached. The DRAIN ALL option should be considered in environments where a
lot of update activity occurs during the log phase. With this specification, there is no
need for a subsequent drain in the switch phase.

When multiple REORG utility jobs with the SHRLEVEL CHANGE or REFERENCE
and the FASTSWITCH options run against separate partitions of the same

Wait

1 2 3 4 5 6 7 8 9 10

SQL Application

Allocate

Time line

Write claim, P1Write claim, P1
CommitCommit

Deallocate

LOAD RESUME YES

LOAD, P2
LOAD, P1

Time Event

t1 An SQL application obtains a transaction lock on every partition in the table
space. The duration of the locks extends until the table space is
deallocated.

t2 The SQL application makes a write claim on data partition 1 and index
partition 1.

t3 The LOAD jobs begin draining all claim classes on data partitions 1 and 2
and index partitions 1 and 2. LOAD on partition 2 operates concurrently
with the SQL application on partition 1. LOAD on partition 1 waits.

t4 The SQL application commits, releasing its write claims on partition 1.
LOAD on partition 1 can begin.

t6 LOAD on partition 2 completes.

t7 LOAD on partition 1 completes, releasing its drain locks. The SQL
application (if it has not timed out) makes another write claim on data
partition 1.

t10 The SQL application deallocates the table space and releases its
transaction locks.

Figure 84. SQL and utility concurrency. Two LOAD jobs execute concurrently on two
partitions of a table space

Chapter 30. Improving concurrency 699

|
|

partitioned table space, some of the utilities might fail with reason code 00E40012.
This code, which indicates the unavailability of the database descriptor block (DBD)
is caused by multiple utilities arriving at the SWITCH phase simultaneously. The
switch phase times out if it cannot acquire the DBD within the timeout period
specified by the UTILITY TIMEOUT field on installation panel DSNTIPI. Increase the
value of the installation parameter to alleviate the problem.

Utility operations with nonpartitioning indexes
In the example of Figure 84 on page 699, two LOAD jobs execute concurrently on
different partitions of the same table space. When the jobs proceed to build the
partitioning index, they operate on different partitions of the index and can again
operate concurrently.

But in a nonpartitioning index, an entry can refer to any partition in the underlying
table space. DB2 can process a set of entries of a nonpartitioning index that all
refer to a single partition and achieve the same results as for a partition of a
partitioning index. (Such a set of entries is called a logical partition of the index.)

Monitoring of DB2 locking
If you have problems with suspensions, timeouts, or deadlocks, you will want to
monitor DB2’s use of locks.

Use the DB2 command DISPLAY DATABASE to find out what locks are held or
waiting at any moment on any table space, partition, or index. The report can
include claims and drain locks on logical partitions of indexes. For an example, see
“Monitoring databases” on page 269.

Use EXPLAIN to monitor the locks required by a particular SQL statement, or all the
SQL in a particular plan or package, and see “Using EXPLAIN to tell which locks
DB2 chooses”.

Use the statistics trace to monitor the system-wide use of locks, the accounting
trace to monitor locks used by a particular application process, and see “Using the
statistics and accounting traces to monitor locking” on page 701.

For an example of resolving a particular locking problem, see “Analyzing a
concurrency scenario” on page 702.

Using EXPLAIN to tell which locks DB2 chooses
The information under this heading, up to “Using the statistics and accounting
traces to monitor locking” on page 701, is Product-sensitive Programming Interface
and Associated Guidance Information, as defined in “Notices” on page 1095.

Procedure:

1. Use the EXPLAIN statement, or the EXPLAIN option of the BIND and REBIND
subcommands, to determine which modes of table and table space locks DB2
initially assigns for an SQL statement. Follow the instructions under “Obtaining
PLAN_TABLE information from EXPLAIN” on page 790. (EXPLAIN does not
return information about the locks acquired on LOB table spaces.)

2. EXPLAIN stores its results in a table called PLAN_TABLE. To review the results,
query PLAN_TABLE. After running EXPLAIN, each row of PLAN_TABLE
describes the processing for a single table, either one named explicitly in the
SQL statement that is being explained or an intermediate table that DB2 has to

700 Administration Guide

|
|
|
|
|
|

create. The column TSLOCKMODE of PLAN_TABLE shows an initial lock mode
for that table. The lock mode applies to the table or the table space, depending
on the value of LOCKSIZE and whether the table space is segmented or
nonsegmented.

3. In Table 100, find what table or table space lock is used and whether page or
row locks are used also, for the particular combination of lock mode and
LOCKSIZE you are interested in.

For statements executed remotely: EXPLAIN gathers information only about data
access in the DBMS where the statement is run or the bind operation is carried out.
To analyze the locks obtained at a remote DB2 location, you must run EXPLAIN at
that location. For more information on running EXPLAIN, and a fuller description of
PLAN_TABLE, see “Chapter 33. Using EXPLAIN to improve SQL performance” on
page 789.

Table 100. Which locks DB2 chooses. N/A = Not applicable; Yes = Page or row locks are
acquired; No = No page or row locks are acquired.

Table space structure

Lock mode from EXPLAIN

IS S IX U X

For nonsegmented table spaces:
Table space lock acquired is:
Page or row locks acquired?

IS
Yes

S
No

IX
Yes

U
No

X
No

Note: For partitioned table spaces defined with LOCKPART YES and for which selective
partition locking is used, the lock mode applies only to those partitions that are locked. Lock
modes for LOB table spaces are not reported with EXPLAIN.

For segmented table spaces with:
LOCKSIZE ANY, ROW, or PAGE

Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

IS
IS
Yes

IS
S
No

IX
IX
Yes

n/a
n/a
No

IX
X
No

LOCKSIZE TABLE
Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

n/a
n/a
No

IS
S
No

n/a
n/a
No

IX
U
No

IX
X
No

LOCKSIZE TABLESPACE
Table space lock acquired is:
Table lock acquired is:
Page or row locks acquired?

n/a
n/a
No

S
n/a
No

n/a
n/a
No

U
n/a
No

X
n/a
No

Using the statistics and accounting traces to monitor locking
The statistics and accounting trace records contain information on locking. The IBM
licensed program, DATABASE 2 Performance Monitor (DB2 PM), provides one way
to view the trace results. Figure 85 on page 702 contains extracts from the DB2 PM
reports Accounting Trace and Statistics Trace. Each of those corresponds to a
single DB2 trace record. (Details of those reports are subject to change without
notification from DB2 and are available in the appropriate DB2 PM documentation).
As the figure shows:

v Statistics Trace tells how many suspensions, deadlocks, timeouts, and lock
escalations occur in the trace record.

v Accounting Trace gives the same information for a particular application. It also
shows the maximum number of concurrent page locks held and acquired during
the trace. Review applications with a large number to see if this value can be

Chapter 30. Improving concurrency 701

lowered. This number is the basis for the proper setting of LOCKS PER USER
and, indirectly, LOCKS PER TABLE(SPACE).

Recommendations: Check the results of the statistics and accounting traces for
the following possibilities:

v Lock escalations are generally undesirable and are caused by processes that
use a large number of page, row, or LOB locks. In some cases, it is possible to
improve system performance by using table or table space locks.

v Timeouts can be caused by a small value of RESOURCE TIMEOUT. If there are
many timeouts, check whether a low value for RESOURCE TIMEOUT is causing
them. Sometimes the problem suggests a need for some change in database
design.

Analyzing a concurrency scenario
The concurrency problem analyzed in this section illustrates the approach described
in “A general approach to problem analysis in DB2” on page 533. It follows the
CONCURRENCY PROBLEM branch of Figure 57 on page 535 and makes use of
DB2 PM reports. In DB2 PM, a report titled “Trace” corresponds to a single DB2
trace record; a report titled “Report” summarizes information from several trace
records. This scenario makes use of:
v Accounting Report - Long
v Locking Report - Suspension
v Locking Report - Lockout
v Locking Trace - Lockout

The following section includes a description of the scenario, an explanation of how
each report helps to analyze the situation, and some general information about
corrective approaches.

||
LOCKING ACTIVITY QUANTITY /MINUTE /THREAD /COMMIT || LOCKING TOTAL
--------------------------- -------- ------- ------- ------- || ------------------- --------
SUSPENSIONS (ALL) 2 1.28 1.00 0.40 || TIMEOUTS 0
SUSPENSIONS (LOCK ONLY) 2 1.28 1.00 0.40 || DEADLOCKS 0
SUSPENSIONS (IRLM LATCH) 0 0.00 0.00 0.00 || ESCAL.(SHARED) 0
SUSPENSIONS (OTHER) 0 0.00 0.00 0.00 || ESCAL.(EXCLUS) 0

|| MAX PG/ROW LCK HELD 2
TIMEOUTS 0 0.00 0.00 0.00 || LOCK REQUEST 8
DEADLOCKS 1 0.64 0.50 0.20 || UNLOCK REQUEST 2

|| QUERY REQUEST 0
LOCK REQUESTS 17 10.92 8.50 3.40 || CHANGE REQUEST 5
UNLOCK REQUESTS 12 7.71 6.00 2.40 || OTHER REQUEST 0
QUERY REQUESTS 0 0.00 0.00 0.00 || LOCK SUSPENSIONS 1
CHANGE REQUESTS 5 3.21 2.50 1.00 || IRLM LATCH SUSPENS. 0
OTHER REQUESTS 0 0.00 0.00 0.00 || OTHER SUSPENSIONS 0

|| TOTAL SUSPENSIONS 1
LOCK ESCALATION (SHARED) 0 0.00 0.00 0.00 ||
LOCK ESCALATION (EXCLUSIVE) 0 0.00 0.00 0.00 || DRAIN/CLAIM TOTAL

|| ------------ --------
DRAIN REQUESTS 0 0.00 0.00 0.00 || DRAIN REQST 0
DRAIN REQUESTS FAILED 0 0.00 0.00 0.00 || DRAIN FAILED 0
CLAIM REQUESTS 7 4.50 3.50 1.40 || CLAIM REQST 4
CLAIM REQUESTS FAILED 0 0.00 0.00 0.00 || CLAIM FAILED 0

Figure 85. Locking activity blocks from statistics trace and accounting trace

702 Administration Guide

Scenario description
An application, which has recently been moved into production, is experiencing
timeouts. Other applications have not been significantly affected in this example.

To investigate the problem, determine a period when the transaction is likely to time
out. When that period begins:

1. Start the GTF.

2. Start the DB2 accounting classes 1, 2, and 3 to GTF to allow for the production
of DB2 PM accounting reports.

3. Stop GTF and the traces after about 15 minutes.

4. Produce and analyze the DB2 PM Accounting Report - Long.

5. Use the DB2 performance trace selectively for detailed problem analysis.

In some cases, the initial and detailed stages of tracing and analysis presented in
this chapter can be consolidated into one. In other cases, the detailed analysis
might not be required at all.

To analyze the problem, generally start with Accounting Report - Long. (If you have
enough information from program and system messages, you can skip this first
step.)

Accounting report
Figure 86 on page 704 shows a portion of Accounting Report - Long.

Chapter 30. Improving concurrency 703

Accounting Report - Long shows the average elapsed times and the average
number of suspensions per plan execution. In Figure 86:

v The class 1 average elapsed time �A� (AET) is 5 minutes, 3.575 seconds
(rounded). The class 2 times show that 5 minutes, 3.383 seconds �B� of that are
spent in DB2; the rest is spent in the application.

v The class 2 AET is spent mostly in lock or latch suspensions (LOCK/LATCH �C�
is 5 minutes, 3.278 seconds).

v The HIGHLIGHTS section �D� of the report (upper right) shows
#OCCURRENCES as 2; that is the number of accounting (IFCID 3) records.

Lock suspension
To prepare for Locking Report - Suspension, start DB2 performance class 6 to GTF.
Because that class traces only suspensions, it does not significantly reduce

PLANNAME: PU22301

AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT HIGHLIGHTS �D�
------------ ---------- ---------- ---------- -------------------- ------------ -------- --------------------------

�A� �B� �C�
ELAPSED TIME 5:03.57540 5:03.38330 N/P LOCK/LATCH(DB2+IRLM) 5:03.277805 0.90 #OCCURRENCES : 2
NON-NESTED 0.209291 0.032280 N/A SYNCHRON. I/O 0.000000 0.00 #ALLIEDS : 2
STORED PROC 5:03.36611 5:03.35102 N/A DATABASE I/O 0.000000 0.00 #ALLIEDS DISTRIB: 0
UDF 0.000000 0.000000 N/A LOG WRITE I/O 0.000000 0.00 #DBATS : 0
TRIGGER 0.000000 0.000000 N/A OTHER READ I/O 0.000000 0.00 #DBATS DISTRIB. : 0

OTHER WRTE I/O 0.000000 0.00 #NO PROGRAM DATA: 0
CPU TIME 0.046199 0.021565 N/P SER.TASK SWTCH 0.082205 5.00 #NORMAL TERMINAT: 2
AGENT 0.046199 0.021565 N/P UPDATE COMMIT 0.013300 0.58 #ABNORMAL TERMIN: 0
NON-NESTED 0.010858 0.000654 N/A OPEN/CLOSE 0.041102 3.20 #CP/X PARALLEL : 0
STORED PROC 0.035241 0.020911 N/A SYSLGRNG REC 0.014102 0.65 #IO PARALLELISM : 0
UDF 0.000000 0.000000 N/A EXT/DEL/DEF 0.006918 0.31 #INCREMENT. BIND: 0
TRIGGER 0.000000 0.000000 N/A OTHER SERVICE 0.006783 0.26 #COMMITS : 2
PAR.TASKS 0.000000 0.000000 N/A ARC.LOG(QUIES) 0.000000 0.00 #ROLLBACKS : 1

ARC.LOG READ 0.000000 0.00 #SVPT REQUESTS : 0
SUSPEND TIME N/A 5:03.36001 N/A STOR.PRC SCHED 0.000000 0.00 #SVPT RELEASE : 0
AGENT N/A 5:03.36001 N/A UDF SCHEDULE 0.000000 0.10 #SVPT ROLLBACK : 0
PAR.TASKS N/A 0.000000 N/A DRAIN LOCK 0.000000 0.00 MAX SQL CASC LVL: 1

CLAIM RELEASE 0.000000 0.00 UPDATE/COMMIT : O.00
NOT ACCOUNT. N/A 0.001725 N/A PAGE LATCH 0.000000 0.00 SYNCH I/O AVG. : O.00
DB2 ENT/EXIT N/A 5.00 N/A NOTIFY MSGS. 0.000000 0.00
EN/EX-STPROC N/A 0.00 N/A GLOBAL CONT. 0.000000 0.00
EN/EX-UDF N/A 0.00 N/P FORCE-AT-COMMIT 0.000000 0.00
DCAPT.DESCR. N/A N/A N/P ASYNCH IXL REQUESTS 0.000000 0.00
LOG EXTRACT. N/A N/A N/P TOTAL CLASS 3 5:03.366610 6.00

SQL DML AVERAGE TOTAL SQL DCL TOTAL SQL DDL CREATE DROP ALTER LOCKING AVERAGE TOTAL
-------- -------- -------- -------------- -------- ---------- ------ ------ ------ ---------------------- -------- --------
SELECT O.00 0 LOCK TABLE 0 TABLE 0 0 0 TIMEOUTS 1.00 2
INSERT 0.00 0 GRANT 0 TEMP TABLE 0 N/A N/A DEADLOCKS 0.00 0
UPDATE 0.00 0 REVOKE 0 AUX TABLE 0 N/A N/A ESCAL.(SHARED) 0.00 0
DELETE 0.00 0 SET CURR.SQLID 0 INDEX 0 0 0 ESCAL.(EXCLUS) 0.00 0

SET HOST VAR. 0 TABLESPACE 0 0 0 MAX PG/ROW LOCKS HELD 1.00 1
DESCRIBE 0.00 0 SET CUR.DEGREE 0 DATABASE 0 0 0 LOCK REQUEST 0.00 0
DESC.TBL 0.00 10 SET RULES 0 STOGROUP 0 0 0 UNLOCK REQUEST 0.00 0
PREPARE O.00 0 SET CURR.PATH 0 SYNONYM 0 0 N/A QUERY REQUEST 0.00 0
OPEN 1.00 2 SET CURR.PREC 0 VIEW 0 0 N/A CHANGE REQUEST 1.00 2
FETCH O.00 0 CONNECT TYPE 1 0 ALIAS 0 0 N/A OTHER REQUEST 0.00 0
CLOSE O.00 0 CONNECT TYPE 2 6 PACKAGE N/A 0 N/A LOCK SUSPENSIONS 1.00 2

SET CONNECTION 0 PROCEDURE 0 0 0 IRLM LATCH SUSPENSIONS 0.00 0
RELEASE 0 FUNCTION 0 0 0 OTHER SUSPENSIONS 0.00 0

DML-ALL 1.00 2 CALL 0 TRIGGER 0 0 N/A TOTAL SUSPENSIONS 1.00 2
ASSOC LOCATORS 0 DIST TYPE 0 O N/A
ALLOC CURSOR 0
HOLD LOCATOR 0 TOTAL 0 0 0
FREE LOCATOR 0 RENAME TBL 0
DCL-ALL 0 COMMENT ON 0

LABEL ON 0

...

Figure 86. Excerpt from Accounting Report —long

704 Administration Guide

performance. Figure 87 shows the DB2 PM Locking Report - Suspension.

This report shows:

v Which plans are suspended, by plan name within primary authorization ID. For
statements bound to a package, see the information about the plan that executes
the package.

v What IRLM requests and which lock types are causing suspensions.

v Whether suspensions are normally resumed or end in timeouts or deadlocks.

v What the average elapsed time (AET) per suspension is.

The report also shows the reason for the suspensions:

Reason Includes...

LOCAL Contention for a local resource

LATCH Contention for latches within IRLM (with brief
suspension)

GLOB. Contention for a global resource

IRLMQ An IRLM queued request

S.NFY Intersystem message sending

OTHER Page latch or drain suspensions, suspensions
because of incompatible retained locks in data
sharing, or a value for service use.

The list above shows only the first reason for a suspension. When the original
reason is resolved, the request could remain suspended for a second reason.

Each suspension results in either a normal resume, a timeout, or a deadlock.

The report shows that the suspension causing the delay involves access to partition
1 of table space PARADABA.TAB1TS by plan PARALLEL. Two LOCAL suspensions
time out after an average of 5 minutes, 3.278 seconds (303.278 seconds).

Lockout report
Figure 88 on page 706 shows the DB2 PM Locking Report - Lockout. This report
shows that plan PARALLEL contends with the plan DSNESPRR. It also shows that
contention is occurring on partition 1 of table space PARADABA.TAB1TS.

...

--SUSPEND REASONS-- ---------- R E S U M E R E A S O N S ------
PRIMAUTH --- L O C K R E S O U R C E --- TOTAL LOCAL GLOB. S.NFY ---- NORMAL ---- TIMEOUT/CANCEL --- DEADLOCK --
PLANNAME TYPE NAME SUSPENDS LATCH IRLMQ OTHER NMBR AET NMBR AET NMBR AET
------------- --------- ----------------------- -------- ----- ----- ----- ---- ----------- ---- ----------- ---- ----------
FPB
PARALLEL PARTITION DB =PARADABA 2 2 0 0 0 N/C 2 303.277805 0 N/C

OB =TAB1TS 0 0 0
PART= 1

LOCKING REPORT COMPLETE

Figure 87. Portion of DB2 PM Locking Report - Suspension

Chapter 30. Improving concurrency 705

Lockout trace
Figure 89 shows the DB2 PM Locking Trace - Lockout report.

For each contender, this report shows the database object, lock state (mode), and
duration for each contention for a transaction lock.

At this point in the investigation, the following information is known:
v The applications that contend for resources
v The page sets for which there is contention
v The impact, frequency, and type of the contentions

The application or data design must be reviewed to reduce the contention.

Corrective decisions
The above discussion is a general approach when lock suspensions are
unacceptably long or timeouts occur. In such cases, the DB2 performance trace for
locking and the DB2 PM reports can be used to isolate the resource causing the
suspensions. Locking Report - Lockout identifies the resources involved. Locking
Trace - Lockout tells what contending process (agent) caused the timeout.

PRIMAUTH --- L O C K R E S O U R C E --- --------------- A G E N T S --------------
PLANNAME TYPE NAME TIMEOUTS DEADLOCKS MEMBER PLANNAME CONNECT CORRID HOLDER WAITER
------------------ --------- ----------------------- -------- --------- -------- --------- -------- ------------ ------ ------
FPB
PARALLEL PARTITION DB =PARADABA 2 0 N/P DSNESPRR TSO EOA 2 0

OB =TAB1TS
PART= 1

** LOCKOUTS FOR PARALLEL ** 2 0

Figure 88. Portion of DB2 PM Locking Report - Lockout

...

PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
FPB FPBPARAL TSO 15:25:27.23692350 TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL
FPB 'BLANK' AB09C533F92E N/P OB =TAB1TS STATE =S ZPARM INTERVAL= 300
PARALLEL BATCH PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

HASH =X'000020E0'
------------ HOLDERS/WAITERS -----------
HOLDER
LUW='BLANK'.IPSAQ421.AB09C51F32CB
MEMBER =N/P CONNECT =TSO
PLANNAME=DSNESPRR CORRID=EOA
DURATION=COMMIT PRIMAUTH=KARELLE
STATE =X

KARL KARL TSO 15:30:32.97267562 TIMEOUT PARTITION DB =PARADABA REQUEST =LOCK UNCONDITIONAL
KARL 'BLANK' AB09C65528E6 N/P OB =TAB1TS STATE =IS ZPARM INTERVAL= 300
PARALLEL TSO PART= 1 DURATION=COMMIT INTERV.COUNTER= 1

HASH =X'000020E0'
------------ HOLDERS/WAITERS -----------
HOLDER
LUW='BLANK'.IPSAQ421.AB09C51F32CB
MEMBER =N/P CONNECT =TSO
PLANNAME=DSNESPRR CORRID=EOA
DURATION=COMMIT PRIMAUTH=DAVE
STATE =X
ENDUSER =DAVEUSER
WSNAME =DAVEWS
TRANS =DAVES TRANSACTION

LOCKING TRACE COMPLETE

Figure 89. Portion of PM Locking Trace - Lockout

706 Administration Guide

In Figure 87 on page 705, the number of suspensions is low (only 2) and both have
ended in a timeout. Rather than use the DB2 performance trace for locking, use the
preferred option, DB2 statistics class 3 and DB2 performance trace class 1. Then
produce the DB2 PM locking timeout report to obtain the information necessary to
reduce overheads.

For specific information about DB2 PM reports and their usage, see DB2 PM for
OS/390 Report Reference Volume 1, DB2 PM for OS/390 Report Reference
Volume 2 and DB2 PM for OS/390 Online Monitor User's Guide.

Deadlock detection scenarios
The following section includes an examination of two different deadlock scenarios
and an explanation of the use of the DB2 PM deadlock detail report to determine
the cause of the deadlock.

The DB2 PM report Locking Trace - Deadlock formats the information contained in
trace record IFCID 172 (statistics class 3). The report outlines all the resources and
agents involved in a deadlock and the significant locking parameters, such as lock
state and duration, related to their requests.

These examples assume that statistics class 3 and performance class 1 are
activated. Performance class 1 is activated to get IFCID 105 records, which contain
the translated names for the database ID and the page set OBID.

The scenarios that follow use three of the DB2 sample tables, DEPT, PROJ, and
ACT. They are all defined with LOCKSIZE ANY. Type 2 indexes are used to access
all three tables. As a result, contention for locks is only on data pages.

Scenario 1: Two-way deadlock, two resources
In this classic deadlock example, two agents contend for resources; the result is a
deadlock in which one of the agents is rolled back. Two transactions and two
resources are involved.

First, transaction LOC2A acquires a lock on one resource while transaction LOC2B
acquires a lock on another. Next, the two transactions each request locks on the
resource held by the other.

The transactions execute as follows:

LOC2A
1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC2B
1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 8.
4. Update page 2.
5. Close both cursors and commit.

Events take place in the following sequence:

1. LOC2A obtains a U lock on page 2 in table DEPT, to open its cursor for update.

Chapter 30. Improving concurrency 707

2. LOC2B obtains a U lock on a page 8 in table PROJ, to open its cursor for
update.

3. LOC2A attempts to access page 8, to open its cursor but cannot proceed
because of the lock held by LOC2B.

4. LOC2B attempts to access page 2, to open its cursor but cannot proceed
because of the lock held by LOC2A.

DB2 selects one of the transactions and rolls it back, releasing its locks. That allows
the other transaction to proceed to completion and release its locks also.

Figure 90 shows the DB2 PM Locking Trace - Deadlock report produced for this
situation.

The report shows that the only transactions involved came from plans LOC2A and
LOC2B. Both transactions came in from BATCH.

The lock held by transaction 1 (LOC2A) is a data page lock on the DEPT table and
is held in U state. (The value of MANUAL for duration means that, if the plan was
bound with isolation level CS and the page was not updated, then DB2 is free to
release the lock before the next commit point.)

Transaction 2 (LOC2B) was requesting a lock on the same resource, also of mode
U and hence incompatible.

...

PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
SYSADM RUNLOC2A TSO 20:32:30.68850025 DEADLOCK COUNTER = 2 WAITERS = 2
SYSADM 'BLANK' AADD32FD8A8C N/P TSTAMP =04/02/95 20:32:30.68
LOC2A BATCH DATAPAGE DB =DSN8D42A HASH =X'01060304'

�A� OB =DEPT ---------------- BLOCKER IS HOLDER -----
PAGE=X'000002' LUW='BLANK'.EGTVLU2.AADD32FD8A8C

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2A CORRID=RUNLOC2A
DURATION=MANUAL PRIMAUTH=SYSADM
STATE =U
---------------- WAITER ----------------
LUW='BLANK'.EGTVLU2.AA65FEDC1022
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2B CORRID=RUNLOC2B
DURATION=MANUAL PRIMAUTH=KATHY
REQUEST =LOCK WORTH = 18
STATE =U

DATAPAGE DB =DSN8D42A HASH =X'01060312'
OB =PROJ ---------------- BLOCKER IS HOLDER -----
PAGE=X'000008' LUW='BLANK'.EGTVLU2.AA65FEDC1022

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2B CORRID=RUNLOC2B
DURATION=MANUAL PRIMAUTH=KATHY
STATE =U
---------------- WAITER -------*VICTIM*-
LUW='BLANK'.EGTVLU2.AADD32FD8A8C
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC2A CORRID=RUNLOC2A
DURATION=MANUAL PRIMAUTH=SYSADM
REQUEST =LOCK WORTH = 17
STATE =U

Figure 90. Deadlock scenario 1: Two transactions and two resources

708 Administration Guide

The specifications of the lock held by transaction 2 (LOC2B) are the same.
Transaction 1 was requesting an incompatible lock on the same resource. Hence,
the deadlock.

Finally, note that the entry in the trace, identified at �A�, is LOC2A. That is the
selected thread (the “victim”) whose work is rolled back to let the other proceed.

Scenario 2: Three-way deadlock, three resources
In this scenario, three agents contend for resources and the result is a deadlock in
which one of the agents is rolled back. Three transactions and three resources are
involved.

First, the three transactions each acquire a lock on a different resource. LOC3A
then requests a lock on the resource held by LOC3B, LOC3B requests a lock on
the resource held by LOC3C, and LOC3C requests a lock on the resource held by
LOC3A.

The transactions execute as follows:

LOC3A
1. Declare and open a cursor for update on DEPT and fetch from page 2.
2. Declare and open a cursor for update on PROJ and fetch from page 8.
3. Update page 2.
4. Update page 8.
5. Close both cursors and commit.

LOC3B
1. Declare and open a cursor for update on PROJ and fetch from page 8.
2. Declare and open a cursor for update on ACT and fetch from page 6.
3. Update page 6.
4. Update page 8.
5. Close both cursors and commit.

LOC3C
1. Declare and open a cursor for update on ACT and fetch from page 6.
2. Declare and open a cursor for update on DEPT and fetch from page 2.
3. Update page 6.
4. Update page 2.
5. Close both cursors and commit.

Events take place in the following sequence:

1. LOC3A obtains a U lock on page 2 in DEPT, to open its cursor for update.

2. LOC3B obtains a U lock on page 8 in PROJ, to open its cursor for update.

3. LOC3C obtains a U lock on page 6 in ACT, to open its cursor for update.

4. LOC3A attempts to access page 8 in PROJ but cannot proceed because of the
lock held by LOC3B.

5. LOC3B attempts to access page 6 in ACT cannot proceed because of the lock
held by LOC3C.

6. LOC3C attempts to access page 2 in DEPT but cannot proceed, because of the
lock held by LOC3A.

DB2 rolls back LOC3C and releases its locks. That allows LOC3B to complete and
release the lock on PROJ so that LOC3A can complete. LOC3C can then retry.

Chapter 30. Improving concurrency 709

Figure 91 shows the DB2 PM Locking Trace - Deadlock report produced for this
situation.

...

PRIMAUTH CORRNAME CONNTYPE
ORIGAUTH CORRNMBR INSTANCE EVENT TIMESTAMP --- L O C K R E S O U R C E ---
PLANNAME CONNECT RELATED TIMESTAMP EVENT TYPE NAME EVENT SPECIFIC DATA
------------------------------ ----------------- -------- --------- ----------------------- --
SYSADM RUNLOC3C TSO 15:10:39.33061694 DEADLOCK COUNTER = 3 WAITERS = 3
SYSADM 'BLANK' AADE2CF16F34 N/P TSTAMP =04/03/95 15:10:39.31
LOC3C BATCH DATAPAGE DB =DSN8D42A HASH =X'01060312'

OB =PROJ ---------------- BLOCKER IS HOLDER------
PAGE=X'000008' LUW='BLANK'.EGTVLU2.AAD15D373533

MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3B CORRID=RUNLOC3B
DURATION=MANUAL PRIMAUTH=JULIE
STATE =U
---------------- WAITER ----------------
LUW='BLANK'.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3A CORRID=RUNLOC3A
DURATION=MANUAL PRIMAUTH=BOB
REQUEST =LOCK WORTH = 18
STATE =U
---------- BLOCKER IS HOLDER --*VICTIM*-
LUW='BLANK'.EGTVLU2.AAD15D373533
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3C CORRID =RUNLOC3C
DURATION=MANUAL PRIMAUTH=SYSADM
STATE =U
---------------- WAITER ----------------
LUW='BLANK'.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3B CORRID =RUNLOC3B
DURATION=MANUAL PRIMAUTH=JULIE
REQUEST =LOCK WORTH = 18
STATE =U
---------- BLOCKER IS HOLDER -----------
LUW='BLANK'.EGTVLU2.AAD15D373533
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3A CORRID =RUNLOC3A
DURATION=MANUAL PRIMAUTH=BOB
STATE =U
---------------- WAITER -------*VICTIM*-
LUW='BLANK'.EGTVLU2.AB33745CE357
MEMBER =DB1A CONNECT =BATCH
PLANNAME=LOC3C CORRID =RUNLOC3C
DURATION=MANUAL PRIMAUTH=SYSADM
REQUEST =LOCK WORTH = 18
STATE =U

Figure 91. Deadlock scenario 2: Three transactions and three resources

710 Administration Guide

Chapter 31. Tuning your queries

The information under this heading, up to the end of this chapter, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1095.

This chapter tells you how to improve the performance of your queries. It begins
with:

v “General tips and questions”

For more detailed information and suggestions, see:
v “Writing efficient predicates” on page 714
v “Using host variables efficiently” on page 734
v “Writing efficient subqueries” on page 738
v “Using scrollable cursors efficiently” on page 744
v “Writing efficient queries on views with UNION operators” on page 745

If you still have performance problems after you have tried the suggestions in these
sections, there are other, more risky techniques you can use. See “Special
techniques to influence access path selection” on page 746 for information.

General tips and questions
Recommendation: If you have a query that is performing poorly, first go over the
following checklist to see that you have not overlooked some of the basics.

Is the query coded as simply as possible?
Make sure the SQL query is coded as simply and efficiently as possible. Make sure
that no unused columns are selected and that there is no unneeded ORDER BY or
GROUP BY.

Are all predicates coded correctly?
Indexable predicates: Make sure all the predicates that you think should be
indexable are coded so that they can be indexable. Refer to Table 101 on page 719
to see which predicates are indexable and which are not.

Unintentionally redundant or unnecessary predicates: Try to remove any
predicates that are unintentionally redundant or not needed; they can slow down
performance.

Declared lengths of host variables: Make sure that the declared length of any
host variable is no greater than the length attribute of the data column it is
compared to. If the declared length is greater, the predicate is stage 2 and cannot
be a matching predicate for an index scan.

For example, assume that a host variable and an SQL column are defined as
follows:

Assembler declaration SQL definition
MYHOSTV DS PLn ’value’ COL1 DECIMAL(6,3)

When ’n’ is used, the precision of the host variable is ’2n-1’. If n = 4 and value =
’123.123’, then a predicate such as WHERE COL1 = :MYHOSTV is not a matching

© Copyright IBM Corp. 1982, 2001 711

predicate for an index scan because the precisions are different. One way to avoid
an inefficient predicate using decimal host variables is to declare the host variable
without the ’Ln’ option:

MYHOSTV DS P'123.123'

This guarantees the same host variable declaration as the SQL column definition.

Are there subqueries in your query?
If your query uses subqueries, see “Writing efficient subqueries” on page 738 to
understand how DB2 executes subqueries. There are no absolute rules to follow
when deciding how or whether to code a subquery. But these are general
guidelines:

v If there are efficient indexes available on the tables in the subquery, then a
correlated subquery is likely to be the most efficient kind of subquery.

v If there are no efficient indexes available on the tables in the subquery, then a
noncorrelated subquery would likely perform better.

v If there are multiple subqueries in any parent query, make sure that the
subqueries are ordered in the most efficient manner.

Consider the following illustration. Assume that there are 1000 rows in
MAIN_TABLE.
SELECT * FROM MAIN_TABLE
WHERE TYPE IN (subquery 1)

AND
PARTS IN (subquery 2);

Assuming that subquery 1 and subquery 2 are the same type of subquery (either
correlated or noncorrelated), DB2 evaluates the subquery predicates in the order
they appear in the WHERE clause. Subquery 1 rejects 10% of the total rows, and
subquery 2 rejects 80% of the total rows.

The predicate in subquery 1 (which is referred to as P1) is evaluated 1,000 times,
and the predicate in subquery 2 (which is referred to as P2) is evaluated 900 times,
for a total of 1,900 predicate checks. However, if the order of the subquery
predicates is reversed, P2 is evaluated 1000 times, but P1 is evaluated only 200
times, for a total of 1,200 predicate checks.

It appears that coding P2 before P1 would be more efficient if P1 and P2 take an
equal amount of time to execute. However, if P1 is 100 times faster to evaluate
than P2, then it might be advisable to code subquery 1 first. If you notice a
performance degradation, consider reordering the subqueries and monitoring the
results. Consult “Writing efficient subqueries” on page 738 to help you understand
what factors make one subquery run more slowly than another.

If you are in doubt, run EXPLAIN on the query with both a correlated and a
noncorrelated subquery. By examining the EXPLAIN output and understanding your
data distribution and SQL statements, you should be able to determine which form
is more efficient.

This general principle can apply to all types of predicates. However, because
subquery predicates can potentially be thousands of times more processor- and
I/O-intensive than all other predicates, it is most important to make sure they are
coded in the correct order.

712 Administration Guide

DB2 always performs all noncorrelated subquery predicates before correlated
subquery predicates, regardless of coding order.

Refer to “DB2 predicate manipulation” on page 728 to see in what order DB2 will
evaluate predicates and when you can control the evaluation order.

Does your query involve column functions?
If your query involves column functions, make sure that they are coded as simply
as possible; this increases the chances that they will be evaluated when the data is
retrieved, rather than afterward. In general, a column function performs best when
evaluated during data access and next best when evaluated during DB2 sort. Least
preferable is to have a column function evaluated after the data has been retrieved.
Refer to “When are column functions evaluated? (COLUMN_FN_EVAL)” on
page 805 for help in using EXPLAIN to get the information you need.

For column functions to be evaluated during data retrieval, the following conditions
must be met for all column functions in the query:

v There must be no sort needed for GROUP BY. Check this in the EXPLAIN
output.

v There must be no stage 2 (residual) predicates. Check this in your application.

v There must be no distinct set functions such as COUNT(DISTINCT C1).

v If the query is a join, all set functions must be on the last table joined. Check this
by looking at the EXPLAIN output.

v All column functions must be on single columns with no arithmetic expressions.

v The column function is not one of the following column functions:
v STDDEV
v STDDEV_SAMP
v VAR
v VAR_SAMP

If your query involves the functions MAX or MIN, refer to “One-fetch access
(ACCESSTYPE=I1)” on page 811 to see whether your query could take advantage
of that method.

Do you have an input variable in the predicate of a static SQL query?
When host variables or parameter markers are used in a query, the actual values
are not known when you bind the package or plan that contains the query. DB2
therefore uses a default filter factor to determine the best access path for an SQL
statement. If that access path proves to be inefficient, there are several things you
can do to obtain a better access path.

See “Using host variables efficiently” on page 734 for more information.

Do you have a problem with column correlation?
Two columns in a table are said to be correlated if the values in the columns do not
vary independently.

DB2 might not determine the best access path when your queries include correlated
columns. If you think you have a problem with column correlation, see “Column
correlation” on page 731 for ideas on what to do about it.

Chapter 31. Tuning your queries 713

|

Can your query be written to use a noncolumn expression?
The following predicate combines a column, SALARY, with values that are not from
columns on one side of the operator:
WHERE SALARY + (:hv1 * SALARY) > 50000

If you rewrite the predicate in the following way, DB2 can evaluate it more
efficiently:
WHERE SALARY > 50000/(1 + :hv1)

In the second form, the column is by itself on one side of the operator, and all the
other values are on the other side of the operator. The expression on the right is
called a noncolumn expression. DB2 can evaluate many predicates with noncolumn
expressions at an earlier stage of processing called stage 1, so the queries take
less time to run.

For more information on noncolumn expressions and stage 1 processing, see
“Properties of predicates”.

Writing efficient predicates
Definition: Predicates are found in the clauses WHERE, HAVING or ON of SQL
statements; they describe attributes of data. They are usually based on the columns
of a table and either qualify rows (through an index) or reject rows (returned by a
scan) when the table is accessed. The resulting qualified or rejected rows are
independent of the access path chosen for that table.

Example: The query below has three predicates: an equal predicate on C1, a
BETWEEN predicate on C2, and a LIKE predicate on C3.

SELECT * FROM T1
WHERE C1 = 10 AND

C2 BETWEEN 10 AND 20 AND
C3 NOT LIKE 'A%'

Effect on access paths: This section explains the effect of predicates on access
paths. Because SQL allows you to express the same query in different ways,
knowing how predicates affect path selection helps you write queries that access
data efficiently.

This section describes:
v “Properties of predicates”
v “General rules about predicate evaluation” on page 717
v “Predicate filter factors” on page 723
v “DB2 predicate manipulation” on page 728
v “Column correlation” on page 731

Properties of predicates
Predicates in a HAVING clause are not used when selecting access paths; hence,
in this section the term ’predicate’ means a predicate after WHERE or ON.

A predicate influences the selection of an access path because of:

v Its type, as described in “Predicate types” on page 715

v Whether it is indexable, as described in “Indexable and nonindexable predicates”
on page 716

v Whether it is stage 1 or stage 2

714 Administration Guide

v Whether it contains a ROWID column, as described in “Is direct row access
possible? (PRIMARY_ACCESSTYPE = D)” on page 801

There are special considerations for “Predicates in the ON clause” on page 717.

Definitions: Predicates are identified as:

Simple or compound
A compound predicate is the result of two predicates, whether simple or
compound, connected together by AND or OR Boolean operators. All others
are simple.

Local or join
Local predicates reference only one table. They are local to the table and
restrict the number of rows returned for that table. Join predicates involve
more than one table or correlated reference. They determine the way rows
are joined from two or more tables. For examples of their use, see
“Interpreting access to two or more tables (join)” on page 812.

Boolean term
Any predicate that is not contained by a compound OR predicate structure
is a Boolean term. If a Boolean term is evaluated false for a particular row,
the whole WHERE clause is evaluated false for that row.

Predicate types
The type of a predicate depends on its operator or syntax, as listed below. The type
determines what type of processing and filtering occurs when the predicate is
evaluated.

Type Definition

Subquery
Any predicate that includes another SELECT statement. Example: C1 IN
(SELECT C10 FROM TABLE1)

Equal Any predicate that is not a subquery predicate and has an equal operator
and no NOT operator. Also included are predicates of the form C1 IS NULL.
Example: C1=100

Range
Any predicate that is not a subquery predicate and has an operator in the
following list: >, >=, <, <=, LIKE, or BETWEEN. Example: C1>100

IN-list A predicate of the form column IN (list of values). Example: C1 IN (5,10,15)

NOT Any predicate that is not a subquery predicate and contains a NOT
operator. Example: COL1 <> 5 or COL1 NOT BETWEEN 10 AND 20.

Example: Influence of type on access paths: The following two examples show
how the predicate type can influence DB2’s choice of an access path. In each one,
assume that a unique index I1 (C1) exists on table T1 (C1, C2), and that all values
of C1 are positive integers.

The query,
SELECT C1, C2 FROM T1 WHERE C1 >= 0;

has a range predicate. However, the predicate does not eliminate any rows of T1.
Therefore, it could be determined during bind that a table space scan is more
efficient than the index scan.

The query,

Chapter 31. Tuning your queries 715

SELECT * FROM T1 WHERE C1 = 0;

has an equal predicate. DB2 chooses the index access in this case, because only
one scan is needed to return the result.

Indexable and nonindexable predicates
Definition: Indexable predicate types can match index entries; other types cannot.
Indexable predicates might not become matching predicates of an index; it depends
on the indexes that are available and the access path chosen at bind time.

Examples: If the employee table has an index on the column LASTNAME, the
following predicate can be a matching predicate:
SELECT * FROM DSN8710.EMP WHERE LASTNAME = 'SMITH';

The following predicate cannot be a matching predicate, because it is not indexable.
SELECT * FROM DSN8710.EMP WHERE SEX <> 'F';

Recommendation: To make your queries as efficient as possible, use indexable
predicates in your queries and create suitable indexes on your tables. Indexable
predicates allow the possible use of a matching index scan, which is often a very
efficient access path.

Stage 1 and stage 2 predicates
Definition: Rows retrieved for a query go through two stages of processing.

1. Stage 1 predicates (sometimes called sargable) can be applied at the first
stage.

2. Stage 2 predicates (sometimes called nonsargable or residual) cannot be
applied until the second stage.

The following items determine whether a predicate is stage 1:

v Predicate syntax

See Table 101 on page 719 for a list of simple predicates and their types. See
Examples of predicate properties for information on compound predicate types.

v Type and length of constants in the predicate

A simple predicate whose syntax classifies it as stage 1 might not be stage 1
because it contains constants and columns whose types or lengths disagree. For
example, the following predicates are not stage 1:
– CHARCOL='ABCDEFG', where CHARCOL is defined as CHAR(6)
– SINTCOL>34.5, where SINTCOL is defined as SMALLINT

The first predicate is not stage 1 because the length of the column is shorter
than the length of the constant. The second predicate is not stage 1 because the
data types of the column and constant are not the same.

v Whether DB2 evaluates the predicate before or after a join operation. A predicate
that is evaluated after a join operation is always a stage 2 predicate.

Examples: All indexable predicates are stage 1. The predicate C1 LIKE %BC is
also stage 1, but is not indexable.

Recommendation: Use stage 1 predicates whenever possible.

Boolean term (BT) predicates
Definition: A Boolean term predicate, or BT predicate, is a simple or compound
predicate that, when it is evaluated false for a particular row, makes the entire
WHERE clause false for that particular row.

716 Administration Guide

Examples: In the following query P1, P2 and P3 are simple predicates:
SELECT * FROM T1 WHERE P1 AND (P2 OR P3);
v P1 is a simple BT predicate.
v P2 and P3 are simple non-BT predicates.
v P2 OR P3 is a compound BT predicate.
v P1 AND (P2 OR P3) is a compound BT predicate.

Effect on access paths: In single index processing, only Boolean term predicates
are chosen for matching predicates. Hence, only indexable Boolean term predicates
are candidates for matching index scans. To match index columns by predicates
that are not Boolean terms, DB2 considers multiple index access.

In join operations, Boolean term predicates can reject rows at an earlier stage than
can non-Boolean term predicates.

Recommendation: For join operations, choose Boolean term predicates over
non-Boolean term predicates whenever possible.

Predicates in the ON clause
The ON clause supplies the join condition in an outer join. For a full outer join, the
clause can use only equal predicates. For other outer joins, the clause can use any
predicates except predicates that contain subqueries.

For left and right outer joins, and for inner joins, join predicates in the ON clause
are treated the same as other stage 1 and stage 2 predicates. A stage 2 predicate
in the ON clause is treated as a stage 2 predicate of the inner table.

For full outer join, the ON clause is evaluated during the join operation like a stage
2 predicate.

In an outer join, predicates that are evaluated after the join are stage 2 predicates.
Predicates in a table expression can be evaluated before the join and can therefore
be stage 1 predicates.

For example, in the following statement,
SELECT * FROM (SELECT * FROM DSN8710.EMP

WHERE EDLEVEL > 100) AS X FULL JOIN DSN8710.DEPT
ON X.WORKDEPT = DSN8710.DEPT.DEPTNO;

the predicate “EDLEVEL > 100” is evaluated before the full join and is a stage 1
predicate. For more information on join methods, see “Interpreting access to two or
more tables (join)” on page 812.

General rules about predicate evaluation
Recommendations:

1. In terms of resource usage, the earlier a predicate is evaluated, the better.

2. Stage 1 predicates are better than stage 2 predicates because they qualify rows
earlier and reduce the amount of processing needed at stage 2.

3. When possible, try to write queries that evaluate the most restrictive predicates
first. When predicates with a high filter factor are processed first, unnecessary
rows are screened as early as possible, which can reduce processing cost at a
later stage. However, a predicate’s restrictiveness is only effective among
predicates of the same type and the same evaluation stage. For information
about filter factors, see “Predicate filter factors” on page 723.

Chapter 31. Tuning your queries 717

Order of evaluating predicates
Two sets of rules determine the order of predicate evaluation.

The first set:

1. Indexable predicates are applied first. All matching predicates on index key
columns are applied first and evaluated when the index is accessed.

First, stage 1 predicates that have not been picked as matching predicates but
still refer to index columns are applied to the index. This is called index
screening.

2. Other stage 1 predicates are applied next.

After data page access, stage 1 predicates are applied to the data.

3. Finally, the stage 2 predicates are applied on the returned data rows.

The second set of rules describes the order of predicate evaluation within each of
the above stages:

1. All equal predicates a (including column IN list, where list has only one
element).

2. All range predicates and predicates of the form column IS NOT NULL

3. All other predicate types are evaluated.

After both sets of rules are applied, predicates are evaluated in the order in which
they appear in the query. Because you specify that order, you have some control
over the order of evaluation.

Summary of predicate processing
Table 101 on page 719 lists many of the simple predicates and tells whether those
predicates are indexable or stage 1. The following terms are used:

v non subq means a noncorrelated subquery.

v cor subq means a correlated subquery.

v op is any of the operators >, >=, <, <=, ¬>, ¬<.

v value is a constant, host variable, or special register.

v pattern is any character string that does not start with the special characters for
percent (%) or underscore (_).

v char is any character string that does not include the special characters for
percent (%) or underscore (_).

v expression is any expression that contains arithmetic operators, scalar functions,
column functions, concatenation operators, columns, constants, host variables,
special registers, or date or time expressions.

v noncol expr is a noncolumn expression, which is any expression that does not
contain a column. That expression can contain arithmetic operators, scalar
functions, concatenation operators, constants, host variables, special registers, or
date or time expressions.

An example of a noncolumn expression is
CURRENT DATE - 50 DAYS

v predicate is a predicate of any type.

In general, if you form a compound predicate by combining several simple
predicates with OR operators, the result of the operation has the same
characteristics as the simple predicate that is evaluated latest. For example, if two
indexable predicates are combined with an OR operator, the result is indexable. If a

718 Administration Guide

stage 1 predicate and a stage 2 predicate are combined with an OR operator, the
result is stage 2.

Table 101. Predicate types and processing

Predicate Type
Index-
able?

Stage
1? Notes

COL = value Y Y 13

COL = noncol expr Y Y 9, 11,
12

COL IS NULL Y Y

COL op value Y Y

COL op noncol expr Y Y 9, 11

COL BETWEEN value1
AND value2

Y Y

COL BETWEEN noncol expr1
AND noncol expr2

Y Y 9, 11

value BETWEEN COL1
AND COL2

N N

COL BETWEEN COL1
AND COL2

N N 10

COL BETWEEN expression1
AND expression2

N N 7

COL LIKE 'pattern' Y Y 6

COL IN (list) Y Y 14

COL <> value N Y 8

COL <> noncol expr N Y 8, 11

COL IS NOT NULL N Y

COL NOT BETWEEN value1
AND value2

N Y

COL NOT BETWEEN noncol expr1
AND noncol expr2

N Y 11

value NOT BETWEEN
COL1 AND COL2

N N

COL NOT IN (list) N Y

COL NOT LIKE ' char' N Y 6

COL LIKE '%char' N Y 1, 6

COL LIKE '_char' N Y 1, 6

COL LIKE host variable Y Y 2, 6

T1.COL = T2.COL Y Y 16

T1.COL op T2.COL Y Y 3

T1.COL <> T2.COL N Y 3

T1.COL1 = T1.COL2 N N 4

T1.COL1 op T1.COL2 N N 4

T1.COL1 <> T1.COL2 N N 4

COL=(non subq) Y Y 15

COL = ANY (non subq) N N

Chapter 31. Tuning your queries 719

Table 101. Predicate types and processing (continued)

Predicate Type
Index-
able?

Stage
1? Notes

COL = ALL (non subq) N N

COL op (non subq) Y Y 15

COL op ANY (non subq) Y Y

COL op ALL (non subq) Y Y

COL <> (non subq) N Y

COL <> ANY (non subq) N N

COL <> ALL (non subq) N N

COL IN (non subq) Y Y

(COL1,...COLn) IN (non subq) Y Y

COL NOT IN (non subq) N N

(COL1,...COLn) NOT IN (non subq) N N

COL = (cor subq) N N 5

COL = ANY (cor subq) N N

COL = ALL (cor subq) N N

COL op (cor subq) N N 5

COL op ANY (cor subq) N N

COL op ALL (cor subq) N N

COL <> (cor subq) N N 5

COL <> ANY (cor subq) N N

COL <> ALL (cor subq) N N

COL IN (cor subq) N N

(COL1,...COLn) IN (cor subq) N N

COL NOT IN (cor subq) N N

(COL1,...COLn) NOT IN (cor subq) N N

EXISTS (subq) N N

NOT EXISTS (subq) N N

COL = expression Y Y 7

expression = value N N

expression <> value N N

expression op value N N

expression op (subquery) N N

Notes to Table 101 on page 719:

1. Indexable only if an ESCAPE character is specified and used in the LIKE
predicate. For example, COL LIKE '+%char' ESCAPE '+' is indexable.

2. Indexable only if the pattern in the host variable is an indexable constant (for
example, host variable='char%').

3. Within each statement, the columns are of the same type. Examples of
different column types include:
v Different data types, such as INTEGER and DECIMAL

720 Administration Guide

||||

||||

||||

||||

v Different numeric column lengths, such as DECIMAL(5,0) and
DECIMAL(15,0)

v Different decimal scales, such as DECIMAL(7,3) and DECIMAL(7,4).

The following columns are considered to be of the same types:

v Columns of the same data type but different subtypes.

v Columns of the same data type, but different nullability attributes. (For
example, one column accepts nulls but the other does not.)

4. If both COL1 and COL2 are from the same table, access through an index on
either one is not considered for these predicates. However, the following query
is an exception:
SELECT * FROM T1 A, T1 B WHERE A.C1 = B.C2;

By using correlation names, the query treats one table as if it were two
separate tables. Therefore, indexes on columns C1 and C2 are considered for
access.

5. If the subquery has already been evaluated for a given correlation value, then
the subquery might not have to be reevaluated.

6. Not indexable or stage 1 if a field procedure exists on that column.

7. Under any of the following circumstances, the predicate is stage 1 and
indexable:

v COL is of type INTEGER or SMALLINT, and expression is of the form:
integer-constant1 arithmetic-operator integer-constant2

v COL is of type DATE, TIME, or TIMESTAMP, and:

– expression is of any of these forms:
datetime-scalar-function(character-constant)
datetime-scalar-function(character-constant) + labeled-duration
datetime-scalar-function(character-constant) - labeled-duration

– The type of datetime-scalar-function(character-constant) matches the
type of COL.

– The numeric part of labeled-duration is an integer.

– character-constant is:

- Greater than 7 characters long for the DATE scalar function; for
example, '1995-11-30'.

- Greater than 14 characters long for the TIMESTAMP scalar function;
for example, '1995-11-30-08.00.00'.

- Any length for the TIME scalar function.

8. The processing for WHERE NOT COL = value is like that for WHERE COL <>
value, and so on.

9. If noncol expr, noncol expr1, or noncol expr2 is a noncolumn expression of
one of these forms, then the predicate is not indexable:
v noncol expr + 0
v noncol expr - 0
v noncol expr * 1
v noncol expr / 1
v noncol expr CONCAT empty string

10. COL, COL1, and COL2 can be the same column or different columns. The
columns can be in the same table or different tables.

11. To ensure that the predicate is indexable and stage 1, make the data type and
length of the column and the data type and length of the result of the
noncolumn expression the same. For example, if the predicate is:

Chapter 31. Tuning your queries 721

COL op scalar function

and the scalar function is HEX, SUBSTR, DIGITS, CHAR, or CONCAT, then
the type and length of the result of the scalar function and the type and length
of the column must be the same for the predicate to be indexable and stage 1.

12. Under these circumstances, the predicate is stage 2:

v noncol expr is a case expression.

v non col expr is the product or the quotient of two noncolumn expressions,
that product or quotient is an integer value, and COL is a FLOAT or a
DECIMAL column.

13. If COL has the ROWID data type, DB2 tries to use direct row access instead
of index access or a table space scan.

14. If COL has the ROWID data type, and an index is defined on COL, DB2 tries
to use direct row access instead of index access.

15. Not indexable and not stage 1 if COL is not null and the noncorrelated
subquery SELECT clause entry can be null.

16. If the columns are numeric columns, they must have the same data type,
length, and precision to be stage 1 and indexable. For character columns, the
columns can be of different types and lengths. For example, predicates with
the following column types and lengths are stage 1 and indexable:
v CHAR(5) and CHAR(20)
v VARCHAR(5) and CHAR(5)
v VARCHAR(5) and CHAR(20)

Examples of predicate properties
Assume that predicate P1 and P2 are simple, stage 1, indexable predicates:

P1 AND P2 is a compound, stage 1, indexable predicate.
P1 OR P2 is a compound, stage 1 predicate, not indexable except by a union of
RID lists from two indexes.

The following examples of predicates illustrate the general rules shown in Table 101
on page 719. In each case, assume that there is an index on columns
(C1,C2,C3,C4) of the table and that 0 is the lowest value in each column.

v WHERE C1=5 AND C2=7

Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

v WHERE C1=5 AND C2>7

Both predicates are stage 1 and the compound predicate is indexable. A
matching index scan could be used with C1 and C2 as matching columns.

v WHERE C1>5 AND C2=7

Both predicates are stage 1, but only the first matches the index. A matching
index scan could be used with C1 as a matching column.

v WHERE C1=5 OR C2=7

Both predicates are stage 1 but not Boolean terms. The compound is indexable.
When DB2 considers multiple index access for the compound predicate, C1 and
C2 can be matching columns. For single index access, C1 and C2 can be only
index screening columns.

v WHERE C1=5 OR C2<>7

The first predicate is indexable and stage 1, and the second predicate is stage 1
but not indexable. The compound predicate is stage 1 and not indexable.

v WHERE C1>5 OR C2=7

722 Administration Guide

Both predicates are stage 1 but not Boolean terms. The compound is indexable.
When DB2 considers multiple index access for the compound predicate, C1 and
C2 can be matching columns. For single index access, C1 and C2 can be only
index screening columns.

v WHERE C1 IN (subquery) AND C2=C1

Both predicates are stage 2 and not indexable. The index is not considered for
matching index access, and both predicates are evaluated at stage 2.

v WHERE C1=5 AND C2=7 AND (C3 + 5) IN (7,8)

The first two predicates only are stage 1 and indexable. The index is considered
for matching index access, and all rows satisfying those two predicates are
passed to stage 2 to evaluate the third predicate.

v WHERE C1=5 OR C2=7 OR (C3 + 5) IN (7,8)

The third predicate is stage 2. The compound predicate is stage 2 and all three
predicates are evaluated at stage 2. The simple predicates are not Boolean
terms and the compound predicate is not indexable.

v WHERE C1=5 OR (C2=7 AND C3=C4)

The third predicate is stage 2. The two compound predicates (C2=7 AND C3=C4)
and (C1=5 OR (C2=7 AND C3=C4)) are stage 2. All predicates are evaluated at
stage 2.

v WHERE (C1>5 OR C2=7) AND C3 = C4

The compound predicate (C1>5 OR C2=7) is indexable and stage 1. The simple
predicate C3=C4 is not stage1; so the index is not considered for matching index
access. Rows that satisfy the compound predicate (C1>5 OR C2=7) are passed
to stage 2 for evaluation of the predicate C3=C4.

v WHERE T1.COL1=T2.COL1 AND T1.COL2=T2.COL2

Assume that T1.COL1 and T2.COL1 have the same data types, and T1.COL2
and T2.COL2 have the same data types. If T1.COL1 and T2.COL1 have different
nullability attributes, but T1.COL2 and T2.COL2 have the same nullability
attributes, and DB2 chooses a merge scan join to evaluate the compound
predicate, the compound predicate is stage 1. However, if T1.COL2 and T2.COL2
also have different nullability attributes, and DB2 chooses a merge scan join, the
compound predicate is not stage 1.

Predicate filter factors
Definition: The filter factor of a predicate is a number between 0 and 1 that
estimates the proportion of rows in a table for which the predicate is true. Those
rows are said to qualify by that predicate.

Example: Suppose that DB2 can determine that column C1 of table T contains only
five distinct values: A, D, Q, W and X. In the absence of other information, DB2
estimates that one-fifth of the rows have the value D in column C1. Then the
predicate C1='D' has the filter factor 0.2 for table T.

How DB2 uses filter factors: Filter factors affect the choice of access paths by
estimating the number of rows qualified by a set of predicates.

For simple predicates, the filter factor is a function of three variables:

1. The literal value in the predicate; for instance, ’D’ in the previous example.

2. The operator in the predicate; for instance, ’=’ in the previous example and ’<>’
in the negation of the predicate.

3. Statistics on the column in the predicate. In the previous example, those include
the information that column T.C1 contains only five values.

Chapter 31. Tuning your queries 723

Recommendation: You control the first two of those variables when you write a
predicate. Your understanding of DB2’s use of filter factors should help you write
more efficient predicates.

Values of the third variable, statistics on the column, are kept in the DB2 catalog.
You can update many of those values, either by running the utility RUNSTATS or by
executing UPDATE for a catalog table. For information about using RUNSTATS, see
“Gathering monitor and update statistics” on page 775. For information on updating
the catalog manually, see “Updating catalog statistics” on page 754.

If you intend to update the catalog with statistics of your own choice, you should
understand how DB2 uses:
v “Default filter factors for simple predicates”
v “Filter factors for uniform distributions”
v “Interpolation formulas” on page 725
v “Filter factors for all distributions” on page 726

Default filter factors for simple predicates
Table 102 lists default filter factors for different types of predicates. DB2 uses those
values when no other statistics exist.

Example: The default filter factor for the predicate C1 = 'D' is 1/25 (0.04). If D is
actually one of only five distinct values in column C1, the default probably does not
lead to an optimal access path.

Table 102. DB2 default filter factors by predicate type

Predicate Type Filter Factor

Col = literal 1/25

Col IS NULL 1/25

Col IN (literal list) (number of literals)/25

Col Op literal 1/3

Col LIKE literal 1/10

Col BETWEEN literal1 and literal2 1/10

Note:
Op is one of these operators: <, <=, >, >=.
Literal is any constant value that is known at bind time.

Filter factors for uniform distributions
DB2 uses the filter factors in Table 103 if:

v There is a positive value in column COLCARDF of catalog table
SYSIBM.SYSCOLUMNS for the column “Col”.

v There are no additional statistics for “Col” in SYSIBM.SYSCOLDIST.

Example: If D is one of only five values in column C1, using RUNSTATS will put
the value 5 in column COLCARDF of SYSCOLUMNS. If there are no additional
statistics available, the filter factor for the predicate C1 = 'D' is 1/5 (0.2).

Table 103. DB2 uniform filter factors by predicate type

Predicate Type Filter Factor

Col = literal 1/COLCARDF

Col IS NULL 1/COLCARDF

Col IN (literal list) number of literals /COLCARDF

724 Administration Guide

Table 103. DB2 uniform filter factors by predicate type (continued)

Predicate Type Filter Factor

Col Op1 literal interpolation formula

Col Op2 literal interpolation formula

Col LIKE literal interpolation formula

Col BETWEEN literal1 and literal2 interpolation formula

Note:
Op1 is < or <=, and the literal is not a host variable.
Op2 is > or >=, and the literal is not a host variable.
Literal is any constant value that is known at bind time.

Filter factors for other predicate types: The examples selected in Table 102 on
page 724 and Table 103 on page 724 represent only the most common types of
predicates. If P1 is a predicate and F is its filter factor, then the filter factor of the
predicate NOT P1 is (1 - F). But, filter factor calculation is dependent on many
things, so a specific filter factor cannot be given for all predicate types.

Interpolation formulas
Definition: For a predicate that uses a range of values, DB2 calculates the filter
factor by an interpolation formula. The formula is based on an estimate of the ratio
of the number of values in the range to the number of values in the entire column of
the table.

The formulas: The formulas that follow are rough estimates, subject to further
modification by DB2. They apply to a predicate of the form col op. literal. The
value of (Total Entries) in each formula is estimated from the values in columns
HIGH2KEY and LOW2KEY in catalog table SYSIBM.SYSCOLUMNS for column col:
Total Entries = (HIGH2KEY value - LOW2KEY value).

v For the operators < and <=, where the literal is not a host variable:
(Literal value - LOW2KEY value) / (Total Entries)

v For the operators > and >=, where the literal is not a host variable:
(HIGH2KEY value - Literal value) / (Total Entries)

v For LIKE or BETWEEN:
(High literal value - Low literal value) / (Total Entries)

Example: For column C2 in a predicate, suppose that the value of HIGH2KEY is
1400 and the value of LOW2KEY is 200. For C2, DB2 calculates (Total Entries) =
1200.

For the predicate C1 BETWEEN 800 AND 1100, DB2 calculates the filter factor F as:
F = (1100 - 800)/1200 = 1/4 = 0.25

Interpolation for LIKE: DB2 treats a LIKE predicate as a type of BETWEEN
predicate. Two values that bound the range qualified by the predicate are generated
from the literal string in the predicate. Only the leading characters found before the
escape character (’%’ or ’_’) are used to generate the bounds. So if the escape
character is the first character of the string, the filter factor is estimated as 1, and
the predicate is estimated to reject no rows.

Defaults for interpolation: DB2 might not interpolate in some cases; instead, it
can use a default filter factor. Defaults for interpolation are:

v Relevant only for ranges, including LIKE and BETWEEN predicates

Chapter 31. Tuning your queries 725

v Used only when interpolation is not adequate

v Based on the value of COLCARDF

v Used whether uniform or additional distribution statistics exist on the column if
either of the following conditions is met:
– The predicate does not contain constants
– COLCARDF < 4.

Table 104 shows interpolation defaults for the operators <, <=, >, >= and for LIKE
and BETWEEN.

Table 104. Default filter factors for interpolation

COLCARDF Factor for Op
Factor for LIKE
or BETWEEN

≥100,000,000 1/10,000 3/100,000

≥10,000,000 1/3,000 1/10,000

≥1,000,000 1/1,000 3/10,000

≥100,000 1/300 1/1,000

≥10,000 1/100 3/1,000

≥1,000 1/30 1/100

≥100 1/10 3/100

≥0 1/3 1/10

Note: Op is one of these operators: <, <=, >, >=.

Filter factors for all distributions
RUNSTATS can generate additional statistics for a column or set of concatenated
key columns of an index. DB2 can use that information to calculate filter factors.
DB2 collects two kinds of distribution statistics:

Frequency
The percentage of rows in the table that contain a value for a column or
combination of values for concatenated columns

Cardinality
The number of distinct values in concatenated columns

When they are used: Table 105 lists the types of predicates on which these
statistics are used.

Table 105. Predicates for which distribution statistics are used

Type of statistic Single column or
concatenated columns

Predicates

Frequency Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal

Frequency Concatenated COL=literal

726 Administration Guide

Table 105. Predicates for which distribution statistics are used (continued)

Type of statistic Single column or
concatenated columns

Predicates

Cardinality Single COL=literal
COL IS NULL
COL IN (literal-list)
COL op literal
COL BETWEEN literal AND literal
COL=host-variable
COL1=COL2

Cardinality Concatenated COL=literal
COL=:host-variable
COL1=COL2

Note: op is one of these operators: <, <=, >, >=.

How they are used: Columns COLVALUE and FREQUENCYF in table
SYSCOLDIST contain distribution statistics. Regardless of the number of values in
those columns, running RUNSTATS deletes the existing values and inserts rows for
the most frequent values. If you run RUNSTATS without the FREQVAL option,
RUNSTATS inserts rows for the 10 most frequent values for the first column of the
specified index. If you run RUNSTATS with the FREQVAL option and its two
keywords, NUMCOLS and COUNT, RUNSTATS inserts rows for concatenated
columns of an index. NUMCOLS specifies the number of concatenated index
columns. COUNT specifies the number of most frequent values. See Part 2 of DB2
Utility Guide and Reference for more information about RUNSTATS. DB2 uses the
frequencies in column FREQUENCYF for predicates that use the values in column
COLVALUE and assumes that the remaining data are uniformly distributed.

Example: Filter factor for a single column

Suppose that the predicate is C1 IN ('3','5') and that SYSCOLDIST contains
these values for column C1:

COLVALUE FREQUENCYF
'3' .0153
'5' .0859
'8' .0627

The filter factor is .0153 + .0859 = .1012.

Example: Filter factor for correlated columns

Suppose that columns C1 and C2 are correlated and are concatenated columns of
an index. Suppose also that the predicate is C1='3' AND C2='5' and that
SYSCOLDIST contains these values for columns C1 and C2:
COLVALUE FREQUENCYF
'1' '1' .1176
'2' '2' .0588
'3' '3' .0588
'3' '5' .1176
'4' '4' .0588
'5' '3' .1764
'5' '5' .3529
'6' '6' .0588

The filter factor is .1176.

Chapter 31. Tuning your queries 727

DB2 predicate manipulation
In some specific cases, DB2 either modifies some predicates, or generates extra
predicates. Although these modifications are transparent to you, they have a direct
impact on the access path selection and your PLAN_TABLE results. This is
because DB2 always uses an index access path when it is cost effective.
Generating extra predicates provides more indexable predicates potentially, which
creates more chances for an efficient index access path.

Therefore, to understand your PLAN_TABLE results, you must understand how DB2
manipulates predicates. The information in Table 101 on page 719 is also helpful.

Predicate modifications for IN-list predicates
If an IN-list predicate has only one item in its list, the predicate becomes an EQUAL
predicate.

A set of simple, Boolean term, equal predicates on the same column that are
connected by OR predicates can be converted into an IN-list predicate. For
example: C1=5 or C1=10 or C1=15 converts to C1 IN (5,10,15).

When DB2 simplifies join operations
Because full outer joins are less efficient than left or right joins, and left and right
joins are less efficient than inner joins, you should always try to use the simplest
type of join operation in your queries. However, if DB2 encounters a join operation
that it can simplify, it attempts to do so. In general, DB2 can simplify a join
operation when the query contains a predicate or an ON clause that eliminates the
null values that are generated by the join operation.

For example, consider this query:
SELECT * FROM T1 X FULL JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

The outer join operation gives you these result table rows:

v The rows with matching values of C1 in tables T1 and T2 (the inner join result)

v The rows from T1 where C1 has no corresponding value in T2

v The rows from T2 where C1 has no corresponding value in T1

However, when you apply the predicate, you remove all rows in the result table that
came from T2 where C1 has no corresponding value in T1. DB2 transforms the full
join into a left join, which is more efficient:
SELECT * FROM T1 X LEFT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2 > 12;

In the following example, the predicate, X.C2>12, filters out all null values that result
from the right join:
SELECT * FROM T1 X RIGHT JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

Therefore, DB2 can transform the right join into a more efficient inner join without
changing the result:
SELECT * FROM T1 X INNER JOIN T2 Y

ON X.C1=Y.C1
WHERE X.C2>12;

728 Administration Guide

The predicate that follows a join operation must have the following characteristics
before DB2 transforms an outer join into a simpler outer join or into an inner join:

v The predicate is a Boolean term predicate.

v The predicate is false if one table in the join operation supplies a null value for all
of its columns.

These predicates are examples of predicates that can cause DB2 to simplify join
operations:
v T1.C1 > 10
v T1.C1 IS NOT NULL
v T1.C1 > 10 OR T1.C2 > 15
v T1.C1 > T2.C1
v T1.C1 IN (1,2,4)
v T1.C1 LIKE 'ABC%'
v T1.C1 BETWEEN 10 AND 100
v 12 BETWEEN T1.C1 AND 100

The following example shows how DB2 can simplify a join operation because the
query contains an ON clause that eliminates rows with unmatched values:
SELECT * FROM T1 X LEFT JOIN T2 Y

FULL JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

Because the last ON clause eliminates any rows from the result table for which
column values that come from T1 or T2 are null, DB2 can replace the full join with a
more efficient left join to achieve the same result:
SELECT * FROM T1 X LEFT JOIN T2 Y

LEFT JOIN T3 Z ON Y.C1=Z.C1
ON X.C1=Y.C1;

There is one case in which DB2 transforms a full outer join into a left join when you
cannot write code to do it. This is the case where a view specifies a full outer join,
but a subsequent query on that view requires only a left outer join. For example,
consider this view:
CREATE VIEW V1 (C1,T1C2,T2C2) AS

SELECT COALESCE(T1.C1, T2.C1), T1.C2, T2.C2
FROM T1 X FULL JOIN T2 Y
ON T1.C1=T2.C1;

This view contains rows for which values of C2 that come from T1 are null.
However, if you execute the following query, you eliminate the rows with null values
for C2 that come from T1:
SELECT * FROM V1

WHERE T1C2 > 10;

Therefore, for this query, a left join between T1 and T2 would have been adequate.
DB2 can execute this query as if the view V1 was generated with a left outer join so
that the query runs more efficiently.

Predicates generated through transitive closure
When the set of predicates that belong to a query logically imply other predicates,
DB2 can generate additional predicates to provide more information for access path
selection.

Rules for generating predicates: For single-table or inner join queries, DB2
generates predicates for transitive closure if:

Chapter 31. Tuning your queries 729

v The query has an equal type predicate: COL1=COL2. This could be:

– A local predicate

– A join predicate

v The query also has a Boolean term predicate on one of the columns in the first
predicate with one of the following formats:

– COL1 op value

op is =, <>, >, >=, <, or <=.

value is a constant, host variable, or special register.

– COL1 (NOT) BETWEEN value1 AND value2

– COL1=COL3

For outer join queries, DB2 generates predicates for transitive closure if the query
has an ON clause of the form COL1=COL2 and a before join predicate that has
one of the following formats:

v COL1 op value

op is =, <>, >, >=, <, or <=

v COL1 (NOT) BETWEEN value1 AND value2

DB2 generates a transitive closure predicate for an outer join query only if the
generated predicate does not reference the table with unmatched rows. That is, the
generated predicate cannot reference the left table for a left outer join or the right
table for a right outer join.

When a predicate meets the the transitive closure conditions, DB2 generates a new
predicate, whether or not it already exists in the WHERE clause.

The generated predicates have one of the following formats:

v COL op value

op is =, <>, >, >=, <, or <=.

value is a constant, host variable, or special register.

v COL (NOT) BETWEEN value1 AND value2

v COL1=COL2 (for single-table or inner join queries only)

Example of transitive closure for an inner join: Suppose that you have written
this query, which meets the conditions for transitive closure:
SELECT * FROM T1, T2

WHERE T1.C1=T2.C1 AND
T1.C1>10;

DB2 generates an additional predicate to produce this query, which is more
efficient:
SELECT * FROM T1, T2

WHERE T1.C1=T2.C1 AND
T1.C1>10 AND
T2.C1>10;

Example of transitive closure for an outer join: Suppose that you have written
this outer join query:
SELECT * FROM (SELECT * FROM T1 WHERE T1.C1>10) X

LEFT JOIN T2
ON X.C1 = T2.C1;

730 Administration Guide

The before join predicate, T1.C1>10, meets the conditions for transitive closure, so
DB2 generates this query:
SELECT * FROM

(SELECT * FROM T1 WHERE T1.C1>10 AND T2.C1>10) X
LEFT JOIN T2
ON X.C1 = T2.C1;

Predicate redundancy: A predicate is redundant if evaluation of other predicates in
the query already determines the result that the predicate provides. You can specify
redundant predicates or DB2 can generate them. DB2 does not determine that any
of your query predicates are redundant. All predicates that you code are evaluated
at execution time regardless of whether they are redundant. If DB2 generates a
redundant predicate to help select access paths, that predicate is ignored at
execution.

Adding extra predicates: DB2 performs predicate transitive closure only on equal
and range predicates. Other types of predicates, such as IN or LIKE predicates,
might be needed in the following case:
SELECT * FROM T1,T2

WHERE T1.C1=T2.C1
AND T1.C1 LIKE 'A%';

In this case, add the predicate T2.C1 LIKE ’A%’.

Column correlation
Two columns of data, A and B of a single table, are correlated if the values in
column A do not vary independently of the values in column B.

The following is an excerpt from a large single table. Columns CITY and STATE are
highly correlated, and columns DEPTNO and SEX are entirely independent.
TABLE CREWINFO

CITY STATE DEPTNO SEX EMPNO ZIPCODE
--
Fresno CA A345 F 27375 93650
Fresno CA J123 M 12345 93710
Fresno CA J123 F 93875 93650
Fresno CA J123 F 52325 93792
New York NY J123 M 19823 09001
New York NY A345 M 15522 09530
Miami FL B499 M 83825 33116
Miami FL A345 F 35785 34099
Los Angeles CA X987 M 12131 90077
Los Angeles CA A345 M 38251 90091

In this simple example, for every value of column CITY that equals 'FRESNO', there
is the same value in column STATE ('CA').

How to detect column correlation
The first indication that column correlation is a problem is because of poor response
times when DB2 has chosen an inappropriate access path. If you suspect two
columns in a table (CITY and STATE in table CREWINFO) are correlated, then you
can issue the following SQL queries that reflect the relationships between the
columns:
SELECT COUNT (DISTINCT CITY) FROM CREWINFO; (RESULT1)
SELECT COUNT (DISTINCT STATE) FROM CREWINFO; (RESULT2)

Chapter 31. Tuning your queries 731

The result of the count of each distinct column is the value of COLCARDF in the
DB2 catalog table SYSCOLUMNS. Multiply the above two values together to get a
preliminary result:
RESULT1 x RESULT2 = ANSWER1

Then issue the following SQL statement:
SELECT COUNT(*) FROM

(SELECT DISTINCT CITY,STATE
FROM CREWINFO) AS V1; (ANSWER2)

Compare the result of the above count (ANSWER2) with ANSWER1. If ANSWER2
is less than ANSWER1, then the suspected columns are correlated.

Impacts of column correlation
DB2 might not determine the best access path, table order, or join method when
your query uses columns that are highly correlated. Column correlation can make
the estimated cost of operations cheaper than they actually are. Column correlation
affects both single table queries and join queries.

Column correlation on the best matching columns of an index: The following
query selects rows with females in department A345 from Fresno, California. There
are 2 indexes defined on the table, Index 1 (CITY,STATE,ZIPCODE) and Index 2
(DEPTNO,SEX).
Query 1

SELECT ... FROM CREWINFO WHERE
CITY = 'FRESNO' AND STATE = 'CA' (PREDICATE1)
AND DEPTNO = 'A345' AND SEX = 'F'; (PREDICATE2)

Consider the two compound predicates (labeled PREDICATE1 and PREDICATE2),
their actual filtering effects (the proportion of rows they select), and their DB2 filter
factors. Unless the proper catalog statistics are gathered, the filter factors are
calculated as if the columns of the predicate are entirely independent (not
correlated).

Table 106. Effects of column correlation on matching columns

INDEX 1 INDEX 2

Matching Predicates Predicate1
CITY=FRESNO AND STATE=CA

Predicate2
DEPTNO=A345 AND SEX=F

Matching Columns 2 2

DB2 estimate for
matching columns
(Filter Factor)

column=CITY, COLCARDF=4
Filter Factor=1/4
column=STATE, COLCARDF=3
Filter Factor=1/3

column=DEPTNO,
COLCARDF=4
Filter Factor=1/4
column=SEX, COLCARDF=2
Filter Factor=1/2

Compound Filter Factor
for matching columns

1/4 × 1/3 = 0.083 1/4 × 1/2 = 0.125

Qualified leaf pages
based on DB2 estimations

0.083 × 10 = 0.83
INDEX CHOSEN (.8 < 1.25)

0.125 × 10 = 1.25

Actual filter factor based on data
distribution

4/10 2/10

Actual number of qualified leaf pages
based on compound predicate

4/10 × 10 = 4 2/10 × 10 = 2
BETTER INDEX CHOICE
(2 < 4)

732 Administration Guide

DB2 chooses an index that returns the fewest rows, partly determined by the
smallest filter factor of the matching columns. Assume that filter factor is the only
influence on the access path. The combined filtering of columns CITY and STATE
seems very good, whereas the matching columns for the second index do not seem
to filter as much. Based on those calculations, DB2 chooses Index 1 as an access
path for Query 1.

The problem is that the filtering of columns CITY and STATE should not look good.
Column STATE does almost no filtering. Since columns DEPTNO and SEX do a
better job of filtering out rows, DB2 should favor Index 2 over Index 1.

Column correlation on index screening columns of an index: Correlation might
also occur on nonmatching index columns, used for index screening. See
“Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)” on page 809 for
more information. Index screening predicates help reduce the number of data rows
that qualify while scanning the index. However, if the index screening predicates are
correlated, they do not filter as many data rows as their filter factors suggest. To
illustrate this, use the same Query 1 (see page 732) with the following indexes on
table CREWINFO (page 731):
Index 3 (EMPNO,CITY,STATE)
Index 4 (EMPNO,DEPTNO,SEX)

In the case of Index 3, because the columns CITY and STATE of Predicate 1 are
correlated, the index access is not improved as much as estimated by the
screening predicates and therefore Index 4 might be a better choice. (Note that
index screening also occurs for indexes with matching columns greater than zero.)

Multiple table joins: In Query 2, an additional table is added to the original query
(see Query 1 on page 732) to show the impact of column correlation on join
queries.
TABLE DEPTINFO

CITY STATE MANAGER DEPT DEPTNAME
--
FRESNO CA SMITH J123 ADMIN
LOS ANGELES CA JONES A345 LEGAL

Query 2
SELECT ... FROM CREWINFO T1,DEPTINFO T2

WHERE T1.CITY = 'FRESNO' AND T1.STATE='CA' (PREDICATE 1)
AND T1.DEPTNO = T2.DEPT AND T2.DEPTNAME = 'LEGAL';

The order that tables are accessed in a join statement affects performance. The
estimated combined filtering of Predicate1 is lower than its actual filtering. So table
CREWINFO might look better as the first table accessed than it should.

Also, due to the smaller estimated size for table CREWINFO, a nested loop join
might be chosen for the join method. But, if many rows are selected from table
CREWINFO because Predicate1 does not filter as many rows as estimated, then
another join method might be better.

What to do about column correlation
If column correlation is causing DB2 to choose an inappropriate access path, try
one of these techniques to alter the access path:

v If the correlated columns are concatenated key columns of an index, run the
utility RUNSTATS with options KEYCARD and FREQVAL. This is the preferred
technique.

Chapter 31. Tuning your queries 733

v Update the catalog statistics manually.

v Use SQL that forces access through a particular index.

The last two techniques are discussed in “Special techniques to influence access
path selection” on page 746.

The utility RUNSTATS collects the statistics DB2 needs to make proper choices
about queries. With RUNSTATS, you can collect statistics on the concatenated key
columns of an index and the number of distinct values for those concatenated
columns. This gives DB2 accurate information to calculate the filter factor for the
query.

For example, RUNSTATS collects statistics that benefit queries like this:
SELECT * FROM T1
WHERE C1 = 'a' AND C2 = 'b' AND C3 = 'c' ;

where:
v The first three index keys are used (MATCHCOLS = 3).
v An index exists on C1, C2, C3, C4, C5.
v Some or all of the columns in the index are correlated in some way.

See “Use RUNSTATS to keep access path statistics current” on page 537 for
information on using RUNSTATS to influence access path selection. See “Updating
catalog statistics” on page 754 for information on updating catalog statistics
manually.

Using host variables efficiently
Host variables require default filter factors: When you bind a static SQL
statement that contains host variables, DB2 uses a default filter factor to determine
the best access path for the SQL statement. For more information on filter factors,
including default values, see “Predicate filter factors” on page 723.

DB2 often chooses an access path that performs well for a query with several host
variables. However, in a new release or after maintenance has been applied, DB2
might choose a new access path that does not perform as well as the old access
path. In most cases, the change in access paths is due to the default filter factors,
which might lead DB2 to optimize the query in a different way.

There are two ways to change the access path for a query that contains host
variables:

v Bind the package or plan that contains the query with the option REOPT(VARS).

v Rewrite the query.

Using REOPT(VARS) to change the access path at run time
Specify the bind option REOPT(VARS) when you want DB2 to determine access
paths at both bind time and run time for statements that contain one or more of the
following:
v host variables
v parameter markers
v special registers

At run time, DB2 uses the values in those variables to determine the access paths.

734 Administration Guide

Because there is a performance cost to reoptimizing the access path at run time,
you should use the bind option REOPT(VARS) only on packages or plans
containing statements that perform poorly.

Be careful when using REOPT(VARS) for a statement executed in a loop; the
reoptimization occurs with every execution of that statement. However, if you are
using a cursor, you can put the FETCH statements in a loop because the
reoptimization only occurs when the cursor is opened.

To use REOPT(VARS) most efficiently, first determine which SQL statements in your
applications perform poorly. Separate the code containing those statements into
units that you bind into packages with the option REOPT(VARS). Bind the rest of
the code into packages using NOREOPT(VARS). Then bind the plan with the option
NOREOPT(VARS). Only statements in the packages bound with REOPT(VARS) are
candidates for reoptimization at run time.

To determine which queries in plans and packages bound with REOPT(VARS) will
be reoptimized at run time, execute the following SELECT statements:
SELECT PLNAME,

CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, TEXT
FROM SYSIBM.SYSSTMT
WHERE STATUS IN ('B','F','G','J')
ORDER BY PLNAME, STMTNUM, SEQNO;

SELECT COLLID, NAME, VERSION,
CASE WHEN STMTNOI <> 0
THEN STMTNOI
ELSE STMTNO
END AS STMTNUM,
SEQNO, STMT
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS IN ('B','F','G','J')
ORDER BY COLLID, NAME, VERSION, STMTNUM, SEQNO;

If you specify the bind option VALIDATE(RUN), and a statement in the plan or
package is not bound successfully, that statement is incrementally bound at run
time. If you also specify the bind option REOPT(VARS), DB2 reoptimizes the
access path during the incremental bind.

To determine which plans and packages have statements that will be incrementally
bound, execute the following SELECT statements:
SELECT DISTINCT NAME

FROM SYSIBM.SYSSTMT
WHERE STATUS = 'F' OR STATUS = 'H';

SELECT DISTINCT COLLID, NAME, VERSION
FROM SYSIBM.SYSPACKSTMT
WHERE STATUS = 'F' OR STATUS = 'H';

Rewriting queries to influence access path selection
The examples that follow identify potential performance problems and offer
suggestions for tuning the queries. However, before you rewrite any query, you
should consider whether the bind option REOPT(VARS) can solve your access path
problems. See “Using REOPT(VARS) to change the access path at run time” on
page 734 for more information on REOPT(VARS).

Chapter 31. Tuning your queries 735

Example 1: An equal predicate

An equal predicate has a default filter factor of 1/COLCARDF. The actual filter factor
might be quite different.

Query:
SELECT * FROM DSN8710.EMP
WHERE SEX = :HV1;

Assumptions: Because there are only two different values in column SEX, ’M’ and
’F’, the value COLCARDF for SEX is 2. If the numbers of male and female
employees are not equal, the actual filter factor of 1/2 is larger or smaller than the
default, depending on whether :HV1 is set to ’M’ or ’F’.

Recommendation: One of these two actions can improve the access path:

v Bind the package or plan that contains the query with the option REOPT(VARS).
This action causes DB2 to reoptimize the query at run time, using the input
values you provide.

v Write predicates to influence DB2's selection of an access path, based on your
knowledge of actual filter factors. For example, you can break the query above
into three different queries, two of which use constants. DB2 can then determine
the exact filter factor for most cases when it binds the plan.
SELECT (HV1);

WHEN ('M')
DO;

EXEC SQL SELECT * FROM DSN8710.EMP
WHERE SEX = 'M';

END;
WHEN ('F')

DO;
EXEC SQL SELECT * FROM DSN8710.EMP
WHERE SEX = 'F';

END;
OTHERWISE

DO:
EXEC SQL SELECT * FROM DSN8710.EMP
WHERE SEX = :HV1;

END;
END;

Example 2: Known ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that:

v The application always provides a narrow range on C1 and a wide range on C2.

v The desired access path is through index T1X1.

Recommendation: If DB2 does not choose T1X1, rewrite the query as follows, so
that DB2 does not choose index T1X2 on C2:

SELECT * FROM T1
WHERE C1 BETWEEN :HV1 AND :HV2

AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

736 Administration Guide

Example 3: Variable ranges

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
AND C2 BETWEEN :HV3 AND :HV4;

Assumptions: You know that the application provides both narrow and wide ranges
on C1 and C2. Hence, default filter factors do not allow DB2 to choose the best
access path in all cases. For example, a small range on C1 favors index T1X1 on
C1, a small range on C2 favors index T1X2 on C2, and wide ranges on both C1
and C2 favor a table space scan.

Recommendation: If DB2 does not choose the best access path, try either of the
following changes to your application:

v Use a dynamic SQL statement and embed the ranges of C1 and C2 in the
statement. With access to the actual range values, DB2 can estimate the actual
filter factors for the query. Preparing the statement each time it is executed
requires an extra step, but it can be worthwhile if the query accesses a large
amount of data.

v Include some simple logic to check the ranges of C1 and C2, and then execute
one of these static SQL statements, based on the ranges of C1 and C2:

SELECT * FROM T1 WHERE C1 BETWEEN :HV1 AND :HV2
AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

SELECT * FROM T1 WHERE C2 BETWEEN :HV3 AND :HV4
AND (C1 BETWEEN :HV1 AND :HV2 OR 0=1);

SELECT * FROM T1 WHERE (C1 BETWEEN :HV1 AND :HV2 OR 0=1)
AND (C2 BETWEEN :HV3 AND :HV4 OR 0=1);

Example 4: ORDER BY

Table T1 has two indexes: T1X1 on column C1 and T1X2 on column C2.

Query:
SELECT * FROM T1

WHERE C1 BETWEEN :HV1 AND :HV2
ORDER BY C2;

In this example, DB2 could choose one of the following actions:

v Scan index T1X1 and then sort the results by column C2

v Scan the table space in which T1 resides and then sort the results by column C2

v Scan index T1X2 and then apply the predicate to each row of data, thereby
avoiding the sort

Which choice is best depends on the following factors:
v The number of rows that satisfy the range predicate
v Which index has the higher cluster ratio

If the actual number of rows that satisfy the range predicate is significantly different
from the estimate, DB2 might not choose the best access path.

Assumptions: You disagree with DB2’s choice.

Chapter 31. Tuning your queries 737

Recommendation: In your application, use a dynamic SQL statement and embed
the range of C1 in the statement. That allows DB2 to use the actual filter factor
rather than the default, but requires extra processing for the PREPARE statement.

Example 5: A join operation

Tables A, B, and C each have indexes on columns C1, C2, C3, and C4.

Query:
SELECT * FROM A, B, C

WHERE A.C1 = B.C1
AND A.C2 = C.C2
AND A.C2 BETWEEN :HV1 AND :HV2
AND A.C3 BETWEEN :HV3 AND :HV4
AND A.C4 < :HV5
AND B.C2 BETWEEN :HV6 AND :HV7
AND B.C3 < :HV8
AND C.C2 < :HV9;

Assumptions: The actual filter factors on table A are much larger than the default
factors. Hence, DB2 underestimates the number of rows selected from table A and
wrongly chooses that as the first table in the join.

Recommendations: You can:

v Reduce the estimated size of Table A by adding predicates

v Disfavor any index on the join column by making the join predicate on table A
nonindexable

The query below illustrates the second of those choices.
SELECT * FROM T1 A, T1 B, T1 C

WHERE (A.C1 = B.C1 OR 0=1)
AND A.C2 = C.C2
AND A.C2 BETWEEN :HV1 AND :HV2
AND A.C3 BETWEEN :HV3 AND :HV4
AND A.C4 < :HV5
AND B.C2 BETWEEN :HV6 AND :HV7
AND B.C3 < :HV8
AND C.C2 < :HV9;

The result of making the join predicate between A and B a nonindexable predicate
(which cannot be used in single index access) disfavors the use of the index on
column C1. This, in turn, might lead DB2 to access table A or B first. Or, it might
lead DB2 to change the access type of table A or B, thereby influencing the join
sequence of the other tables.

Writing efficient subqueries
Definitions: A subquery is a SELECT statement within the WHERE or HAVING
clause of another SQL statement.

Decision needed: You can often write two or more SQL statements that achieve
identical results, particularly if you use subqueries. The statements have different
access paths, however, and probably perform differently.

Topic overview: The topics that follow describe different methods to achieve the
results intended by a subquery and tell what DB2 does for each method. The
information should help you estimate what method performs best for your query.

738 Administration Guide

The first two methods use different types of subqueries:
v “Correlated subqueries”
v “Noncorrelated subqueries” on page 740

A subquery can sometimes be transformed into a join operation. Sometimes DB2
does that to improve the access path, and sometimes you can get better results by
doing it yourself. The third method is:

v “Subquery transformation into join” on page 741

Finally, for a comparison of the three methods as applied to a single task, see:

v “Subquery tuning” on page 743

Correlated subqueries
Definition: A correlated subquery refers to at least one column of the outer query.

Any predicate that contains a correlated subquery is a stage 2 predicate.

Example: In the following query, the correlation name, X, illustrates the subquery’s
reference to the outer query block.
SELECT * FROM DSN8710.EMP X

WHERE JOB = 'DESIGNER'
AND EXISTS (SELECT 1

FROM DSN8710.PROJ
WHERE DEPTNO = X.WORKDEPT

AND MAJPROJ = 'MA2100');

What DB2 does: A correlated subquery is evaluated for each qualified row of the
outer query that is referred to. In executing the example, DB2:

1. Reads a row from table EMP where JOB=’DESIGNER’.

2. Searches for the value of WORKDEPT from that row, in a table stored in
memory.

The in-memory table saves executions of the subquery. If the subquery has
already been executed with the value of WORKDEPT, the result of the subquery
is in the table and DB2 does not execute it again for the current row. Instead,
DB2 can skip to step 5.

3. Executes the subquery, if the value of WORKDEPT is not in memory. That
requires searching the PROJ table to check whether there is any project, where
MAJPROJ is ’MA2100’, for which the current WORKDEPT is responsible.

4. Stores the value of WORKDEPT and the result of the subquery in memory.

5. Returns the values of the current row of EMP to the application.

DB2 repeats this whole process for each qualified row of the EMP table.

Notes on the in-memory table: The in-memory table is applicable if the operator
of the predicate that contains the subquery is one of the following operators:

<, <=, >, >=, =, <>, EXISTS, NOT EXISTS

The table is not used, however, if:

v There are more than 16 correlated columns in the subquery

v The sum of the lengths of the correlated columns is more than 256 bytes

v There is a unique index on a subset of the correlated columns of a table from the
outer query

Chapter 31. Tuning your queries 739

The in-memory table is a wrap-around table and does not guarantee saving the
results of all possible duplicated executions of the subquery.

Noncorrelated subqueries
Definition: A noncorrelated subquery makes no reference to outer queries.

Example:
SELECT * FROM DSN8710.EMP

WHERE JOB = 'DESIGNER'
AND WORKDEPT IN (SELECT DEPTNO

FROM DSN8710.PROJ
WHERE MAJPROJ = 'MA2100');

What DB2 does: A noncorrelated subquery is executed once when the cursor is
opened for the query. What DB2 does to process it depends on whether it returns a
single value or more than one value. The query in the example above can return
more than one value.

Single-value subqueries
When the subquery is contained in a predicate with a simple operator, the subquery
is required to return 1 or 0 rows. The simple operator can be one of the following
operators:

<, <=, >, >=, =, <>, EXISTS, NOT EXISTS

The following noncorrelated subquery returns a single value:
SELECT *
FROM DSN8710.EMP
WHERE JOB = 'DESIGNER'

AND WORKDEPT <= (SELECT MAX(DEPTNO)
FROM DSN8710.PROJ);

What DB2 does: When the cursor is opened, the subquery executes. If it returns
more than one row, DB2 issues an error. The predicate that contains the subquery
is treated like a simple predicate with a constant specified, for example,
WORKDEPT <= ’value’.

Stage 1 and stage 2 processing: The rules for determining whether a predicate
with a noncorrelated subquery that returns a single value is stage 1 or stage 2 are
generally the same as for the same predicate with a single variable. However, the
predicate is stage 2 if:

v The value returned by the subquery is nullable and the column of the outer query
is not nullable.

v The data type of the subquery is higher than that of the column of the outer
query. For example, the following predicate is stage 2:
WHERE SMALLINT_COL < (SELECT INTEGER_COL FROM ...

Multiple-value subqueries
A subquery can return more than one value if the operator is one of the following:

op ANY op ALL op SOME IN EXISTS

where op is any of the operators >, >=, <, or <=.

What DB2 does: If possible, DB2 reduces a subquery that returns more than one
row to one that returns only a single row. That occurs when there is a range
comparison along with ANY, ALL, or SOME. The following query is an example:

740 Administration Guide

SELECT * FROM DSN8710.EMP
WHERE JOB = 'DESIGNER'

AND WORKDEPT <= ANY (SELECT DEPTNO
FROM DSN8710.PROJ
WHERE MAJPROJ = 'MA2100');

DB2 calculates the maximum value for DEPTNO from table DSN8710.PROJ and
removes the ANY keyword from the query. After this transformation, the subquery is
treated like a single-value subquery.

That transformation can be made with a maximum value if the range operator is:
v > or >= with the quantifier ALL
v < or <= with the quantifier ANY or SOME

The transformation can be made with a minimum value if the range operator is:
v < or <= with the quantifier ALL
v > or >= with the quantifier ANY or SOME

The resulting predicate is determined to be stage 1 or stage 2 by the same rules as
for the same predicate with a single-valued subquery.

When a subquery is sorted: A noncorrelated subquery is sorted in descending
order when the comparison operator is IN, NOT IN, = ANY, <> ANY, = ALL, or <>
ALL. The sort enhances the predicate evaluation, reducing the amount of scanning
on the subquery result. When the value of the subquery becomes smaller or equal
to the expression on the left side, the scanning can be stopped and the predicate
can be determined to be true or false.

When the subquery result is a character data type and the left side of the predicate
is a datetime data type, then the result is placed in a work file without sorting. For
some noncorrelated subqueries using the above comparison operators, DB2 can
more accurately pinpoint an entry point into the work file, thus further reducing the
amount of scanning that is done.

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is sorted, see “When are column functions evaluated?
(COLUMN_FN_EVAL)” on page 805.

Subquery transformation into join
For a SELECT, UPDATE, or DELETE statement, DB2 can sometimes transform a
subquery into a join between the result table of a subquery and the result table of
an outer query.

For a SELECT statement, DB2 does the transformation if the following conditions
are true:

v The transformation does not introduce redundancy.

v The subquery appears in a WHERE clause.

v The subquery does not contain GROUP BY, HAVING, or column functions.

v The subquery has only one table in the FROM clause.

v The transformation results in 15 or fewer tables in the join.

v The subquery select list has only one column, guaranteed by a unique index to
have unique values.

v The comparison operator of the predicate containing the subquery is IN, = ANY,
or = SOME.

Chapter 31. Tuning your queries 741

|
|
|

v For a noncorrelated subquery, the left side of the predicate is a single column
with the same data type and length as the subquery’s column. (For a correlated
subquery, the left side can be any expression.)

For an UPDATE or DELETE statement, or a SELECT statement that does not meet
the previous conditions for transformation, DB2 does the transformation of a
correlated subquery into a join if the following conditions are true:

v The transformation does not introduce redundancy.

v The subquery is correlated to its immediate outer query.

v The FROM clause of the subquery contains only one table, and the outer query
(for SELECT), UPDATE, or DELETE references only one table.

v If the outer predicate is a quantified predicate with an operator of =ANY or an IN
predicate, the following conditions are true:

– The left side of the outer predicate is a single column.

– The right side of the outer predicate is a subquery that references a single
column.

– The two columns have the same data type and length.

v The subquery does not contain the GROUP BY or DISTINCT clauses.

v The subquery does not contain column functions.

v The SELECT clause of the subquery does not contain a user-defined function
with an external action or a user-defined function that modifies data.

v The subquery predicate is a Boolean term predicate.

v The predicates in the subquery that provide correlation are stage 1 predicates.

v The subquery does not contain nested subqueries.

v The subquery does not contain a self-referencing UPDATE or DELETE.

v For a SELECT statement, the query does not contain the FOR UPDATE OF
clause.

v For an UPDATE or DELETE statement, the statement is a searched UPDATE or
DELETE.

v For a SELECT statement, parallelism is not enabled.

For a statement with multiple subqueries, DB2 does the transformation only on the
last subquery in the statement that qualifies for transformation.

Example: The following subquery can be transformed into a join because it meets
the first set of conditions for transformation:
SELECT * FROM EMP

WHERE DEPTNO IN
(SELECT DEPTNO FROM DEPT

WHERE LOCATION IN ('SAN JOSE', 'SAN FRANCISCO')
AND DIVISION = 'MARKETING');

If there is a department in the marketing division which has branches in both San
Jose and San Francisco, the result of the above SQL statement is not the same as
if a join were done. The join makes each employee in this department appear twice
because it matches once for the department of location San Jose and again of
location San Francisco, although it is the same department. Therefore, it is clear
that to transform a subquery into a join, the uniqueness of the subquery select list
must be guaranteed. For this example, a unique index on any of the following sets
of columns would guarantee uniqueness:
v (DEPTNO)
v (DIVISION, DEPTNO)

742 Administration Guide

|
|
|

|

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|
|

|

|
|

v (DEPTNO, DIVISION).

The resultant query is:
SELECT EMP.* FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO AND
DEPT.LOCATION IN ('SAN JOSE', 'SAN FRANCISCO') AND
DEPT.DIVISION = 'MARKETING';

Example: The following subquery can be transformed into a join because it meets
the second set of conditions for transformation:
UPDATE T1 SET T1.C1 = 1

WHERE T1.C1 =ANY
(SELECT T2.C1 FROM T2

WHERE T2.C2 = T1.C2);

Results from EXPLAIN: For information about the result in a plan table for a
subquery that is transformed into a join operation, see “Is a subquery transformed
into a join?” on page 805.

Subquery tuning
The following three queries all retrieve the same rows. All three retrieve data about
all designers in departments that are responsible for projects that are part of major
project MA2100. These three queries show that there are several ways to retrieve a
desired result.

Query A: A join of two tables
SELECT DSN8710.EMP.* FROM DSN8710.EMP, DSN8710.PROJ

WHERE JOB = 'DESIGNER'
AND WORKDEPT = DEPTNO
AND MAJPROJ = 'MA2100';

Query B: A correlated subquery
SELECT * FROM DSN8710.EMP X

WHERE JOB = 'DESIGNER'
AND EXISTS (SELECT 1 FROM DSN8710.PROJ

WHERE DEPTNO = X.WORKDEPT
AND MAJPROJ = 'MA2100');

Query C: A noncorrelated subquery
SELECT * FROM DSN8710.EMP

WHERE JOB = 'DESIGNER'
AND WORKDEPT IN (SELECT DEPTNO FROM DSN8710.PROJ

WHERE MAJPROJ = 'MA2100');

If you need columns from both tables EMP and PROJ in the output, you must use a
join.

PROJ might contain duplicate values of DEPTNO in the subquery, so that an
equivalent join cannot be written.

In general, query A might be the one that performs best. However, if there is no
index on DEPTNO in table PROJ, then query C might perform best. The
IN-subquery predicate in query C is indexable. Therefore, if an index on
WORKDEPT exists, DB2 might do IN-list access on table EMP. If you decide that a
join cannot be used and there is an available index on DEPTNO in table PROJ,
then query B might perform best.

Chapter 31. Tuning your queries 743

|
|

|
|
|
|

|

|
|
|

When looking at a problem subquery, see if the query can be rewritten into another
format or see if there is an index that you can create to help improve the
performance of the subquery.

It is also important to know the sequence of evaluation, for the different subquery
predicates as well as for all other predicates in the query. If the subquery predicate
is costly, perhaps another predicate could be evaluated before that predicate so that
the rows would be rejected before even evaluating the problem subquery predicate.

Using scrollable cursors efficiently
The following recommendations help you get the best performance from your
scrollable cursors:

v Determine when scrollable cursors work best for you.

Scrollable cursors are a valuable tool for writing applications such as
screen-based applications, in which the result table is small and you often move
back and forth through the data. However, scrollable cursors require more DB2
processing than non-scrollable cursors. If your applications require large result
tables or you only need to move sequentially forward through the data, use
non-scrollable cursors.

v Declare scrollable cursors as SENSITIVE only if you need to see the latest data.

If you do not need to see updates that are made by other cursors or application
processes, using a cursor that you declare as INSENSITIVE requires less
processing by DB2.

v To ensure maximum concurrency when you use a scrollable cursor for positioned
update and delete operations, specify ISOLATION(CS) and CURRENTDATA(NO)
when you bind packages and plans that contain updatable scrollable cursors.
See “Chapter 30. Improving concurrency” on page 643 for more details.

v Use the FETCH FIRST n ROWS ONLY clause with scrollable cursors when it is
appropriate.

In a distributed environment, when you need to retrieve a limited number of rows,
FETCH FIRST n ROWS ONLY can improve your performance for distributed
queries that use DRDA access by eliminating unneeded network traffic. See Part
4 of DB2 Application Programming and SQL Guide for more information.

In a local environment, if you need to scroll through a limited subset of rows in a
table, you can use FETCH FIRST n ROWS ONLY to make the result table
smaller.

v In a distributed environment, if you do not need to use your scrollable cursors to
modify data, do your cursor processing in a stored procedure.

Using stored procedures can decrease the amount of network traffic that your
application requires.

v Create TEMP table spaces that are large enough to process your scrollable
cursors.

See Part 2 of DB2 Installation Guide for information on calculating the
appropriate size for declared temporary tables that you use for scrollable cursors.

v Remember to commit changes often.

Because you often leave scrollable cursors open longer than non-scrollable
cursors, it is important to commit changes often enough. Declare your scrollable
cursors WITH HOLD to prevent the cursors from closing after a commit
operation.

744 Administration Guide

|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

Writing efficient queries on views with UNION operators
Creating views using a UNION ALL statement to combine a number of tables can
be useful in a number of situations. For example:

v When a table becomes very large, it can be useful to break the table into a set of
smaller tables. You can then create indexes on each of the smaller tables so that
you can query each of those tables efficiently. You can also create a view that
uses UNION or UNION ALL operators to logically combine the smaller tables,
and then query the view as if it were the original large table.

For example, the following definition creates a view that concatenates information
from three smaller tables:

v A view provides a global picture of similar information from unlike tables.

For example, suppose that you want income information about all the employees
in a company. This information is stored in separate tables for executives,
salespeople, and contractors. In addition, the sources of income are different for
each category of employee. Executives receive a salary plus a bonus,
salespeople receive a salary plus a commission, and contractors receive an
hourly wage. You might use a view like this to get combined income information:
CREATE VIEW EMPLOYEEPAY (EMPNO, FIRSTNAME, LASTNAME, DEPTNO, YEARMONTH, TOTALPAY) AS

(SELECT EMPNO, FIRSTNAME, LASTNAME, DEPTNO, YEARMONTH, SALARY/12 + BONUS
FROM EXECUTIVES

UNION ALL
SELECT EMPNO, FIRSTNAME, LASTNAME, DEPTNO, YEARMONTH, BASEMONSALARY+TOTALCOM

FROM SALESPERSON S, (SELECT EMPNO, YEARMONTH, SUM(COMMISSION) TOTALCOM
FROM COMMISSION C
GROUP BY EMPNO, YEARMONTH) COM

WHERE S.EMPNO = COM.EMPNO
UNION ALL
SELECT EMPNO, FIRSTNAME, LASTNAME, DEPTNO, YEARMONTH, TOTALPAY

FROM CONTRACTOR C, (SELECT EMPNO, YEARMONTH, SUM(PAY) TOTALPAY
FROM CONTRACTPAY
GROUP BY EMPNO, YEARMONTH) PAY

WHERE C.EMPNO = PAY.EMPNO);

The following techniques can help queries on these types of views perform better.
In these suggestions, S1 through Sn represent small tables that are combined using
UNION or UNION ALL operators to form view V.

v Create a clustering index on each of S1 through Sn.

In a typical data warehouse model, partitions in a table are in time sequence, but
the data is stored in another key sequence, such as the customer number within
each partition. You can simulate partitions on view V by creating cluster indexes
on S1 through Sn.

CREATE VIEW FIRSTQTR (SNO,CHARGES,DATE) AS
SELECT SNO,CHARGES,DATE
FROM MONTH1
WHERE DATE BETWEEN '1/1/2001' AND '1/31/2001'

UNION ALL
SELECT SNO,CHARGES,DATE
FROM MONTH2
WHERE DATE BETWEEN '2/1/2001' AND '2/28/2001'

UNION ALL
SELECT SNO,CHARGES,DATE
FROM MONTH3
WHERE DATE BETWEEN '3/1/2001' AND '3/31/2001';

Figure 92. Example of a view with UNION ALL operators and efficient predicates

Chapter 31. Tuning your queries 745

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

Using separate tables to simulate a single, larger partitioned table can be more
flexible than using a single table. You can create different numbers and types of
indexes with different clustering properties on different tables to improve
performance where it is most necessary. For example, if each table represents a
date range, older tables might be updated less frequently than newer tables.
Therefore, for newer tables, you can create more indexes to improve query
performance. In addition, if older data has different query patterns from newer
data, you might want to create different clustering indexes on the tables with
older and newer data so that you can reorganize the older and newer data into
different orders.

v Use UNION ALL instead of UNION when they are equivalent.

DB2 can evaluate queries that contain UNION ALL more efficiently than queries
that contain UNION. Therefore, if a view produces the same result set with
UNION ALL operators and UNION operators, use UNION ALL.

v Use predicates in the view definition and in queries that reference the view that
let DB2 use the optimization technique of eliminating unnecessary subselects
during evaluation of a query. These predicates tell DB2 about the data range of
the result table for any subselect in the view. Subselects that contain the
following predicates can be eliminated from query evaluation:

– COL op literal

op can be =, >, <, >=, <=, ¬> or ¬<

– COL BETWEEN literal1 AND literal2

– COL IN (literal1, literal2, ...)

DB2 can eliminate a subselect from a view only if it contains one of these
predicates. Therefore, for better performance of queries that use the view, you
should provide a predicate for each subselect in the view, even if a subselect is
not needed to evaluate the query. For example, in Figure 92 on page 745, each
table contains data for only a single month, so the BETWEEN predicate is
redundant. However, when you use the UNION ALL operator and a BETWEEN
predicate for every SELECT clause, DB2 can optimize queries that use the view
more efficiently.

v Avoid view materialization.

See Table 115 on page 831 for conditions under which DB2 materializes views.

Special techniques to influence access path selection

ATTENTION
This section describes tactics for rewriting queries and modifying catalog
statistics to influence DB2’s method of selecting access paths. In a later
release of DB2, the selection method might change, causing your changes to
degrade performance. Save the old catalog statistics or SQL before you
consider making any changes to control the choice of access path. Before and
after you make any changes, take performance measurements. When you
migrate to a new release, examine the performance again. Be prepared to
back out any changes that have degraded performance.

This section contains the following information about determining and changing
access paths:
v Obtaining information about access paths

746 Administration Guide

v “Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS”
v “Fetching a limited number of rows: FETCH FIRST n ROWS ONLY” on page 749
v “Reducing the number of matching columns” on page 750
v “Adding extra local predicates” on page 751
v “Rearranging the order of tables in a FROM clause” on page 754
v “Updating catalog statistics” on page 754
v “Using a subsystem parameter” on page 756
v “Giving optimization hints to DB2” on page 757

Obtaining information about access paths
There are several ways to obtain information about DB2 access paths:

v Use Visual Explain

The DB2 Visual Explain tool, which is invoked from a workstation client, can be
used to display and analyze information on access paths chosen by DB2. The
tool provides you with an easy-to-use interface to the PLAN_TABLE output and
allows you to invoke EXPLAIN for dynamic SQL statements. You can also access
the catalog statistics for certain referenced objects of an access path. In addition,
the tool allows you to archive EXPLAIN output from previous SQL statements to
analyze changes in your SQL environment. See DB2 Visual Explain online help
for more information.

v Run DB2 Performance Monitor accounting reports

Another way to track performance is with the DB2 Performance Monitor
accounting reports. The accounting report, short layout, ordered by PLANNAME,
lists the primary performance figures. Check the plans that contain SQL
statements whose access paths you tried to influence. If the elapsed time, TCB
time, or number of getpage requests increases sharply without a corresponding
increase in the SQL activity, then there could be a problem. You can use DB2
PM Online Monitor to track events after your changes have been implemented,
providing immediate feedback on the effects of your changes.

v Specify the bind option EXPLAIN

You can also use the EXPLAIN option when you bind or rebind a plan or
package. Compare the new plan or package for the statement to the old one. If
the new one has a table space scan or a nonmatching index space scan, but the
old one did not, the problem is probably the statement. Investigate any changes
in access path in the new plan or package; they could represent performance
improvements or degradations. If neither the accounting report ordered by
PLANNAME or PACKAGE nor the EXPLAIN statement suggest corrective action,
use the DB2 PM SQL activity reports for additional information. For more
information on using EXPLAIN, see “Obtaining PLAN_TABLE information from
EXPLAIN” on page 790.

Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS
When an application executes a SELECT statement, DB2 assumes that the
application will retrieve all the qualifying rows. This assumption is most appropriate
for batch environments. However, for interactive SQL applications, such as SPUFI,
it is common for a query to define a very large potential result set but retrieve only
the first few rows. The access path that DB2 chooses might not be optimal for
those interactive applications.

This section discusses the use of OPTIMIZE FOR n ROWS to affect the
performance of interactive SQL applications. Unless otherwise noted, this

Chapter 31. Tuning your queries 747

information pertains to local applications. For more information on using OPTIMIZE
FOR n ROWS in distributed applications, see Part 4 of DB2 Application
Programming and SQL Guide.

What OPTIMIZE FOR n ROWS does: The OPTIMIZE FOR n ROWS clause lets an
application declare its intent to do either of these things:

v Retrieve only a subset of the result set

v Give priority to the retrieval of the first few rows

DB2 uses the OPTIMIZE FOR n ROWS clause to choose access paths that
minimize the response time for retrieving the first few rows. For distributed queries,
the value of n determines the number of rows that DB2 sends to the client on each
DRDA network transmission. See Part 4 of DB2 Application Programming and SQL
Guide for more information on using OPTIMIZE FOR n ROWS in the distributed
environment.

Use OPTIMIZE FOR 1 ROW to avoid sorts: You can influence the access path
most by using OPTIMIZE FOR 1 ROW. OPTIMIZE FOR 1 ROW tells DB2 to select
an access path that returns the first qualifying row quickly. This means that
whenever possible, DB2 avoids any access path that involves a sort. If you specify
a value for n that is anything but 1, DB2 chooses an access path based on cost,
and you won’t necessarily avoid sorts.

How to specify OPTIMIZE FOR n ROWS for a CLI application: For a Call Level
Interface (CLI) application, you can specify that DB2 uses OPTIMIZE FOR n ROWS
for all queries. To do that, specify the keyword OPTIMIZEFORNROWS in the
initialization file. For more information, see Chapter 3 of DB2 ODBC Guide and
Reference.

How many rows you can retrieve with OPTIMIZE FOR n ROWS: The OPTIMIZE
FOR n ROWS clause does not prevent you from retrieving all the qualifying rows.
However, if you use OPTIMIZE FOR n ROWS, the total elapsed time to retrieve all
the qualifying rows might be significantly greater than if DB2 had optimized for the
entire result set.

When OPTIMIZE FOR n ROWS is effective: OPTIMIZE FOR n ROWS is effective
only on queries that can be performed incrementally. If the query causes DB2 to
gather the whole result set before returning the first row, DB2 ignores the
OPTIMIZE FOR n ROWS clause, as in the following situations:

v The query uses SELECT DISTINCT or a set function distinct, such as
COUNT(DISTINCT C1).

v Either GROUP BY or ORDER BY is used, and there is no index that can give the
ordering necessary.

v There is a column function and no GROUP BY clause.

v The query uses UNION.

Example: Suppose you query the employee table regularly to determine the
employees with the highest salaries. You might use a query like this:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC;

An index is defined on column EMPNO, so employee records are ordered by
EMPNO. If you have also defined a descending index on column SALARY, that
index is likely to be very poorly clustered. To avoid many random, synchronous I/O

748 Administration Guide

operations, DB2 would most likely use a table space scan, then sort the rows on
SALARY. This technique can cause a delay before the first qualifying rows can be
returned to the application. If you add the OPTIMIZE FOR n ROWS clause to the
statement, as shown below:
SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

FROM EMP
ORDER BY SALARY DESC
OPTIMIZE FOR 20 ROWS;

DB2 would most likely use the SALARY index directly because you have indicated
that you will probably retrieve the salaries of only the 20 most highly paid
employees. This choice avoids a costly sort operation.

Effects of using OPTIMIZE FOR n ROWS:

v The join method could change. Nested loop join is the most likely choice,
because it has low overhead cost and appears to be more efficient if you want to
retrieve only one row.

v An index that matches the ORDER BY clause is more likely to be picked. This is
because no sort would be needed for the ORDER BY.

v List prefetch is less likely to be picked.

v Sequential prefetch is less likely to be requested by DB2 because it infers that
you only want to see a small number of rows.

v In a join query, the table with the columns in the ORDER BY clause is likely to be
picked as the outer table if there is an index on that outer table that gives the
ordering needed for the ORDER BY clause.

Recommendation: For a local query, specify OPTIMIZE FOR n ROWS only in
applications that frequently fetch only a small percentage of the total rows in a
query result set. For example, an application might read only enough rows to fill the
end user's terminal screen. In cases like this, the application might read the
remaining part of the query result set only rarely. For an application like this,
OPTIMIZE FOR n ROWS can result in better performance by causing DB2 to favor
SQL access paths that deliver the first n rows as fast as possible.

When you specify OPTIMIZE FOR n ROWS for a remote query, a small value of n
can help limit the number of rows that flow across the network on any given
transmission.

You can improve the performance for receiving a large result set through a remote
query by specifying a large value of n in OPTIMIZE FOR n ROWS. When you
specify a large value, DB2 attempts to send the n rows in multiple transmissions.
For better performance when retrieving a large result set, in addition to specifying
OPTIMIZE FOR n ROWS with a large value of n in your query, do not execute
other SQL statements until the entire result set for the query is processed. If
retrieval of data for several queries overlaps, DB2 might need to buffer result set
data in the DDF address space. See “Block fetching result sets” on page 859 for
more information.

For local or remote queries, to influence the access path most, specify OPTIMIZE
for 1 ROW. This value does not have a detrimental effect on distributed queries.

Fetching a limited number of rows: FETCH FIRST n ROWS ONLY
In some applications, you execute queries that can return a large number of rows,
but you need only a small subset of those rows. Retrieving the entire result table
from the query can be inefficient. You can specify the FETCH FIRST n ROWS

Chapter 31. Tuning your queries 749

|

|
|
|

ONLY clause in a SELECT statement to limit the number of rows in the result table
of a query to n rows. In addition, for a distributed query that uses DRDA access,
FETCH FIRST n ROWS ONLY, DB2 prefetches only n rows.

Example: Suppose that you write an application that requires information on only
the 20 employees with the highest salaries. To return only the rows of the employee
table for those 20 employees, you can write a query like this:
SELECT LASTNAME, FIRSTNAME, EMPNO, SALARY

FROM EMP
ORDER BY SALARY DESC
FETCH FIRST 20 ROWS ONLY;

Interaction between OPTIMIZE FOR n ROWS and FETCH FIRST n ROWS
ONLY: In general, if you specify FETCH FIRST n ROWS ONLY but not OPTIMIZE
FOR n ROWS in a SELECT statement, DB2 optimizes the query as if you had
specified OPTIMIZE FOR n ROWS. If you specify the OPTIMIZE FOR n ROWS
and the FETCH FIRST m ROWS clauses, and n<m, DB2 optimizes the query for n
rows. If m<n, DB2 optimizes for m rows.

Reducing the number of matching columns
Discourage the use of a poorer performing index by reducing the index’s matching
predicate on its leading column. Consider the example in Figure 93 on page 751,
where the index that DB2 picks is less than optimal.

DB2 picks IX2 to access the data, but IX1 would be roughly 10 times quicker. The
problem is that 50% of all parts from center number 3 are still in Center 3; they
have not moved. Assume that there are no statistics on the correlated columns in
catalog table SYSCOLDIST. Therefore, DB2 assumes that the parts from center
number 3 are evenly distributed among the 50 centers.

You can get the desired access path by changing the query. To discourage the use
of IX2 for this particular query, you can change the third predicate to be
nonindexable.

SELECT * FROM PART_HISTORY
WHERE

PART_TYPE = 'BB'
AND W_FROM = 3
AND (W_NOW = 3 + 0) <-- PREDICATE IS MADE NONINDEXABLE

Now index I2 is not picked, because it has only one match column. The preferred
index, I1, is picked. The third predicate is a nonindexable predicate, so an index is
not used for the compound predicate.

There are many ways to make a predicate nonindexable. The recommended way is
to make the add 0 to a predicate that evaluates to a numeric value or concatenate
a predicate that evaluates to a character value with an empty string.

Indexable Nonindexable
T1.C3=T2.C4 (T1.C3=T2.C4 CONCAT '')
T1.C1=5 T1.C1=5+0

These techniques do not affect the result of the query and cause only a small
amount of overhead.

The preferred technique for improving the access path when a table has correlated
columns is to generate catalog statistics on the correlated columns. You can do that

750 Administration Guide

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

either by running RUNSTATS or by updating catalog table SYSCOLDIST or
SYSCOLDISTSTATS manually.

Adding extra local predicates
Adding local predicates on columns that have no other predicates generally has the
following effect on join queries.

1. The table with the extra predicates is more likely to be picked as the outer table.
That is because DB2 estimates that fewer rows qualify from the table if there
are more predicates. It is generally more efficient to have the table with the
fewest qualifying rows as the outer table.

CREATE TABLE PART_HISTORY (
PART_TYPE CHAR(2), IDENTIFIES THE PART TYPE
PART_SUFFIX CHAR(10), IDENTIFIES THE PART
W_NOW INTEGER, TELLS WHERE THE PART IS
W_FROM INTEGER, TELLS WHERE THE PART CAME FROM
DEVIATIONS INTEGER, TELLS IF ANYTHING SPECIAL WITH THIS PART
COMMENTS CHAR(254),
DESCRIPTION CHAR(254),
DATE1 DATE,
DATE2 DATE,
DATE3 DATE);

CREATE UNIQUE INDEX IX1 ON PART_HISTORY
(PART_TYPE,PART_SUFFIX,W_FROM,W_NOW);

CREATE UNIQUE INDEX IX2 ON PART_HISTORY
(W_FROM,W_NOW,DATE1);

+--+
| Table statistics | Index statistics IX1 IX2 |
|--------------------------------+---|
CARDF 100,000	FIRSTKEYCARDF 1000 50
NPAGES 10,000	FULLKEYCARDF 100,000 100,000
	CLUSTERRATIO 99% 99%
	NLEAF 3000 2000
| | NLEVELS 3 3 |
|--|
| column cardinality HIGH2KEY LOW2KEY |
| -------- ----------- -------- ------- |
| Part_type 1000 'ZZ' 'AA' |
| w_now 50 1000 1 |
| w_from 50 1000 1 |
+--+

Q1:
SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = 'BB' P1 -- THAT ARE 'BB' TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

+--+
| Filter factor of these predicates. |
| P1 = 1/1000= .001 |
| P2 = 1/50 = .02 |
P3 = 1/50 = .02
ESTIMATED VALUES
filter data
index matchcols factor rows
ix2 2 .02*.02 40
ix1 1 .001 100
+--+

Figure 93. Reducing the number of MATCHCOLS

Chapter 31. Tuning your queries 751

2. The join method is more likely to be nested loop join. This is because nested
loop join is more efficient for small amounts of data, and more predicates make
DB2 estimate that less data is to be retrieved.

The proper type of predicate to add is WHERE TX.CX=TX.CX.

This does not change the result of the query. It is valid for a column of any data
type, and causes a minimal amount of overhead. However, DB2 uses only the best
filter factor for any particular column. So, if TX.CX already has another equal
predicate on it, adding this extra predicate has no effect. You should add the extra
local predicate to a column that is not involved in a predicate already. If index-only
access is possible for a table, it is generally not a good idea to add a predicate that
would prevent index-only access.

Creating indexes for efficient star schemas
A star schema is a database design that, in its simplest form, consists of a large
table called a fact table, and two or more smaller tables, called dimension tables.
More complex star schemas can be created by breaking one or more of the
dimension tables into multiple tables.

To access the data in a star schema, you write SELECT statements that include
join operations between the fact table and the dimension tables, but no join
operations between dimension tables.

DB2 uses a special join type called a star join if the conditions that are described in
“Star schema (star join)” on page 820 are true.

You can improve the performance of star joins by your use of indexes. This section
gives suggestions for choosing indexes might improve star join performance.

Recommendations for creating indexes for star schemas
Follow these recommendations to improve performance of queries that are
processed using the star join technique:

v Define a multi-column index on all key columns of the fact table. Key columns
are fact table columns that have corresponding dimension tables.

v If you do not have information about the way that your data is used, first try a
multi-column index on the fact table that is based on the correlation of the data.
Put less highly correlated columns later in the index key than more highly
correlated columns. See “Determining the order of columns in an index for a star
schema” on page 753 for information on deriving an index that follows this
recommendation.

v As the correlation of columns in the fact table changes, reevaluate the index to
determine if columns in the index should be reordered.

v Define indexes on dimension tables to improve access to those tables.

v When you have executed a number of queries and have more information about
the way that the data is used, follow these recommendations:

– Put more selective columns at the beginning of the index.

– If a number of queries do not reference a dimension, put the column that
corresponds to that dimension at the end of the index.

When there are multiple multi-column indexes on the fact table, and none of
those indexes contain all key columns, DB2 evaluates all of the indexes and
uses the index that best exploits star join.

752 Administration Guide

|

|
|
|

Determining the order of columns in an index for a star schema
You can use the following method to determine the order of columns in a
multi-column index. The description of the method uses the following terminology:

F A fact table.

D1...Dn
Dimension tables.

C1...Cn
Key columns in the fact table. C1 is joined to dimension D1, C2 is joined to
dimension D2, and so on.

cardD1...cardDn
Cardinality of columns C1...Cn in dimension tables D1...Dn.

cardC1...cardCn
Cardinality of key columns C1...Cn in fact table F.

cardCij
Cardinality of pairs of column values from key columns Ci and Cj in fact table F.

cardCijk
Cardinality of triplets of column values from key columns Ci, Cj, and Ck in fact
table F.

Density
A measure of the correlation of key columns in the fact table. The density is
calculated as follows:

For a single column
cardCi⁄cardDi

For pairs of columns
cardCij⁄(cardDi*cardDj)

For triplets of columns
cardCijk⁄(cardDi*cardDj*cardDk)

S The current set of columns whose order in the index is not yet determined.

S-{Cm}
The current set of columns, excluding column Cm

Follow these steps to derive a fact table index for a star join that joins n columns of
fact table F to n dimension tables D1 through Dn:

1. Define the set of columns whose index key order is to be determined as the n
columns of fact table F that correspond to dimension tables. That is,
S={C1,...Cn} and L=n.

2. Calculate the density of all sets of L-1 columns in S.

3. Find the lowest density. Determine which column is not in the set of columns
with the lowest density. That is, find column Cm in S, such that for every Ci in
S, density(S-{Cm})<density(S-{Ci}).

4. Make Cm the Lth column of the index.

5. Remove Cm from S.

6. Decrement L by 1.

7. Repeat steps 2 through 6 n-2 times. The remaining column after iteration n-2 is
the first column of the index.

Example of determining column order for a fact table index: Suppose that a
star schema has three dimension tables with the following cardinalities:

Chapter 31. Tuning your queries 753

cardD1=2000
cardD2=500
cardD3=100

Now suppose that the cardinalities of single columns and pairs of columns in the
fact table are:
cardC1=2000
cardC2=433
cardC3=100
cardC12=625000
cardC13=196000
cardC23=994

Determine the best multi-column index for this star schema.

Step 1: Calculate the density of all pairs of columns in the fact table:
density(C1,C2)=625000⁄(2000*500)=0.625
density(C1,C3)=196000⁄(2000*100)=0.98
density(C2,C3)=994⁄(500*100)=0.01988

Step 2: Find the pair of columns with the lowest density. That pair is (C2,C3).
Determine which column of the fact table is not in that pair. That column is C1.

Step 3: Make column C1 the third column of the index.

Step 4: Repeat steps 1 through 3 to determine the second and first columns of the
index key:
density(C2)=433⁄500=0.866
density(C3)=100⁄100=1.0

The column with the lowest density is C2. Therefore, C3 is the second column of
the index. The remaining column, C2, is the first column of the index. That is, the
best order for the multi-column index is C2, C3, C1.

Rearranging the order of tables in a FROM clause
The order of tables or views in the FROM CLAUSE can affect the access path. If
your query performs poorly, it could be because the join sequence is inefficient. You
can determine the join sequence within a query block from the PLANNO column in
the PLAN_TABLE. For information on using the PLAN_TABLE, see “Chapter 33.
Using EXPLAIN to improve SQL performance” on page 789. If you think that the join
sequence is inefficient, try rearranging the order of the tables and views in the
FROM clause to match a join sequence that might perform better. Rearranging the
columns might cause DB2 to select the better join sequence.

Updating catalog statistics
If you have the proper authority, it is possible to influence access path selection by
using an SQL UPDATE or INSERT statement to change statistical values in the
DB2 catalog. However, this is not generally recommended except as a last resort.
While updating catalog statistics can help a certain query, other queries can be
affected adversely. Also, the UPDATE statements must be repeated after
RUNSTATS resets the catalog values. You should be very careful if you attempt to
update statistics. For a list of catalog statistics that you can update, see Table 109
on page 766.

The example shown in Figure 93 on page 751, involving this query:

754 Administration Guide

SELECT * FROM PART_HISTORY -- SELECT ALL PARTS
WHERE PART_TYPE = 'BB' P1 -- THAT ARE 'BB' TYPES

AND W_FROM = 3 P2 -- THAT WERE MADE IN CENTER 3
AND W_NOW = 3 P3 -- AND ARE STILL IN CENTER 3

is a problem with data correlation. DB2 does not know that 50% of the parts that
were made in Center 3 are still in Center 3. It was circumvented by making a
predicate nonindexable. But suppose there are hundreds of users writing queries
similar to that query. It would not be possible to have all users change their queries.
In this type of situation, the best solution is to change the catalog statistics.

For the query in Figure 93 on page 751, where the correlated columns are
concatenated key columns of an index, you can update the catalog statistics in one
of two ways:

v Run the RUNSTATS utility, and request statistics on the correlated columns
W_FROM and W_NOW. This is the preferred method. See “Gathering monitor
and update statistics” on page 775 and Part 2 of DB2 Utility Guide and
Referencefor more information.

v Update the catalog statistics manually.

Updating the catalog to adjust for correlated columns: One catalog table you
can update is SYSIBM.SYSCOLDIST, which gives information about the first key
column or concatenated columns of an index key. Assume that because columns
W_NOW and W_FROM are correlated, there are only 100 distinct values for the
combination of the two columns, rather than 2500 (50 for W_FROM * 50 for
W_NOW). Insert a row like this to indicate the new cardinality:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,
TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

VALUES(0, -1, 'N',
'USRT001','PART_HISTORY','W_FROM',' ',
'C',100,X'00040003',2);

Because W_FROM and W_NOW are concatenated key columns of an index, you
can also put this information in SYSCOLDIST using the RUNSTATS utility. See DB2
Utility Guide and Reference for more information.

You can also tell DB2 about the frequency of a certain combination of column
values by updating SYSIBM.SYSCOLDIST. For example, you can indicate that 1%
of the rows in PART_HISTORY contain the values 3 for W_FROM and 3 for
W_NOW by inserting this row into SYSCOLDIST:
INSERT INTO SYSIBM.SYSCOLDIST

(FREQUENCY, FREQUENCYF, STATSTIME, IBMREQD,
TBOWNER, TBNAME, NAME, COLVALUE,
TYPE, CARDF, COLGROUPCOLNO, NUMCOLUMNS)

VALUES(0, .0100, '1996-12-01-12.00.00.000000','N',
'USRT001','PART_HISTORY','W_FROM',X'00800000030080000003',
'F',-1,X'00040003',2);

Updating the catalog for joins with table functions: Updating catalog statistics
might cause extreme performance problems if the statistics are not updated
correctly. Monitor performance, and be prepared to reset the statistics to their
original values if performance problems arise.

Chapter 31. Tuning your queries 755

Using a subsystem parameter
This section describes subsystem parameters that influence access path selection.
To set these subsystem parameters, you modify and run installation job DSNTIJUZ,
then restart DB2. See Part 2 of DB2 Installation Guide for detailed information on
how to set subsystem parameters.

Using a subsystem parameter to favor matching index access
DB2 often does a table space scan or nonmatching index scan when the data
access statistics indicate that a table is small, even though matching index access
is possible. This is a problem if the table is small or empty when statistics are
collected, but the table is large when it is queried. In that case, the statistics are not
accurate and can lead DB2 to pick an inefficient access path.

The best solution to the problem is to run RUNSTATS again after the table is
populated. However, if it is not possible to do that, you can use subsystem
parameter NPGTHRSH to cause DB2 to favor matching index access over a table
space scan and over nonmatching index access.

NPGTHRSH is in macro DSN6SPRM. The value of NPGTHRSH is an integer that
indicates the tables for which DB2 favors matching index access. Values of
NPGTHRSH and their meanings are:

−1 DB2 favors matching index access for all tables.

0 DB2 selects the access path based on cost, and no tables qualify
for special handling. This is the default.

n>=1 If data access statistics have been collected for all tables, DB2
favors matching index access for tables for which the total number
of pages on which rows of the table appear (NPAGES) is less than
n.

If data access statistics have not been collected for some tables
(NPAGES=-1 for those tables), DB2 favors matching index access
for tables for which NPAGES=-1 or NPAGES<n.

Recommendation: Before you use NPGTHRSH, be aware that in some cases,
matching index access can be more costly than a table space scan or nonmatching
index access. Specify a small value for NPGTHRSH (10 or less). That limits the
number of tables for which DB2 favors matching index access.

Using a subsystem parameter to control outer join processing
Subsystem parameter OJPERFEH can improve outer join processing. In particular,
when the value of OJPERFEH is YES, DB2 takes the following actions, which can
improve outer join processing in most cases:

v Does not merge table expressions or views if the parent query block of a table
expression or view contains an outer join, and the merge would cause a column
in a predicate to become an expression.

v Does not attempt to reduce work file usage for outer joins.

v Uses transitive closure for the ON predicates in outer joins.

However, these actions might not improve performance for some outer joins.

Recommendation: If the performance of queries that contain outer joins is not
adequate, set OJPERFEH to NO, restart DB2, and rerun those queries.

756 Administration Guide

#
#
#
#

#
#
#

#

#

#

#
#

Giving optimization hints to DB2
This section describes how experienced programmer analysts can tell DB2 how to
process a query. You do this by giving DB2 hints. The process of giving hints to
DB2 is relatively simple but determining what those hints should be is not. Always
test and analyze the results of any query that uses optimization hints.

Giving optimization hints to DB2 is useful in the following situations:

v You want to ensure consistency of response times across rebinds and across
release migrations. When a plan or package is rebound, the access path is
reformulated. If the database or application has changed, or if DB2 has new
function that causes it to choose a different access path, it is handy to have the
ability to use an old access path if the new one does not perform as well.

For this reason, it is a good idea to save the access paths of your critical queries
before migrating to a new release of DB2.

v You want to temporarily bypass the access path chosen by DB2.

This section describes the following tasks:

v “Planning to use optimization hints”

v “Enabling optimization hints for the subsystem”

v “Scenario: Preventing a change at rebind”

v “Scenario: Modifying an existing access path” on page 759

v “Reasons to use the QUERYNO clause” on page 760

v “How DB2 validates the hint” on page 761

Planning to use optimization hints
Before you can give hints to DB2, make sure your PLAN_TABLE is of the correct
format. The steps are:

1. Migrate your existing authid.PLAN_TABLE to the 49-column format described in
Figure 99 on page 791.

2. For best performance, create an ascending index on the following columns of
PLAN_TABLE:
v QUERYNO
v APPLNAME
v PROGNAME
v VERSION
v COLLID
v OPTHINT

The DB2 sample library, in member DSNTESC, contains an appropriate
CREATE INDEX statement that you can modify.

Enabling optimization hints for the subsystem
On the subsystem where the application is bound or where dynamic queries are
prepared, specify YES in the OPTIMIZATION HINTS field of installation panel
DSNTIP4. If you specify NO, DB2 ignores any hints.

Scenario: Preventing a change at rebind
The following scenario assumes that DB2 is using an access path that you like for a
particular query and that there is currently a row in the PLAN_TABLE for that
desired access path. By making that access path a hint, DB2 will use your hint
when you rebind or migrate to a new release.

1. Determine the query number that currently exists for that query in the
PLAN_TABLE. To ensure that the query number is always correlated with that
query in the application, modify the statement in the application to use the

Chapter 31. Tuning your queries 757

QUERYNO clause. (If you want to use some kind of numbering convention for
queries that use access path hints, you can change the query number in
PLAN_TABLE. The important thing is to have the query in the application have
a query number that is unique for that application and that matches the
QUERYNO value in the PLAN_TABLE.)

Here is an example of the QUERYNO clause:
SELECT * FROM T1

WHERE C1 = 10 AND
C2 BETWEEN 10 AND 20 AND
C3 NOT LIKE 'A%'
QUERYNO 100;

For more information about reasons to use the QUERYNO clause, see
“Reasons to use the QUERYNO clause” on page 760.

2. Make the PLAN_TABLE rows for that query (QUERYNO=100) into a hint by
updating the OPTHINT column with the name you want to call the hint. In this
case, the name is OLDPATH:
UPDATE PLAN_TABLE

SET OPTHINT = 'OLDPATH' WHERE
QUERYNO = 100 AND
APPLNAME = ' ' AND
PROGNAME = 'DSNTEP2' AND
VERSION = '' AND
COLLID = 'DSNTEP2';

3. Tell DB2 to use the hint, and indicate in the PLAN_TABLE that DB2 used the
hint.

v For dynamic SQL statements in the program, follow these steps:

a. Execute the SET CURRENT OPTIMIZATION HINT statement in the
program to tell DB2 to use OLDPATH. For example:
SET CURRENT OPTIMIZATION HINT = 'OLDPATH';

If you do not explicitly set the CURRENT OPTIMIZATION HINT special
register, the value that you specify for the bind option OPTHINT is used.

If you execute the SET CURRENT OPTIMIZATION HINT statement
statically, rebind the plan or package to pick up the SET CURRENT
OPTIMIZATION HINT statement.

b. Execute the EXPLAIN statement on the SQL statements for which you
have instructed DB2 to use OLDPATH. This step adds rows to the
PLAN_TABLE for those statements. The rows contain a value of
OLDPATH in the HINT_USED column.

If DB2 uses the hint you provided, it returns SQLCODE +394 from the
PREPARE of the EXPLAIN statement and from the PREPARE of SQL
statements that use the hint. If your hints are invalid, DB2 issues
SQLCODE +395.

v For static SQL statements in the program, rebind the plan or package that
contains the statements. Specify bind options EXPLAIN(YES) and
OPTHINT('OLDPATH') to add rows for those statements in the PLAN_TABLE
that contain a value of OLDPATH in the HINT_USED column.

If DB2 uses the hint you provided, it returns SQLCODE +394 from the rebind.
If your hints are invalid, DB2 issues SQLCODE +395.

4. Select from PLAN_TABLE to see what was used:

758 Administration Guide

SELECT *
FROM PLAN_TABLE
WHERE QUERYNO = 100
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

The PLAN_TABLE in Table 107 shows the OLDPATH hint, indicated by a value
in OPTHINT and it also shows that DB2 used that hint, indicated by OLDPATH
in the HINT_USED column.

Table 107. PLAN_TABLE that shows that the OLDPATH optimization hint is used.

QUERYNO METHOD TNAME OPTHINT HINT_USED

100 0 EMP OLDPATH

100 4 EMPPROJACT OLDPATH

100 3 OLDPATH

100 0 EMP OLDPATH

100 4 EMPPROJECT OLDPATH

100 3 OLDPATH

Scenario: Modifying an existing access path
The following scenario assumes that DB2 is using a hybrid join where you know it
can perform better with a sort merge join. The example assumes that the query is
dynamic.

1. Put the old access path in the PLAN_TABLE and associate it with a query
number.
EXPLAIN ALL SET QUERYNO=200 FOR
SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL

FROM DSN8610.EMPPROJACT X, DSN8610.EMP Y
WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > 0.5
AND (Y.JOB = 'DESIGNER' OR Y.EDLEVEL >= 12)

ORDER BY X.ACTNO, X.PROJNO;

2. Make the PLAN_TABLE rows into a hint by updating the OPTHINT column with
the name you want to call the hint. In this case, the name is NOHYB:
UPDATE PLAN_TABLE

SET OPTHINT = 'NOHYB' WHERE
QUERYNO = 200 AND
APPLNAME = ' ' AND
PROGNAME = 'DSNTEP2' AND
VERSION = '' AND
COLLID = 'DSNTEP2';

3. Change the access path so that merge scan join is used rather than hybrid join:
UPDATE PLAN_TABLE

SET METHOD = 2 WHERE
QUERYNO = 200 AND
APPLNAME = ' ' AND
PROGNAME = 'DSNTEP2' AND
VERSION = '' AND
COLLID = 'DSNTEP2' AND
OPTHINT = 'NOHYB' AND
METHOD = 4;

4. Tell DB2 to look for the NOHYB hint for this query:
SET CURRENT OPTIMIZATION HINT = 'NOHYB';

5. Explain the query again to check for the results:

Chapter 31. Tuning your queries 759

EXPLAIN ALL SET QUERYNO=200 FOR
SELECT X.ACTNO, X.PROJNO, X.EMPNO, Y.JOB, Y.EDLEVEL

FROM DSN8610.EMPPROJACT X, DSN8610.EMP Y
WHERE X.EMPNO = Y.EMPNO

AND X.EMPTIME > 0.5
AND (Y.JOB = 'DESIGNER' OR Y.EDLEVEL >= 12)

ORDER BY X.ACTNO, X.PROJNO;

6. Select from the PLAN_TABLE to verify the results:
SELECT *

FROM PLAN_TABLE
WHERE QUERYNO = 200
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

The PLAN_TABLE in Table 108 shows the NOHYB hint, indicated by a value in
OPTHINT and it also shows that DB2 used that hint, indicated by NOHYB in the
HINT_USED column.

Table 108. PLAN_TABLE that shows that the NOHYB optimization hint is used.

QUERYNO METHOD TNAME OPTHINT HINT_USED

200 0 EMP NOHYB

200 2 EMPPROJACT NOHYB

200 3 NOHYB

200 0 EMP NOHYB

200 2 EMPPROJECT NOHYB

200 3 NOHYB

7. Analyze the performance of the statement to see if it is acceptable.

Reasons to use the QUERYNO clause
You do not need to assign a query number to use optimization hints. If you don’t
assign a query number, DB2 uses the statement number. However, assigning a
query number is especially useful in the following cases:

v For dynamic statements

The query number for dynamic applications is the statement number in the
application where the prepare occurs. For some applications, such as DSNTEP2,
the same statement in the application prepares each dynamic statement,
resulting in the same query number for each dynamic statement. Assigning a
query number to each statement that uses optimization hints eliminates ambiguity
as to which rows in the PLAN_TABLE are associated with each query.

v For static statements

If you change an application that has static statements, the statement number
might change, causing rows in the PLAN_TABLE to be out of sync with the
modified application. Statements that use the QUERYNO clause are not
dependent on the statement number. You can move those statements around
without affecting the relationship between rows in the PLAN_TABLE and the
statements that use those rows in the application.

How DB2 locates the PLAN_TABLE rows for a hint
DB2 uses the QUERYNO, APPLNAME, PROGNAME, VERSION, COLLID, and
OPTHINT columns of the PLAN_TABLE to determine the rows to use for a hint. For
a PLAN_TABLE row, the QUERYNO, APPLNAME, PROGNAME, VERSION, and
COLLID values must match the corresponding values for an SQL statement before
the SQL statement can use that row. In addition, the OPTHINT value for that row
must match the value in the CURRENT OPTIMIZATION HINT special register if the

760 Administration Guide

|
|
|
|
|
|
|

SQL statement is executed dynamically. If the SQL statement is executed statically,
the OPTHINT value for the row must match the value of bind option OPTHINT for
the package or plan that contains the SQL statement. If no PLAN_TABLE rows
meet these conditions, DB2 determines the access path for the SQL statement
without using hints.

How DB2 validates the hint
When you specify an optimization hint (OPTHINT=’hint-id’)), DB2 validates the
information in the PLAN_TABLE to ensure that you chose a valid access path. If the
access path you specify has major problems, DB2 invalidates all hints for that query
block. In that event, DB2 determines the access path as it normally does.

Here are the valid values:

Column
Correct Values or Other Explanation

METHOD
Must be 0, 1, 2, 3, or 4. Any other value invalidates the hints. See
“Interpreting access to two or more tables (join)” on page 812 for more
information about join methods.

CREATOR and TNAME
Must be specified and must name a table, materialized view, materialized
nested table expression. Blank if method is 3. If a table is named that does
not exist or is not involved in the query, then the hints are invalid.

CORRELATION_NAME:
Required only if CREATOR and TNAME do not uniquely identify the table. If
you enter a value, the value must match the correlation name specified in
the query or in the CREATE VIEW statement.

TABNO
Required only if CREATOR, TNAME, and CORRELATION_NAME do not
uniquely identify the table. This situation might occur when the same table
is used in multiple views (with the same CORRELATION_NAME).

This field is ignored if it is not needed.

ACCESSTYPE
Must contain R, I, I1, N, or M. Any other value invalidates the hints.

Values of I, I1, and N all mean single index access. DB2 determines which
of the 3 values to use based on the index specified in ACCESSNAME.

M indicates multiple index access. DB2 uses only the first row in the
authid.PLAN_TABLE for multiple index access (MIXOPSEQ=0). The choice
of indexes, and the AND and OR operations involved, is determined by
DB2. If multiple index access isn’t possible, then the hints are invalidated.

See “Is access through an index? (ACCESSTYPE is I, I1, N or MX)” on
page 799 and “Is access through more than one index?
(ACCESSTYPE=M)” on page 799 for more information.

ACCESSCREATOR and ACCESSNAME
Ignored if ACCESSTYPE is R or M. If ACCESSTYPE is I, I1, or N, then
these fields must identify an index on the specified table.

If the index doesn’t exist, or if the index is defined on a different table, then
the hints are invalid. Also, if the specified index can’t be used, then the
hints are invalid.

Chapter 31. Tuning your queries 761

|
|
|
|
|

SORTN_JOIN and SORTC_JOIN
Must be Y, N or blank. Any other value invalidates the hints.

This value determines if DB2 should sort the new (SORTN_JOIN) or
composite (SORTC_JOIN) table. This value is ignored if the specified join
method, join sequence, access type and access name dictate whether a
sort of the new or composite tables is required.

See “Are sorts performed?” on page 804 for more information.

PREFETCH
Must be S, L or blank. Any other value invalidates the hints.

This value determines whether DB2 should use sequential prefetch (S), list
prefetch (L), or no prefetch (blank). (A blank does not prevent sequential
detection at run time.) This value is ignored if the specified access type and
access name dictates the type of prefetch required.

See “What kind of prefetching is done? (PREFETCH = L, S, or blank)” on
page 803 for more information.

PAGE_RANGE
Must be Y, N or blank. Any other value invalidates the hints. See “Was a
scan limited to certain partitions? (PAGE_RANGE=Y)” on page 803 for more
information.

PARALLELISM_MODE
This value is used only if it is possible to run the query in parallel; that is,
the SET CURRENT DEGREE special register contains ANY, or the plan or
package was bound with DEGREE(ANY).

If parallelism is possible, this value must be I, C, X or null. All of the
restrictions involving parallelism still apply when using access path hints. If
the specified mode cannot be performed, the hints are either be invalidated
or the mode is modified by the optimizer, possibly resulting in the query
being run sequentially. If the value is null then the optimizer determines the
mode.

See “Chapter 34. Parallel operations and query performance” on page 841
for more information.

ACCESS_DEGREE or JOIN_DEGREE
If PARALLELISM_MODE is specified, use this field to specify the degree of
parallelism. If you specify a degree of parallelism, this must a number
greater than zero, and DB2 might adjust the parallel degree from what you
set here. If you want DB2 to determine the degree, do not enter a value in
this field.

If you specify a value for ACCESS_DEGREE or JOIN_DEGREE, you must
also specify a corresponding ACCESS_PGROUP_ID and
JOIN_PGROUP_ID.

WHEN_OPTIMIZE
Must be R, B, or blank. Any other value invalidates the hints.

When a statement in a plan that is bound with REOPT(VARS) qualifies for
reoptimization at run time, and you have provided optimization hints for that
statement, the value of WHEN_OPTIMIZE determines whether DB2
reoptimizes the statement at run time. If the value of WHEN_OPTIMIZE is
blank or B, DB2 uses only the access path that is provided by the
optimization hints at bind time. If the value of WHEN_OPTIMIZE is R, DB2
determines the access path at bind time using the optimization hints. At run

762 Administration Guide

time, DB2 searches the PLAN_TABLE for hints again, and if hints for the
statement are still in the PLAN_TABLE and are still valid, DB2 optimizes the
access path using those hints again.

PRIMARY_ACCESSTYPE
Must be D or blank. Any other value invalidates the hints.

Chapter 31. Tuning your queries 763

764 Administration Guide

Chapter 32. Maintaining statistics in the catalog

Statistics stored in the DB2 catalog help DB2 determine the access paths selected
for your SQL statements.

v Table 109 on page 766 lists the tables and columns in the catalog that contain
those statistics.

v “Understanding statistics used for access path selection” describes some of
those columns in more detail.

You can update some of the values in those columns by executing UPDATE
statements, and the DB2 utility RUNSTATS can update most of the values.

v “Setting default statistics for created temporary tables” on page 772 explains how
to set default statistical values for created temporary tables.

v “Gathering monitor and update statistics” on page 775 contains some advice
about running RUNSTATS.

v “Updating the catalog” on page 777 warns of items to watch for if you make your
own updates.

v “Querying the catalog for statistics” on page 779 tells you how to find what values
are in place.

In addition to access path selection, statistics have the following other uses:

v “Improving index and table space access” on page 780

v “Modeling your production system” on page 786

Other considerations for access path selection: Two other pieces of information
that influence access path selection are not stored in the DB2 catalog: the size of
the buffer pool and the model type of the central processor (CP).

Access path selection uses buffer pool statistics for several calculations. One is the
estimation of the maximum amount of the RID storage pool that can be used.
Access path selection also considers the central processor model. These two
factors can change your queries’ access paths from one system to another, even if
all the catalog statistics are identical. You should keep this in mind when migrating
from a test system to a production system, or when modeling a new application.

Mixed central processor models in a data sharing group can also affect access path
selection. For more information on data sharing, see DB2 Data Sharing: Planning
and Administration.

Understanding statistics used for access path selection
Table 109 lists the statistics in the DB2 catalog that are used for access path
selection, the values that trigger the use of a default value, and the corresponding
defaults.

Information in the catalog tables SYSTABLES and SYSTABLESPACE tells how
much data is in your table and how many pages hold data. Information in
SYSINDEXES lets you compare the available indexes on a table to determine
which one is the most efficient for a query. SYSCOLUMNS and SYSCOLDIST
provide information to estimate filter factors for predicates.

© Copyright IBM Corp. 1982, 2001 765

Table 109. Catalog data used for access path selection or collected by RUNSTATS. Some Version 6 columns are no
longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used in case of
fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

In every table updated by RUNSTATS:

STATSTIME Yes Yes No If updated most recently by RUNSTATS, the
date and time of that update, not updatable in
SYSINDEXPART and SYSTABLEPART. Used
for access path selection for SYSCOLDIST if
duplicate column values exist for the same
column (by user insertion).

SYSIBM.SYSCOLDIST

CARDF Yes Yes Yes The number of distinct values for the column
group, -1 if TYPE is F

COLGROUPCOLNO Yes Yes Yes The set of columns associated with the
statistics. Contains an empty string if
NUMCOLUMNS = 1.

COLVALUE Yes Yes Yes Frequently occurring value in the key
distribution

FREQUENCYF Yes Yes Yes A number which, multiplied by 100, gives the
percentage of rows that contain the value of
COLVALUE. For example, 1 means 100% of
the rows contain the value and .15 indicates
that 15% of the rows contain the value.

NUMCOLUMNS Yes Yes Yes The number of columns associated with the
statistics. The default value is 1.

TYPE Yes Yes Yes The type of statistics gathered, either cardinality
(C) or frequent value (F)

SYSIBM.SYSCOLDISTSTATS: contains statistics by partition

CARDF Yes Yes No The number of distinct values for the column
group, -1 if TYPE is F

COLGROUPCOLNO Yes Yes No The set of columns associated with the
statistics

COLVALUE Yes Yes No Frequently occurring value in the key
distribution

FREQUENCYF Yes Yes No A number which, multiplied by 100, gives the
percentage of rows that contain the value of
COLVALUE. For example, 1 means 100% of
the rows contain the value and .15 indicates
that 15% of the rows contain the value.

NUMCOLUMNS Yes Yes No The number of columns associated with the
statistics. The default value is 1.

TYPE Yes Yes No The type of statistics gathered, either cardinality
(C) or frequent value (F)

SYSIBM.SYSCOLSTATS: contains statistics by partition

COLCARD Yes Yes No The number of distinct values in the partition.
Do not update this column manually without
first updating COLCARDDATA to a value of
length 0.

766 Administration Guide

Table 109. Catalog data used for access path selection or collected by RUNSTATS (continued). Some Version 6
columns are no longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used
in case of fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

COLCARDDATA Yes Yes No The internal representation of the estimate of
the number of distinct values in the partition. A
value appears here only if RUNSTATS
TABLESPACE is run on the partition.
Otherwise, this column contains a string of
length 0, indicating that the actual value is in
COLCARD.

HIGHKEY Yes Yes No First 8 bytes of the highest value of the column
within the partition. Blank if LOB column.

HIGH2KEY Yes Yes No First 8 bytes of the second highest value of the
column within the partition. Blank if LOB
column.

LOWKEY Yes Yes No First 8 bytes of the lowest value of the column
within the partition. Blank if LOB column.

LOW2KEY Yes Yes No First 8 bytes of the second lowest value of the
column within the partition. Blank if LOB
column.

SYSIBM.SYSCOLUMNS

COLCARDF Yes Yes Yes Estimated number of distinct values in the
column, -1 to trigger DB2’s use of the default
value (25) and -2 for the first column of an
index of an auxiliary table

HIGH2KEY Yes Yes Yes First 8 bytes of the second highest value in this
column. Blank for auxiliary index.

LOW2KEY Yes Yes Yes First 8 bytes of the second lowest value in this
column. Blank for auxiliary index.

SYSIBM.SYSINDEXES

CLUSTERED Yes Yes No Whether the table is actually clustered by the
index. Blank for auxiliary index.

CLUSTERING No No Yes Whether the index was created using
CLUSTER

CLUSTERRATIOF Yes Yes Yes A number which, when multiplied by 100, gives
the percentage of rows in clustering order. For
example, 1 indicates that all rows are in
clustering order and .87825 indicates that
87.825% of the rows are in clustering order. For
a partitioned index, it is the weighted average
of all index partitions in terms of the number of
rows in the partition. For an auxiliary index it is
-2. If this columns contains the default, 0, DB2
uses the value in CLUSTERRATIO, a
percentage, for access path selection.

FIRSTKEYCARDF Yes Yes Yes Number of distinct values of the first key
column, or an estimate if updated while
collecting statistics on a single partition, -1 to
trigger DB2’s use of the default value (25)

Chapter 32. Maintaining statistics in the catalog 767

Table 109. Catalog data used for access path selection or collected by RUNSTATS (continued). Some Version 6
columns are no longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used
in case of fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

FULLKEYCARDF Yes Yes Yes Number of distinct values of the full key, -1 to
trigger DB2’s use of the default value (25)

NLEAF Yes Yes Yes Number of active leaf pages in the index, -1 to
trigger DB2’s use of the default value
(SYSTABLES.CARD/300)

NLEVELS Yes Yes Yes Number of levels in the index tree, -1 to trigger
DB2’s use of the default value (2)

SPACEF Yes Yes No Kilobytes of disk storage

SYSIBM.SYSINDEXPART: contains statistics for space utilization

CARDF Yes No No Number of rows or LOBs referenced by the
index or partition

DSNUM Yes Yes No Number of data sets

EXTENTS Yes Yes No Number of data set extents (when there are
multiple pieces, the value is for the extents in
the last data set)

FAROFFPOSF Yes No No Number of referenced rows far from the optimal
position because of an insert into a full page

LEAFDIST Yes No No 100 times the number of pages between
successive leaf pages.

LEAFFAR Yes Yes No Number of leaf pages located physically far
away from previous leaf pages for successive
active leaf pages accessed in an index scan.
See “Understanding LEAFNEAR and
LEAFFAR” on page 784 for more information.

LEAFNEAR Yes Yes No Number of leaf pages located physically near
previous leaf pages for successive active leaf
pages. See “Understanding LEAFNEAR and
LEAFFAR” on page 784 for more information.

LIMITKEY No No Yes The limit key of the partition in an internal
format, 0 if the index is not partitioned

NEAROFFPOSF Yes No No Number of referenced rows near but not at the
optimal position because of an insert into a full
page

PQTY Yes No No The primary space allocation in 4K blocks for
the data set

PSEUDO_DEL_
ENTRIES

Yes Yes No Number of pseudo deleted keys

SECQTYI Yes No No Secondary space allocation in units of 4 KB,
stored in integer format instead of small integer
format supported by SQTY. If a storage group
is not used, the value is 0.

SPACE Yes No No The number of kilobytes of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a page
set contains multiple pieces)

768 Administration Guide

|||||

|||||

|||||
|
|

|||||
|
|
|
|

|||||
|
|
|

|
|
||||

Table 109. Catalog data used for access path selection or collected by RUNSTATS (continued). Some Version 6
columns are no longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used
in case of fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

SQTY Yes No No The secondary space allocation in 4K blocks for
the data set

SPACEF Yes Yes No Kilobytes of disk storage

SYSIBM.SYSINDEXSTATS: contains statistics by partition

CLUSTERRATIOF Yes Yes No A number which, when multiplied by 100, gives
the percentage of rows in clustering order. For
example, 1 indicates that all rows are in
clustering order and .87825 indicates that
87.825% of the rows are in clustering order.

FIRSTKEYCARDF Yes Yes No Number of distinct values of the first key
column, or an estimate if updated while
collecting statistics on a single partition

FULLKEYCARDF Yes Yes No Number of distinct values of the full key

KEYCOUNTF Yes Yes No Number of rows in the partition, -1 to trigger
DB2’s use of the value in KEYCOUNT

NLEAF Yes Yes No Number of leaf pages in the index

NLEVELS Yes Yes No Number of levels in the index tree

SYSIBM.SYSLOBSTATS: contains LOB table space statistics

AVGSIZE Yes Yes No Average size of a LOB in bytes

FREESPACE Yes Yes No The number of kilobytes of available space in
the LOB table space

ORGRATIO Yes Yes No The ratio of organization in the LOB table
space. A value of 1 means perfect organization.
The more the value exceeds 1, the more
disorganized the LOB table space is.

SYSIBM.SYSROUTINES: Contains statistics for table functions. See “Updating catalog statistics” on page 754 for
more information about using these statistics.

CARDINALITY No Yes Yes The predicted cardinality of a table function, -1
to trigger DB2’s use of the default value
(10 000)

INITIAL_INSTS No Yes Yes Estimated number of instructions executed the
first and last time the function is invoked, -1 to
trigger DB2’s use of the default value (40 000)

INITIAL_IOS No Yes Yes Estimated number of IOs performed the first
and last time the function is invoked, -1 to
trigger DB2’s use of the default value (0)

INSTS_PER_INVOC No Yes Yes Estimated number of instructions per
invocation, -1 to trigger DB2’s use of the
default value (4 000)

IOS_PER_INVOC No Yes Yes Estimated number of IOs per invocation, -1 to
trigger DB2’s use of the default value (0)

SYSIBM.SYSTABLEPART: contains statistics for space utilization

Chapter 32. Maintaining statistics in the catalog 769

|||||

Table 109. Catalog data used for access path selection or collected by RUNSTATS (continued). Some Version 6
columns are no longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used
in case of fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

CARDF Yes No No Total number of rows in the table space or
partition. For LOB table spaces, the number of
LOBs in the table space.

DSNUM Yes Yes No Number of data sets

EXTENTS Yes Yes No Number of data set extents (when there are
multiple pieces, the value is for the extents in
the last data set)

FARINDREF Yes No No Number of rows relocated far from their original
page

NEARINDREF Yes No No Number of rows relocated near their original
page

PAGESAVE Yes No No Percentage of pages, times 100, saved in the
table space or partition as a result of using data
compression

PERCACTIVE Yes No No Percentage of space occupied by active rows,
containing actual data from active tables, -2 for
LOB table spaces

PERCDROP Yes No No For nonsegmented table spaces, the
percentage of space occupied by rows of data
from dropped tables; for segmented table
spaces, 0

PQTY Yes No No The primary space allocation in 4K blocks for
the data set

SECQTYI Yes No No Secondary space allocation in units of 4 KB,
stored in integer format instead of small integer
format supported by SQTY. If a storage group
is not used, the value is 0.

SPACE Yes No No The number of kilobytes of space currently
allocated for all extents (contains the
accumulated space used by all pieces if a page
set contains multiple pieces)

SPACEF Yes Yes No Kilobytes of disk storage

SQTY Yes No No The secondary space allocation in 4K blocks for
the data set

SYSIBM.SYSTABLES:

AVGROWLEN Yes Yes No Average row length of the table specified in the
table space

CARDF Yes Yes Yes Total number of rows in the table or total
number of LOBs in an auxiliary table, -1 to
trigger DB2’s use of the default value (10 000)

EDPROC No No Yes Nonblank value if an edit exit routine is used

NPAGES Yes Yes Yes Total number of pages on which rows of this
table appear, -1 to trigger DB2’s use of the
default value (CEILING(1 + CARD/20))

NPAGESF Yes Yes Yes Number of pages used by the table

770 Administration Guide

|||||

|||||
|
|

|||||

|||||
|

|||||

Table 109. Catalog data used for access path selection or collected by RUNSTATS (continued). Some Version 6
columns are no longer used in Version 7 and are not shown here. They are updated by RUNSTATS but are only used
in case of fallback.

Column name
Set by
RUNSTATS?

User can
update?

Used for
access
paths? 1 Description

PCTPAGES Yes Yes No For nonsegmented table spaces, percentage of
total pages of the table space that contain rows
of the table; for segmented table spaces, the
percentage of total pages in the set of
segments assigned to the table that contain
rows of the table

PCTROWCOMP Yes Yes Yes Percentage of rows compressed within the total
number of active rows in the table

SPACEF Yes Yes No Kilobytes of disk storage

SYSIBM.SYSTABLESPACE:

NACTIVEF Yes Yes Yes Number of active pages in the table space, the
number of pages touched if a cursor is used to
scan the entire file, 0 to trigger DB2’s use of
the value in the NACTIVE column instead. If
NACTIVE contains 0, DB2 uses the default
value (CEILING(1 + CARD/20)).

SYSIBM.SYSTABSTATS: contains statistics by partition

CARDF Yes Yes Yes Total number of rows in the partition, -1 to
trigger DB2’s use of the value in the CARD
column. If CARD is -1, DB2 uses a default
value(10 000)

NACTIVE Yes Yes No Number of active pages in the partition

NPAGES Yes Yes Yes Total number of pages on which rows of the
partition appear, -1 to trigger DB2’s use of the
default value (CEILING(1 + CARD/20))

PCTPAGES Yes Yes No Percentage of total active pages in the partition
that contain rows of the table

PCTROWCOMP Yes Yes No Percentage of rows compressed within the total
number of active rows in the partition, -1 to
trigger DB2’s use of the default value (0)

1 Statistics on LOB-related values are not used for access path selection. The only exceptions are NLEVELS and
FIRSTKEYCARDF for auxiliary indexes. SYSCOLDISTSTATS and SYSINDEXSTATS are not used for parallelism
access paths. SYSCOLSTATS information (CARD, HIGHKEY, LOWKEY, HIGH2KEY, and LOW2KEY) is used to
determine the degree of parallelism.

Filter factors and catalog statistics
The catalog tables SYSIBM.SYSCOLUMNS and SYSIBM.SYSCOLDIST are the
main source of statistics for calculating predicate filter factors. The following
columns are particularly important:

v SYSCOLUMNS.COLCARDF indicates whether statistics exist for a column or
not. A value of ’-1’ results in the use of default statistics. A positive value is an
estimate of the number of distinct values in the column.

The value of COLCARDF generated by RUNSTATS TABLESPACE is an estimate
determined by a sampling method. If you know a more accurate number for
COLCARDF, you can supply it by updating the catalog. If the column is the first
column of an index, the value generated by RUNSTATS INDEX is exact.

Chapter 32. Maintaining statistics in the catalog 771

|||||

v Columns in SYSCOLDIST contain statistics about distributions and correlated key
values. Specifying the KEYCARD option of RUNSTATS allows you to collect key
cardinality statistics between FIRSTKEYCARDF and FULLKEYCARDF (which
are collected by default). Specifying the FREQVAL option of RUNSTATS allows
you to specify how many key columns to concatenate and how many frequently
occurring values to collect. By default, the 10 most frequently occurring values on
the first column of each index are collected. For more information, see Part 2 of
DB2 Utility Guide and Reference.

v LOW2KEY and HIGH2KEY columns are limited to storing the first 8 bytes of a
key value. If the column is nullable, values are limited to 7 bytes.

v The closer SYSINDEXES.CLUSTERRATIOF is to 100% (a value of 1), the more
closely the ordering of the index entries matches the physical ordering of the
table rows. Refer to Figure 95 on page 782 to see how an index with a high
cluster ratio differs from an index with a low cluster ratio.

Statistics for partitioned table spaces
For a partitioned table space, DB2 keeps statistics separately by partition and also
collectively for the entire table space. If you run RUNSTATS for separate partitions
of a table space, DB2 uses the results to update the aggregate statistics for the
entire table space.

The list below names the catalog tables that contain statistics by partition and, for
each one, the table that contains the corresponding aggregate statistics.

Statistics by partition are in: Aggregate statistics are in:
SYSTABSTATS SYSTABLES
SYSINDEXSTATS SYSINDEXES
SYSCOLSTATS SYSCOLUMNS
SYSCOLDISTSTATS SYSCOLDIST

Recommendation: Before you run RUNSTATS on separate partitions, run
RUNSTATS once on the entire object to generate statistics for all partitions and also
aggregate statistics for the entire table space. Alternatively, if you do not plan to
load every partition, you can use the FORCEROLLUP YES option or the
STATISTICS ROLLUP field on installation panel DSNTIPO to avoid running
RUNSTATS on the entire object first. These options force the roll up of the
aggregate statistics when statistics do not exist for each separate partition.

Setting default statistics for created temporary tables
When preparing an SQL statement that refers to a created temporary table, if the
table has been instantiated, DB2 uses the cardinality and number of pages
maintained for that table in storage. If the table has not been instantiated, DB2
looks at the CARDF and NPAGES columns of the SYSTABLES row for the created
temporary table. These values are normally -1 because RUNSTATS cannot run
against a created temporary table.

You can establish default statistical values for the cardinality and number of pages if
you can estimate the normal cardinality and number of pages that used the values
for a particular created temporary table. You can manually update the values in the
CARDF and NPAGES columns of the SYSTABLES row for the created temporary
table. These values become the default values used if more accurate values are not
available or more accurate values cannot be used. The more accurate values are
available only for dynamic SQL statements that are prepared after the instantiation

772 Administration Guide

|
|
|
|
|

of the created temporary table, but within the same unit of work. These more
accurate values are not used if the result of the dynamic bind is destined for the
Dynamic Statement Cache.

History statistics
Several catalog tables provide historical statistics for other catalog tables. These
catalog history tables include:

v SYSIBM.SYSCOLDIST_HIST

v SYSIBM.SYSCOLUMNS_HIST

v SYSIBM.SYSINDEXES_HIST

v SYSIBM.SYSINDEXPART_HIST

v SYSIBM.SYSINDEXSTATS_HIST

v SYSIBM.SYSLOBSTATS_HIST

v SYSIBM.SYSTABLEPART_HIST

v SYSIBM.SYSTABLES_HIST

v SYSIBM.SYSTABSTATS_HIST

For instance, SYSIBM.SYSTABLESPACE_HIST provides statistics for activity in
SYSIBM.SYSTABLESPACE, SYSIBM.SYSTABLEPART_HIST provides statistics for
activity in SYSIBM.SYTABLEPART, and so on.

When DB2 adds or changes rows in a catalog table, DB2 might also write
information about the rows to the corresponding catalog history table. Although the
catalog history tables are not identical to their counterpart tables, they do contain
the same columns for access path information and space utilization information.
The history statistics provide a way to study trends, to determine when utilities,
such as REORG, should be run for maintenance, and to aid in space management.

Table 110 lists the catalog data that are collected for historical statistics. For
information on how to gather these statistics, see “Gathering monitor and update
statistics” on page 775.

Table 110. Catalog data collected for historical statistics

Column name Provides
access path
statistics1

Provides
space
statistics

Description

SYSIBM.SYSCOLDIST_HIST

CARDF Yes No Number of distinct values gathered

COLGROUPCOLNO Yes No Identifies the columns involved in multi-column
statistics

COLVALUE Yes No Frequently occuring value in the key distribution

FREQUENCYF Yes No A number, which multiplied by 100, gives the
percentage of rows that contain the value of
COLVALUE

NUMCOLUMNS Yes No Number of columns involved in multi-column
statistics

TYPE Yes No Type of statistics gathered, either cardinality (c) or
frequent value (F)

SYSIBM.SYCOLUMNS_HIST

COLCARDF Yes No Estimated number of distinct values in the column

Chapter 32. Maintaining statistics in the catalog 773

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

|
|
|

||

||
|
|

|
|
|

|

|

||||

||||
|

||||

||||
|
|

||||
|

||||
|

|

||||

Table 110. Catalog data collected for historical statistics (continued)

Column name Provides
access path
statistics1

Provides
space
statistics

Description

HIGH2KEY Yes No Second highest value of the column, or blank

LOW2KEY Yes No Second lowest value of the column, or blank

SYSIBM.SYSINDEXES_HIST

CLUSTERING Yes No Whether the index was created with CLUSTER

CLUSTERRATIOF Yes No A number, when multiplied by 100, gives the
percentage of rows in the clustering order

FIRSTKEYCARDF Yes No Number of distinct values in the first key column

FULLKEYCARDF Yes No Number of distinct values in the full key

NLEAF Yes No Number of active leaf pages

NLEVELS Yes No Number of levels in the index tree

SYSIBM.SYSINDEXPART_HIST

CARDF No Yes Number of rows or LOBs referenced

DSNUM No Yes Number of data sets

EXTENTS No Yes Number of data set extents (when there are
multiple pieces, the value is for the extents in the
last data set)

FAROFFPOSF No Yes Number of rows referenced far from the optimal
position

LEAFDIST No Yes 100 times the number of pages between
successive leaf pages

LEAFFAR No Yes Number of leaf pages located physically far away
from previous leaf pages for successive active leaf
pages accessed in an index scan

LEAFNEAR No Yes Number of leaf pages located physically near
previous leaf pages for successive active leaf
pages

NEAROFFPOSF No Yes Number of rows referenced near but not at the
optimal position

PQTY No Yes Primary space allocation in 4K blocks for the data
set

PSEUDO_DEL_ENTRIES No Yes Number of pseudo deleted keys

SECQTYI No Yes Secondary space allocation in 4K blocks for the
data set.

SPACEF No Yes Kilobytes of disk storage

SYSIBM.SYSINDEXSTATS_HIST

CLUSTERRATIO Yes No A number, which when multiplied by 100, gives the
percentage of rows in the clustering order

FIRSTKEYCARDF Yes No Number of distinct values of the first key column

FULLKEYCARDF Yes No Number of distinct values of the full key

KEYCOUNTF Yes No Total number of rows in the partition

NLEAF Yes No Number of leaf pages

NLEVELS Yes No Number of levels in the index tree

774 Administration Guide

|

||
|
|

|
|
|

|

||||

||||

|

||||

||||
|

||||

||||

||||

||||

|

||||

||||

||||
|
|

||||
|

||||
|

||||
|
|

||||
|
|

||||
|

||||
|

||||

||||
|

||||

|

||||
|

||||

||||

||||

||||

||||

Table 110. Catalog data collected for historical statistics (continued)

Column name Provides
access path
statistics1

Provides
space
statistics

Description

SYSIBM.SYSLOBSTATS_HIST

FREESPACE No Yes The amount of free space in the LOB table space

ORGRATIO No Yes The ratio of organization in the LOB table space

SYSIBM.SYSTABLEPART_HIST

CARDF No Yes Number of rows in the table space or partition

DSNUM No Yes Number of data sets

EXTENTS No Yes Number of data set extents (when there are
multiple pieces, the value is for the extents in the
last data set)

FARINDREF No Yes Number of rows relocated far from their original
position

NEARINDREF No Yes Number of rows relocated near their original
position

PAGESAVE No Yes Percentage of pages saved by data compression

PERCACTIVE No Yes Percentage of space occupied by active pages

PERCDROP No Yes Percentage of space occupied by pages from
dropped tables

PQTY No Yes Primary space allocation in 4K blocks for the data
set

SECQTYI No Yes Secondary space allocation in 4K blocks for the
data set.

SPACEF No Yes The number of kilobytes of space currently used

SYSIBM.SYSTABLES_HIST

AVGROWLEN No Yes Average row length of the table specified in the
table space

CARDF Yes No Number of rows in the table or number of LOBs in
an auxiliary table

NPAGESF Yes No Number of pages used by the table

PCTPAGES No Yes Percentage of pages that contain rows

PCTROWCOMP Yes No Percentage of active rows compressed

SYSIBM.SYSTABSTATS_HIST

CARDF Yes No Number of rows in the partition

NPAGES Yes No Total number of pages with rows
1 The access path statistics in the history tables are collected for historical purposes and are not used for access path
selection.

Gathering monitor and update statistics
The DB2 utility RUNSTATS can update the DB2 catalog tables with statistical
information about data and indexes. For a list of the catalog columns for which
RUNSTATS collects statistics, see Table 109 on page 766. For instructions on using
RUNSTATS, see Part 2 of DB2 Utility Guide and Reference.

Chapter 32. Maintaining statistics in the catalog 775

|

||
|
|

|
|
|

|

|

||||

||||

|

||||

||||

||||
|
|

||||
|

||||
|

||||

||||

||||
|

||||
|

||||
|

||||

|

||||
|

||||
|

||||

||||

||||

|

||||

||||

|
|
|

|

You can choose which DB2 catalog tables you want RUNSTATS to update: those
used to optimize the performance of SQL statements or those used by database
administrators to assess the status of a particular table space or index. You can
monitor these catalog statistics in conjunction with EXPLAIN to make sure that your
queries access data efficiently.

After you use the LOAD, REBUILD INDEX, or REORG utilities, you can gather
statistics inline with those utilities by using the STATISTICS option.

Why gather statistics: Maintaining your statistics is a critical part of performance
monitoring and tuning. DB2 must have correct statistical information to make the
best choices for the access path.

When to gather statistics: To ensure that information in the catalog is current,
gather statistics in situations in which the data or index changes significantly, such
as in the following situations:

v After loading a table and before binding application plans and packages that
access the table.

v After creating an index with the CREATE INDEX statement, to update catalog
statistics related to the new index. (Before an application can use a new index,
you must rebind the application plan or package.)

v After reorganizing a table space or an index. Then rebind plans or packages for
which performance remains a concern. See “Whether to rebind after gathering
statistics” on page 786 for more information. (It is not necessary to rebind after
reorganizing a LOB table space, because those statistics are not used for access
path selection.)

v After heavy insert, update, and delete activity. Again, rebind plans or packages
for which performance is critical.

v Periodically. By comparing the output of one execution with previous executions,
you can detect a performance problem early.

v Against the DB2 catalog to provide DB2 with more accurate information for
access path selection of users’ catalog queries.

To obtain information from the catalog tables, use a SELECT statement, or specify
REPORT YES when you invoke RUNSTATS. When used routinely, RUNSTATS
provides data about table spaces and indexes over a period of time. For example,
when you create or drop tables or indexes or insert many rows, run RUNSTATS to
update the catalog. Then rebind your applications so that DB2 can choose the most
efficient access paths.

Collecting statistics by partition: You can collect statistics for a single data
partition or index partition. This information allows you to avoid the cost of running
utilities against unchanged partitions. When you run utilities by partition, DB2 uses
the results to update the aggregate statistics for the entire table space or index. If
statistics do not exist for each separate partition, DB2 can calculate the aggregate
statistics only if the utilities are executed with the FORCEROLLUP YES keyword (or
FORCEROLLUP keyword is omitted and the value of the STATISTICS ROLLUP
field on installation panel DSNTIPO is YES). If you do not use the keyword or
installation panel field setting to force the roll up of the aggregate statistics, you
must run utilities once on the entire object before running utilities on separate
partitions.

Collecting history statistics: When you collect statistics with RUNSTATS or gather
them inline with the LOAD, REBUILD, or REORG utilities, you can use the

776 Administration Guide

|
|
|
|
|
|
|
|

|
|

HISTORY option to collect history statistics. With the HISTORY option, the utility
stores the statistics that were updated in the catalog tables in history records in the
corresponding catalog history tables. (For information on the catalog data that is
collected for history statistics, seeTable 110 on page 773.)

To remove old statistics that are no longer needed in the catalog history tables, use
the MODIFY STATISTICS utility or the SQL DELETE statement. Deleting outdated
information from the catalog history tables can help improve the performance of
processes that access the data in these tables.

Recommendations for performance:

v To reduce the processor consumption WHEN collecting column statistics, use the
SAMPLE option. The SAMPLE option allows you to specify a percentage of the
rows to examine for column statistics. Consider the effect on access path
selection before choosing sampling. There is likely to be little or no effect on
access path selection if the access path has a matching index scan and very few
predicates. However, if the access path joins of many tables with matching index
scans and many predicates, the amount of sampling can affect the access path.
In these cases, start with 25 percent sampling and see if there is a negative
effect on access path selection. If not, you could consider reducing the sampling
percent until you find the percent that gives you the best reduction in processing
time without negatively affecting the access path.

v To reduce the elapsed time of gathering statistics immediately after a LOAD,
REBUILD INDEX, or REORG, gather statistics inline with those utilities by using
the STATISTICS option.

Updating the catalog
If you have sufficient privileges, you can change all of the values listed in Table 109
on page 766 by executing SQL UPDATE statements.

Running RUNSTATS after UPDATE: If you change values in the catalog and later
run RUNSTATS to update those values, your changes are lost.

Recommendation: Keep track of the changes you make and of the plans or
packages that have an access path change due to changed statistics.

Correlations in the catalog
The following relationships exist among certain columns of the catalog tables:
v Columns within table SYSCOLUMNS
v Columns in the tables SYSCOLUMNS and SYSINDEXES
v Columns in the tables SYSCOLUMNS and SYSCOLDIST
v Columns in the tables SYSCOLUMNS, SYSCOLDIST, and SYSINDEXES
v Columns with table space statistics and columns for partition-level statistics, as

described in “Statistics for partitioned table spaces” on page 772.

If you plan to update some values, keep in mind the following correlations:

v COLCARDF and FIRSTKEYCARDF. For a column that is the first column of an
index, those two values are equal. If the index has only that one column, the two
values are also equal to the value of FULLKEYCARDF.

v COLCARDF, LOW2KEY, and HIGH2KEY. If the COLCARDF value is not ’-1’,
DB2 assumes that statistics exist for the column. In particular, it uses the values
of LOW2KEY and HIGH2KEY in calculating filter factors.

Chapter 32. Maintaining statistics in the catalog 777

|
|
|
|

v The CARDF column in SYSCOLDIST is related to COLCARDF in
SYSIBM.SYSCOLUMNS and to FIRSTKEYCARDF and FULLKEYCARDF in
SYSIBM.SYSINDEXES. CARDF must be the minimum of the following:

– A value between FIRSTKEYCARDF and FULLKEYCARDF if the index
contains the same set of columns

– A value between MAX(COLCARDF of each column in the column group) and
the product of multiplying together the COLCARDF of each column in the
column group

For example, assume a set of statistics as shown in Figure 94. The range
between FIRSTKEYCARDF and FULLKEYCARDF of 100 and 10 000. The
maximum of the COLCARDF values is 50 000. Thus, the allowable range is
between 100 and 10 000.

CARDF = 1000
NUMCOLUMNS = 3
COLGROUPCOLNO = 2,3,5

INDEX1 on columns 2,3,5,7,8
FIRSTKEYCARDF = 100 CARDF must be between 100
FULLKEYCARDF = 10000 and 10000

column 2 COLCARDF = 100
column 3 COLCARDF = 50
column 5 COLCARDF = 10

Figure 94. Determining valid values for CARDF. In this example, CARDF is bounded by 100
and 10 000.

778 Administration Guide

Recommendation for COLCARDF and FIRSTKEYCARDF
On partitioned indexes, RUNSTATS INDEX calculates the number of distinct column
values and saves it in SYSCOLSTATS.COLCARD by partition. When the statistics
by partition are used to form the aggregate, the aggregate might not be exact
because some column values could occur in more than one partition. Without
scanning all parts of the index, DB2 cannot detect that overlap. The overlap never
skews COLCARD by more than the number of partitions, which should not be a
problem for large values. For small values, you might want to update the aggregate
COLCARDF value in SYSCOLUMNS, because DB2 uses the COLCARD value
when determining access paths.

The exception and remedy described above for COLCARD and COLCARDF is also
true for the FIRSTKEYCARDF column in SYSIBM.SYSINDEXES and the
FIRSTKEYCARDF column in SYSIBM.SYSINDEXSTATS.

Recommendation for HIGH2KEY and LOW2KEY
If you update the COLCARDF value for a column, also update HIGH2KEY and
LOW2KEY for the column. HIGH2KEY and LOW2KEY are defined as CHAR(8);
thus, an UPDATE statement must provide a character or hexadecimal value.
Entering a character value is quite straightforward: SET LOW2KEY = ’ALAS’, for
instance. But to enter a numeric, date, or time value you must use the hexadecimal
value of the DB2 internal format. See “Internal formats for dates, times, and
timestamps” on page 954 and “DB2 codes for numeric data” on page 955. Be sure
to allow for a null indicator in keys that allow nulls. See also “Null values” on
page 952.

Statistics for distributions
Statistics for distributions are stored in the catalog tables SYSCOLDIST and
SYSCOLDISTSTATS. By default, DB2 inserts the 10 most frequent values as well
as the first and last key values. See Part 2 of DB2 Utility Guide and Reference for
information about collecting more statistics related to columns that are correlated.

You can insert, update, or delete distribution information for any column, whether or
not it is a first key column of an index. But to enter a numeric, date, or time value
you must use the hexadecimal value of the DB2 internal format. See “Internal
formats for dates, times, and timestamps” on page 954 and “DB2 codes for numeric
data” on page 955. Be sure to allow for a null indicator in keys that allow nulls. See
also “Null values” on page 952.

Recommendation for using the TIMESTAMP column
Statistics gathered by RUNSTATS include timestamps. Every row updated or
inserted during a particular invocation of RUNSTATS contains the same timestamp
value. Update column STATSTIME whenever you update statistics in the catalog, so
that you can always determine when they were last updated.

Querying the catalog for statistics
The SELECT statements below show you how to retrieve some of the important
statistics for access path selection. The catalog queries shown here are included in
DSNTESP in SDSNSAMP and can be used as input to SPUFI. See “Chapter 33.
Using EXPLAIN to improve SQL performance” on page 789 for more information
about how these statistics are used in access path selection. See Appendix D of
DB2 SQL Reference for the table definitions and descriptions of all DB2 catalog
tables.

Chapter 32. Maintaining statistics in the catalog 779

Product-sensitive Programming Interface

To access information about your data and how it is organized, use the following
queries:
SELECT CREATOR, NAME, CARDF, NPAGES, PCTPAGES

FROM SYSIBM.SYSTABLES
WHERE DBNAME = 'xxx'
AND TYPE = 'T';

SELECT NAME, UNIQUERULE, CLUSTERRATIOF, FIRSTKEYCARDF, FULLKEYCARDF,
NLEAF, NLEVELS, PGSIZE
FROM SYSIBM.SYSINDEXES
WHERE DBNAME = 'xxx';

SELECT NAME, DBNAME, NACTIVE, CLOSERULE, LOCKRULE
FROM SYSIBM.SYSTABLESPACE
WHERE DBNAME = 'xxx';

SELECT NAME, TBNAME, COLCARDF, HIGH2KEY, LOW2KEY, HEX(HIGH2KEY),
HEX(LOW2KEY)
FROM SYSIBM.SYSCOLUMNS
WHERE TBCREATOR = 'xxx' AND COLCARDF <> -1;

SELECT NAME, FREQUENCYF, COLVALUE, HEX(COLVALUE), CARDF,
COLGROUPCOLNO, HEX(COLGROUPCOLNO), NUMCOLUMNS, TYPE
FROM SYSIBM.SYSCOLDIST
WHERE TBNAME = 'ttt'
ORDER BY NUMCOLUMNS, NAME, COLGROUPCOLNO, TYPE, FREQUENCYF DESC;

SELECT NAME, TSNAME, CARD, NPAGES
FROM SYSIBM.SYSTABSTATS
WHERE DBNAME='xxx';

End of Product-sensitive Programming Interface

If the statistics in the DB2 catalog no longer correspond to the true organization of
your data, you should reorganize the necessary tables, run RUNSTATS, and rebind
the plans or packages that contain any affected queries. See “When to reorganize
indexes and table spaces” on page 784 and the description of REORG in Part 2 of
DB2 Utility Guide and Reference for information on how to determine which table
spaces and indexes qualify for reorganization. This includes the DB2 catalog table
spaces as well as user table spaces. Then DB2 has accurate information to choose
appropriate access paths for your queries. Use the EXPLAIN statement to verify the
chosen access paths for your queries.

Improving index and table space access
Statistics from the DB2 catalog help determine the most economical access path.
The statistics described in this section are used to determine index access cost and
are found in the corresponding columns of the SYSIBM.SYSINDEXES catalog
table.

The statistics show distribution of data within the allocated space, from which you
can judge clustering and the need to reorganize.

Space utilization statistics can also help you make sure that access paths that use
the index or table space are as efficient as possible. By reducing gaps between leaf
pages in an index, or to ensure that data pages are close together, you can reduce
sequential I/Os.

To provide the most accurate data, gather statistics routinely to provide data about
table spaces and indexes over a period of time. One recommendation is to run

780 Administration Guide

RUNSTATS some time after reorganizing the data or indexes. By gathering the
statistics after you reorganize, you ensure that access paths reflect a more
“average” state of the data.

This section describes the following topics:

v “How clustering affects access path selection”

v “What other statistics provide index costs” on page 783

v “When to reorganize indexes and table spaces” on page 784

v “Whether to rebind after gathering statistics” on page 786

How clustering affects access path selection
In general, CLUSTERRATIOF gives an indication of how closely the order of the
index entries on the index leaf pages matches the actual ordering of the rows on
the data pages. The closer CLUSTERRATIOF is to 100%, the more closely the
ordering of the index entries matches the actual ordering of the rows on the data
pages. The actual formula is quite complex and accounts for indexes with many
duplicates; in general, for a given index, the more duplicates, the higher the
CLUSTERRATIOF value.

Here are some things to remember about the effect of CLUSTERRATIOF on access
paths:

v CLUSTERRATIOF is an important input to the cost estimates that are used to
determine whether an index is used for an access path, and, if so, which index to
use.

v If the access is INDEXONLY, then this value does not apply.

v The higher the CLUSTERRATIOF value, the lower the cost of referencing data
pages during an index scan is.

v For an index that has a CLUSTERRATIOF less than 80%, sequential prefetch is
not used to access the data pages.

Figure 95 on page 782 shows an index scan on an index with a high cluster ratio.
Compare that with Figure 96 on page 783, which shows an index scan on an index
with a low cluster ratio.

Chapter 32. Maintaining statistics in the catalog 781

Table space

Table

Data page Data page Data page Data page

Row

Leaf
pages

Intermediate
pages86754545138

Clustered
index Scan 25 61

Root
page

33

Figure 95. A clustered index scan. This figure assumes that the index is 100% clustered

782 Administration Guide

What other statistics provide index costs
The following statistics in SYSINDEXES also give information about costs to
process the index.

FIRSTKEYCARDF: The number of distinct values of the first index key column.
When an indexable equal predicate is specified on the first index key column,
1/FIRSTKEYCARDF is the filter factor for the predicate and the index. The higher
the number is, the less the cost is.

FULLKEYCARDF: The number of distinct values for the entire index key. When
indexable equal predicates are specified on all the index key columns,
1/FULLKEYCARDF is the filter factor for the predicates and the index. The higher
the number is, the less the cost is.

When the number of matching columns is greater than 1 and less than the number
of index key columns, the filtering of the index is located between
1/FIRSTKEYCARDF and 1/FULLKEYCARDF.

NLEAF: The number of active leaf pages in the index. NLEAF is a portion of the
cost to scan the index. The smaller the number is, the less the cost is. It is also

Table space

Table

Data page Data page Data page Data page

Row

Leaf
pages

Intermediate
pages86754545138

Clustered
index scan 25 61

Root
page

33

Figure 96. A nonclustered index scan. In some cases, DB2 can access the data pages in
order even when a nonclustered index is used.

Chapter 32. Maintaining statistics in the catalog 783

less when the filtering of the index is high, which comes from FIRSTKEYCARDF,
FULLKEYCARDF, and other indexable predicates.

NLEVELS: The number of levels in the index tree. NLEVELS is another portion of
the cost to traverse the index. The same conditions as NLEAF apply. The smaller
the number is, the less the cost is.

When to reorganize indexes and table spaces
Data that is organized well physically can improve the performance of access paths
that rely on index or data scans. Well-organized data can also help reduce the
amount of disk storage used by the index or table space. If your main reason for
reorganizing is performance, the best way to determine when to reorganize is to
watch your statistics for increased I/O, getpages, and processor consumption.
When performance degrades to an unacceptable level, analyze the statistics
described in the rules of thumb in this section to help you develop your own rules
for when to reorganize in your particular environment. Here are some general rules
of thumb for when to consider running REORG. See Part 2 of DB2 Utility Guide and
Reference for more information.

Using useful catalog queries: Catalog queries you can use to help you determine
when to reorganize are included in DSNTESP in SDSNSAMP and can be used as
input to SPUFI.

Using REORG to determine whether to reorganize: The REORG utility imbeds
the function of catalog queries. If a query returns a certain result (you can use the
default or supply your own), REORG will either reorganize or not. Optionally, you
can have REORG run a report instead of actually doing the reorganization.

The REORG options that imbed these catalog queries are:

v OFFPOSLIMIT and INDREFLIMIT options of REORG TABLESPACE

v LEAFDISTLIMIT of REORG INDEX

REORG does not imbed any function to help you determine when to reorganize
LOB table spaces.

Reorganizing Indexes
To understand index organization, you must understand the LEAFNEAR and
LEAFFAR columns of SYSIBM.SYSINDEXPART. This section describes how to
interpret those values and then describes some rules of thumb for determining
when to reorganize the index.

Understanding LEAFNEAR and LEAFFAR: The LEAFNEAR and LEAFFAR
columns of SYSIBM.SYSINDEXPART measure the disorganization of physical leaf
pages by indicating the number of pages that are not in an optimal position. Leaf
pages can have page gaps whenever index pages are deleted or when there are
index leaf page splits caused by an insert that cannot fit onto a full page. If the key
cannot fit on the page, DB2 moves half the index entries onto a new page, which
might be far away from the “home” page.

Figure 97 on page 785 shows the logical and physical view of an index.

784 Administration Guide

|
|

|

|
|
|
|
|
|
|

|
|

The logical view at the top of the figure shows that for an index scan four leaf
pages need to be scanned to access the data for FORESTER through JACKSON.
The physical view at the bottom of the figure shows how the pages are physically
accessed. The first page is at physical leaf page 78, and the other leaf pages are at
physical locations 79, 13, and 16. A jump forward or backward of more than one
page represents non-optimal physical ordering. LEAFNEAR represents the number
of jumps within the prefetch quantity, and LEAFFAR represents the number of
jumps outside the prefetch quantity. In this example, assuming that the prefetch
quantity is 32, there are two jumps outside the prefetch quantity—a jump from page
78 to page 13, and one from page 16 to page 79. Thus, LEAFFAR is 2. Because of
the jump within the prefetch quantity from page 13 to page 16, LEAFNEAR is 1.

LEAFNEAR has a smaller impact than LEAFFAR because the LEAFNEAR pages,
which are located within the prefetch quantity, are typically read by prefetch without
incurring extra I/Os.

The optimal value of the LEAFNEAR and LEAFFAR catalog columns is zero.
However, immediately after you run the REORG and gather statistics, LEAFNEAR
for a large index might be greater than zero. A non-zero value could be caused by
free pages that result from the FREEPAGE option on CREATE INDEX, non-leaf
pages, or various system pages; the jumps over these pages are included in
LEAFNEAR.

Rules of thumb: Consider running REORG INDEX in the following cases:

v LEAFFAR ⁄ NLEAF is greater than 10%.

NLEAF is a column in SYSIBM.SYSINDEXES.

Root page
2

Leaf page
17

DOYLE

Leaf page
17

DOYLE

Leaf page
78

FORESTER

Leaf page
78

FORESTER

Leaf page
13

GARCIA

Leaf page
13

GARCIA

Leaf page
16

HANSON

Leaf page
16

HANSON

Leaf page
79

JACKSON

Leaf page
79

JACKSON

prefetch
quantity

Logical view

Physical view

LEAFNEAR LEAFFAR

LEAFFAR

2nd jump 3rd jump

1st jump

. . .

Figure 97. Logical and physical views of an index in which LEAFNEAR=1 and LEAFFAR=2

Chapter 32. Maintaining statistics in the catalog 785

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

#
#
#

|
|
|
|
|
|

#

|

v PSEUDO_DEL_ENTRIES ⁄ CARDF is greater than 10%.

If you are reorganizing the index because of this value, consider using the
REUSE option to improve performance.

v When the data set has multiple extents. 50 extents is a general guideline.

Many secondary extents can detract from performance of index scans because
the data on those extents is not necessarily physically located near the rest of
the index data.

Reorganizing table spaces
SYSIBM.SYSTABLEPART contains information about how the data in the table
space is physically stored. Consider running REORG TABLESPACE in the following
situations:

v FAROFFPOSF ⁄ CARDF is greater than 10%. Or, if the index is a clustering
index, the CLUSTERRATIOF column of SYSIBM.SYSINDEXES is less than 90%.

v (NEARINDREF + FARINDREF) ⁄ CARDF is greater than 10%.

v PERCDROP is greater than 10% for a simple table space.

If you are reorganizing the table space because of this value, consider using the
REUSE option to improve performance.

v The data set has multiple extents. 50 extents is a general guideline.

Reorganizing LOB table spaces
SYSIBM.SYSLOBSTATS contains information about how the data in the table space
is physically stored. Consider running REORG on the LOB table space when the
value in the ORGRATIO column is 2.

Whether to rebind after gathering statistics
It is not always necessary to rebind all applications after you gather statistics. A
rebind is necessary only if the access path statistics change significantly from the
last time you bound the applications and if performance suffers as a result.

When performance degrades to an unacceptable level, analyze the statistics
described in the rules of thumb in this section to help you develop your own
guidelines for when to rebind.

Consider the following rules of thumb about when to rebind:

v CLUSTERRATIOF changes to less or more than 80% (a value of 0.80).

v NLEAF changes more than 20% from the previous value.

v NLEVELS changes (only if it was more than a 2-level index to begin with).

v NPAGES changes more than 20% from the previous value.

v NACTIVEF changes more than 20% from the previous value.

v The range of HIGH2KEY to LOW2KEY range changes more than 20% from the
range previously recorded.

v Cardinality changes more than 20% from previous range.

v Distribution statistics change the majority of the frequent column values.

Modeling your production system
To see what access paths your production queries will use, consider updating the
catalog statistics on your test system to be the same as your production system.

To do that, run RUNSTATS on your production tables to get current statistics for
access path selection. Then retrieve them and use them to build SQL statements to

786 Administration Guide

|

|
|

|

|
|

|

update the catalog of the test system. You can use queries similar to those in
Figure 98 to build those statements.

Product-sensitive Programming Interface

SELECT DISTINCT 'UPDATE SYSIBM.SYSTABLESPACE SET NACTIVEF='
CONCAT DIGITS(DECIMAL(NACTIVEF,31,0))
CONCAT ' WHERE NAME=''' CONCAT TS.NAME
CONCAT ''' AND CREATOR ='''CONCAT TS.CREATOR CONCAT'''*'
FROM SYSIBM.SYSTABLESPACE TS, SYSIBM.SYSTABLES TBL
WHERE TS.NAME = TSNAME

AND TBL.NAME IN ('table list')
AND TBL.CREATOR IN ('creator list')
AND NACTIVE >=0;

SELECT 'UPDATE SYSIBM.SYSTABLES SET CARDF='
CONCAT DIGITS(DECIMAL(CARDF,31,0))
CONCAT',NPAGES='CONCAT DIGITS(NPAGES)
CONCAT ' WHERE NAME='''CONCAT NAME
CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT'''*'
FROM SYSIBM.SYSTABLES
WHERE NAME IN ('table list')

AND CREATOR IN ('creator list')
AND CARDF >= 0;

SELECT 'UPDATE SYSIBM.SYSINDEXES SET FIRSTKEYCARDF='
CONCAT DIGITS(DECIMAL(FIRSTKEYCARDF,31,0))
CONCAT ',FULLKEYCARDF='CONCAT DIGITS(DECIMAL(FULLKEYCARDF,31,0))
CONCAT',NLEAF='CONCAT DIGITS(NLEAF)
CONCAT',NLEVELS='CONCAT DIGITS(NLEVELS)
CONCAT',CLUSTERRATIOF='CONCAT DIGITS(DECIMAL(CLUSTERRATIOF,31,0))
CONCAT' WHERE NAME='''CONCAT NAME
CONCAT ''' AND CREATOR ='''CONCAT CREATOR CONCAT'''*'
FROM SYSIBM.SYSINDEXES
WHERE TBNAME IN ('table list')

AND CREATOR IN ('creator list')
AND FULLKEYCARDF >= 0;

SELECT 'UPDATE SYSIBM.SYSCOLUMNS SET COLCARDF='
CONCAT DIGITS(DECIMAL(COLCARDF,31,0))
CONCAT',HIGH2KEY=''' CONCAT HIGH2KEY
CONCAT''',LOW2KEY=''' CONCAT LOW2KEY
CONCAT''' WHERE TBNAME=''' CONCAT TBNAME CONCAT ''' AND COLNO='
CONCAT DIGITS(COLNO)
CONCAT ' AND TBCREATOR =''' CONCAT TBCREATOR CONCAT'''*'
FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME IN ('table list')

AND TBCREATOR IN ('creator list')
AND COLCARDF >= 0;

End of Product-sensitive Programming Interface

Figure 98. Statements to generate update statistics on test system (Part 1 of 2)

Chapter 32. Maintaining statistics in the catalog 787

Notes to Figure 98 on page 787:

v The third SELECT is 215 columns wide; you might need to change your default
character column width if you are using SPUFI.

v Asterisks (*) appear in the examples to avoid having the semicolon interpreted as
the end of the SQL statement. Edit the result to change the asterisk to a
semicolon.

Access path differences from test to production: When you bind applications on
the test system with production statistics, access paths should be similar to what
you see when the same query is bound on your production system. The access
paths from test to production could be different for the following possible reasons:

v The processor models are different.

v The buffer pool sizes are different.

v Data in SYSIBM.SYSCOLDIST is mismatched. (This mismatch occurs only if
some of the steps mentioned above were not followed exactly).

Tools to help: If your production system is accessible from your test system, you
can use DB2 PM EXPLAIN on your test system to request EXPLAIN information
from your production system. This request can reduce the need to simulate a
production system by updating the catalog.

You can also use the DB2 Visual Explain feature to display the current
PLAN_TABLE output or the graphed access paths for statements within any
particular subsystem from your workstation environment. For example, if you have
your test system on one subsystem and your production system on another
subsystem, you can visually compare the PLAN_TABLE outputs or access paths
simultaneously with some window or view manipulation. You can then access the
catalog statistics for certain referenced objects of an access path from either of the
displayed PLAN_TABLEs or access path graphs. For information on using Visual
Explain, see DB2 Visual Explain online help.

Product-sensitive Programming Interface

DELETE * FROM (test_system).SYSCOLDIST;

SELECT * FROM (production_system).SYSCOLDIST;

Using values from the production system's SYSCOLDIST table:

INSERT INTO (test_system).SYSCOLDIST;

End of Product-sensitive Programming Interface

Figure 98. Statements to generate update statistics on test system (Part 2 of 2)

788 Administration Guide

Chapter 33. Using EXPLAIN to improve SQL performance

The information under this heading, up to the end of this chapter, is
Product-sensitive Programming Interface and Associated Guidance Information, as
defined in “Notices” on page 1095.

Definitions and purpose: EXPLAIN is a monitoring tool that produces information
about the following:

v A plan, package, or SQL statement when it is bound. The output appears in a
table you create called PLAN_TABLE, which is also called a plan table. For
experienced users, you can use PLAN_TABLE to give optimization hints to DB2.
See “Giving optimization hints to DB2” on page 757 for more information.

v An estimated cost of executing an SQL SELECT, INSERT, UPDATE, or DELETE
statement. The output appears in a table you create called
DSN_STATEMNT_TABLE, which is also called a statement table. For more
information about statement tables, see “Estimating a statement’s cost” on
page 836.

v User-defined functions referred to in the statement, including the specific name
and schema. The output appears in a table you create called
DSN_FUNCTION_TABLE, which is also called a function table. For more
information about function tables, see Part 3 of DB2 Application Programming
and SQL Guide.

Other tools: The following tools can help you tune SQL queries:

v DB2 Visual Explain

Visual Explain is a graphical workstation feature of DB2 that provides:

– An easy-to-understand display of a selected access path

– Suggestions for changing an SQL statement

– An ability to invoke EXPLAIN for dynamic SQL statements

– An ability to provide DB2 catalog statistics for referenced objects of an access
path

– A subsystem parameter browser with keyword 'Find' capabilities

For information on using DB2 Visual Explain, which is a separately packaged
CD-ROM provided with your DB2 Version 7 license, see DB2 Visual Explain
online help.

v DB2 Performance Monitor (PM)

DB2 PM is a performance monitoring tool that formats performance data. DB2
PM combines information from EXPLAIN and from the DB2 catalog. It displays
access paths, indexes, tables, table spaces, plans, packages, DBRMs, host
variable definitions, ordering, table access and join sequences, and lock types.
Output is presented in a dialog rather than as a table, making the information
easy to read and understand.

v DB2 Estimator

DB2 Estimator for Windows is an easy-to-use, stand-alone tool for estimating the
performance of DB2 for OS/390 and z/OS applications. You can use it to predict
the performance and cost of running the applications, transactions, SQL
statements, triggers, and utilities. For instance, you can use DB2 Estimator for
estimating the impact of adding or dropping an index from a table, estimating the

© Copyright IBM Corp. 1982, 2001 789

change in response time from adding processor resources, and estimating the
amount of time a utility job will take to run. DB2 Estimator for Windows can be
downloaded from the Web.

Chapter overview: This chapter includes the following topics:
v “Obtaining PLAN_TABLE information from EXPLAIN”
v “Estimating a statement’s cost” on page 836
v “Asking questions about data access” on page 798
v “Interpreting access to a single table” on page 805
v “Interpreting access to two or more tables (join)” on page 812
v “Interpreting data prefetch” on page 824
v “Determining sort activity” on page 828
v “Processing for views and nested table expressions” on page 829

See also “Chapter 34. Parallel operations and query performance” on page 841.

Obtaining PLAN_TABLE information from EXPLAIN
The information in PLAN_TABLE can help you to:

v Design databases, indexes, and application programs

v Determine when to rebind an application

v Determine the access path chosen for a query

For each access to a single table, EXPLAIN tells you if an index access or table
space scan is used. If indexes are used, EXPLAIN tells you how many indexes and
index columns are used and what I/O methods are used to read the pages. For
joins of tables, EXPLAIN tells you which join method and type are used, the order
in which DB2 joins the tables, and when and why it sorts any rows.

The primary use of EXPLAIN is to observe the access paths for the SELECT parts
of your statements. For UPDATE and DELETE WHERE CURRENT OF, and for
INSERT, you receive somewhat less information in your plan table. And some
accesses EXPLAIN does not describe: for example, the access to LOB values,
which are stored separately from the base table, and access to parent or dependent
tables needed to enforce referential constraints.

The access paths shown for the example queries in this chapter are intended only
to illustrate those examples. If you execute the queries in this chapter on your
system, the access paths chosen can be different.

Steps to obtain PLAN_TABLE information: Use the following overall steps to
obtain information from EXPLAIN:

1. Have appropriate access to a plan table. To create the table, see “Creating
PLAN_TABLE”.

2. Populate the table with the information you want. For instructions, see
“Populating and maintaining a plan table” on page 796.

3. Select the information you want from the table. For instructions, see “Reordering
rows from a plan table” on page 797.

Creating PLAN_TABLE
Before you can use EXPLAIN, you must create a table called PLAN_TABLE to hold
the results of EXPLAIN. A copy of the statements needed to create the table are in

790 Administration Guide

the DB2 sample library, under the member name DSNTESC. (Unless you need the
information they provide, it is not necessary to create a function table or statement
table to use EXPLAIN.)

Figure 99 shows the format of a plan table. Table 111 on page 792 shows the
content of each column.

Your plan table can use many formats, but use the 51-column format because it
gives you the most information. If you alter an existing plan table to add new
columns, specify the columns as NOT NULL WITH DEFAULT, so that default values
are included for the rows already in the table. However, as you can see in
Figure 99, certain columns do allow nulls. Do not specify those columns as NOT
NULL WITH DEFAULT.

QUERYNO INTEGER NOT NULL PREFETCH CHAR(1) NOT NULL WITH DEFAULT
QBLOCKNO SMALLINT NOT NULL COLUMN_FN_EVAL CHAR(1) NOT NULL WITH DEFAULT
APPLNAME CHAR(8) NOT NULL MIXOPSEQ SMALLINT NOT NULL WITH DEFAULT
PROGNAME CHAR(8) NOT NULL ---------28 column format ---------
PLANNO SMALLINT NOT NULL VERSION VARCHAR(64) NOT NULL WITH DEFAULT
METHOD SMALLINT NOT NULL COLLID CHAR(18) NOT NULL WITH DEFAULT
CREATOR CHAR(8) NOT NULL ---------30 column format ---------
TNAME CHAR(18) NOT NULL ACCESS_DEGREE SMALLINT
TABNO SMALLINT NOT NULL ACCESS_PGROUP_ID SMALLINT
ACCESSTYPE CHAR(2) NOT NULL JOIN_DEGREE SMALLINT
MATCHCOLS SMALLINT NOT NULL JOIN_PGROUP_ID SMALLINT
ACCESSCREATOR CHAR(8) NOT NULL ---------34 column format ---------
ACCESSNAME CHAR(18) NOT NULL SORTC_PGROUP_ID SMALLINT
INDEXONLY CHAR(1) NOT NULL SORTN_PGROUP_ID SMALLINT
SORTN_UNIQ CHAR(1) NOT NULL PARALLELISM_MODE CHAR(1)
SORTN_JOIN CHAR(1) NOT NULL MERGE_JOIN_COLS SMALLINT
SORTN_ORDERBY CHAR(1) NOT NULL CORRELATION_NAME CHAR(18)
SORTN_GROUPBY CHAR(1) NOT NULL PAGE_RANGE CHAR(1) NOT NULL WITH DEFAULT
SORTC_UNIQ CHAR(1) NOT NULL JOIN_TYPE CHAR(1) NOT NULL WITH DEFAULT
SORTC_JOIN CHAR(1) NOT NULL GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT
SORTC_ORDERBY CHAR(1) NOT NULL IBM_SERVICE_DATA VARCHAR(254) NOT NULL WITH DEFAULT
SORTC_GROUPBY CHAR(1) NOT NULL --------43 column format ----------
TSLOCKMODE CHAR(3) NOT NULL WHEN_OPTIMIZE CHAR(1) NOT NULL WITH DEFAULT
TIMESTAMP CHAR(16) NOT NULL QBLOCK_TYPE CHAR(6) NOT NULL WITH DEFAULT
REMARKS VARCHAR(254) NOT NULL BIND_TIME TIMESTAMP NOT NULL WITH DEFAULT

---------25 column format --------- ------46 column format ------------
OPTHINT CHAR(8) NOT NULL WITH DEFAULT
HINT_USED CHAR(8) NOT NULL WITH DEFAULT
PRIMARY_ACCESSTYPE CHAR(1) NOT NULL WITH DEFAULT

-------49 column format------------
PARENT_QBLOCKNO SMALLINT NOT NULL WITH DEFAULT
TABLE_TYPE CHAR(1)

-------51 column format-----------

Figure 99. Format of PLAN_TABLE

Chapter 33. Using EXPLAIN to improve SQL performance 791

#
|

Table 111. Descriptions of columns in PLAN_TABLE

Column Name Description

QUERYNO A number intended to identify the statement being explained. For a row produced by
an EXPLAIN statement, specify the number in the QUERYNO clause. For a row
produced by non-EXPLAIN statements, specify the number using the QUERYNO
clause, which is an optional part of the SELECT, INSERT, UPDATE and DELETE
statement syntax. Otherwise, DB2 assigns a number based on the line number of the
SQL statement in the source program.

When the values of QUERYNO are based on the statement number in the source
program, values greater than 32767 are reported as 0. Hence, in a very long program,
the value is not guaranteed to be unique. If QUERYNO is not unique, the value of
TIMESTAMP is unique.

QBLOCKNO The position of the query in the statement being explained (1 for the outermost query,
2 for the next query, and so forth). For better performance, DB2 might merge a query
block into another query block. When that happens, the position number of the
merged query block will not be in QBLOCKNO.

APPLNAME The name of the application plan for the row. Applies only to embedded EXPLAIN
statements executed from a plan or to statements explained when binding a plan.
Blank if not applicable.

PROGNAME The name of the program or package containing the statement being explained.
Applies only to embedded EXPLAIN statements and to statements explained as the
result of binding a plan or package. Blank if not applicable.

PLANNO The number of the step in which the query indicated in QBLOCKNO was processed.
This column indicates the order in which the steps were executed.

METHOD A number (0, 1, 2, 3, or 4) that indicates the join method used for the step:

0 First table accessed, continuation of previous table accessed, or not used.

1 Nested loop join. For each row of the present composite table, matching rows
of a new table are found and joined.

2 Merge scan join. The present composite table and the new table are scanned
in the order of the join columns, and matching rows are joined.

3 Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a
quantified predicate, or an IN predicate. This step does not access a new
table.

4 Hybrid join. The current composite table is scanned in the order of the
join-column rows of the new table. The new table is accessed using list
prefetch.

CREATOR The creator of the new table accessed in this step, blank if METHOD is 3.

TNAME The name of a table, created or declared temporary table, materialized view, or
materialized table expresssion. The value is blank if METHOD is 3. The column can
also contain the name of a table in the form DSNWFQB(qblockno).
DSNWFQB(qblockno) is used to represent the intermediate result of a UNION ALL or
an outer join that is materialized. If a view is merged, the name of the view does not
appear.

A value of Q in TABLE_TYPE for the name of a view or nested table expresssion
indicates that the materialization was virtual and not actual. Materialization can be
virtual when the view or nested table expression definition contains a UNION ALL that
is not distributed.

TABNO Values are for IBM use only.

792 Administration Guide

#
#
#
#
#

#
#
#
#

Table 111. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

ACCESSTYPE The method of accessing the new table:
I By an index (identified in ACCESSCREATOR and ACCESSNAME)
I1 By a one-fetch index scan
N By an index scan when the matching predicate contains the IN keyword
R By a table space scan
M By a multiple index scan (followed by MX, MI, or MU)
MX By an index scan on the index named in ACCESSNAME
MI By an intersection of multiple indexes
MU By a union of multiple indexes
blank Not applicable to the current row

MATCHCOLS For ACCESSTYPE I, I1, N, or MX, the number of index keys used in an index scan;
otherwise, 0.

ACCESSCREATOR For ACCESSTYPE I, I1, N, or MX, the creator of the index; otherwise, blank.

ACCESSNAME For ACCESSTYPE I, I1, N, or MX, the name of the index; otherwise, blank.

INDEXONLY Whether access to an index alone is enough to carry out the step, or whether data too
must be accessed. Y=Yes; N=No. For exceptions, see “Is the query satisfied using
only the index? (INDEXONLY=Y)” on page 800.

SORTN_UNIQ Whether the new table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTN_JOIN Whether the new table is sorted for join method 2 or 4. Y=Yes; N=No.

SORTN_ORDERBY Whether the new table is sorted for ORDER BY. Y=Yes; N=No.

SORTN_GROUPBY Whether the new table is sorted for GROUP BY. Y=Yes; N=No.

SORTC_UNIQ Whether the composite table is sorted to remove duplicate rows. Y=Yes; N=No.

SORTC_JOIN Whether the composite table is sorted for join method 1, 2 or 4. Y=Yes; N=No.

SORTC_ORDERBY Whether the composite table is sorted for an ORDER BY clause or a quantified
predicate. Y=Yes; N=No.

SORTC_GROUPBY Whether the composite table is sorted for a GROUP BY clause. Y=Yes; N=No.

TSLOCKMODE An indication of the mode of lock to be acquired on either the new table, or its table
space or table space partitions. If the isolation can be determined at bind time, the
values are:
IS Intent share lock
IX Intent exclusive lock
S Share lock
U Update lock
X Exclusive lock
SIX Share with intent exclusive lock
N UR isolation; no lock
If the isolation cannot be determined at bind time, then the lock mode determined by
the isolation at run time is shown by the following values.
NS For UR isolation, no lock; for CS, RS, or RR, an S lock.
NIS For UR isolation, no lock; for CS, RS, or RR, an IS lock.
NSS For UR isolation, no lock; for CS or RS, an IS lock; for RR, an S lock.
SS For UR, CS, or RS isolation, an IS lock; for RR, an S lock.

The data in this column is right justified. For example, IX appears as a blank followed
by I followed by X. If the column contains a blank, then no lock is acquired.

TIMESTAMP Usually, the time at which the row is processed, to the last .01 second. If necessary,
DB2 adds .01 second to the value to ensure that rows for two successive queries
have different values.

REMARKS A field into which you can insert any character string of 254 or fewer characters.

PREFETCH Whether data pages are to be read in advance by prefetch. S = pure sequential
prefetch; L = prefetch through a page list; blank = unknown or no prefetch.

Chapter 33. Using EXPLAIN to improve SQL performance 793

Table 111. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

COLUMN_FN_EVAL When an SQL column function is evaluated. R = while the data is being read from the
table or index; S = while performing a sort to satisfy a GROUP BY clause; blank =
after data retrieval and after any sorts.

MIXOPSEQ The sequence number of a step in a multiple index operation.

1, 2, ... n For the steps of the multiple index procedure (ACCESSTYPE is MX,
MI, or MU.)

0 For any other rows (ACCESSTYPE is I, I1, M, N, R, or blank.)

VERSION The version identifier for the package. Applies only to an embedded EXPLAIN
statement executed from a package or to a statement that is explained when binding a
package. Blank if not applicable.

COLLID The collection ID for the package. Applies only to an embedded EXPLAIN statement
executed from a package or to a statement that is explained when binding a package.
Blank if not applicable.

Note: The following nine columns, from ACCESS_DEGREE through CORRELATION_NAME, contain the null value if
the plan or package was bound using a plan table with fewer than 43 columns. Otherwise, each of them can contain
null if the method it refers to does not apply.

ACCESS_DEGREE The number of parallel tasks or operations activated by a query. This value is
determined at bind time; the actual number of parallel operations used at execution
time could be different. This column contains 0 if there is a host variable.

ACCESS_PGROUP_ID The identifier of the parallel group for accessing the new table. A parallel group is a
set of consecutive operations, executed in parallel, that have the same number of
parallel tasks. This value is determined at bind time; it could change at execution time.

JOIN_DEGREE The number of parallel operations or tasks used in joining the composite table with the
new table. This value is determined at bind time and can be 0 if there is a host
variable. The actual number of parallel operations or tasks used at execution time
could be different.

JOIN_PGROUP_ID The identifier of the parallel group for joining the composite table with the new table.
This value is determined at bind time; it could change at execution time.

SORTC_PGROUP_ID The parallel group identifier for the parallel sort of the composite table.

SORTN_PGROUP_ID The parallel group identifier for the parallel sort of the new table.

PARALLELISM_MODE The kind of parallelism, if any, that is used at bind time:
I Query I/O parallelism
C Query CP parallelism
X Sysplex query parallelism

MERGE_JOIN_COLS The number of columns that are joined during a merge scan join (Method=2).

CORRELATION_NAME The correlation name of a table or view that is specified in the statement. If there is no
correlation name, then the column is blank.

PAGE_RANGE Whether the table qualifies for page range screening, so that plans scan only the
partitions that are needed. Y = Yes; blank = No.

JOIN_TYPE The type of join:
F FULL OUTER JOIN
L LEFT OUTER JOIN
S STAR JOIN
blank INNER JOIN or no join
RIGHT OUTER JOIN converts to a LEFT OUTER JOIN when you use it, so that
JOIN_TYPE contains L.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN. The column is blank if the
DB2 subsystem was not in a data sharing environment when EXPLAIN was executed.

IBM_SERVICE_DATA Values are for IBM use only.

794 Administration Guide

Table 111. Descriptions of columns in PLAN_TABLE (continued)

Column Name Description

WHEN_OPTIMIZE When the access path was determined:

blank At bind time, using a default filter factor for any host variables, parameter
markers, or special registers.

B At bind time, using a default filter factor for any host variables, parameter
markers, or special registers; however, the statement is reoptimized at run
time using input variable values for input host variables, parameter markers,
or special registers. The bind option REOPT(VARS) must be specified for
reoptimization to occur.

R At run time, using input variables for any host variables, parameter markers,
or special registers. The bind option REOPT(VARS) must be specified for this
to occur.

QBLOCK_TYPE For each query block, an indication of the type of SQL operation performed. For the
outermost query, this column identifies the statement type. Possible values:
SELECT SELECT
INSERT INSERT
UPDATE UPDATE
DELETE DELETE
SELUPD SELECT with FOR UPDATE OF
DELCUR DELETE WHERE CURRENT OF CURSOR
UPDCUR UPDATE WHERE CURRENT OF CURSOR
CORSUB Correlated subquery
NCOSUB Noncorrelated subquery
TABLEX Table expression
UNION UNION
UNIONA UNION ALL

BIND_TIME The time at which the plan or package for this statement or query block was bound.
For static SQL statements, this is a full-precision timestamp value. For dynamic SQL
statements, this is the value contained in the TIMESTAMP column of PLAN_TABLE
appended by 4 zeroes.

OPTHINT A string that you use to identify this row as an optimization hint for DB2. DB2 uses this
row as input when choosing an access path.

HINT_USED If DB2 used one of your optimization hints, it puts the identifier for that hint (the value
in OPTHINT) in this column.

PRIMARY_ACCESSTYPE Indicates whether direct row access will be attempted first:

D DB2 will try to use direct row access. If DB2 cannot use direct row access at
runtime, it uses the access path described in the ACCESSTYPE column of
PLAN_TABLE. See “Is direct row access possible?
(PRIMARY_ACCESSTYPE = D)” on page 801 for more information.

blank DB2 will not try to use direct row access.

PARENT_QBLOCKNO A number that indicates the QBLOCKNO of the parent query block.

TABLE_TYPE The type of new table:
F Table function
Q Temporary intermediate result table (not materialized)
T Table
W Work file
The value of the column is null if the query uses GROUP BY, ORDER BY, or
DISTINCT, which requires an implicit sort.

Chapter 33. Using EXPLAIN to improve SQL performance 795

||
||
||

#|

||
||
||
||
||
|
|

Populating and maintaining a plan table
For the two distinct ways to populate a plan table, see:

v “Executing the SQL statement EXPLAIN”

v “Binding with the option EXPLAIN(YES)”

When you populate the plan table through DB2’s EXPLAIN, any INSERT triggers on
the table are not activated. If you insert rows yourself, then those triggers are
activated.

For a variation on the first way, see “Executing EXPLAIN under QMF”.

For tips on maintaining a growing plan table, see “Maintaining a plan table” on
page 797.

Executing the SQL statement EXPLAIN
You can populate PLAN_TABLE by executing the SQL statement EXPLAIN. In the
statement, specify a single explainable SQL statement in the FOR clause.

You can execute EXPLAIN either statically from an application program, or
dynamically, using QMF or SPUFI. For instructions and for details of the
authorization you need on PLAN_TABLE, see DB2 SQL Reference.

Binding with the option EXPLAIN(YES)
You can populate a plan table when you bind or rebind a plan or package. Specify
the option EXPLAIN(YES). EXPLAIN obtains information about the access paths for
all explainable SQL statements in a package or the DBRMs of a plan. The
information appears in table package_owner.PLAN_TABLE or
plan_owner.PLAN_TABLE. For dynamically prepared SQL, the qualifier of
PLAN_TABLE is the current SQLID.

Performance considerations: EXPLAIN as a bind option should not be a
performance concern. The same processing for access path selection is performed,
regardless of whether you use EXPLAIN(YES) or EXPLAIN (NO). With
EXPLAIN(YES), there is only a small amount of overhead processing to put the
results in a plan table.

If a plan or package that was previously bound with EXPLAIN(YES) is automatically
rebound, the value of field EXPLAIN PROCESSING on installation panel DSNTIPO
determines whether EXPLAIN is run again during the automatic rebind. Again, there
is a small amount of overhead for inserting the results into a plan table.

EXPLAIN for remote binds: A remote requester that accesses DB2 can specify
EXPLAIN(YES) when binding a package at the DB2 server. The information
appears in a plan table at the server, not at the requester. If the requester does not
support the propagation of the option EXPLAIN(YES), rebind the package at the
requester with that option to obtain access path information. You cannot get
information about access paths for SQL statements that use private protocol.

Executing EXPLAIN under QMF
You can use QMF to display the results of EXPLAIN to the terminal. You can create
your own form to display the output or use QMF’s default form.

Use parameter markers for host variables: If you have host variables in a
predicate for an original query in a static application and if you are using QMF or
SPUFI to execute EXPLAIN for the query, in most cases, use parameter markers

796 Administration Guide

where you use host variables in the original query. If you a literal value instead, you
might see different access paths for your static and dynamic queries. For instance,
compare the following queries:

QMF Query Using Parameter QMF Query Using
Original Static SQL Marker Literal

DECLARE C1 EXPLAIN PLAN SET EXPLAIN PLAN SET
CURSOR FOR QUERYNO=1 FOR QUERYNO=1 FOR
SELECT * SELECT * SELECT *
FROM T1 FROM T1 FROM T1
WHERE C1 > HOST VAR. WHERE C1 > ? WHERE C1 > 10

Using the literal ’10’ would likely produce a different filter factor and maybe a
different access path from the original static SQL. (A filter factor is the proportion of
rows that remain after a predicate has ″filtered out″ the rows that do not satisfy it.
For more information on filter factors, see “Predicate filter factors” on page 723.)
The parameter marker behaves just like a host variable, in that the predicate is
assigned a default filter factor.

When to use a literal: If you know that the static plan or package was bound with
REOPT(VARS) and you have some idea of what is returned in the host variable, it
can be more accurate to include the literal in the QMF EXPLAIN. REOPT(VARS)
means that DB2 will replace the value of the host variable with the true value at run
time and then determine the access path. For more information about
REOPT(VARS) see “Using REOPT(VARS) to change the access path at run time”
on page 734.

Expect these differences: Even when using parameter markers, you could see
different access paths for static and dynamic queries. DB2 assumes that the value
that replaces a parameter marker has the same length and precision as the column
it is compared to. That assumption determines whether the predicate is indexable or
stage 1. However, if a host variable definition does not match the column definition,
then the predicate may become a stage 2 predicate and, hence, nonindexable.

The host variable definition fails to match the column definition if:

v The length of the host variable is greater than the length attribute of the column.

v The precision of the host variable is greater than that of the column.

v The data type of the host variable is not compatible with the data type of the
column. For example, you cannot use a host variable with data type DECIMAL
with a column of data type SMALLINT. But you can use a host variable with data
type SMALLINT with a column of data type INT or DECIMAL.

Maintaining a plan table
DB2 adds rows to PLAN_TABLE as you choose; it does not automatically delete
rows. To clear the table of obsolete rows, use DELETE, just as you would for
deleting rows from any table. You can also use DROP TABLE to drop a plan table
completely.

Reordering rows from a plan table
Several processes can insert rows into the same plan table. To understand access
paths, you must retrieve the rows for a particular query in an appropriate order.

Retrieving rows for a plan
The rows for a particular plan are identified by the value of APPLNAME. The
following query to a plan table returns the rows for all the explainable statements in
a plan in their logical order:

Chapter 33. Using EXPLAIN to improve SQL performance 797

SELECT * FROM JOE.PLAN_TABLE
WHERE APPLNAME = 'APPL1'
ORDER BY TIMESTAMP, QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

The result of the ORDER BY clause shows whether there are:
v Multiple QBLOCKNOs within a QUERYNO
v Multiple PLANNOs within a QBLOCKNO
v Multiple MIXOPSEQs within a PLANNO

All rows with the same non-zero value for QBLOCKNO and the same value for
QUERYNO relate to a step within the query. QBLOCKNOs are not necessarily
executed in the order shown in PLAN_TABLE. But within a QBLOCKNO, the
PLANNO column gives the substeps in the order they execute.

For each substep, the TNAME column identifies the table accessed. Sorts can be
shown as part of a table access or as a separate step.

What if QUERYNO=0? In a program with more than 32767 lines, all values of
QUERYNO greater than 32767 are reported as 0. For entries containing
QUERYNO=0, use the timestamp, which is guaranteed to be unique, to distinguish
individual statements.

Retrieving rows for a package
The rows for a particular package are identified by the values of PROGNAME,
COLLID, and VERSION. Those columns correspond to the following four-part
naming convention for packages:
LOCATION.COLLECTION.PACKAGE_ID.VERSION

COLLID gives the COLLECTION name, and PROGNAME gives the PACKAGE_ID.
The following query to a plan table return the rows for all the explainable
statements in a package in their logical order:
SELECT * FROM JOE.PLAN_TABLE

WHERE PROGNAME = 'PACK1' AND COLLID = 'COLL1' AND VERSION = 'PROD1'
ORDER BY QUERYNO, QBLOCKNO, PLANNO, MIXOPSEQ;

Asking questions about data access
When you examine your EXPLAIN results, try to answer the following questions:

v “Is access through an index? (ACCESSTYPE is I, I1, N or MX)” on page 799

v “Is access through more than one index? (ACCESSTYPE=M)” on page 799

v “How many columns of the index are used in matching? (MATCHCOLS=n)” on
page 800

v “Is the query satisfied using only the index? (INDEXONLY=Y)” on page 800

v “Is direct row access possible? (PRIMARY_ACCESSTYPE = D)” on page 801

v “Is a view or nested table expression materialized?” on page 803

v “Was a scan limited to certain partitions? (PAGE_RANGE=Y)” on page 803

v “What kind of prefetching is done? (PREFETCH = L, S, or blank)” on page 803

v “Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X)”
on page 804

v “Are sorts performed?” on page 804

v “Is a subquery transformed into a join?” on page 805

v “When are column functions evaluated? (COLUMN_FN_EVAL)” on page 805

798 Administration Guide

As explained in this section, they can be answered in terms of values in columns of
a plan table.

Is access through an index? (ACCESSTYPE is I, I1, N or MX)
If the column ACCESSTYPE in the plan table has one of those values, DB2 uses
an index to access the table named in column TNAME. The columns
ACCESSCREATOR and ACCESSNAME identify the index. For a description of
methods of using indexes, see “Index access paths” on page 807.

Is access through more than one index? (ACCESSTYPE=M)
Those values indicate that DB2 uses a set of indexes to access a single table. A set
of rows in the plan table contain information about the multiple index access. The
rows are numbered in column MIXOPSEQ in the order of execution of steps in the
multiple index access. (If you retrieve the rows in order by MIXOPSEQ, the result is
similar to postfix arithmetic notation.)

The examples in Figure 100 and Figure 101 on page 800 have these indexes: IX1
on T(C1) and IX2 on T(C2). DB2 processes the query in the following steps:

1. Retrieve all the qualifying record identifiers (RIDs) where C1=1, using index IX1.

2. Retrieve all the qualifying RIDs where C2=1, using index IX2. The intersection
of those lists is the final set of RIDs.

3. Access the data pages needed to retrieve the qualified rows using the final RID
list.

The same index can be used more than once in a multiple index access, because
more than one predicate could be matching, as in Figure 101 on page 800.

SELECT * FROM T
WHERE C1 = 1 AND C2 = 1;

TNAME ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

PREFETCH MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX2 Y 2

T MI 0 N 3

Figure 100. PLAN_TABLE output for example with intersection (AND) operator

Chapter 33. Using EXPLAIN to improve SQL performance 799

DB2 processes the query in the following steps:

1. Retrieve all RIDs where C1 is between 100 and 199, using index IX1.

2. Retrieve all RIDs where C1 is between 500 and 599, again using IX1. The
union of those lists is the final set of RIDs.

3. Retrieve the qualified rows using the final RID list.

How many columns of the index are used in matching?
(MATCHCOLS=n)

If MATCHCOLS is 0, the access method is called a nonmatching index scan. All the
index keys and their RIDs are read.

If MATCHCOLS is greater than 0, the access method is called a matching index
scan: the query uses predicates that match the index columns.

In general, the matching predicates on the leading index columns are equal or IN
predicates. The predicate that matches the final index column can be an equal, IN,
or range predicate (<, <=, >, >=, LIKE, or BETWEEN).

The following example illustrates matching predicates:
SELECT * FROM EMP

WHERE JOBCODE = '5' AND SALARY > 60000 AND LOCATION = 'CA';

INDEX XEMP5 on (JOBCODE, LOCATION, SALARY, AGE);

The index XEMP5 is the chosen access path for this query, with MATCHCOLS = 3.
Two equal predicates are on the first two columns and a range predicate is on the
third column. Though the index has four columns in the index, only three of them
can be considered matching columns.

Is the query satisfied using only the index? (INDEXONLY=Y)
In this case, the method is called index-only access. For a SELECT operation, all
the columns needed for the query can be found in the index and DB2 does not
access the table. For an UPDATE or DELETE operation, only the index is required
to read the selected row.

Index-only access to data is not possible for any step that uses list prefetch, which
is described under “What kind of prefetching is done? (PREFETCH = L, S, or
blank)” on page 803. Index-only access is not possible when returning
varying-length data in the result set or a VARCHAR column has a LIKE predicate,
unless the VARCHAR FROM INDEX field of installation panel DSNTIP4 is set to

SELECT * FROM T
WHERE C1 BETWEEN 100 AND 199 OR

C1 BETWEEN 500 AND 599;

TNAME ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

PREFETCH MIXOP-
SEQ

T M 0 N L 0

T MX 1 IX1 Y 1

T MX 1 IX1 Y 2

T MU 0 N 3

Figure 101. PLAN_TABLE output for example with union (OR) operator

800 Administration Guide

YES and plan or packages have been rebound to pick up the change. See Part 2 of
DB2 Installation Guide for more information.

If access is by more than one index, INDEXONLY is Y for a step with access type
MX, because the data pages are not actually accessed until all the steps for
intersection (MI) or union (MU) take place.

When an SQL application uses index-only access for a ROWID column, the
application claims the table space or table space partition. As a result, contention
may occur between the SQL application and a utility that drains the table space or
partition. Index-only access to a table for a ROWID column is not possible if the
associated table space or partition is in an incompatible restrictive state. For
example, an SQL application can make a read claim on the table space only if the
restrictive state allows readers.

Is direct row access possible? (PRIMARY_ACCESSTYPE = D)
If an application selects a row from a table that contains a ROWID column, the row
ID value implicitly contains the location of the row. If you use that row ID value in
the search condition of subsequent SELECTs, DELETEs, or UPDATEs, DB2 might
be able to navigate directly to the row. This access method is called direct row
access.

Direct row access is very fast, because DB2 does not need to use the index or a
table space scan to find the row. Direct row access can be used on any table that
has a ROWID column.

To use direct row access, you first select the values of a row into host variables.
The value that is selected from the ROWID column contains the location of that
row. Later, when you perform queries that access that row, you include the row ID
value in the search condition. If DB2 determines that it can use direct row access, it
uses the row ID value to navigate directly to the row.

Which predicates qualify for direct row access?
For a query to qualify for direct row access, the search condition must be a Boolean
term stage 1 predicate that fits one of these descriptions:

1. A simple Boolean term predicate of the form COL=noncolumn expression,
where COL has the ROWID data type and noncolumn expression contains a
row ID

2. A simple Boolean term predicate of the form COL IN list, where COL has the
ROWID data type and the values in list are row IDs, and an index is defined on
COL

3. A compound Boolean term that combines several simple predicates using the
AND operator, and one of the simple predicates fits description 1 or 2

However, just because a query qualifies for direct row access does not mean that
that access path is always chosen. If DB2 determines that another access path is
better, direct row access is not chosen.

Examples: In the following predicate example, ID is a ROWID column in table T1.
A unique index exists on that ID column. The host variables are of the ROWID type.
WHERE ID IN (:hv_rowid1,:hv_rowid2,:hv_rowid3)

The following predicate also qualifies for direct row access:
WHERE ID = ROWID(X'F0DFD230E3C0D80D81C201AA0A280100000000000203')

Chapter 33. Using EXPLAIN to improve SQL performance 801

Searching for propagated rows: If rows are propagated from one table to another,
do not expect to use the same row ID value from the source table to search for the
same row in the target table, or vice versa. This does not work when direct row
access is the access path chosen. For example, assume that the host variable
below contains a row ID from SOURCE:
SELECT * FROM TARGET

WHERE ID = :hv_rowid

Because the row ID location is not the same as in the source table, DB2 will most
likely not find that row. Search on another column to retrieve the row you want.

Reverting to ACCESSTYPE
Although DB2 might plan to use direct row access, circumstances can cause DB2
to not use direct row access at run time. DB2 remembers the location of the row as
of the time it is accessed. However, that row can change locations (such as after a
REORG) between the first and second time it is accessed, which means that DB2
cannot use direct row access to find the row on the second access attempt. Instead
of using direct row access, DB2 uses the access path that is shown in the
ACCESSTYPE column of PLAN_TABLE.

If the predicate you are using to do direct row access is not indexable and if DB2 is
unable to use direct row access, then DB2 uses a table space scan to find the row.
This can have a profound impact on the performance of applications that rely on
direct row access. Write your applications to handle the possibility that direct row
access might not be used. Some options are to:

v Ensure that your application does not try to remember ROWID columns across
reorganizations of the table space.

When your application commits, it releases its claim on the table space; it is
possible that a REORG can run and move the row, which disables direct row
access. Plan your commit processing accordingly; use the returned row ID value
before committing, or re-select the row ID value after a commit is issued.

If you are storing ROWID columns from another table, update those values after
the table with the ROWID column is reorganized.

v Create an index on the ROWID column, so that DB2 can use the index if direct
row access is disabled.

v Supplement the ROWID column predicate with another predicate that enables
DB2 to use an existing index on the table. For example, after reading a row, an
application might perform the following update:
EXEC SQL UPDATE EMP
SET SALARY = :hv_salary + 1200
WHERE EMP_ROWID = :hv_emp_rowid
AND EMPNO = :hv_empno;

If an index exists on EMPNO, DB2 can use index access if direct access fails.
The additional predicate ensures DB2 does not revert to a table space scan.

Using direct row access and other access methods
Parallelism: Direct row access and parallelism are mutually exclusive. If a query
qualifies for both direct row access and parallelism, direct row access is used. If
direct row access fails, DB2 does not revert to parallelism; instead it reverts to the
backup access type (as designated by column ACCESSTYPE in the
PLAN_TABLE). This might result in a table space scan. To avoid a table space scan
in case direct row access fails, add an indexed column to the predicate.

RID list processing: Direct row access and RID list processing are mutually
exclusive. If a query qualifies for both direct row access and RID list processing,

802 Administration Guide

direct row access is used. If direct row access fails, DB2 does not revert to RID list
processing; instead it reverts to the backup access type.

Is a view or nested table expression materialized?
When the column TNAME names a view or nested table expression and column
TABLE_TYPE contains a W, it indicates that the view or nested table expresssion is
materialized. Materialization means that the data rows selected by the view or
nested table expression are put into a work file to be processed like a table. (For a
more detailed description of materialization, see “Processing for views and nested
table expressions” on page 829.)

Was a scan limited to certain partitions? (PAGE_RANGE=Y)
DB2 can limit a scan of data in a partitioned table space to one or more partitions.
The method is called a limited partition scan. The query must provide a predicate
on the first key column of the partitioning index. Only the first key column is
significant for limiting the range of the partition scan.

A limited partition scan can be combined with other access methods. For example,
consider the following query:
SELECT .. FROM T

WHERE (C1 BETWEEN '2002' AND '3280'
OR C1 BETWEEN '6000' AND '8000')
AND C2 = '6';

Assume that table T has a partitioned index on column C1 and that values of C1
between 2002 and 3280 all appear in partitions 3 and 4 and the values between
6000 and 8000 appear in partitions 8 and 9. Assume also that T has another index
on column C2. DB2 could choose any of these access methods:

v A matching index scan on column C1. The scan reads index values and data
only from partitions 3, 4, 8, and 9. (PAGE_RANGE=N)

v A matching index scan on column C2. (DB2 might choose that if few rows have
C2=6.) The matching index scan reads all RIDs for C2=6 from the index on C2
and corresponding data pages from partitions 3, 4, 8, and 9. (PAGE_RANGE=Y)

v A table space scan on T. DB2 avoids reading data pages from any partitions
except 3, 4, 8 and 9. (PAGE_RANGE=Y)

Joins: Limited partition scan can be used for each table accessed in a join.

Restrictions: Limited partition scan is not supported when host variables or
parameter markers are used on the first key of the primary index. This is because
the qualified partition range based on such a predicate is unknown at bind time. If
you think you can benefit from limited partition scan but you have host variables or
parameter markers, consider binding with REOPT(VARS).

If you have predicates using an OR operator and one of the predicates refers to a
column of the partitioning index that is not the first key column of the index, then
DB2 does not use limited partition scan.

What kind of prefetching is done? (PREFETCH = L, S, or blank)
Prefetching is a method of determining in advance that a set of data pages is about
to be used and then reading the entire set into a buffer with a single asynchronous
I/O operation. If the value of PREFETCH is:

Chapter 33. Using EXPLAIN to improve SQL performance 803

#
#
#

v S, the method is called sequential prefetch. The data pages that are read in
advance are sequential. A table space scan always uses sequential prefetch. An
index scan might not use it. For a more complete description, see “Sequential
prefetch (PREFETCH=S)” on page 824.

v L, the method is called list prefetch. One or more indexes are used to select the
RIDs for a list of data pages to be read in advance; the pages need not be
sequential. Usually, the RIDs are sorted. The exception is the case of a hybrid
join (described under “Hybrid join (METHOD=4)” on page 818) when the value of
column SORTN_JOIN is N. For a more complete description, see “List prefetch
(PREFETCH=L)” on page 825.

v Blank, prefetching is not chosen as an access method. However, depending on
the pattern of the page access, data can be prefetched at execution time through
a process called sequential detection. For a description of that process, see
“Sequential detection at execution time” on page 826.

Is data accessed or processed in parallel? (PARALLELISM_MODE is I,
C, or X)

Parallel processing applies only to read-only queries.

If mode is: DB2 plans to use:
I Parallel I/O operations
C Parallel CP operations
X Sysplex query parallelism

Non-null values in columns ACCESS_DEGREE and JOIN_DEGREE indicate to
what degree DB2 plans to use parallel operations. At execution time, however, DB2
might not actually use parallelism, or it might use fewer operations in parallel than
were originally planned. For a more complete description , see “Chapter 34. Parallel
operations and query performance” on page 841. For more information about
Sysplex query parallelism, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

Are sorts performed?
SORTN_JOIN and SORTC_JOIN: SORTN_JOIN indicates that the new table of a
join is sorted before the join. (For hybrid join, this is a sort of the RID list.) When
SORTN_JOIN and SORTC_JOIN are both ’Y’, two sorts are performed for the join.
The sorts for joins are indicated on the same row as the new table access.

METHOD 3 sorts: These are used for ORDER BY, GROUP BY, SELECT
DISTINCT, UNION, or a quantified predicate. A quantified predicate is ’col = ANY
(fullselect)’ or ’col = SOME (fullselect)’ . They are indicated on a separate row. A
single row of the plan table can indicate two sorts of a composite table, but only
one sort is actually done.

SORTC_UNIQ and SORTC_ORDERBY: SORTC_UNIQ indicates a sort to remove
duplicates, as might be needed by a SELECT statement with DISTINCT or UNION.
SORTC_ORDERBY usually indicates a sort for an ORDER BY clause. But
SORTC_UNIQ and SORTC_ORDERBY also indicate when the results of a
noncorrelated subquery are sorted, both to remove duplicates and to order the
results. One sort does both the removal and the ordering.

804 Administration Guide

Is a subquery transformed into a join?
For better access paths, DB2 sometimes transforms subqueries into joins, as
described in “Subquery transformation into join” on page 741. A plan table shows
that a subquery is transformed into a join by the value in column QBLOCKNO.

v If the subquery is not transformed into a join, that means it is executed in a
separate operation, and its value of QBLOCKNO is greater than the value for the
outer query.

v If the subquery is transformed into a join, it and the outer query have the same
value of QBLOCKNO. A join is also indicated by a value of 1, 2, or 4 in column
METHOD.

When are column functions evaluated? (COLUMN_FN_EVAL)
When the column functions are evaluated is based on the access path chosen for
the SQL statement.

v If the ACCESSTYPE column is I1, then a MAX or MIN function can be evaluated
by one access of the index named in ACCESSNAME.

v For other values of ACCESSTYPE, the COLUMN_FN_EVAL column tells when
DB2 is evaluating the column functions.

Value Functions are evaluated ...
S While performing a sort to satisfy a GROUP BY clause
R While the data is being read from the table or index
blank After data retrieval and after any sorts

Generally, values of R and S are considered better for performance than a blank.

Use variance and standard deviation with care: The VARIANCE and STDDEV
functions are always evaluated late (that is, COLUMN_FN_EVAL is blank). This
causes other functions in the same query block to be evaluated late as well. For
example, in the following query, the sum function is evaluated later than it would be
if the variance function was not present:
SELECT SUM(C1), VARIANCE(C1) FROM T1;

Interpreting access to a single table
The following sections describe different access paths that values in a plan table
can indicate, along with suggestions for supplying better access paths for DB2 to
choose from.
v Table space scans (ACCESSTYPE=R PREFETCH=S)
v “Overview of index access” on page 806
v “Index access paths” on page 807
v “UPDATE using an index” on page 812

Table space scans (ACCESSTYPE=R PREFETCH=S)
Table space scan is most often used for one of the following reasons:

v Access is through a created temporary table. (Index access is not possible for
created temporary tables.)

v A matching index scan is not possible because an index is not available, or no
predicates match the index columns.

v A high percentage of the rows in the table is returned. In this case, an index is
not really useful because most rows need to be read anyway.

v The indexes that have matching predicates have low cluster ratios and are
therefore efficient only for small amounts of data.

Chapter 33. Using EXPLAIN to improve SQL performance 805

Assume that table T has no index on C1. The following is an example that uses a
table space scan:
SELECT * FROM T WHERE C1 = VALUE;

In this case, at least every row in T must be examined to determine whether the
value of C1 matches the given value.

Table space scans of nonsegmented table spaces
DB2 reads and examines every page in the table space, regardless of which table
the page belongs to. It might also read pages that have been left as free space and
space not yet reclaimed after deleting data.

Table space scans of segmented table spaces
If the table space is segmented, DB2 first determines which segments need to be
read. It then reads only the segments in the table space that contain rows of T. If
the prefetch quantity, which is determined by the size of your buffer pool, is greater
than the SEGSIZE and if the segments for T are not contiguous, DB2 might read
unnecessary pages. Use a SEGSIZE value that is as large as possible, consistent
with the size of the data. A large SEGSIZE value is best to maintain clustering of
data rows. For very small tables, specify a SEGSIZE value that is equal to the
number of pages required for the table.

Recommendation for SEGSIZE value: Table 112 summarizes the
recommendations for SEGSIZE, depending on how large the table is.

Table 112. Recommendations for SEGSIZE

Number of pages SEGSIZE recommendation

≤ 28 4 to 28

> 28 < 128 pages 32

≥ 128 pages 64

Table space scans of partitioned table spaces
Partitioned table spaces are nonsegmented. A table space scan on a partitioned
table space is more efficient than on a nonpartitioned table space. DB2 takes
advantage of the partitions by a limited partition scan, as described under “Was a
scan limited to certain partitions? (PAGE_RANGE=Y)” on page 803.

Table space scans and sequential prefetch
Regardless of the type of table space, DB2 plans to use sequential prefetch for a
table space scan. For a segmented table space, DB2 might not actually use
sequential prefetch at execution time if it can determine that fewer than four data
pages need to be accessed. For guidance on monitoring sequential prefetch, see
“Sequential prefetch (PREFETCH=S)” on page 824.

If you do not want to use sequential prefetch for a particular query, consider adding
to it the clause OPTIMIZE FOR 1 ROW.

Overview of index access
Indexes can provide efficient access to data. In fact, that is the only purpose of
nonunique indexes. Unique indexes have the additional purpose of ensuring that
key values are unique.

Using indexes to avoid sorts
As well as providing selective access to data, indexes can also order data,
sometimes eliminating the need for sorting. Some sorts can be avoided if index

806 Administration Guide

keys are in the order needed by ORDER BY, GROUP BY, a join operation, or
DISTINCT in a column function. In other cases, as when list prefetch is used, the
index does not provide useful ordering, and the selected data might have to be
sorted.

When it is absolutely necessary to prevent a sort, consider creating an index on the
column or columns necessary to provide that ordering. Consider also using the
clause OPTIMIZE FOR 1 ROW to discourage DB2 from choosing a sort for the
access path.

Consider the following query:
SELECT C1,C2,C3 FROM T

WHERE C1 > 1
ORDER BY C1 OPTIMIZE FOR 1 ROW;

An ascending index on C1 or an index on (C1,C2,C3) could eliminate a sort. (For
more information on OPTIMIZE FOR n ROWS, see “Minimizing overhead for
retrieving few rows: OPTIMIZE FOR n ROWS” on page 747.)

Not all sorts are inefficient. For example, if the index that provides ordering is not
an efficient one and many rows qualify, it is possible that using another access path
to retrieve and then sort the data could be more efficient than the inefficient,
ordering index.

Costs of indexes
Before you begin creating indexes, consider carefully their costs:

v Indexes require storage space.

v Each index requires an index space and a data set, and operating system
restrictions exist on the number of open data sets.

v Indexes must be changed to reflect every insert or delete operation on the base
table. If an update operation updates a column that is in the index, then the index
must also be changed. The time required by these operations increases
accordingly.

v Indexes can be built automatically when loading data, but this takes time. They
must be recovered or rebuilt if the underlying table space is recovered, which
might also be time-consuming.

Recommendation: In reviewing the access paths described in the next section,
consider indexes as part of your database design, See “Part 2. Designing a
database: advanced topics” on page 27 for details about database design in
general. For a query with a performance problem, ask yourself:

v Would adding a column to an index allow the query to use index-only access?

v Do you need a new index?

v Is your choice of clustering index correct?

Index access paths
DB2 uses the following index access paths:

v “Matching index scan (MATCHCOLS>0)” on page 808

v “Index screening” on page 808

v “Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)” on page 809

v “IN-list index scan (ACCESSTYPE=N)” on page 809

v “Multiple index access (ACCESSTYPE is M, MX, MI, or MU)” on page 809

v “One-fetch access (ACCESSTYPE=I1)” on page 811

Chapter 33. Using EXPLAIN to improve SQL performance 807

v “Index-only access (INDEXONLY=Y)” on page 811

v “Equal unique index (MATCHCOLS=number of index columns)” on page 811

Matching index scan (MATCHCOLS>0)
In a matching index scan, predicates are specified on either the leading or all of the
index key columns. These predicates provide filtering; only specific index pages and
data pages need to be accessed. If the degree of filtering is high, the matching
index scan is efficient.

In the general case, the rules for determining the number of matching columns are
simple, although there are a few exceptions.

v Look at the index columns from leading to trailing. For each index column,
search for an indexable boolean term predicate on that column. (See “Properties
of predicates” on page 714 for a definition of boolean term.) If such a predicate is
found, then it can be used as a matching predicate.

Column MATCHCOLS in a plan table shows how many of the index columns are
matched by predicates.

v If no matching predicate is found for a column, the search for matching
predicates stops.

v If a matching predicate is a range predicate, then there can be no more matching
columns. For example, in the matching index scan example that follows, the
range predicate C2>1 prevents the search for additional matching columns.

v For star joins, a missing key predicate does not cause termination of matching
columns that are to be used on the fact table index.

The exceptional cases are:

v At most one IN-list predicate can be a matching predicate on an index.

v For MX accesses and index access with list prefetch, IN-list predicates cannot be
used as matching predicates.

v Join predicates cannot qualify as matching predicates when doing a merge join
(METHOD=2). For example, T1.C1=T2.C1 cannot be a matching predicate when
doing a merge join, although any local predicates, such as C1=’5’ can be used.

Join predicates can be used as matching predicates on the inner table of a
nested loop join or hybrid join.

Matching index scan example: Assume there is an index on T(C1,C2,C3,C4):
SELECT * FROM T

WHERE C1=1 AND C2>1
AND C3=1;

Two matching columns occur in this example. The first one comes from the
predicate C1=1, and the second one comes from C2>1. The range predicate on C2
prevents C3 from becoming a matching column.

Index screening
In index screening, predicates are specified on index key columns but are not part
of the matching columns. Those predicates improve the index access by reducing
the number of rows that qualify while searching the index. For example, with an
index on T(C1,C2,C3,C4) in the following SQL statement, C3>0 and C4=2 are index
screening predicates.
SELECT * FROM T

WHERE C1 = 1
AND C3 > 0 AND C4 = 2
AND C5 = 8;

808 Administration Guide

The predicates can be applied on the index, but they are not matching predicates.
C5=8 is not an index screening predicate, and it must be evaluated when data is
retrieved. The value of MATCHCOLS in the plan table is 1.

EXPLAIN does not directly tell when an index is screened; however, if
MATCHCOLS is less than the number of index key columns, it indicates that index
screening is possible.

Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)
In a nonmatching index scan no matching columns are in the index. Hence, all the
index keys must be examined.

Because a nonmatching index usually provides no filtering, only a few cases
provide an efficient access path. The following situations are examples:

v When index screening predicates exist

In that case, not all of the data pages are accessed.

v When the clause OPTIMIZE FOR n ROWS is used

That clause can sometimes favor a nonmatching index, especially if the index
gives the ordering of the ORDER BY clause.

v When more than one table exists in a nonsegmented table space

In that case, a table space scan reads irrelevant rows. By accessing the rows
through the nonmatching index, fewer rows are read.

IN-list index scan (ACCESSTYPE=N)
An IN-list index scan is a special case of the matching index scan, in which a single
indexable IN predicate is used as a matching equal predicate.

You can regard the IN-list index scan as a series of matching index scans with the
values in the IN predicate being used for each matching index scan. The following
example has an index on (C1,C2,C3,C4) and might use an IN-list index scan:
SELECT * FROM T

WHERE C1=1 AND C2 IN (1,2,3)
AND C3>0 AND C4<100;

The plan table shows MATCHCOLS = 3 and ACCESSTYPE = N. The IN-list scan is
performed as the following three matching index scans:
(C1=1,C2=1,C3>0), (C1=1,C2=2,C3>0), (C1=1,C2=3,C3>0)

Parallelism is supported for queries that involve IN-list index access. These queries
used to run sequentially in previous releases of DB2, although parallelism could
have been used when the IN-list access was for the inner table of a parallel group.
Now, in environments in which parallelism is enabled, you can see a reduction in
elapsed time for queries that involve IN-list index access for the outer table of a
parallel group.

Multiple index access (ACCESSTYPE is M, MX, MI, or MU)
Multiple index access uses more than one index to access a table. It is a good
access path when:
v No single index provides efficient access.
v A combination of index accesses provides efficient access.

RID lists are constructed for each of the indexes involved. The unions or
intersections of the RID lists produce a final list of qualified RIDs that is used to
retrieve the result rows, using list prefetch. You can consider multiple index access

Chapter 33. Using EXPLAIN to improve SQL performance 809

|
|
|
|
|
|

as an extension to list prefetch with more complex RID retrieval operations in its
first phase. The complex operators are union and intersection.

DB2 chooses multiple index access for the following query:
SELECT * FROM EMP

WHERE (AGE = 34) OR
(AGE = 40 AND JOB = 'MANAGER');

For this query:
v EMP is a table with columns EMPNO, EMPNAME, DEPT, JOB, AGE, and SAL.
v EMPX1 is an index on EMP with key column AGE.
v EMPX2 is an index on EMP with key column JOB.

The plan table contains a sequence of rows describing the access. For this query,
ACCESSTYPE uses the following values:

Value Meaning
M Start of multiple index access processing
MX Indexes are to be scanned for later union or intersection
MI An intersection (AND) is performed
MU A union (OR) is performed

The following steps relate to the previous query and the values shown for the plan
table in Figure 102:

1. Index EMPX1, with matching predicate AGE= 34, provides a set of candidates
for the result of the query. The value of MIXOPSEQ is 1.

2. Index EMPX1, with matching predicate AGE = 40, also provides a set of
candidates for the result of the query. The value of MIXOPSEQ is 2.

3. Index EMPX2, with matching predicate JOB=’MANAGER’, also provides a set of
candidates for the result of the query. The value of MIXOPSEQ is 3.

4. The first intersection (AND) is done, and the value of MIXOPSEQ is 4. This MI
removes the two previous candidate lists (produced by MIXOPSEQs 2 and 3)
by intersecting them to form an intermediate candidate list, IR1, which is not
shown in PLAN_TABLE.

5. The last step, where the value MIXOPSEQ is 5, is a union (OR) of the two
remaining candidate lists, which are IR1 and the candidate list produced by
MIXOPSEQ 1. This final union gives the result for the query.

PLAN-
NO TNAME

ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME PREFETCH

MIXOP-
SEQ

1 EMP M 0 L 0

1 EMP MX 1 EMPX1 1

1 EMP MX 1 EMPX1 2

1 EMP MI 0 3

1 EMP MX 1 EMPX2 4

1 EMP MU 0 5

Figure 102. Plan table output for a query that uses multiple indexes. Depending on the filter
factors of the predicates, the access steps can appear in a different order.

810 Administration Guide

In this example, the steps in the multiple index access follow the physical sequence
of the predicates in the query. This is not always the case. The multiple index steps
are arranged in an order that uses RID pool storage most efficiently and for the
least amount of time.

One-fetch access (ACCESSTYPE=I1)
One-fetch index access requires retrieving only one row. It is the best possible
access path and is chosen whenever it is available. It applies to a statement with a
MIN or MAX column function: the order of the index allows a single row to give the
result of the function.

One-fetch index access is a possible access path when:

v There is only one table in the query.

v There is only one column function (either MIN or MAX).

v Either no predicate or all predicates are matching predicates for the index.

v There is no GROUP BY.

v Column functions are on:

– The first index column if there are no predicates

– The last matching column of the index if the last matching predicate is a
range type

– The next index column (after the last matching column) if all matching
predicates are equal type

Queries using one-fetch index access: Assuming that an index exists on
T(C1,C2,C3), the following queries use one-fetch index scan:
SELECT MIN(C1) FROM T;
SELECT MIN(C1) FROM T WHERE C1>5;
SELECT MIN(C1) FROM T WHERE C1>5 AND C1<10;
SELECT MIN(C2) FROM T WHERE C1=5;
SELECT MAX(C1) FROM T;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2>5 AND C2<10;
SELECT MAX(C2) FROM T WHERE C1=5 AND C2 BETWEEN 5 AND 10;

Index-only access (INDEXONLY=Y)
With index-only access, the access path does not require any data pages because
the access information is available in the index. Conversely, when an SQL
statement requests a column that is not in the index, updates any column in the
table, or deletes a row, DB2 has to access the associated data pages. Because the
index is almost always smaller than the table itself, an index-only access path
usually processes the data efficiently.

With an index on T(C1,C2), the following queries can use index-only access:
SELECT C1, C2 FROM T WHERE C1 > 0;
SELECT C1, C2 FROM T;
SELECT COUNT(*) FROM T WHERE C1 = 1;

Equal unique index (MATCHCOLS=number of index columns)
An index that is fully matched and unique, and in which all matching predicates are
equal-predicates, is called an equal unique index case. This case guarantees that
only one row is retrieved. If there is no one-fetch index access available, this is
considered the most efficient access over all other indexes that are not equal
unique. (The uniqueness of an index is determined by whether or not it was defined
as unique.)

Chapter 33. Using EXPLAIN to improve SQL performance 811

|
|

|
|
|
|
|
|
|
|

|

Sometimes DB2 can determine that an index that is not fully matching is actually an
equal unique index case. Assume the following case:

Unique Index1: (C1, C2)
Unique Index2: (C2, C1, C3)

SELECT C3 FROM T
WHERE C1 = 1 AND

C2 = 5;

Index1 is a fully matching equal unique index. However, Index2 is also an equal
unique index even though it is not fully matching. Index2 is the better choice
because, in addition to being equal and unique, it also provides index-only access.

UPDATE using an index
If no index key columns are updated, you can use an index while performing an
UPDATE operation.

To use a matching index scan to update an index in which its key columns are
being updated, the following conditions must be met:

v Each updated key column must have a corresponding predicate of the form
″index_key_column = constant″ or ″index_key_column IS NULL″.

v If a view is involved, WITH CHECK OPTION must not be specified.

With list prefetch or multiple index access, any index or indexes can be used in an
UPDATE operation. Of course, to be chosen, those access paths must provide
efficient access to the data

Interpreting access to two or more tables (join)
A join operation retrieves rows from more than one table and combines them. The
operation specifies at least two tables, but they need not be distinct.

This section begins with “Definitions and examples” on page 813, below, and
continues with descriptions of the methods of joining that can be indicated in a plan
table:
v “Nested loop join (METHOD=1)” on page 815
v “Merge scan join (METHOD=2)” on page 816
v “Hybrid join (METHOD=4)” on page 818
v “Star schema (star join)” on page 820

812 Administration Guide

Definitions and examples

A join operation can involve more than two tables. But the operation is carried out in
a series of steps. Each step joins only two tables.

Definitions: The composite table (or outer table) in a join operation is the table
remaining from the previous step, or it is the first table accessed in the first step. (In
the first step, then, the composite table is composed of only one table.) The new
table (or inner table) in a join operation is the table newly accessed in the step.

Example: Figure 103 shows a subset of columns in a plan table. In four steps,
DB2:

1. Accesses the first table (METHOD=0), named TJ (TNAME), which becomes the
composite table in step 2.

2. Joins the new table TK to TJ, forming a new composite table.

3. Sorts the new table TL (SORTN_JOIN=Y) and the composite table
(SORTC_JOIN=Y), and then joins the two sorted tables.

4. Sorts the final composite table (TNAME is blank) into the desired order
(SORTC_ORDERBY=Y).

Composite

Composite

(Method 1)
Nested

loop
join

TJ TK New

NewWork
File

(Method 2)
Merge scan

join

(Sort)

Result

TL

METHOD TNAME ACCESS-
TYPE

MATCH-
COLS

ACCESS-
NAME

INDEX-
ONLY

TSLOCK-
MODE

0 TJ I 1 TJX1 N IS

1 TK I 1 TKX1 N IS

2 TL I 0 TLX1 Y S

3 0 N

SORTN
UNIQ

SORTN
JOIN

SORTN
ORDERBY

SORTN
GROUPBY

SORTC
UNIQ

SORTC
JOIN

SORTC
ORDERBY

SORTC
GROUPBY

N N N N N N N N

N N N N N N N N

N Y N N N Y N N

N N N N N N Y N

Figure 103. Join methods as displayed in a plan table

Chapter 33. Using EXPLAIN to improve SQL performance 813

Definitions: A join operation typically matches a row of one table with a row of
another on the basis of a join condition. For example, the condition might specify
that the value in column A of one table equals the value of column X in the other
table (WHERE T1.A = T2.X).

Two kinds of joins differ in what they do with rows in one table that do not match on
the join condition with any row in the other table:

v An inner join discards rows of either table that do not match any row of the other
table.

v An outer join keeps unmatched rows of one or the other table, or of both. A row
in the composite table that results from an unmatched row is filled out with null
values. Outer joins are distinguished by which unmatched rows they keep.

Table 113. Join types and kept unmatched rows

This outer join: Keeps unmatched rows from:

Left outer join The composite (outer) table

Right outer join The new (inner) table

Full outer join Both tables

Example: Figure 104 shows an outer join with a subset of the values it produces in
a plan table for the applicable rows. Column JOIN_TYPE identifies the type of outer
join with one of these values:
v F for FULL OUTER JOIN
v L for LEFT OUTER JOIN
v Blank for INNER JOIN or no join

At execution, DB2 converts every right outer join to a left outer join; thus
JOIN_TYPE never identifies a right outer join specifically.

Materialization with outer join: Sometimes DB2 has to materialize a result table
when an outer join is used in conjunction with other joins, views, or nested table
expressions. You can tell when this happens by looking at the TABLE_TYPE and
TNAME columns of the plan table. When materialization occurs, TABLE_TYPE

EXPLAIN PLAN SET QUERYNO = 10 FOR
SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN

(SELECT PART,
COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM

QUERYNO QBLOCKNO PLANNO TNAME JOIN_TYPE

10 1 1 PROJECTS

10 1 2 TEMP L

10 2 1 PRODUCTS

10 2 2 PARTS F

Figure 104. Plan table output for an example with outer joins

814 Administration Guide

|

contains a W, and TNAME shows the name of the materialized table as
DSNWFQB(xx), where xx is the number of the query block (QBLOCKNO) that
produced the work file.

Nested loop join (METHOD=1)
This section describes this common join method.

Method of joining
DB2 scans the composite (outer) table. For each row in that table that qualifies (by
satisfying the predicates on that table), DB2 searches for matching rows of the new
(inner) table. It concatenates any it finds with the current row of the composite
table. If no rows match the current row, then:

For an inner join, DB2 discards the current row.
For an outer join, DB2 concatenates a row of null values.

Stage 1 and stage 2 predicates eliminate unqualified rows during the join. (For an
explanation of those types of predicate, see “Stage 1 and stage 2 predicates” on
page 716.) DB2 can scan either table using any of the available access methods,
including table space scan.

Performance considerations
The nested loop join repetitively scans the inner table. That is, DB2 scans the outer
table once, and scans the inner table as many times as the number of qualifying
rows in the outer table. Hence, the nested loop join is usually the most efficient join
method when the values of the join column passed to the inner table are in
sequence and the index on the join column of the inner table is clustered, or the
number of rows retrieved in the inner table through the index is small.

When it is used
Nested loop join is often used if:

v The outer table is small.

v Predicates with small filter factors reduce the number of qualifying rows in the
outer table.

10 10
10
10
10
10
10

10

10
10
10

3

1

2
6
1

SELECT A, B, X, Y
FROM (SELECT FROM OUTERT WHERE A=10)
LEFT JOIN INNERT ON B=X;

5
3
2
1
2
9
7

A
B
C
D
E
F
G

Left outer join using nested loop join

Table
Columns

OUTERT INNERT Composite

3
1
2
2
6
1

3
1
2
2
- -
1

B
D
C
E

D

A B X Y A B X Y

Scan the outer table.
For each qualifying row find all matching rows

in the inner table, by a
table space or index scan.

The nested loop join
produces this result,
preserving the values
of the outer table.

Figure 105. Nested Loop Join for a Left Outer Join

Chapter 33. Using EXPLAIN to improve SQL performance 815

|

|
|
|

|
|
|

v An efficient, highly clustered index exists on the join columns of the inner table.

v The number of data pages accessed in the inner table is small.

Example: left outer join: Figure 105 on page 815 illustrates a nested loop for a
left outer join. The outer join preserves the unmatched row in OUTERT with values
A=10 and B=6. The same join method for an inner join differs only in discarding that
row.

Example: one-row table priority: For a case like the example below, with a
unique index on T1.C2, DB2 detects that T1 has only one row that satisfies the
search condition. DB2 makes T1 the first table in a nested loop join.
SELECT * FROM T1, T2

WHERE T1.C1 = T2.C1 AND
T1.C2 = 5;

Example: Cartesian join with small tables first: A Cartesian join is a form of
nested loop join in which there are no join predicates between the two tables. DB2
usually avoids a Cartesian join, but sometimes it is the most efficient method, as in
the example below. The query uses three tables: T1 has 2 rows, T2 has 3 rows,
and T3 has 10 million rows.
SELECT * FROM T1, T2, T3

WHERE T1.C1 = T3.C1 AND
T2.C2 = T3.C2 AND
T3.C3 = 5;

Join predicates are between T1 and T3 and between T2 and T3. There is no join
predicate between T1 and T2.

Assume that 5 million rows of T3 have the value C3=5. Processing time is large if
T3 is the outer table of the join and tables T1 and T2 are accessed for each of 5
million rows.

But if all rows from T1 and T2 are joined, without a join predicate, the 5 million rows
are accessed only six times, once for each row in the Cartesian join of T1 and T2. It
is difficult to say which access path is the most efficient. DB2 evaluates the different
options and could decide to access the tables in the sequence T1, T2, T3.

Sorting the composite table: Your plan table could show a nested loop join that
includes a sort on the composite table. DB2 might sort the composite table (the
outer table in Figure 105) if the following conditions exist:

v The join columns in the composite table and the new table are not in the same
sequence.

v The join column of the composite table has no index.

v The index is poorly clustered.

Nested loop join with a sorted composite table uses sequential detection efficiently
to prefetch data pages of the new table, reducing the number of synchronous I/O
operations and the elapsed time.

Merge scan join (METHOD=2)
Merge scan join is also known as merge join or sort merge join. For this method,
there must be one or more predicates of the form TABLE1.COL1=TABLE2.COL2, where
the two columns have the same data type and length attribute.

816 Administration Guide

Method of joining
Figure 106 illustrates a merge scan join.

DB2 scans both tables in the order of the join columns. If no efficient indexes on
the join columns provide the order, DB2 might sort the outer table, the inner table,
or both. The inner table is put into a work file; the outer table is put into a work file
only if it must be sorted. When a row of the outer table matches a row of the inner
table, DB2 returns the combined rows.

DB2 then reads another row of the inner table that might match the same row of
the outer table and continues reading rows of the inner table as long as there is a
match. When there is no longer a match, DB2 reads another row of the outer table.

v If that row has the same value in the join column, DB2 reads again the matching
group of records from the inner table. Thus, a group of duplicate records in the
inner table is scanned as many times as there are matching records in the outer
table.

v If the outer row has a new value in the join column, DB2 searches ahead in the
inner table. It can find any of the following rows:

– Unmatched rows in the inner table, with lower values in the join column.

– A new matching inner row. DB2 then starts the process again.

– An inner row with a higher value of the join column. Now the row of the outer
table is unmatched. DB2 searches ahead in the outer table, and can find any
of the following rows:

- Unmatched rows in the outer table.

- A new matching outer row. DB2 then starts the process again.

- An outer row with a higher value of the join column. Now the row of the
inner table is unmatched, and DB2 resumes searching the inner table.

10 10
10
10
10
10

10
10
10
10

1
1
2
3
6

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND B=X;

1
2
2
3
5
7
9

D
C
E
B
A
G
F

Merge scan join

Table
Columns

OUTER INNER Composite

1
1
2
2
3

1
1
2
2
3

D
D
C
E

A B X Y A B X Y

Scan the outer table.
For each row, scan a group of matching

rows in the inner table.
The merge scan join
produces this result.

Condense and sort the
outer table, or access it
through an index on
column B.

Condense and sort the
inner table.

B

Figure 106. Merge scan join

Chapter 33. Using EXPLAIN to improve SQL performance 817

If DB2 finds an unmatched row:

For an inner join, DB2 discards the row.

For a left outer join, DB2 discards the row if it comes from the inner table and
keeps it if it comes from the outer table.

For a full outer join, DB2 keeps the row.

When DB2 keeps an unmatched row from a table, it concatenates a set of null
values as if that matched from the other table. A merge scan join must be used for
a full outer join.

Performance considerations
A full outer join by this method uses all predicates in the ON clause to match the
two tables and reads every row at the time of the join. Inner and left outer joins use
only stage 1 predicates in the ON clause to match the tables. If your tables match
on more than one column, it is generally more efficient to put all the predicates for
the matches in the ON clause, rather than to leave some of them in the WHERE
clause.

For an inner join, DB2 can derive extra predicates for the inner table at bind time
and apply them to the sorted outer table to be used at run time. The predicates can
reduce the size of the work file needed for the inner table.

If DB2 has used an efficient index on the join columns, to retrieve the rows of the
inner table, those rows are already in sequence. DB2 puts the data directly into the
work file without sorting the inner table, which reduces the elapsed time.

When it is used
A merge scan join is often used if:

v The qualifying rows of the inner and outer table are large, and the join predicate
does not provide much filtering; that is, in a many-to-many join.

v The tables are large and have no indexes with matching columns.

v Few columns are selected on inner tables. This is the case when a DB2 sort is
used. The fewer the columns to be sorted, the more efficient the sort is.

Hybrid join (METHOD=4)
The method applies only to an inner join and requires an index on the join column
of the inner table.

818 Administration Guide

Method of joining
The method requires obtaining RIDs in the order needed to use list prefetch. The
steps are shown in Figure 107. In that example, both the outer table (OUTER) and
the inner table (INNER) have indexes on the join columns.

In the successive steps, DB2:

�1� Scans the outer table (OUTER).

�2� Joins the outer tables with RIDs from the index on the inner table. The
result is the phase 1 intermediate table. The index of the inner table is scanned
for every row of the outer table.

SELECT A, B, X, Y
FROM OUTER, INNER
WHERE A=10 AND X=B;

Index Index

OUTER

INNER
RIDsX Y

X=B

10
10
10
10
10

1
1
2
3
6

1
2
2
3
5
7
9

Davis
Jones
Smith
Brown
Blake
Stone
Meyer

P5
P2
P7
P4
P1
P6
P3

List prefetch

Intermediate table (phase 1)

P5
P5P5

P2 P2
P7 P7
P4 P4

10
10
10
10
10

1
1

2
2

3

OUTER
data

OUTER
data

INNER
RIDs

INNER
RIDs

RID List

RID list

SORT

P2
P4
P5
P7Intermediate table (phase 2)

10
10
10
10
10

2
3
1
1
2

P2
P4
P5
P5
P7

Composite table

A B X Y

10
10
10
10
10

2
3
1
1
2

2
3
1

2
1

Jones

Jones

Brown
Davis
Davis

A B
1

2 4

5

3

Figure 107. Hybrid join (SORTN_JOIN=’Y’)

Chapter 33. Using EXPLAIN to improve SQL performance 819

�3� Sorts the data in the outer table and the RIDs, creating a sorted RID list and
the phase 2 intermediate table. The sort is indicated by a value of Y in column
SORTN_JOIN of the plan table. If the index on the inner table is a clustering
index, DB2 can skip this sort; the value in SORTN_JOIN is then N.

�4� Retrieves the data from the inner table, using list prefetch.

�5� Concatenates the data from the inner table and the phase 2 intermediate
table to create the final composite table.

Possible results from EXPLAIN for hybrid join
Column Value Explanation

METHOD=’4’ A hybrid join was used.

SORTC_JOIN=’Y’ The composite table was sorted.

SORTN_JOIN=’Y’ The intermediate table was sorted in the order of
inner table RIDs. A non-clustered index accessed
the inner table RIDs.

SORTN_JOIN=’N’ The intermediate table RIDs were not sorted. A
clustered index retrieved the inner table RIDs, and
the RIDs were already well ordered.

PREFETCH=’L’ Pages were read using list prefetch.

Performance considerations
Hybrid join uses list prefetch more efficiently than nested loop join, especially if
there are indexes on the join predicate with low cluster ratios. It also processes
duplicates more efficiently because the inner table is scanned only once for each
set of duplicate values in the join column of the outer table.

If the index on the inner table is highly clustered, there is no need to sort the
intermediate table (SORTN_JOIN=N). The intermediate table is placed in a table in
memory rather than in a work file.

When it is used
Hybrid join is often used if:

v A nonclustered index or indexes are used on the join columns of the inner table.

v The outer table has duplicate qualifying rows.

Star schema (star join)
A star schema or star join is a logical database design that is included in decision
support applications. A star schema is composed of a fact table and a number of
dimension tables (or dimension snowflakes) that are connected to it. Normally, a
dimension table contains several columns that are given an unique ID column,
which is used in the fact table instead of all the values.

You can think of the fact table, which is much larger than the dimension tables, as
being in the center surrounded by dimension tables; the result resembles a star
formation. The following diagram illustrates the star formation:

820 Administration Guide

Example
For an example of a star schema, consider the following scenario. A star schema is
composed of a fact table for sales, with dimension tables connected to it for time,
products, and geographic locations. The time table has an ID for each month, its
quarter, and the year. The product table has an ID for each product item and its
class and its inventory. The geographic location table has an ID for each city and its
country.

In this scenario, the sales table contains three columns with IDs from the dimension
tables for time, product, and location instead of three columns for time, three
columns for products, and two columns for location. Thus, the size of the fact table
is greatly reduced. In addition, if you needed to change an item, you would do it
once in a dimension table instead of several times for each instance of the item in
the fact table.

You can create even more complex star schemas by breaking a dimension table
into a fact table with its own dimension tables. The fact table would be connected to
the main fact table.

Fact table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Dimension
table

Figure 108. Star schema with a fact table and dimension tables

Chapter 33. Using EXPLAIN to improve SQL performance 821

When it is used
To access the data in a star schema, you write SELECT statements that include
join operations between the fact table and the dimension tables; no join operations
exist between dimension tables. When the query meets the following conditions,
that query is a star schema:

v The query references at least two dimensions.

v All join predicates are between the fact table and the dimension tables, or within
tables of the same dimension.

v All join predicates between the fact table and dimension tables are equi-join
predicates.

v All join predicates between the fact table and dimension tables are Boolean term
predicates. For more information, see “Boolean term (BT) predicates” on
page 716.

v No correlated subqueries cross dimensions.

v No single fact table column is joined to columns of different dimension tables in
join predicates. For example, fact table column F1 cannot be joined to column D1
of dimension table T1 and also joined to column D2 of dimension table T2.

v After DB2 simplifies join operations, no outer join operations exist. For more
information, see “When DB2 simplifies join operations” on page 728.

v The data type and length of both sides of a join predicate are the same.

v The value of subsystem parameter STARJOIN is 1, or the cardinality of the fact
table to the largest dimension table meets the requirements specified by the
value of the subsystem parameter. The values of STARJOIN and cardinality
requirements are:

-1 Star join is disabled. This is the default.

1 Star join is enabled. The one table with the largest cardinality is the fact
table. However, if there is more than one table with this cardinality, star
join is not enabled.

0 Star join is enabled if the cardinality of the fact table is at least 25 times
the cardinality of the largest dimension that is a base table that is joined
to the fact table.

n Star join is enabled if the cardinality of the fact table is at least n times
the cardinality of the largest dimension that is a base table that is joined
to the fact table, where 2≤n≤32768.

v The number of tables in the star schema query block, including the fact table,
dimensions tables, and snowflake tables, meet the requirements specified by the
value of subsystem parameter SJTABLES. The value of SJTABLES is considered
only if the subsystem parameter STARJOIN qualifies the query for star join. The
values of SJTABLES are:

0 Star join is considered if the query block has 10 or more tables.
This is the default.

1, 2, or 3 Star join is always considered.

4 to 255 Star join is considered if the query block has at least the
specified number of tables.

226 and greater
Star join will never be considered.

Star join, which can reduce bind time significantly, does not provide optimal
performance in all cases. Performance of star join depends on a number of

822 Administration Guide

|
|
|
|

||

||
|
|

||
|
|

||
|
|

|
#
#
#
#

##
#

##

##
#

#
#

#
#

factors such as the available indexes on the fact table, the cluster ratio of the
indexes, and the selectivity of rows through local and join predicates. Follow
these general guidelines for setting the value of SJTABLES:

– If you have star schema queries with less than 10 tables and you want to
make the star join method applicable to all qualified queries, set the value of
SJTABLES to a low number, such as 5.

– If you have some star schema queries that are not necessarily suitable for
star join but want to use star join for relatively large queries, use the default.
The star join method will be considered for all qualified queries that have 10
or more tables.

– If you have star schema queries but, in general, do not want to use star join,
consider setting SJTABLES to a higher number, such as 15, if you want to
drastically cut the bind time for large queries and avoid a potential bind time
SQL return code -101 for large qualified queries.

For recommendations on indexes for star schemas, see “Creating indexes for
efficient star schemas” on page 752.

Examples: query with three dimension tables: Suppose you have a store in
San Jose and want information about sales of audio equipment from that store in
2000. For this example, you want to join the following tables:

v A fact table for SALES (S)

v A dimension table for TIME (T) with columns for an ID, month, quarter, and year

v A dimension table for geographic LOCATION (L) with columns for an ID, city,
region, and country

v A dimension table for PRODUCT (P) with columns for an ID, product item, class,
and inventory

For another example, suppose you want to use the same SALES (S), TIME (T),
PRODUCT (P), and LOCATION (L) tables for a similar query and index; however,

You could write the following query to join the tables:
SELECT *
FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID AND
S.PRODUCT = P.ID AND
S.LOCATION = L.ID AND
T.YEAR = 2000 AND
P.CLASS = 'SAN JOSE';

You would use the following index:
CREATE INDEX XSALES_TPL ON SALES (TIME, PRODUCT, LOCATION);

Your EXPLAIN output looks like the following table;

QUERYNO QBLOCKNO METHOD TNAME JOIN
TYPE

SORTN
JOIN

1 1 0 TIME S

1 1 1 PRODUCT S Y

1 1 1 LOCATION S Y

1 1 1 SALES S

Figure 109. Plan table output for a star join example with TIME, PRODUCT, and LOCATION

Chapter 33. Using EXPLAIN to improve SQL performance 823

#

#
#
#
#
#
#
#

#

#

#

######
#
#
#

######

######

######

######
#
#
#
#

#
#
#

#
#
#

#
#
#
#

#
#
#
#

#
#

for this example the index does not include the TIME dimension. A query doesn’t
have to involve all dimensions. In this example, the star join is performed on one
query block at stage 1 and a star join is performed on another query block at stage
2.

Interpreting data prefetch
Prefetch is a mechanism for reading a set of pages, usually 32, into the buffer pool
with only one asynchronous I/O operation. Prefetch can allow substantial savings in
both processor cycles and I/O costs. To achieve those savings, monitor the use of
prefetch.

A plan table can indicate the use of two kinds of prefetch:

v “Sequential prefetch (PREFETCH=S)”

v “List prefetch (PREFETCH=L)” on page 825

If DB2 does not choose prefetch at bind time, it can sometimes use it at execution
time nevertheless. The method is described in “Sequential detection at execution
time” on page 826.

Sequential prefetch (PREFETCH=S)
Sequential prefetch reads a sequential set of pages. The maximum number of
pages read by a request issued from your application program is determined by the
size of the buffer pool used. For each buffer pool size (4 KB, 8 KB, 16 KB, and 32

You could write the following query to join the tables:
SELECT *
FROM SALES S, TIME T, PRODUCT P, LOCATION L
WHERE S.TIME = T.ID AND
S.PRODUCT = P.ID AND
S.LOCATION = L.ID AND
T.YEAR = 2000 AND
P.CLASS = 'AUDIO';

You would use the following index:
CREATE INDEX XSALES_TPL ON SALES (PRODUCT, LOCATION);

Your EXPLAIN output looks like the following table;

QUERYNO QBLOCKNO METHOD TNAME JOIN
TYPE

SORTN
JOIN

1 1 0 TIME S

1 1 2 DSNWFQB(02) S (Note 1) Y

1 2 0 PRODUCT S (Note 2)

1 2 1 LOCATION S (Note 2)

1 2 1 SALES S (Note 2)

Notes to Figure 110:
1. This star join is handled at stage 2; the tables in this query block are joined with

a merge scan join (METHOD = 2).

2. This star join is handled at stage 1; the tables in this query block are joined with
a nested loop join (METHOD = 1).

Figure 110. Plan table output for a star join example with PRODUCT and LOCATION

824 Administration Guide

KB), Table 114 shows the number pages read by prefetch for each asynchronous
I/O.

Table 114. The number of pages read by prefetch, by buffer pool size

Buffer pool size Number of buffers
Pages read by prefetch (for each
asynchronous I/O)

4 KB <=223 buffers 8 pages

224-999 buffers 16 pages

1000+ buffers 32 pages

8 KB <=112 buffers 4 pages

113-499 buffers 8 pages

500+ buffers 16 pages

16 KB <=56 buffers 2 pages

57-249 buffers 4 pages

250+ buffers 8 pages

32 KB <=16 buffers 0 pages (prefetch disabled)

17-99 buffers 2 pages

100+ buffers 4 pages

For certain utilities (LOAD, REORG, RECOVER), the prefetch quantity can be twice
as much.

When it is used: Sequential prefetch is generally used for a table space scan.

For an index scan that accesses 8 or more consecutive data pages, DB2 requests
sequential prefetch at bind time. The index must have a cluster ratio of 80% or
higher. Both data pages and index pages are prefetched.

List prefetch (PREFETCH=L)
List prefetch reads a set of data pages determined by a list of RIDs taken from an
index. The data pages need not be contiguous. The maximum number of pages
that can be retrieved in a single list prefetch is 32 (64 for utilities).

List prefetch can be used in conjunction with either single or multiple index access.

The access method
List prefetch uses the following three steps:

1. RID retrieval: A list of RIDs for needed data pages is found by matching index
scans of one or more indexes.

2. RID sort: The list of RIDs is sorted in ascending order by page number.

3. Data retrieval: The needed data pages are prefetched in order using the sorted
RID list.

List prefetch does not preserve the data ordering given by the index. Because the
RIDs are sorted in page number order before accessing the data, the data is not
retrieved in order by any column. If the data must be ordered for an ORDER BY
clause or any other reason, it requires an additional sort.

In a hybrid join, if the index is highly clustered, the page numbers might not be
sorted before accessing the data.

Chapter 33. Using EXPLAIN to improve SQL performance 825

List prefetch can be used with most matching predicates for an index scan. IN-list
predicates are the exception; they cannot be the matching predicates when list
prefetch is used.

When it is used
List prefetch is used:

v Usually with a single index that has a cluster ratio lower than 80%

v Sometimes on indexes with a high cluster ratio, if the estimated amount of data
to be accessed is too small to make sequential prefetch efficient, but large
enough to require more than one regular read

v Always to access data by multiple index access

v Always to access data from the inner table during a hybrid join

Bind time and execution time thresholds
DB2 does not consider list prefetch if the estimated number of RIDs to be
processed would take more than 50% of the RID pool when the query is executed.
You can change the size of the RID pool in the field RID POOL SIZE on installation
panel DSNTIPC. The maximum size of a RID pool is 1000MB. The maximum size
of a single RID list is approximately 16 million RIDs. For information on calculating
RID pool size, see “Increasing RID pool size” on page 574.

During execution, DB2 ends list prefetching if more than 25% of the rows in the
table (with a minimum of 4075) must be accessed. Record IFCID 0125 in the
performance trace, mapped by macro DSNDQW01, indicates whether list prefetch
ended.

When list prefetch ends, the query continues processing by a method that depends
on the current access path.

v For access through a single index or through the union of RID lists from two
indexes, processing continues by a table space scan.

v For index access before forming an intersection of RID lists, processing
continues with the next step of multiple index access. If no step remains and no
RID list has been accumulated, processing continues by a table space scan.

While forming an intersection of RID lists, if any list has 32 or fewer RIDs,
intersection stops and the list of 32 or fewer RIDs is used to access the data.

Sequential detection at execution time
If DB2 does not choose prefetch at bind time, it can sometimes use it at execution
time nevertheless. The method is called sequential detection.

When it is used
DB2 can use sequential detection for both index leaf pages and data pages. It is
most commonly used on the inner table of a nested loop join, if the data is
accessed sequentially.

If a table is accessed repeatedly using the same statement (for example, DELETE
in a do-while loop), the data or index leaf pages of the table can be accessed
sequentially. This is common in a batch processing environment. Sequential
detection can then be used if access is through:
v SELECT or FETCH statements
v UPDATE and DELETE statements
v INSERT statements when existing data pages are accessed sequentially

826 Administration Guide

DB2 can use sequential detection if it did not choose sequential prefetch at bind
time because of an inaccurate estimate of the number of pages to be accessed.

Sequential detection is not used for an SQL statement that is subject to referential
constraints.

How to tell whether it was used
A plan table does not indicate sequential detection, which is not determined until
run time. You can determine whether sequential detection was used from record
IFCID 0003 in the accounting trace or record IFCID 0006 in the performance trace.

How to tell if it might be used
The pattern of accessing a page is tracked when the application scans DB2 data
through an index. Tracking is done to detect situations where the access pattern
that develops is sequential or nearly sequential.

The most recent 8 pages are tracked. A page is considered page-sequential if it is
within P/2 advancing pages of the current page, where P is the prefetch quantity. P
is usually 32.

If a page is page-sequential, DB2 determines further if data access is sequential or
nearly sequential. Data access is declared sequential if more than 4 out of the last
8 pages are page-sequential; this is also true for index-only access. The tracking is
continuous, allowing access to slip into and out of data access sequential.

When data access sequential is first declared, which is called initial data access
sequential, three page ranges are calculated as follows:

v Let A be the page being requested. RUN1 is defined as the page range of length
P/2 pages starting at A.

v Let B be page A + P/2. RUN2 is defined as the page range of length P/2 pages
starting at B.

v Let C be page B + P/2. RUN3 is defined as the page range of length P pages
starting at C.

For example, assume page A is 10, the following figure illustrates the page ranges
that DB2 calculates.

For initial data access sequential, prefetch is requested starting at page A for P
pages (RUN1 and RUN2). The prefetch quantity is always P pages.

For subsequent page requests where the page is 1) page sequential and 2) data
access sequential is still in effect, prefetch is requested as follows:

v If the desired page is in RUN1, then no prefetch is triggered because it was
already triggered when data access sequential was first declared.

A B C

RUN1 RUN2 RUN3

Page #

P=32 pages

10 26 42

16 16 32

Figure 111. Initial page ranges to determine when to prefetch

Chapter 33. Using EXPLAIN to improve SQL performance 827

v If the desired page is in RUN2, then prefetch for RUN3 is triggered and RUN2
becomes RUN1, RUN3 becomes RUN2, and RUN3 becomes the page range
starting at C+P for a length of P pages.

If a data access pattern develops such that data access sequential is no longer in
effect and, thereafter, a new pattern develops that is sequential as described above,
then initial data access sequential is declared again and handled accordingly.

Because, at bind time, the number of pages to be accessed can only be estimated,
sequential detection acts as a safety net and is employed when the data is being
accessed sequentially.

In extreme situations, when certain buffer pool thresholds are reached, sequential
prefetch can be disabled. See “Buffer pool thresholds” on page 555 for a description
of these thresholds.

Determining sort activity
DB2 can use two general types of sorts that DB2 can use when accessing data.
One is a sort of data rows; the other is a sort of row identifiers (RIDs) in a RID list.

Sorts of data
After you run EXPLAIN, DB2 sorts are indicated in PLAN_TABLE. The sorts can be
either sorts of the composite table or the new table. If a single row of PLAN_TABLE
has a ’Y’ in more than one of the sort composite columns, then one sort
accomplishes two things. (DB2 will not perform two sorts when two ’Y’s are in the
same row.) For instance, if both SORTC_ORDERBY and SORTC_UNIQ are ’Y’ in
one row of PLAN_TABLE, then a single sort puts the rows in order and removes
any duplicate rows as well.

The only reason DB2 sorts the new table is for join processing, which is indicated
by SORTN_JOIN.

Sorts for group by and order by
These sorts are indicated by SORTC_ORDERBY, and SORTC_GROUPBY in
PLAN_TABLE. If there is both a GROUP BY clause and an ORDER BY clause, and
if every item in the ORDER-BY list is in the GROUP-BY list, then only one sort is
performed, which is marked as SORTC_ORDERBY.

The performance of the sort by the GROUP BY clause is improved when the query
accesses a single table and when the GROUP BY column has no index.

Sorts to remove duplicates
This type of sort is used to process a query with SELECT DISTINCT, with a set
function such as COUNT(DISTINCT COL1), or to remove duplicates in UNION
processing. It is indicated by SORTC_UNIQ in PLAN_TABLE.

Sorts used in join processing
Before joining two tables, it is often necessary to first sort either one or both of
them. For hybrid join (METHOD 4) and nested loop join (METHOD 1), the
composite table can be sorted to make the join more efficient. For merge join
(METHOD 2), both the composite table and new table need to be sorted unless an
index is used for accessing these tables that gives the correct order already. The
sorts needed for join processing are indicated by SORTN_JOIN and SORTC_JOIN
in the PLAN_TABLE.

828 Administration Guide

Sorts needed for subquery processing
When a noncorrelated IN or NOT IN subquery is present in the query, the results of
the subquery are sorted and put into a work file for later reference by the parent
query. The results of the subquery are sorted because this allows the parent query
to be more efficient when processing the IN or NOT IN predicate. Duplicates are not
needed in the work file, and are removed. Noncorrelated subqueries used with
=ANY or =ALL, or NOT=ANY or NOT=ALL also need the same type of sort as IN or
NOT IN subqueries. When a sort for a noncorrelated subquery is performed, you
see both SORTC_ORDERBY and SORTC_UNIQUE in PLAN_TABLE. This is
because DB2 removes the duplicates and performs the sort.

SORTN_GROUPBY, SORTN_ORDERBY, and SORTN_UNIQ are not currently used
by DB2.

Sorts of RIDs
To perform list prefetch, DB2 sorts RIDs into ascending page number order. This
sort is very fast and is done totally in memory. A RID sort is usually not indicated in
the PLAN_TABLE, but a RID sort normally is performed whenever list prefetch is
used. The only exception to this rule is when a hybrid join is performed and a
single, highly clustered index is used on the inner table. In this case SORTN_JOIN
is ’N’, indicating that the RID list for the inner table was not sorted.

The effect of sorts on OPEN CURSOR
The type of sort processing required by the cursor affects the amount of time it can
take for DB2 to process the OPEN CURSOR statement. This section outlines the
effect of sorts and parallelism on OPEN CURSOR.

Without parallelism:

v If no sorts are required, then OPEN CURSOR does not access any data. It is at
the first fetch that data is returned.

v If a sort is required, then the OPEN CURSOR causes the materialized result
table to be produced. Control returns to the application after the result table is
materialized. If a cursor that requires a sort is closed and reopened, the sort is
performed again.

v If there is a RID sort, but no data sort, then it is not until the first row is fetched
that the RID list is built from the index and the first data record is returned.
Subsequent fetches access the RID pool to access the next data record.

With parallelism:

v At OPEN CURSOR, parallelism is asynchronously started, regardless of whether
a sort is required. Control returns to the application immediately after the
parallelism work is started.

v If there is a RID sort, but no data sort, then parallelism is not started until the first
fetch. This works the same way as with no parallelism.

Processing for views and nested table expressions
This section describes how DB2 processes views and nested table expressions. A
nested table expression (which is called table expression in this description) is the
specification of a subquery in the FROM clause of an SQL SELECT statement. The
processing of table expressions is similar to a view. Two methods are used to
satisfy your queries that reference views or table expressions:
v Merge
v Materialization

Chapter 33. Using EXPLAIN to improve SQL performance 829

You can determine the methods that are used by executing EXPLAIN for the
statement that contains the view or nested table expression. In addition, you can
use EXPLAIN to determine when UNION operators are used and how DB2 might
eliminate unnecessary subselects to improve the performance of a query.

Merge
The merge process is more efficient than materialization, as described in
“Performance of merge versus materialization” on page 835. In the merge process,
the statement that references the view or table expression is combined with the
fullselect that defined the view or table expression. This combination creates a
logically equivalent statement. This equivalent statement is executed against the
database.

Consider the following statements, one of which defines a view, the other of which
references the view:

View-defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC21,VC32) AS SELECT VC1,VC21
SELECT C1,C2,C3 FROM T1 FROM VIEW1
WHERE C1 > C3; WHERE VC1 IN (A,B,C);

The fullselect of the view-defining statement can be merged with the
view-referencing statement to yield the following logically equivalent statement:

Merged statement:

SELECT C1,C2 FROM T1
WHERE C1 > C3 AND C1 IN (A,B,C);

Here is another example of when a view and table expression can be merged:
SELECT * FROM V1 X

LEFT JOIN
(SELECT * FROM T2) Y ON X.C1=Y.C1

LEFT JOIN T3 Z ON X.C1=Z.C1;

Merged statement:

SELECT * FROM V1 X
LEFT JOIN

T2 ON X.C1 = T2.C1
LEFT JOIN T3 Z ON X.C1 = Z.C1;

Materialization
Views and table expressions cannot always be merged. Look at the following
statements:

View defining statement: View referencing statement:

CREATE VIEW VIEW1 (VC1,VC2) AS SELECT MAX(VC1)
SELECT SUM(C1),C2 FROM T1 FROM VIEW1;
GROUP BY C2;

Column VC1 occurs as the argument of a column function in the view referencing
statement. The values of VC1, as defined by the view-defining fullselect, are the
result of applying the column function SUM(C1) to groups after grouping the base
table T1 by column C2. No equivalent single SQL SELECT statement can be
executed against the base table T1 to achieve the intended result. There is no way
to specify that column functions should be applied successively.

830 Administration Guide

|
|
|

|
|
|
|
|
|

Two steps of materialization
In the previous example, DB2 performs materialization of the view or table
expression, which is a two step process.

1. The fullselect that defines the view or table expression is executed against the
database, and the results are placed in a temporary copy of a result table.

2. The statement that references the view or table expression is then executed
against the temporary copy of the result table to obtain the intended result.

Whether materialization is needed depends upon the attributes of the referencing
statement, or logically equivalent referencing statement from a prior merge, and the
attributes of the fullselect that defines the view or table expression.

When views or table expressions are materialized
In general, DB2 uses materialization to satisfy a reference to a view or table
expression when there is aggregate processing (grouping, column functions,
distinct), indicated by the defining fullselect, in conjunction with either aggregate
processing indicated by the statement referencing the view or table expression, or
by the view or table expression participating in a join. For views and table
expressions that are defined with UNION ALL, DB2 can often distribute aggregate
processing, joins, and qualified predicates to avoid materialization. For more
information, see “Using EXPLAIN to determine UNION activity and query rewrite” on
page 834.

Table 115 indicates some cases in which materialization occurs. DB2 can also use
materialization in statements that contain multiple outer joins, outer joins that
combine with inner joins, or merges that cause a join of greater than 15 tables.

Table 115. Cases when DB2 performs view or table expression materialization. The ″X″ indicates a case of
materialization. Notes follow the table.

A SELECT FROM a view
or a table expression
uses...(1)

View definition or table expression uses...(2)

GROUP BY DISTINCT Column
function

Column
function

DISTINCT

UNION UNION
ALL(4)

Joins (3) X X X X X -

GROUP BY X X X X X -

DISTINCT - X - X X -

Column function (without
GROUP BY)

X X X X X X

Column function DISTINCT X X X X X -

SELECT subset of view or
table expression columns

- X - - X -

Notes to Table 115:

1. If the view is referenced as the target of an INSERT, UPDATE, or DELETE, then
view merge is used to satisfy the view reference. Only updatable views can be
the target in these statements. See Chapter 5 of DB2 SQL Reference for
information on which views are read-only (not updatable).

An SQL statement can reference a particular view multiple times where some of
the references can be merged and some must be materialized.

2. If a SELECT list contains a host variable in a table expression, then
materialization occurs. For example:
SELECT C1 FROM

(SELECT :HV1 AS C1 FROM T1) X;

Chapter 33. Using EXPLAIN to improve SQL performance 831

|
|
|
|
|

||
|

||

|#

|#

||

|#

||

If a view or nested table expression is defined to contain a user-defined
function, and if that user-defined function is defined as NOT DETERMINISTIC
or EXTERNAL ACTION, then the view or nested table expression is always
materialized.

3. Additional details about materialization with outer joins:

v If a WHERE clause exists in a view or table expression, and it does not
contain a column, materialization occurs. For example:
SELECT X.C1 FROM

(SELECT C1 FROM T1
WHERE 1=1) X LEFT JOIN T2 Y

ON X.C1=Y.C1;

v If the outer join is a full outer join and the SELECT list of the view or nested
table expression does not contain a standalone column for the column that is
used in the outer join ON clause, then materialization occurs. For example:
SELECT X.C1 FROM

(SELECT C1+10 AS C2 FROM T1) X FULL JOIN T2 Y
ON X.C2=Y.C2;

v If there is no column in a SELECT list of a view or nested table expression,
materialization occurs. For example:
SELECT X.C1 FROM

(SELECT 1+2+:HV1. AS C1 FROM T1) X LEFT JOIN T2 Y
ON X.C1=Y.C1;

4. DB2 cannot avoid materialization for UNION ALL in all cases. Some of the
situations in which materialization occurs includes:

v When the view is the operand in an outer join for which nulls are used for
non-matching values. This situation happens when the view is either operand
in a full outer join, the right operand in a left outer join, or the left operand in
a right outer join.

v If the number of tables would exceed 255 after distribution, then distribution
will not occur, and the result will be materialized.

Using EXPLAIN to determine when materialization occurs
For each reference to a view or table expression that is materialized, rows
describing the access path for both steps of the materialization process appear in
the PLAN_TABLE. These rows describe the access path used to formulate the
temporary result indicated by the view’s defining fullselect, and they describe the
access to the temporary result as indicated by the referencing statement. The
defining fullselect can also refer to views or table expressions that need to be
materialized.

When DB2 choses materialization, TNAME contains the name of the view or table
expression and TABLE_TYPE contains a W. A value of Q in TABLE_TYPE for the
name of a view or nested table expresssion indicates that the materialization was
virtual and not actual. (Materialization can be virtual when the view or nested table
expression definition contains a UNION ALL that is not distributed.) When DB2
chooses merge, EXPLAIN data for the merged statement appears in PLAN_TABLE;
only the names of the base tables on which the view or table expression is defined
appear.

Examples: Consider the following statements, which define a view and reference
the view. Figure 112 on page 833 shows a subset of columns in a plan table for the
query. Notice how TNAME contains the name of the view and TABLE_TYPE
contains W to indicate that DB2 chooses materialization for the reference to the
view because of the use of SELECT DISTINCT in the view defitinion.

832 Administration Guide

#

|

#
#
#
#
#

#
#
#
#
#

View defining statement:

CREATE VIEW V1DIS (SALARY, WORKDEPT) as
(SELECT DISTINCT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1DIS)

As the following statements and sample plan table output show, had the VIEW been
defined without DISTINCT, DB2 would choose merge instead of materialization. In
the sample output, the name of the view does not appear in the plan table, but the
table name on which the view is based does appear.

View defining statement:

CREATE VIEW V1NODIS (SALARY, WORKDEPT) as
(SELECT SALARY, WORKDEPT FROM DSN8810.EMP)

View referencing statement:

SELECT * FROM DSN8810.DEPT
WHERE DEPTNO IN (SELECT WORKDEPT FROM V1NODIS)

For an example of when a view definition contains a UNION ALL and DB2 can
distribute joins and aggregations and avoid materialization, see “Using EXPLAIN to
determine UNION activity and query rewrite” on page 834. When DB2 avoids
materialization in such cases, TABLE_TYPE contains a Q to indicate that DB2 uses
an intermediate result that is not materialized and TNAME shows the name of this
intermediate result as DSNWFQB(xx), where xx is tthe number of the query block
that produced the result.

QBLOCKNO PLANNO QBLOCK_
TYPE

TNAME TABLE_
TYPE

METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB V1DIS W 0

2 2 NOCOSUB ? 3

3 1 NOCOSUB EMP T 0

3 2 NOCOSUB ? 3

Figure 112. Plan table output for an example with view materialization

QBLOCKNO PLANNO QBLOCK_
TYPE

TNAME TABLE_
TYPE

METHOD

1 1 SELECT DEPT T 0

2 1 NOCOSUB EMP T 0

2 2 NOCOSUB ? 3

Figure 113. Plan table output for an example with view merge

Chapter 33. Using EXPLAIN to improve SQL performance 833

####
#
##
#
#

######

######

######

######

######
#
#
#
#

####
#
##
#
#

######

######

######
#
#
#
#

#
#
#
#
#
#
#
#
#

#

#
#
#
#

#
#
#
#
#
#
#
#
#

#

#
#
#
#
#
#
#

Using EXPLAIN to determine UNION activity and query rewrite
For each reference to a view or table expression that is defined with UNION or
UNION ALL operators, DB2 tries to rewrite the query into a logically equivalent
statement with improved performance by:

v Distributing qualified predicates, joins, and aggregations across the subselects of
UNION ALL. Such distribution helps to avoid materialization. No distribution is
performed for UNION.

v Eliminating unnecessary subselects of the view or table expression. For DB2 to
eliminate subselects, the referencing query and the view or table definition must
have predicates that are based on common columns.

The QBLOCK_TYPE column in the plan table indicates union activity. For a UNION
ALL, the column contains ’UNIONA’. For UNION, the column contains ’UNION’.
When QBLOCK_TYPE=’UNION’, the METHOD column on the same row is set to 3
and the SORTC_UNIQ column is set to ’Y’ to indicate that a sort is necessary to
remove duplicates. As with other views and table expressions, the plan table also
shows when DB2 uses materialization instead of merge.

Example: Consider the following statements, which define a view, reference the
view, and show how DB2 rewrites the referencing statement. Figure 114 on
page 835 shows a subset of columns in a plan table for the query. Notice how DB2
eliminates the second subselect of the view definition from the rewritten query and
how the plan table indicates this removal by showing a UNION ALL for only the first
and third subselect in the view definition. The Q in the TABLE_TYPE column
indicates that DB2 does not materialize the view.

View defining statement: View is created on three tables that contain weekly data

CREATE VIEW V1 (CUSTNO, CHARGES, DATE) as
SELECT CUSTNO, CHARGES, DATE
FROM WEEK1
WHERE DATE BETWEEN '01/01/2000' And '01/07/2000'

UNION ALL
SELECT CUSTNO, CHARGES, DATE
FROM WEEK2
WHERE DATE BETWEEN '01/08/2000' And '01/14/2000'

UNION ALL
SELECT CUSTNO, CHARGES, DATE
FROM WEEK3
WHERE DATE BETWEEN '01/15/2000' And '01/21/2000';

View referencing statement: For each customer in California, find the average charges
during the first and third Friday of January 2000

SELECT V1.CUSTNO, AVG(V1.CHARGES)
FROM CUST, V1
WHERE CUST.CUSTNO=V1.CUSTNO

AND CUST.STATE='CA'
AND DATE IN ('01/07/2000','01/21/2000')

GROUP BY V1.CUSTNO;

Rewritten statement (assuming that CHARGES is defined as NOT NULL):

SELECT CUSTNO_U, SUM(SUM_U)/SUM(CNT_U)
FROM
(SELECT WEEK1.CUSTNO, SUM(CHARGES), COUNT(CHARGES)

FROM CUST, WEEK1
Where CUST.CUSTNO=WEEK1.CUSTNO AND CUST.STATE='CA'

AND DATE BETWEEN '01/01/2000' And '01/07/2000'
AND DATE IN ('01/07/2000','01/21/2000')

GROUP BY WEEK1.CUSTNO
UNION ALL

834 Administration Guide

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
#
#

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

SELECT WEEK3.CUSNTO, SUM(CHARGES), COUNT(CHARGES)
FROM CUST,WEEK3
WHERE CUST.CUSTNO=WEEK3 AND CUST.STATE='CA'

AND DATE BETWEEN '01/15/2000' And '01/21/2000'
AND DATE IN ('01/07/2000','01/21/2000')

GROUP BY WEEK3.CUSTNO
) AS X(CUSTNO_U,SUM_U,CNT_U)

GROUP BY CUSNTO_U;

Performance of merge versus materialization
Merge performs better than materialization. For materialization, DB2 uses a table
space scan to access the materialized temporary result. DB2 materializes a view or
table expression only if it cannot merge.

As described above, materialization is a two-step process with the first step
resulting in the formation of a temporary result. The smaller the temporary result,
the more efficient is the second step. To reduce the size of the temporary result,
DB2 attempts to evaluate certain predicates from the WHERE clause of the
referencing statement at the first step of the process rather than at the second step.
Only certain types of predicates qualify. First, the predicate must be a simple
Boolean term predicate. Second, it must have one of the forms shown in Table 116.

Table 116. Predicate candidates for first-step evaluation

Predicate Example

COL op literal V1.C1 > hv1

COL IS (NOT) NULL V1.C1 IS NOT NULL

COL (NOT) BETWEEN literal AND literal V1.C1 BETWEEN 1 AND 10

COL (NOT) LIKE constant (ESCAPE constant) V1.C2 LIKE ’p\%%’ ESCAPE ’\’

Note: Where ″op″ is =, <>, >, <, <=, or >=, and literal is either a host variable, constant, or
special register. The literals in the BETWEEN predicate need not be identical.

Implied predicates generated through predicate transitive closure are also
considered for first step evaluation.

QBLOCKNO PLANNO TNAME TABLE_TYPE METHOD QBLOCK
TYPE

PARENT
QBLOCKNO

1 1 DSNWFQB(02) Q 0 0

1 2 ? 3 0

2 1 ? 0 UNIONA 1

3 1 CUST T 0 2

3 2 WEEK1 T 1 2

4 1 CUST T 0 2

4 2 WEEK3 T 2 2

Figure 114. Plan table output for an example with a view with UNION ALLs

Chapter 33. Using EXPLAIN to improve SQL performance 835

|||||||
|
|
|

|||#|||

|||#|||

|||#|||

|||||||

|||||||

|||||||

|||||||
|
|
|
|

|
|
|
|
|
|
|
|

|

|

Estimating a statement’s cost
You can use EXPLAIN to populate a statement table,
owner.DSN_STATEMNT_TABLE, at the same time as your PLAN_TABLE is being
populated. DB2 provides cost estimates, in service units and in milliseconds, for
SELECT, INSERT, UPDATE, and DELETE statements, both static and dynamic.
The estimates do not take into account several factors, including cost adjustments
that are caused by parallel processing, or the use of triggers or user-defined
functions.

Use the information provided in the statement table to:

v Help you determine if a statement is not going to perform within range of your
service-level agreements and to tune accordingly.

DB2 puts its cost estimate into one of two cost categories: category A or category
B. Estimates that go into cost category A are the ones for which DB2 has
adequate information to make an estimate. That estimate is not likely to be 100%
accurate, but is likely to be more accurate than any estimate that is in cost
category B.

DB2 puts estimates into cost category B when it is forced to use default values
for its estimates, such as when no statistics are available, or because host
variables are used in a query. See the description of the REASON column in
Table 117 on page 837 for more information about how DB2 determines into
which cost category an estimate goes.

v Give a system programmer a basis for entering service-unit values by which to
govern dynamic statements.

Information about using predictive governing is in “Predictive governing” on
page 589 .

This section describes the following tasks to obtain and use cost estimate
information from EXPLAIN:

1. “Creating a statement table”

2. “Populating and maintaining a statement table” on page 838

3. “Retrieving rows from a statement table” on page 838

4. “Understanding the implications of cost categories” on page 839

See Part 6 of DB2 Application Programming and SQL Guide for more information
about how to change applications to handle the SQLCODES associated with
predictive governing.

Creating a statement table
To collect information about a statement’s estimated cost, create a table called
DSN_STATEMNT_TABLE to hold the results of EXPLAIN. A copy of the statements
that are needed to create the table are in the DB2 sample library, under the
member name DSNTESC.

Figure 115 on page 837 shows the format of a statement table.

836 Administration Guide

Table 117 shows the content of each column. The first five columns of the
DSN_STATEMNT_TABLE are the same as PLAN_TABLE.

Table 117. Descriptions of columns in DSN_STATEMNT_TABLE

Column Name Description

QUERYNO A number that identifies the statement being explained. See the description of the
QUERYNO column in Table 111 on page 792 for more information. If QUERYNO is not
unique, the value of EXPLAIN_TIME is unique.

APPLNAME The name of the application plan for the row, or blank. See the description of the
APPLNAME column in Table 111 on page 792 for more information.

PROGNAME The name of the program or package containing the statement being explained, or
blank. See the description of the PROGNAME column in Table 111 on page 792 for
more information.

COLLID The collection ID for the package, or blank. See the description of the COLLID column
in Table 111 on page 792 for more information.

GROUP_MEMBER The member name of the DB2 that executed EXPLAIN, or blank. See the description
of the GROUP_MEMBER column in Table 111 on page 792 for more information.

EXPLAIN_TIME The time at which the statement is processed. This time is the same as the
BIND_TIME column in PLAN_TABLE.

STMT_TYPE The type of statement being explained. Possible values are:

SELECT SELECT

INSERT INSERT

UPDATE UPDATE

DELETE DELETE

SELUPD SELECT with FOR UPDATE OF

DELCUR DELETE WHERE CURRENT OF CURSOR

UPDCUR UPDATE WHERE CURRENT OF CURSOR

COST_CATEGORY Indicates if DB2 was forced to use default values when making its estimates. Possible
values:

A Indicates that DB2 had enough information to make a cost estimate without
using default values.

B Indicates that some condition exists for which DB2 was forced to use default
values. See the values in REASON to determine why DB2 was unable to put
this estimate in cost category A.

CREATE TABLE DSN_STATEMNT_TABLE
(QUERYNO INTEGER NOT NULL WITH DEFAULT,

APPLNAME CHAR(8) NOT NULL WITH DEFAULT,
PROGNAME CHAR(8) NOT NULL WITH DEFAULT,
COLLID CHAR(18) NOT NULL WITH DEFAULT,
GROUP_MEMBER CHAR(8) NOT NULL WITH DEFAULT,
EXPLAIN_TIME TIMESTAMP NOT NULL WITH DEFAULT,
STMT_TYPE CHAR(6) NOT NULL WITH DEFAULT,
COST_CATEGORY CHAR(1) NOT NULL WITH DEFAULT,
PROCMS INTEGER NOT NULL WITH DEFAULT,
PROCSU INTEGER NOT NULL WITH DEFAULT,
REASON VARCHAR(254) NOT NULL WITH DEFAULT);

Figure 115. Format of DSN_STATEMNT_TABLE

Chapter 33. Using EXPLAIN to improve SQL performance 837

Table 117. Descriptions of columns in DSN_STATEMNT_TABLE (continued)

Column Name Description

PROCMS The estimated processor cost, in milliseconds, for the SQL statement. The estimate is
rounded up to the next integer value. The maximum value for this cost is 2147483647
milliseconds, which is equivalent to approximately 24.8 days. If the estimated value
exceeds this maximum, the maximum value is reported.

PROCSU The estimated processor cost, in service units, for the SQL statement. The estimate is
rounded up to the next integer value. The maximum value for this cost is 2147483647
service units. If the estimated value exceeds this maximum, the maximum value is
reported.

REASON A string that indicates the reasons for putting an estimate into cost category B.

HAVING CLAUSE A subselect in the SQL statement contains a
HAVING clause.

HOST VARIABLES The statement uses host variables, parameter
markers, or special registers.

REFERENTIAL CONSTRAINTS Referential constraints of the type CASCADE or
SET NULL exist on the target table of a DELETE
statement.

TABLE CARDINALITY The cardinality statistics are missing for one or
more of the tables that are used in the statement.

TRIGGERS Triggers are defined on the target table of an
INSERT, UPDATE, or DELETE statement.

UDF The statement uses user-defined functions.

Populating and maintaining a statement table
You populate a statement table at the same time as you populate the corresponding
plan table. For more information, see “Populating and maintaining a plan table” on
page 796.

Just as with the plan table, DB2 just adds rows to the statement table; it does not
automatically delete rows. INSERT triggers are not activated unless you insert rows
yourself using and SQL INSERT statement.

To clear the table of obsolete rows, use DELETE, just as you would for deleting
rows from any table. You can also use DROP TABLE to drop a statement table
completely.

Retrieving rows from a statement table
To retrieve all rows in a statement table, you can use a query like the following
statement, which retrieves all rows about the statement that is represented by query
number 13:
SELECT * FROM JOE.DSN_STATEMNT_TABLE

WHERE QUERYNO = 13;

The QUERYNO, APPLNAME, PROGNAME, COLLID, and EXPLAIN_TIME columns
contain the same values as corresponding columns of PLAN_TABLE for a given
plan. You can use these columns to join the plan table and statement table:
SELECT A.*, PROCMS, COST_CATEGORY
FROM JOE.PLAN_TABLE A, JOE.DSN_STATEMNT_TABLE B

WHERE A.APPLNAME = 'APPL1' AND
A.APPLNAME = B.APPLNAME AND
A.PROGNAME = B.PROGNAME AND

838 Administration Guide

||
|

A.COLLID = B.COLLID AND
A.BIND_TIME = B.EXPLAIN_TIME

ORDER BY A.QUERYNO, A.QBLOCKNO, A.PLANNO, A.MIXOPSEQ;

Understanding the implications of cost categories
Cost categories are DB2’s way of differentiating estimates for which adequate
information is available from those for which it is not. You probably wouldn’t want to
spend a lot of time tuning a query based on estimates that are returned in cost
category B, because the actual cost could be radically different based on such
things as what value is in a host variable, or how many levels of nested triggers
and user-defined functions exist.

Similarly, if system administrators use these estimates as input into the resource
limit specification table for governing (either predictive or reactive), they probably
would want to give much greater latitude for statements in cost category B than for
those in cost category A.

Because of the uncertainty involved, category B statements are also good
candidates for reactive governing.

What goes into cost category B? DB2 puts a statement’s estimate into cost
category B when any of the following conditions exist:

v The statement has UDFs.

v Triggers are defined for the target table:

– The statement is INSERT, and insert triggers are defined on the target table.

– The statement is UPDATE, and update triggers are defined on the target
table.

– The statement is DELETE, and delete triggers are defined on the target table.

v The target table of a delete statement has referential constraints defined on it as
the parent table, and the delete rules are either CASCADE or SET NULL.

v The WHERE clause predicate has one of the following forms:

– COL op literal, and the literal is a host variable, parameter marker, or special
register. The operator can be >, >=, <, <=, LIKE, or NOT LIKE.

– COL BETWEEN literal AND literal where either literal is a host variable,
parameter marker, or special register.

– LIKE with an escape clause that contains a host variable.

v The cardinality statistics are missing for one or more tables that are used in the
statement.

v A subselect in the SQL statement contains a HAVING clause.

What goes into cost category A? DB2 puts everything that doesn’t fall into
category B into category A.

Chapter 33. Using EXPLAIN to improve SQL performance 839

|

840 Administration Guide

Chapter 34. Parallel operations and query performance

When DB2 plans to access data from a table or index in a partitioned table space, it
can initiate multiple parallel operations. The response time for data or
processor-intensive queries can be significantly reduced.

Query I/O parallelism manages concurrent I/O requests for a single query, fetching
pages into the buffer pool in parallel. This processing can significantly improve the
performance of I/O-bound queries. I/O parallelism is used only when one of the
other parallelism modes cannot be used.

Query CP parallelism enables true multi-tasking within a query. A large query can
be broken into multiple smaller queries. These smaller queries run simultaneously
on multiple processors accessing data in parallel. This reduces the elapsed time for
a query.

To expand even farther the processing capacity available for processor-intensive
queries, DB2 can split a large query across different DB2 members in a data
sharing group. This is known as Sysplex query parallelism. For more information
about Sysplex query parallelism, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

DB2 can use parallel operations for processing:
v Static and dynamic queries
v Local and remote data access
v Queries using single table scans and multi-table joins
v Access through an index, by table space scan or by list prefetch
v Sort operations

Parallel operations usually involve at least one table in a partitioned table space.
Scans of large partitioned table spaces have the greatest performance
improvements where both I/O and central processor (CP) operations can be carried
out in parallel.

Parallelism for partitioned and nonpartitioned table spaces: Both partitioned
and nonpartitioned table spaces can take advantage of query parallelism.
Parallelism is now enabled to include non-clustering indexes. Thus, table access
can be run in parallel when the application is bound with ANY and the table is
accessed through a non-clustering index.

This chapter contains the following topics:

v “Comparing the methods of parallelism” on page 842

v “Partitioning for optimal parallel performance” on page 844

v “Enabling parallel processing” on page 847

v “When parallelism is not used” on page 848

v “Interpreting EXPLAIN output” on page 848

v “Monitoring parallel operations” on page 850

v “Tuning parallel processing” on page 853

v “Disabling query parallelism” on page 854

© Copyright IBM Corp. 1982, 2001 841

Comparing the methods of parallelism
The figures in this section show how the parallel methods compare with sequential
prefetch and with each other. All three techniques assume access to a table space
with three partitions, P1, P2, and P3. The notations P1, P2, and P3 are partitions of
a table space. R1, R2, R3, and so on, are requests for sequential prefetch. The
combination P2R1, for example, means the first request from partition 2.

Figure 116 shows sequential processing. With sequential processing, DB2 takes
the 3 partitions in order, completing partition 1 before starting to process partition 2,
and completing 2 before starting 3. Sequential prefetch allows overlap of CP
processing with I/O operations, but I/O operations do not overlap with each other. In
the example in Figure 116, a prefetch request takes longer than the time to process
it. The processor is frequently waiting for I/O.

Figure 117 shows parallel I/O operations. With parallel I/O, DB2 prefetches data
from the 3 partitions at one time. The processor processes the first request from
each partition, then the second request from each partition, and so on. The
processor is not waiting for I/O, but there is still only one processing task.

Figure 118 on page 843 shows parallel CP processing. With CP parallelism, DB2
can use multiple parallel tasks to process the query. Three tasks working
concurrently can greatly reduce the overall elapsed time for data-intensive and
processor-intensive queries. The same principle applies for Sysplex query
parallelism, except that the work can cross the boundaries of a single CPC.

Time line

CP
processing:

I/O:

P1R1

P1R1

P1R2

P1R2

P1R3

P1R3

P2R1

P2R1

P2R2

P2R2

P2R3

P2R3

P3R1

P3R1 P3R2

… …

……

Figure 116. CP and I/O processing techniques. Sequential processing.

CP processing:

I/O:

P1R1 P2R1 P3R1 P1R2 P2R2 P3R2 P1R3

P1

P2

P3

R1

R1

R1

R2

R2

R2

R3

R3

R3

…

Time line

Figure 117. CP and I/O processing techniques. Parallel I/O processing.

842 Administration Guide

Queries that are most likely to take advantage of parallel operations: Queries
that can take advantage of parallel processing are:

v Those in which DB2 spends most of the time fetching pages—an I/O-intensive
query

A typical I/O-intensive query is something like the following query, assuming that
a table space scan is used on many pages:
SELECT COUNT(*) FROM ACCOUNTS
WHERE BALANCE > 0 AND
DAYS_OVERDUE > 30;

v Those in which DB2 spends a lot of processor time and also, perhaps, I/O time,
to process rows. Those include:

– Queries with intensive data scans and high selectivity. Those queries involve
large volumes of data to be scanned but relatively few rows that meet the
search criteria.

– Queries containing aggregate functions. Column functions (such as MIN,
MAX, SUM, AVG, and COUNT) usually involve large amounts of data to be
scanned but return only a single aggregate result.

– Queries accessing long data rows. Those queries access tables with long
data rows, and the ratio of rows per page is very low (one row per page, for
example).

– Queries requiring large amounts of central processor time. Those queries
might be read-only queries that are complex, data-intensive, or that involve a
sort.

A typical processor-intensive query is something like:
SELECT MAX(QTY_ON_HAND) AS MAX_ON_HAND,

AVG(PRICE) AS AVG_PRICE,
AVG(DISCOUNTED_PRICE) AS DISC_PRICE,
SUM(TAX) AS SUM_TAX,
SUM(QTY_SOLD) AS SUM_QTY_SOLD,
SUM(QTY_ON_HAND - QTY_BROKEN) AS QTY_GOOD,
AVG(DISCOUNT) AS AVG_DISCOUNT,
ORDERSTATUS,
COUNT(*) AS COUNT_ORDERS

I/O:

I/O:

I/O:

P1R1

P2R1

P3R1

P1R1

P2R1

P3R1

P1R2

P2R2

P3R2

P1R2

P2R2

P3R2

P1R3

P2R3

P3R3

P1R3

P2R3

P3R3

…

…

…

…

…

…

CP task 1:

CP task 2:

CP task 3:

Time line

Figure 118. CP and I/O processing techniques. Query processing using CP parallelism. The
tasks can be contained within a single CPC or can be spread out among the members of a
data sharing group.

Chapter 34. Parallel operations and query performance 843

FROM ORDER_TABLE
WHERE SHIPPER = 'OVERNIGHT' AND

SHIP_DATE < DATE('1996-01-01')
GROUP BY ORDERSTATUS
ORDER BY ORDERSTATUS;

Terminology: When the term task is used with information on parallel processing,
the context should be considered. For parallel query CP processing or Sysplex
query parallelism, task is an actual MVS execution unit used to process a query.
For parallel I/O processing, a task simply refers to the processing of one of the
concurrent I/O streams.

A parallel group is the term used to name a particular set of parallel operations
(parallel tasks or parallel I/O operations). A query can have more than one parallel
group, but each parallel group within the query is identified by its own unique ID
number.

The degree of parallelism is the number of parallel tasks or I/O operations that
DB2 determines can be used for the operations on the parallel group.

In a parallel group, an originating task is the TCB (SRB for distributed requests)
that coordinates the work of all the parallel tasks. Parallel tasks are executable
units composed of special SRBs, which are called preemptable SRBs.

With preemptable SRBs, the MVS dispatcher can interrupt a task at any time to run
other work at the same or higher dispatching priority. For non-distributed parallel
work, parallel tasks run under a type of preemptable SRB called a client SRB,
which lets the parallel task inherit the importance of the originating address space.
For distributed requests, the parallel tasks run under a preemptable SRB called an
enclave SRB. Enclave SRBs are described more fully in “Using Workload Manager
to set performance objectives” on page 629.

Partitioning for optimal parallel performance
This section includes some general considerations for how to partition data for the
best performance when using parallel processing. Bear in mind that DB2 does not
always choose parallelism, even if you partition the data.

This exercise assumes the following:

v You have narrowed the focus to a few, critical queries that are running
sequentially. It is best to include a mix of I/O-intensive and processor-intensive
queries into this initial set. You know how long those queries take now and what
your performance objectives for those queries are. Although tuning for one set of
queries might not work for all queries, overall performance and throughput can
be improved.

v You are optimizing for query-at-a-time operations, and you want a query to make
use of all the processor and I/O resources available to it.

When running many queries at the same time, you will probably have to increase
the number of partitions and the amount of processing power to achieve similar
elapsed times.

This section guides you through the following analyses:

1. Determining the nature of the query (what balance of processing and I/O
resources it needs)

844 Administration Guide

2. Determining how many partitions the table space should have to meet your
performance objective, number based on the nature of the query and on the
processor and I/O configuration at your site

Determining if a query is I/O- or processor-intensive
To determine if your sequential queries are I/O or processor-intensive, examine the
DB2 accounting reports:

v If the “other read I/O time” is close to the total query elapsed time, then the query
is I/O-intensive. “Other read I/O time” is the time that DB2 is waiting for pages to
be read in to the buffer pools.

v If “CPU time” is close to the total query elapsed time, then the query is
processor-intensive.

v If the processor time is somewhere between 30 and 70 percent of the elapsed
time, then the query is pretty well-balanced.

Determining the number of partitions
This section is intended to give you some general guidance. Again, you must take
into account the I/O subsystem, the nature of the queries you run, and, if
necessary, plan for the data to grow. If your physical and logical design are not
closely tied together, thus allowing you to specify any number of partitions, it does
no harm to specify more partitions than you need immediately. This approach allows
for data and processing resources to grow without you having to repartition the
table in the future.

Consider also the operational complexity of managing many partitions. This
complexity may not be as much of an issue at sites that use tools, such as the DB2
Automated Utilities Generator and job schedulers.

In general, the number of partitions falls in a range between the number of CPs and
the maximum number of I/O paths to the data. When determining the number of
partitions that use a mixed set of processor- and I/O-intensive queries, always
choose the largest number of partitions in the range you determine.

v For processor-intensive queries, specify, at a minimum, a number that is equal
to the number of CPs in the system, whether you have a single CPC or multiple
CPCs in a data sharing group. If the query is processor-intensive, it can use all
CPs available in the system. If you plan to use Sysplex query parallelism, then
choose a number that is close to the total number of CPs (including partial
allocation of CPs) that you plan to allocate for decision support processing
across the data sharing group. Do not include processing resources that are
dedicated to other, higher priority, work. For more information about Sysplex
query parallelism, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

v For I/O-intensive queries, calculate the ratio of elapsed time to processor time.
Multiply this ratio by the number of processors allocated for decision support
processing. Round up this number to determine how many partitions you can use
to the best advantage, assuming that these partitions can be on separate devices
and have adequate paths to the data. This calculation also assumes that you
have adequate processing power to handle the increase in partitions. (This might
not be much of an issue with an extremely I/O-intensive query.)

By partitioning the amount indicated above, the query is brought into balance by
reducing the I/O wait time. If the number of partitions is less than the number of
CPs available on your system, increase this number close to the number of CPs

Chapter 34. Parallel operations and query performance 845

available. By doing so, other queries that read this same table, but that are more
processor-intensive, can take advantage of the additional processing power.

For example, suppose you have a 10-way CPC and the calculated number of
partitions is five. Instead of limiting the table space to five partitions, use 10, to
equal the number of CPs in the CPC.

Example configurations for an I/O-intensive query: If the I/O cost of your queries
is about twice as much as the processing cost, the optimal number of partitions
when run on a 10-way processor is 20 (2 * number of processors). Figure 119
shows an I/O configuration that minimizes the elapsed time and allows the CPC to
run at 100% busy. It assumes a rule of thumb of four devices per control unit and
four channels per control unit.11

Working with a table space that is already partitioned?
Assume that a table space already has 10 partitions and a particular query uses CP
parallelism on a 10-way CPC. When you add “other read I/O wait time” (from
accounting class 3) and processing time (from accounting class 2) you determine
that I/O cost is three times more than the processing cost. In this case, the optimal
number of partitions is 30 (three times more I/O paths). However, if you can run on
a data sharing group and you add another DB2 to the group that is running on a
10-way CPC, the I/O configuration that minimizes the elapsed time and allows both
CPCs to run at 100% would be 60 partitions.

Making the partitions the same size
The degree of parallelism is influenced by the size of the largest physical partition.
In most cases, DB2 divides the table space into logical pieces, called work ranges
to differentiate these from physical pieces, based on the size of the largest physical
partition of a given table. Suppose that a table consists of 10 000 pages and 10
physical partitions, the largest of which is 5000 pages. DB2 is most likely to create
only two work ranges, and the degree of parallelism would be 2. If the same table
has evenly sized partitions of 1000 pages each and the query is I/O-intensive, then
ten logical work ranges might be created. This example would result in a degree of
parallelism of 10 and reduced elapsed time.

11. A lower-cost configuration could use as few as two to three channels per control unit shared among all controllers using an
ESCON® director. However, using four paths minimizes contention and provides the best performance. Paths might also need to
be taken offline for service.

10-way CPC

ESCON channels (20)

ESCON
director

Device
data paths

Storage
control units

DASD

Figure 119. I/O configuration that maximizes performance for an I/O-intensive query

846 Administration Guide

DB2 tries to create equal work ranges by dividing the total cost of running the work
by the logical partition cost. This division often has some left over work. In this
case, DB2 creates an additional task to handle the extra work, rather than making
all the work ranges larger, which would reduce the degree of parallelism.

To rebalance partitions that have become skewed, use ALTER INDEX and modify
the partitioning range values. This procedure requires a reorganization of the table
space.

Enabling parallel processing
Queries can only take advantage of parallelism if you enable parallel processing.
Use the following actions to enable parallel processing:

v For static SQL, specify DEGREE(ANY) on BIND or REBIND. This bind option
affects static SQL only and does not enable parallelism for dynamic statements.

v For dynamic SQL, set the CURRENT DEGREE special register to 'ANY'. Setting
the special register affects dynamic statements only. It will have no effect on your
static SQL statements. You should also make sure that parallelism is not disabled
for your plan, package, or authorization ID in the RLST. You can set the special
register with the following SQL statement:
SET CURRENT DEGREE='ANY';

It is also possible to change the special register default from 1 to ANY for the
entire DB2 subsystem by modifying the CURRENT DEGREE field on installation
panel DSNTIP4.

v If you bind with isolation CS, choose also the option CURRENTDATA(NO), if
possible. This option can improve performance in general, but it also ensures
that DB2 will consider parallelism for ambiguous cursors. If you bind with
CURRENDATA(YES) and DB2 cannot tell if the cursor is read-only, DB2 does not
consider parallelism. It is best to always indicate when a cursor is read-only by
indicating FOR FETCH ONLY or FOR READ ONLY on the DECLARE CURSOR
statement.

v The virtual buffer pool parallel sequential threshold (VPPSEQT) value must be
large enough to provide adequate buffer pool space for parallel processing. For
more information on VPPSEQT, see “Buffer pool thresholds” on page 555.

If you enable parallel processing when DB2 estimates a given query’s I/O and
central processor cost is high, multiple parallel tasks can be activated if DB2
estimates that elapsed time can be reduced by doing so.

Special requirements for CP parallelism: DB2 must be running on a central
processor complex that contains two or more tightly-coupled processors (sometimes
called central processors, or CPs). If only one CP is online when the query is
bound, DB2 considers only parallel I/O operations.

DB2 also considers only parallel I/O operations if you declare a cursor WITH HOLD
and bind with isolation RR or RS. For further restrictions on parallelism, see
Table 118 on page 848.

For complex queries, run the query in parallel within a member of a data sharing
group. With Sysplex query parallelism, use the power of the data sharing group to
process individual complex queries on many members of the data sharing group.
For more information on how you can use the power of the data sharing group to
run complex queries, see Chapter 6 of DB2 Data Sharing: Planning and
Administration.

Chapter 34. Parallel operations and query performance 847

Limiting the degree of parallelism: If you want to limit the maximum number of
parallel tasks that DB2 generates, you can use the installation parameter MAX
DEGREE in the DSNTIP4 panel. Changing MAX DEGREE, however, is not the way
to turn parallelism off. You use the DEGREE bind parameter or CURRENT
DEGREE special register to turn parallelism off.

When parallelism is not used
Parallelism is not used for all queries; for some access paths, it doesn’t make
sense to incur parallelism overhead. If you are selecting from a temporary table,
you won’t get parallelism for that, either. If you are not getting parallelism, check
Table 118 to see if your query uses any of the access paths that do not allow
parallelism.

Table 118. Checklist of parallel modes and query restrictions

If query uses this...

Is parallelism allowed?

I/O CP Sysplex Comments

Access via RID list (list
prefetch and multiple index
access)

Yes Yes No Indicated by an “L” in the PREFETCH column of
PLAN_TABLE, or an M, MX, MI, or MQ in the
ACCESSTYPE column of PLAN_TABLE.

Queries that return LOB
values

Yes Yes No

Merge scan join on more
than one column

No No No

Queries that qualify for
direct row access

No No No Indicated by D in the PRIMARY_ACCESS_TYPE column
of PLAN_TABLE

Materialized views or
materialized nested table
expressions at reference
time.

No No No

EXISTS within WHERE
predicate

No No No

DB2 avoids certain hybrid joins when parallelism is enabled: To ensure that
you can take advantage of parallelism, DB2 does not pick one type of hybrid join
(SORTN_JOIN=Y) when the plan or package is bound with CURRENT
DEGREE=ANY or if the CURRENT DEGREE special register is set to ’ANY’.

Interpreting EXPLAIN output
To understand how DB2 plans to use parallelism, examine your PLAN_TABLE
output. (Details on all columns in PLAN_TABLE are described in Table 111 on
page 792. This section describes a method for examining PLAN_TABLE columns
for parallelism and gives several examples.

A method for examining PLAN_TABLE columns for parallelism
The steps for interpreting the output for parallelism are as follows:

1. Determine if DB2 plans to use parallelism:

For each query block (QBLOCKNO) in a query (QUERYNO), a non-null value in
ACCESS_DEGREE or JOIN_DEGREE indicates that some degree of
parallelism is planned.

2. Identify the parallel groups in the query:

848 Administration Guide

All steps (PLANNO) with the same value for ACCESS_PGROUP_ID,
JOIN_PGROUP_ID, SORTN_PGROUP_ID, or SORTC_PGROUP_ID indicate
that a set of operations are in the same parallel group. Usually, the set of
operations involves various types of join methods and sort operations. Parallel
group IDs can appear in the same row of PLAN_TABLE output, or in different
rows, depending on the operation being performed. The examples in
“PLAN_TABLE examples showing parallelism” help clarify this concept.

3. Identify the parallelism mode:

The column PARALLELISM_MODE tells you the kind of parallelism that is
planned (I, C, or X). Within a query block, you cannot have a mixture of “I” and
“C” parallel modes. However, a statement that uses more than one query block,
such as a UNION, can have “I” for one query block and “C” for another. It is
possible to have a mixture of “C” and “X” modes in a query block but not in the
same parallel group.

If the statement was bound while this DB2 is a member of a data sharing group,
the PARALLELISM_MODE column can contain “X” even if only this one DB2
member is active. This lets DB2 take advantage of extra processing power that
might be available at execution time. If other members are not available at
execution time, then DB2 runs the query within the single DB2 member.

PLAN_TABLE examples showing parallelism
For these examples, the other values would not change whether the
PARALLELISM_MODE is I, C, or X.

v Example 1: single table access

Assume that DB2 decides at bind time to initiate three concurrent requests to
retrieve data from table T1. Part of PLAN_TABLE appears as follows. If DB2
decides not to use parallel operations for a step, ACCESS_DEGREE and
ACCESS_PGROUP_ID contain null values.

TNAME METHOD ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

v Example 2: nested loop join

Consider a query that results in a series of nested loop joins for three tables, T1,
T2 and T3. T1 is the outermost table, and T3 is the innermost table. DB2 decides
at bind time to initiate three concurrent requests to retrieve data from each of the
three tables. For the nested loop join method, all the retrievals are in the same
parallel group. Part of PLAN_TABLE appears as follows:

TNAME METHOD ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 1 3 1 3 1 (null) (null)

T3 1 3 1 3 1 (null) (null)

v Example 3: merge scan join

Consider a query that causes a merge scan join between two tables, T1 and T2.
DB2 decides at bind time to initiate three concurrent requests for T1 and six
concurrent requests for T2. The scan and sort of T1 occurs in one parallel group.

Chapter 34. Parallel operations and query performance 849

The scan and sort of T2 occurs in another parallel group. Furthermore, the
merging phase can potentially be done in parallel. Here, a third parallel group is
used to initiate three concurrent requests on each intermediate sorted table. Part
of PLAN_TABLE appears as follows:

TNAME METHOD
ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 2 6 2 3 3 1 2

v Example 4: hybrid join

Consider a query that results in a hybrid join between two tables, T1 and T2.
Furthermore, T1 needs to be sorted; as a result, in PLAN_TABLE the T2 row has
SORTC_JOIN=Y. DB2 decides at bind time to initiate three concurrent requests
for T1 and six concurrent requests for T2. Parallel operations are used for a join
through a clustered index of T2.

Because T2’s RIDs can be retrieved by initiating concurrent requests on the
partitioned index, the joining phase is a parallel step. The retrieval of T2’s RIDs
and T2’s rows are in the same parallel group. Part of PLAN_TABLE appears as
follows:

TNAME METHOD ACCESS_
DEGREE

ACCESS_
PGROUP_
ID

JOIN_
DEGREE

JOIN_
PGROUP_
ID

SORTC_
PGROUP_
ID

SORTN_
PGROUP_
ID

T1 0 3 1 (null) (null) (null) (null)

T2 4 6 2 6 2 1 (null)

Monitoring parallel operations
The number of parallel operations or tasks used to access data is initially
determined at bind time, and later adjusted when the query is executed.

Bind time: At bind time, DB2 collects partition statistics from the catalog, estimates
the processor cycles for the costs of processing the partitions, and determines the
optimal number of parallel tasks to achieve minimum elapsed time.

When a planned degree exceeds the number of online CPs, it can mean that the
query is not completely processor-bound and is instead approaching the number of
partitions because it is I/O-bound. In general, the more I/O-bound a query is, the
closer the degree of parallelism is to the number of partitions.

In general, the more processor-bound a query is, the closer the degree of
parallelism is to the number of online CPs, and it can even exceed the number of
CPs by one. For example, assume that you have a processor-intensive query on a
10-partition table, and that this query is running on a 6-way CPC. It is possible for
the degree of parallelism to be up to 7 in this case.

To help DB2 determine the optimal degree of parallelism, use the utility RUNSTATS
to keep your statistics current.

PLAN_TABLE shows the planned degree of parallelism in the columns
ACCESS_DEGREE and JOIN_DEGREE.

850 Administration Guide

Execution time: For each parallel group, parallelism (either CP or I/O) can execute
at a reduced degree or degrade to sequential operations for the following reasons:
v Amount of virtual buffer pool space available
v Host variable values
v Availability of the hardware sort assist facility
v Ambiguous cursors
v A change in the number or configuration of online processors
v The join technique that DB2 uses (I/O parallelism not supported when DB2 uses

the star join technique)

At execution time, it is possible for a plan using Sysplex query parallelism to use
CP parallelism. All parallelism modes can degenerate to a sequential plan. No other
changes are possible.

Using DISPLAY BUFFERPOOL
You can use the output from DISPLAY BUFFERPOOL DETAIL report to see how
well the buffer pool is able to satisfy parallel operations.
DSNB440I = PARALLEL ACTIVITY -

PARALLEL REQUEST = 282 DEGRADED PARALLEL= 5

The PARALLEL REQUEST field in this example shows that DB2 was negotiating
buffer pool resource for 282 parallel groups. Of those 282 groups, only 5 were
degraded because of a lack of buffer pool resource. A large number in the
DEGRADED PARALLEL field could indicate that there are not enough buffers that
can be used for parallel processing.

Using DISPLAY THREAD
DISPLAY THREAD displays parallel tasks. Whereas previously you would only see
information about the originating task, now you can see information about the
parallel tasks associated with that originating task. The status field contains PT for
parallel tasks. All parallel tasks are displayed immediately after their corresponding
originating thread.

See Chapter 2 of DB2 Command Reference for information about the syntax of the
command DISPLAY THREAD.

Using DB2 trace
The statistics trace indicates when parallel groups do not run to the planned degree
or run sequentially. These are possible indicators that there are queries that are not
achieving the best possible response times. Use the accounting trace to ensure that
your parallel queries are meeting their response time goals. If there appears to be a
problem with a parallel query, then use the performance trace to do further analysis.

Accounting trace
By default, DB2 rolls task accounting into an accounting record for the originating
task. DB2 PM also summarizes all accounting records generated for a parallel
query and presents them as one logical accounting record. DB2 PM presents the
times for the originating tasks separately from the accumulated times for all the
parallel tasks.

As shown in Figure 120 on page 852 CPU TIME-AGENT is the time for the
originating tasks, while CPU TIME-PAR.TASKS (�A�) is the accumulated processing
time for the parallel tasks.

Chapter 34. Parallel operations and query performance 851

As you can see in the report, the values for CPU TIME and I/O WAIT TIME are
larger than the elapsed time. It is possible for processor and suspension time to be
larger than elapsed time because these times are accumulated from multiple
parallel tasks, while the elapsed time is less than it would be if run sequentially.

If you have baseline accounting data for the same thread run without parallelism,
the elapsed times and processor times should not be significantly larger when that
query is run in parallel. If it is significantly larger, or if response time is poor, you will
need to examine the accounting data for the individual tasks. Use the DB2 PM
Record Trace for the IFCID 0003 records of the thread you want to examine. Use
the performance trace if you need more information to determine the cause of the
response time problem.

Performance trace
The performance trace can give you information about tasks within a group. To
determine the actual number of parallel tasks used, refer to field QW0221AD in
IFCID 0221, as mapped by macro DSNDQW03. The 0221 record also gives you
information about the key ranges used to partition the data.

IFCID 0222 contains the elapsed time information for each parallel task and each
parallel group in each SQL query. DB2 PM presents this information in its SQL
Activity trace.

TIMES/EVENTS APPL (CLASS 1) DB2 (CLASS 2) CLASS 3 SUSP. ELAPSED TIME
------------ -------------- -------------- -------------- ------------
ELAPSED TIME 32.578741 32.312218 LOCK/LATCH 25.461371
NON-NESTED 28.820003 30.225885 SYNCHRON. I/O 0.142382
STORED PROC 3.758738 2.086333 DATABASE I/O 0.116320
UDF 0.000000 0.000000 LOG WRTE I/O 0.026062
TRIGGER 0.000000 0.000000 OTHER READ I/O 3:00.404769

OTHER WRTE I/O 0.000000
CPU TIME 1:29.695300 1:29.644026 SER.TASK SWTCH 0.000000
AGENT 0.225153 0.178128 UPDATE COMMIT 0.000000
NON-NESTED 0.132351 0.088834 OPEN/CLOSE 0.000000
STORED PROC 0.092802 0.089294 SYSLGRNG REC 0.000000
UDF 0.000000 0.000000 EXT/DEL/DEF 0.000000
TRIGGER 0.000000 0.000000 OTHER SERVICE 0.000000
PAR.TASKS �A�1:29.470147 1:29.465898 ARC.LOG(QUIES) 0.000000

...

... QUERY PARALLEL. TOTAL
--------------- --------
MAXIMUM MEMBERS 1
MAXIMUM DEGREE 10
GROUPS EXECUTED 1
RAN AS PLANNED �B� 1
RAN REDUCED �C� 0
ONE DB2 COOR=N 0
ONE DB2 ISOLAT 0
SEQ - CURSOR �D� 0
SEQ - NO ESA �E� 0
SEQ - NO BUF �F� 0
SEQ - ENCL.SER. 0
MEMB SKIPPED(%) 0
DISABLED BY RLF �G� NO
REFORM PARAL-CONFIG �H� 0
REFORM PARAL-NO BUF 0

Figure 120. Partial accounting trace, query parallelism

852 Administration Guide

If your queries are running sequentially or at a reduced degree because of a lack of
buffer pool resources, the QW0221XC field of IFCID 0221 indicates which buffer
pool is constrained.

Tuning parallel processing
Much of the information in this section applies also to Sysplex query parallelism.
See Chapter 6 of DB2 Data Sharing: Planning and Administration for more
information.

If there are many parallel groups that do not run at the planned degree (see �B� in
Figure 120 on page 852), check the following factors:

v Buffer pool availability

Depending on buffer pool availability, DB2 could reduce the degree of parallelism
(see �C� in Figure 120 on page 852) or revert to a sequential plan before
executing the parallel group (�F� in the figure).

To determine which buffer pool is short on storage, see section QW0221C in
IFCID 0221. You can use the ALTER BUFFERPOOL command to increase the
buffer pool space available for parallel operations by modifying the following
parameters:
– VPSIZE, the size of the virtual buffer pool
– VPSEQT, the sequential steal threshold
– VPPSEQT, the parallel sequential threshold
– VPXPSEQT, the assisting parallel sequential threshold, used only for Sysplex

query parallelism.

If the buffer pool is busy with parallel operations, the sequential prefetch quantity
might also be reduced.

The parallel sequential threshold also has an impact on work file processing for
parallel queries. DB2 assumes that you have all your work files of the same size
(4KB or 32KB) in the same buffer pool and makes run time decisions based on a
single buffer pool. A lack of buffer pool resources for the work files can lead to a
reduced degree of parallelism or cause the query to run sequentially.

If increasing the parallel thresholds does not help solve the problem of reduced
degree, you can increase the total buffer pool size (VPSIZE). Use information
from the statistics trace to determine the amount of buffer space you need. Use
the following formula:
(QBSTJIS ⁄ QBSTPQF) × 32 = buffer increase value

QBSTJIS is the total number of requested prefetch I/O streams that were denied
because of a storage shortage in the buffer pool. (There is one I/O stream per
parallel task.) QBSTPQF is the total number of times that DB2 could not allocate
enough buffer pages to allow a parallel group to run to the planned degree.

As an example, assume QBSTJIS is 100000 and QBSTPQF is 2500:
(100000 ⁄ 2500) × 32 = 1280

Use ALTER BUFFERPOOL to increase the current VPSIZE by 2560 buffers to
alleviate the degree degradation problem. Use the DISPLAY BUFFERPOOL
command to see the current VPSIZE.

v Physical contention

Chapter 34. Parallel operations and query performance 853

As much as possible, put data partitions on separate physical devices to
minimize contention. Try not to use more partitions than there are internal paths
in the controller.

v Run time host variables

A host variable can determine the qualifying partitions of a table for a given
query. In such cases, DB2 defers the determination of the planned degree of
parallelism until run time, when the host variable value is known.

v Updatable cursor

At run time, DB2 might determine that an ambiguous cursor is updatable. This
appears in �D� in the accounting report.

v Proper hardware and software support

If you do not have the hardware sort facility at run time, and a sort merge join is
needed, you see a value in �E�.

v A change in the configuration of online processors

If there are fewer online processors at run time than at bind time, DB2
reformulates the parallel degree to take best advantage of the current processing
power. This reformulation is indicated by a value in �H� in the accounting report.

Locking considerations for repeatable read applications: For CP parallelism,
locks are obtained independently by each task. Be aware that this can possibly
increase the total number of locks taken for applications that:

v Use an isolation level of repeatable read

v Use CP parallelism

v Repeatedly access the table space using a lock mode of IS without issuing
COMMITs

As is recommended for all repeatable-read applications, be sure to issue frequent
COMMITs to release the lock resources that are held. Repeatable read or read
stability isolation cannot be used with Sysplex query parallelism.

Disabling query parallelism
To disable parallel operations, do any of the following actions:

v For static SQL, rebind to change the option DEGREE(ANY) to DEGREE(1). You
can do this by using the DB2I panels, the DSN subcommands, or the DSNH
CLIST. The default is DEGREE(1).

v For dynamic SQL, execute the following SQL statement:
SET CURRENT DEGREE = '1';

The default value for CURRENT DEGREE is 1 unless your installation has
changed the default for the CURRENT DEGREE special register.

v Set the parallel sequential threshold (VPPSEQT) to 0.

v Add a row to your resource limit facility’s specification table (RLST) for your plan,
package, or authorization ID with the RLFFUNC value set to “3” to disable I/O
parallelism, “4” to disable CP parallelism, or “5” to disable Sysplex query
parallelism. To disable all types of parallelism, you need a row for all three types
(assuming that Sysplex query parallelism is enabled on your system.) In a
system with a very high processor utilization rate (that is, greater than 98
percent), I/O parallelism might be a better choice because of the increase in
processor overhead with CP parallelism. In this case, you could disable CP
parallelism for your dynamic queries by putting a “4” in the resource limit
specification table for the plan or package.

854 Administration Guide

If you have a Sysplex, you might want to use a “5” to disable Sysplex query
parallelism, depending on how high processor utilization is in the members of the
data sharing group.

To determine if parallelism has been disabled by a value in your resource limit
specification table (RLST), look for a non-zero value in field QXRLFDPA in IFCID
0002 or 0003 (shown in �G� in Figure 120 on page 852). The QW0022RP field in
IFCID 0022 indicates whether this particular statement was disabled. For more
information on how the resource limit facility governs modes of parallelism, see
“Descriptions of the RLST columns” on page 584.

Chapter 34. Parallel operations and query performance 855

856 Administration Guide

Chapter 35. Tuning and monitoring in a distributed
environment

This section describes some ways you can tune your systems and applications that
use DRDA or DB2 private protocol for distributed data access.

This chapter contains the following sections:

v “Understanding remote access types”

v “Tuning distributed applications” on page 858

v “Monitoring DB2 in a distributed environment” on page 866

v “Using RMF to monitor distributed processing” on page 870

Understanding remote access types
DB2 supports two different types of remote access between the requesting
relational database management system (DBMS) and the serving relational
database management system. The two types of access are DB2 private protocol
access and DRDA access. When three-part named objects are referenced (or
aliases for three-part name objects are referenced, DB2 chooses between the two
connection types based on the bind option you choose (or the default protocol set
at your site).

Recommendation: Use DRDA for new applications, and begin migrating existing
private protocol applications to DRDA. No enhancements are planned for private
protocol.

Characteristics of DRDA
The application can remotely bind packages and can execute packages of static or
dynamic SQL that have previously been bound at that location. Distributed
processing using DRDA has the following characteristics:

v The application can access data at any server that supports DRDA, not just a
DB2 on an OS/390 or z/OS operating system.

v The application can use remote BIND to bind SQL into packages at the serving
relational database management system.

v The application can connect to other relational database management systems in
the network and execute packages at those database management systems.

Characteristics of DB2 private protocol
For distributed work between the two subsystems, DB2 uses communications
connections that are specific to DB2. Access using DB2 private protocol has these
characteristics:

v It does not support many SQL features, including user-defined functions, LOBs,
and stored procedures.

v Only DB2 on OS/390 and z/OS subsystems can communicate using this
connection.

v When a static SQL statement is passed to the server, it is dynamically bound and
then executed. The statement is dynamically bound only the first time it is
executed within a unit of recovery. Subsequent executions of the statement in the
unit of recovery do not pay the cost of the dynamic bind. However, if the
statement is executed again after a COMMIT or ROLLBACK, another dynamic
bind occurs.

© Copyright IBM Corp. 1982, 2001 857

v Within a unit of work, updates can be made to any number of DB2 subsystems.
An application can also read at several sites within a unit of work.

Tuning distributed applications
A query sent to a remote system can sometimes take longer to execute than the
same query, accessing tables of the same size, on the local DB2 subsystem. The
principal reasons for this potential increase in execution time are:

v The time required to send messages across the network

v Overhead processing, including startup and communication subsystem session
management

Some aspects of overhead processing, for instance, network processing, are not
under DB2 control. (Suggestions for tuning your network are in Part 3 of DB2
Installation Guide.)

Monitoring and tuning performance in a distributed environment is a complex task
involving knowledge of several products. Some guidelines follow for improving the
performance of distributed applications. The guidelines are divided into the following
areas:
v “The application and the requesting system”
v “The serving system” on page 865

The application and the requesting system
Minimizing the number of messages sent between the requester and the server is a
primary way to improve performance. Three topics that require more extensive
description are:

v “Block fetching result sets” on page 859.

v “Optimizing for very large results sets for DRDA” on page 863.

v “Optimizing for small results sets for DRDA” on page 864.

This section describes bind options and SQL statement options to consider

BIND options
If appropriate for your applications, consider the following options for bind:

v Use the bind option DEFER(PREPARE), which may reduce the number of
messages that must be sent back and forth across the network. For more
information on using the DEFER(PREPARE) option, see Part 4 of DB2
Application Programming and SQL Guide.

v Bind application plans and packages with ISOLATION(CS) whenever possible,
which can reduce contention and message overhead.

SQL statement options
v Avoid using several SQL statements when one well-tuned SQL statement can

retrieve the desired results. Alternatively, put your SQL statements in a stored
procedure, issue your SQL statements at the server through the stored
procedure, and return the result. Using a stored procedure creates only one send
and receive operation (for the CALL statement) instead of a potential send and
receive operation for each SQL statement.

Depending on how many SQL statements are in your application, using stored
procedures can significantly lower your processor and elapsed time costs. For
more information on how to use stored procedures, see Part 6 of DB2 Application
Programming and SQL Guide.

858 Administration Guide

v Use the SQL statement RELEASE and the bind option
DISCONNECT(EXPLICIT). The SQL statement RELEASE minimizes the network
traffic needed to release a remote connection at commit time. For example, if the
application has connections to several different servers, specify the RELEASE
statement when the application has completed processing for each server. The
RELEASE statement does not close cursors, release any resources, or prevent
further use of the connection until the COMMIT is issued. It just makes the
processing at COMMIT time more efficient.

The bind option DISCONNECT(EXPLICIT) destroys all remote connections for
which RELEASE was specified.

v Commit frequently to avoid holding resources at the server.

v Unless you are using dynamic statement caching at the server, avoid using
parameter markers in dynamic SELECT statements at a DB2 for OS/390 and
z/OS requester—use literals instead. Using literals enables DB2 for OS/390 and
z/OS to send the PREPARE and OPEN in one network message. DB2 can send
the PREPARE and OPEN in one message, even with parameter markers, if you
bind with DEFER(PREPARE).

v Consider carefully using the clause COMMIT ON RETURN YES of the CREATE
PROCEDURE statement to indicate that DB2 should issue an implicit COMMIT
on behalf of the stored procedure upon return from the CALL statement. Using
the clause can reduce the length of time locks are held and can reduce network
traffic. With COMMIT ON RETURN YES, any updates made by the client before
calling the stored procedure are committed with the stored procedure changes.
See Part 6 of DB2 Application Programming and SQL Guide for more
information.

v When requesting LOB data, set the CURRENT RULES special register to DB2
instead of to STD before performing a CONNECT. A value of DB2, which is the
default, can offer performance advantages. When a DB2 for OS/390 and z/OS
server receives an OPEN request for a cursor, the server uses the value in the
CURRENT RULES special register to determine whether the application intends
to switch between LOB values and LOB locator values when fetching different
rows in the cursor. If you specify a value of DB2 for CURRENT RULES, the
application indicates that the first FETCH request will specify the format for each
LOB column in the answer set and that the format will not change in a
subsequent FETCH request. However, if you set the value of CURRENT RULES
to STD, the application intends to fetch a LOB column into either a LOB locator
host variable or a LOB host variable.

Although a value of STD for CURRENT RULES gives you more programming
flexibility when you retrieve LOB data, you can get better performance if you use
a value of DB2. With the STD option, the server will not block the cursor, while
with the DB2 option it may block the cursor where it is possible to do so. For
more information, see “LOB data and its effect on block fetch” on page 861.

Block fetching result sets
DB2 has an important capability called block fetch that can significantly affect the
number of messages sent across the network. Block fetch is used only with cursors
that will not update or delete data. With block fetch, DB2 groups the rows retrieved
by an SQL query into as large a “block” of rows as will fit in a message buffer, and
transmits it over the network without requiring a message for every row.

DB2 can use two different types of block fetch:

v Limited block fetch

v Continuous block fetch

Chapter 35. Tuning and monitoring in a distributed environment 859

Both types of block fetch are used for both DRDA and private protocol, but the
implementation of continuous block fetch for DRDA is slightly different than that for
private protocol.

Continuous block fetch: In terms of response times, the continuous block
method is more efficient for larger result sets than the limited block method because
fewer messages are transmitted and because overlapped processing is performed
at the requester and server. But the continuous block method also uses more
networking resources. Switching from continuous block to limited block allows
applications to run when resources are critical.

The requester can use both forms of blocking, which can be in use at the same
time with different servers.

If an application is doing read-only processing and can use continuous block fetch,
the sequence goes like this:

1. A sends a message to open a cursor and begin fetching the block of rows at B.

2. B sends back a block of rows and A begins processing the first row.

3. B continues to send blocks of rows to A without further prompting. A processes
the second and later rows as usual, but fetches them from a buffer on system
A.

For private protocol, continuous block fetch uses one conversation for each open
cursor. Having a dedicated conversation for each cursor allows the server to
continue sending until all the rows are returned.

For DRDA, there is only one conversation, which must be made available to other
SQL in the application. Thus, the server usually sends back a subset of all the
rows. The number of rows that the server sends depends on the following factors:

v The size of each row

v The number of extra blocks that are requested by the requesting system versus
the number of extra blocks the server will return

For a DB2 for OS/390 and z/OS requester, the EXTRA BLOCKS REQ field on
installation panel DSNTIP5 determines the maximum number of extra blocks
requested. For a DB2 for OS/390 and z/OS server, the EXTRA BLOCKS SRV
field on installation panel DSNTIP5 determines the maximum number of extra
blocks requested.

v Whether continuous block fetch is enabled, and the number of extra rows that
the server can return if it regulates that number

To enable continuous block fetch for DRDA and to regulate the number of extra
rows sent by a DB2 for OS/390 and z/OS server, you must use the OPTIMIZE
FOR n ROWS clause on your SELECT statement. See “Optimizing for very large
results sets for DRDA” on page 863 for more information.

If you want to use continuous block fetch for DRDA, it is recommended that the
application fetch all the rows of the cursor before doing any other SQL. Fetching all
the rows first, prevents the requester from having to buffer the data, which can
consume a lot of storage. Choose carefully which applications should use
continuous block fetch for DRDA.

Limited block fetch: Limited block fetch guarantees the transfer of a minimum
amount of data in response to each request from the requesting system. In the
limited block method, a single conversation is used to transfer messages and data
between the requester and server for multiple cursors. Processing at the requester
and server is synchronous. The requester sends a request to the server, which

860 Administration Guide

|
|
|

|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

causes the server to send a response back to the requester. The server must then
wait for another request to tell it what should be done next.

Block fetch with scrollable cursors: When a DB2 for OS/390 and z/OS
requester uses a scrollable cursor to retrieve data from a DB2 for OS/390 and z/OS
server, the following conditions are true:

v The requester never requests more than 64 rows in a query block, even if more
rows fit in the query block. In addition, the requester never requests extra query
blocks. This is true even if the setting of field EXTRA BLOCKS REQ in the
DISTRIBUTED DATA FACILITY PANEL 2 installation panel on the requester
allows extra query blocks to be requested. If you want to limit the number of rows
that the server returns to fewer than 64, you can specify the FETCH FIRST n
ROWS ONLY clause when you declare the cursor.

v The requester discards rows of the result table if the application does not use
those rows. For example, if the application fetches row n and then fetches row
n+2, the requester discards row n+1. The application gets better performance for
a blocked scrollable cursor if it mostly scrolls forward, fetches most of the rows in
a query block, and avoids frequent switching between FETCH ABSOLUTE
statements with negative and positive values.

v If the scrollable cursor does not use block fetch, the server returns one row for
each FETCH statement.

LOB data and its effect on block fetch: For a non-scrollable blocked cursor, the
server sends all the non-LOB data columns for a block of rows in one message,
including LOB locator values. As each row is fetched by the application, the
requester obtains the non-LOB data columns directly from the query block. If there
are non-null and non-zero length LOB values in the row, those values are retrieved
from the server at that time. This behavior limits the impact to the network by
pacing the amount of data that is returned at any one time. If all LOB data columns
are retrieved into LOB locator host variables or if the row does not contain any
non-null or non-zero length LOB columns, then the whole row can be retrieved
directly from the query block.

For a scrollable blocked cursor, the LOB data columns are returned at the same
time as the non-LOB data columns. When the application fetches a row that is in
the block, a separate message is not required to get the LOB columns.

Ensuring block fetch:

General-use Programming Interface

To use either limited or continuous block fetch, DB2 must determine that the cursor
is not used for updating or deleting. The easiest way to indicate that the cursor
does not modify data is to add the FOR FETCH ONLY or FOR READ ONLY clause
to the query in the DECLARE CURSOR statement as in the following example:
EXEC SQL

DECLARE THISEMP CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8710.EMP
WHERE WORKDEPT = 'D11'
FOR FETCH ONLY

END-EXEC.

If you do not use FOR FETCH ONLY or FOR READ ONLY, DB2 still uses block
fetch for the query if:

Chapter 35. Tuning and monitoring in a distributed environment 861

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

v The cursor is a non-scrollable cursor, and the result table of the cursor is
read-only. This applies to static and dynamic cursors except for read-only views.
(See Chapter 5 of DB2 SQL Reference for information about declaring a cursor
as read-only.)

v The cursor is a scrollable cursor that is declared as INSENSITIVE, and the result
table of the cursor is read-only.

v The cursor is a scrollable cursor that is declared as SENSITIVE, the result table
of the cursor is read-only, and the value of bind option CURRENTDATA is NO.

v The result table of the cursor is not read-only, but the cursor is ambiguous, and
the value of bind option CURRENTDATA is NO. A cursor is ambiguous when:

– It is not defined with the clauses FOR FETCH ONLY, FOR READ ONLY, or
FOR UPDATE OF.

– It is not defined on a read-only result table.

– It is not the target of a WHERE CURRENT clause on an SQL UPDATE or
DELETE statement.

– It is in a plan or package that contains the SQL statements PREPARE or
EXECUTE IMMEDIATE.

DB2 triggers block fetch for static SQL only when it can detect that no updates or
deletes are in the application. For dynamic statements, because DB2 cannot detect
what follows in the program, the decision to use block fetch is based on the
declaration of the cursor.

DB2 does not use continuous block fetch if:

v The cursor is referred to in the statement DELETE WHERE CURRENT OF
elsewhere in the program.

v The cursor statement appears that it can be updated at the requesting system.
(DB2 does not check whether the cursor references a view at the server that
cannot be updated.)

The following three tables summarize the conditions under which a DB2 server
uses block fetch:

v Table 119 shows the conditions for a non-scrollable cursor.

Table 119. Effect of CURRENTDATA and cursor type on block fetch for a non-scrollable
cursor

Isolation CURRENTDATA Cursor type Block fetch

CS, RR, or RS

Yes

Read-only Yes

Updatable No

Ambiguous No

No

Read-only Yes

Updatable No

Ambiguous Yes

UR
Yes Read-only Yes

No Read-only Yes

v Table 120 on page 863 shows the conditions for a scrollable cursor that is not
used to retrieve a stored procedure result set.

862 Administration Guide

|
|

|
|

|
|

Table 120. Effect of CURRENTDATA and isolation level on block fetch for a scrollable
cursor that is not used for a stored procedure result set

Isolation Cursor sensitivity CURRENT–
DATA

Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

Updatable No

Ambiguous No

No Read-only Yes

Updatable No

Ambiguous Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

v Table 121 shows the conditions for a scrollable cursor that is used to retrieve a
stored procedure result set.

Table 121. Effect of CURRENTDATA and isolation level on block fetch for a scrollable
cursor that is used for a stored procedure result set

Isolation Cursor sensitivity CURRENT–
DATA

Cursor type Block fetch

CS, RR, or RS INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only No

No Read-only Yes

UR INSENSITIVE Yes Read-only Yes

No Read-only Yes

SENSITIVE Yes Read-only Yes

No Read-only Yes

End of General-use Programming Interface

Optimizing for very large results sets for DRDA
Enabling a DB2 client to request multiple query blocks on each transmission can
reduce network activity and improve performance significantly for applications that
use DRDA access to download large amounts of data. You can specify a large
value of n in the OPTIMIZE FOR n ROWS clause of a SELECT statement to
increase the number of DRDA query blocks that a DB2 server returns in each
network transmission for a non-scrollable cursor. If n is greater than the number of
rows that fit in a DRDA query block, OPTIMIZE FOR n ROWS lets the DRDA client
request multiple blocks of query data on each network transmission instead of
requesting a new block when the first block is full. This use of OPTIMIZE FOR n
ROWS is intended only for applications in which the application opens a cursor and
downloads great amounts of data. The OPTIMIZE FOR n ROWS clause has no
effect on scrollable cursors.

Chapter 35. Tuning and monitoring in a distributed environment 863

||
|

|||
|
||

|||||

|||

|||#

||

||

|||

||

||

|||||

|||

||||

|||
|

|
|

||
|

|||
|
||

|||||

|||

||||

|||

|||||

|||

||||

|||
|

|

|
|

Recommendation: Because there is only one conversation used by the
application’s SQL, do not try to do other SQL work until the entire answer set is
processed. If the requester issues another SQL statement before the previous
statement’s answer set has been received off the network, DDF must buffer them in
its address space. Up to 10 MB can be buffered in this way.

Because specifying a large number of network blocks can saturate the network,
limit the number of blocks according to what your network can handle. You can limit
the number of blocks used for these large download operations. When the client
supports extra query blocks, DB2 chooses the smallest of the following values when
determining the number of query blocks to send:

v The number of blocks into which the number of rows (n) on the OPTIMIZE
clause will fit. For example, assume you specify 10000 rows for n, and the size
of each row that is returned is approximately 100 bytes. If the block size used is
32 KB (32768 bytes), the calculation is as follows:
(10000 * 100) / 32768 = 31 blocks

v The DB2 server value for the installation option EXTRA BLOCKS SRV install
option on panel DSNTIP5. The maximum value that you can specify is 100.

v The client’s extra query block limit, which is obtained from the DRDA
MAXBLKEXT parameter received from the client. When DB2 for OS/390 and
z/OS acts as a DRDA client, you set this parameter at installation time with the
EXTRA BLOCKS REQ option of the DSNTIP5 panel. The maximum value that
you can specify is 100.

If the client does not support extra query blocks, the DB2 server on OS/390 or z/OS
automatically reduces the value of n to match the number of rows that fit within a
DRDA query block.

Recommendation for cursors that are defined WITH HOLD: Do not set a large
number of query blocks for cursors that are defined WITH HOLD. If the application
commits while there are still a lot of blocks in the network, DB2 buffers the blocks in
the requester’s memory (the ssnmDIST address space if the requester is a DB2 for
OS/390 and z/OS) before the commit can be sent to the server.

For examples of performance problems that can occur from not using OPTIMIZE
FOR n ROWS when downloading large amounts of data, see Part 4 of DB2
Application Programming and SQL Guide.

Optimizing for small results sets for DRDA
When a client does not need all the rows from a potentially large result set,
preventing the DB2 server from returning all the rows for a query can reduce
network activity and improve performance significantly for DRDA applications. You
can use either the OPTIMIZE FOR n ROWS clause or the FETCH FIRST n ROWS
ONLY clause of a SELECT statement to limit the number of rows returned to a
client program.

Using OPTIMIZE FOR n ROWS: When you specify OPTIMIZE FOR n ROWS and
n is less than the number of rows that fit in the DRDA query block (default size on
OS/390 or z/OS is 32 KB), the DB2 server prefetches and returns only as many
rows as fit into the query block. For example, if the client application is interested in
seeing only one screen of data, specify OPTIMIZE FOR n ROWS, choosing a small
number for n, such as 3 or 4. The OPTIMIZE FOR n ROWS clause has no effect
on scrollable cursors.

864 Administration Guide

|
|
|

|
|
|
|

|
|

Using FETCH FIRST n ROWS ONLY: When you specify FETCH FIRST n ROWS
ONLY, the DB2 server prefetches and returns only n rows even if more rows can fit
into the DRDA query block. FETCH FIRST n ROWS ONLY can prevent the
prefetching of any unnecessary rows. For example, if you need only one row of the
result table, FETCH FIRST 1 ROW ONLY causes only one row to be prefetched
and returned. Had you specified only OPTIMIZE FOR 1 ROW, enough rows to fit
into the query block would have been prefetched and returned.

If you specify FETCH FIRST n ROWS ONLY, then OPTIMIZE FOR n ROWS is
implied, and DB2 optimizes the query as if you had specified OPTIMIZE FOR n
ROWS. If you specify both clauses, DB2 optimizes the query as if you had specified
OPTIMIZE FOR n ROWS, where n is the lesser of the values specified for each
clause.

When you use FETCH FIRST n ROWS ONLY, DB2 might use a fast implicit close.
Fast implicit close means that during a distributed query, the DB2 server
automatically closes the cursor when it prefetches the nth row if FETCH FIRST n
ROWS ONLY is specified or when there are no more rows to return. Fast implicit
close can improve performance because it can save an additional network
transmission between the client and the server.

DB2 uses fast implicit close when the following conditions are true:

v The query uses limited block fetch.

v The query retrieves no LOBs.

v The cursor is not a scrollable cursor.

v Either of the following conditions is true:

– The cursor is declared WITH HOLD, and the package or plan that contains
the cursor is bound with the KEEPDYNAMIC(YES) option.

– The cursor is not defined WITH HOLD.

When you use FETCH FIRST n ROWS ONLY and DB2 does a fast implicit close,
the DB2 server closes the cursor after it prefetches n rows, or when there are no
more rows.

The serving system
For access using DB2 private protocol, the serving system is the DB2 system on
which the SQL is dynamically executed. For access using DRDA, the serving
system is the system on which your remotely bound package executes.

If you are executing a package on a remote DBMS, then improving performance on
the server depends on the nature of the server. If the remote DBMS on which the
package executes is another DB2, then the information in “Chapter 33. Using
EXPLAIN to improve SQL performance” on page 789 is appropriate for access path
considerations.

Other considerations that could affect performance on a DB2 server are:

v The maximum number of database access threads that the server allows to be
allocated concurrently. (This is the MAX REMOTE ACTIVE option on installation
panel DSNTIPE.) A request can be queued while waiting for an available thread.
Making sure that requesters commit frequently can let threads be used by other
requesters. See “Setting thread limits for database access threads” on page 625
for more information.

Chapter 35. Tuning and monitoring in a distributed environment 865

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

|

|
|
|

v The priority of database access threads on the remote system. A low priority
could impede your application’s distributed performance. See “Using Workload
Manager to set performance objectives” on page 629 for more information.

v For instructions on avoiding RACF calls at the server, see “Controlling requests
from remote applications” on page 176, and more particularly “Do you manage
inbound IDs through DB2 or RACF?” on page 181.

When DB2 is the server, it is a good idea to activate accounting trace class 7. This
provides accounting information at the package level, which can be very useful in
determining performance problems.

Monitoring DB2 in a distributed environment
DB2 provides several ways to monitor DB2 data and events in a distributed
environment. You can use the DISPLAY command and the trace facility to obtain
information. DB2 can also return server-elapsed time to certain types of client
applications.

Using the DISPLAY command
The DB2 DISPLAY command gives you information about the status of threads,
databases, tracing, allied subsystems, and applications. Several forms of the
DISPLAY command are particularly helpful for monitoring DB2: DISPLAY THREAD,
DISPLAY LOCATION, DISPLAY DATABASE, and DISPLAY TRACE. For the
detailed syntax of each command, refer to Chapter 2 of DB2 Command Reference.
See also:

“Monitoring threads” on page 283
“The command DISPLAY LOCATION” on page 311

Tracing distributed events
A number of IFCIDs, including IFCID 0001 (statistics) and IFCID 0003 (accounting),
record distributed data and events.

If your applications update data at other sites, turn on the statistics class 4 trace
and always keep it active. This statistics trace covers error situations surrounding in
doubt threads; it provides a history of events that might impact data availability and
data consistency.

DB2 accounting records are created separately at the requester and each server.
Events are recorded in the accounting record at the location where they occur.
When a thread becomes active, the accounting fields are reset. Later, when the
thread becomes inactive or is terminated, the accounting record is created.

Figure 121 on page 867 shows the relationship of the accounting class 1 and 2
times and the requester and server accounting records. Figure 122 on page 868
and Figure 123 on page 869 show the server and requester distributed data facility
blocks from the DB2 PM accounting long trace.

866 Administration Guide

This figure is a very simplified picture of the processes that go on in the serving
system. It does not show block fetch statements and is only applicable to a single
row retrieval.

The various elapsed times referred to in the header are:

v (1) - Requester Cls1

This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the DB2 PM accounting long trace for the requesting DB2
subsystem. It represents the elapsed time from the creation of the allied
distributed thread until the termination of the allied distributed thread.

v (2) - Requester Cls2

This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the DB2 PM accounting long trace for the requesting DB2

Accounting elapsed times

ServerRequester

Cls1
(5)

Cls2
(6)

Cls3
(7)

Cls2*
(4)

User
address

“requester”
space

DB2
serving
systemNetwork

DB2
requesting

system

(1st SQL statement)

Create thread

SQL

SQL

Commit

Commit
Terminate thread

Terminate thread
* Not accounted for

SQL

Cls1
(1)

Cls3
(3)

Cls2
(2)

Figure 121. Elapsed times in a DDF environment as reported by DB2 PM. These times are valid for access that uses
either DRDA or private protocol (except as noted).

Chapter 35. Tuning and monitoring in a distributed environment 867

subsystem. It represents the elapsed time from when the application passed the
SQL statements to the local DB2 system until return. This is considered “In DB2”
time.

v (3) - Requester Cls3

This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP
column near the top of the DB2 PM accounting long trace for the requesting DB2
system. It represents the amount of time the requesting DB2 system spent
suspended waiting for locks or I/O.

v (4) - Requester Cls2* (Requester wait time for activities not in DB2)

This time is reported in the NOT ACCOUNT field of the DB2 PM accounting
report for the requesting DB2 subsystem. It represents the time the requester
spent waiting for the network and server to process the request. It is not actually
time spent in DB2.

v (5) - Server Cls1

This time is reported in the ELAPSED TIME field under the APPL (CLASS 1)
column near the top of the DB2 PM accounting long trace for the serving DB2
subsystem. It represents the elapsed time from the creation of the database
access thread until the termination of the database access thread.

v (6) - Server Cls2

This time is reported in the ELAPSED TIME field under the DB2 (CLASS 2)
column near the top of the DB2 PM accounting long trace of the serving DB2
subsystem. It represents the elapsed time to process the SQL statements and
the commit at the server.

v (7) - Server Cls3

This time is reported in the TOTAL CLASS 3 field under the CLASS 3 SUSP
column near the top of the DB2 PM accounting long trace for the serving DB2
subsystem. It represents the amount of time the serving DB2 system spent
suspended waiting for locks or I/O.

The Class 2 processing time (the TCB time) at the requester does not include
processing time at the server. To determine the total Class 2 processing time, add
the Class 2 time at the requester to the Class 2 time at the server.

Likewise, add the getpage counts, prefetch counts, locking counts, and I/O counts
of the requester to the equivalent counts at the server. For private protocol, SQL
activity is counted at both the requester and server. For DRDA, SQL activity is
counted only at the server.

---- DISTRIBUTED ACTIVITY ---
SERVER : BOEBDB2SERV SUCCESSFULLY ALLOC.CONV:�C�N/A MSG.IN BUFFER �E�: 0
PRODUCT ID : DB2 CONVERSATION TERMINATED: N/A
PRODUCT VERSION : V6 R1 M0 MAX OPEN CONVERSATIONS : N/A PREPARE SENT : 1
METHOD : DRDA PROTOCOL CONT->LIM.BL.FTCH SWCH :�D�N/A LASTAGN.SENT : 0
REQUESTER ELAP.TIME : 0.685629 MESSAGES SENT : 3
SERVER ELAPSED TIME : N/A COMMIT(2) RESP.RECV. : 1 MESSAGES RECEIVED: 2
SERVER CPU TIME : N/A BACKOUT(2) RESP.RECV. : 0 BYTES SENT : 9416
DBAT WAITING TIME : 0.026118 TRANSACT.SENT : 1 BYTES RECEIVED : 1497
COMMIT (2) SENT : 1 COMMT(1)SENT : 0 BLOCKS RECEIVED : 0
BACKOUT(2) SENT : 0 ROLLB(1)SENT : 0 STMT BOUND AT SER:�F� N/A
CONVERSATIONS INITIATED:�A� 1 SQL SENT : 0
CONVERSATIONS QUEUED :�B� 0 ROWS RECEIVED : 1 FORGET RECEIVED : 0

Figure 122. DDF block of a requester thread from a DB2 PM accounting long trace

868 Administration Guide

The accounting distributed fields for each serving or requesting location are
collected from the viewpoint of this thread communicating with the other location
identified. For example, SQL sent from the requester is SQL received at the server.
Do not add together the distributed fields from the requester and the server.

Several fields in the distributed section merit specific attention. The number of
conversations is reported in several fields:

v The number of conversation allocations is reported as CONVERSATIONS
INITIATED (�A�).

v The number of conversation requests queued during allocation is reported as
CONVERSATIONS QUEUED (�B�).

v The number of successful conversation allocations is reported as
SUCCESSFULLY ALLOC.CONV (�C�).

v The number of times a switch was made from continuous block fetch to limited
block fetch is reported as CONT->LIM.BL.FTCH (�D�). This is only applicable to
access that uses DB2 private protocol.

You can use the difference between initiated allocations and successful allocations
to identify a session resource constraint problem. If the number of conversations
queued is high, or if the number of times a switch was made from continuous to
limited block fetch is high, you might want to tune VTAM to increase the number of
conversations. VTAM and network parameter definitions are important factors in the
performance of DB2 distributed processing. For more information, see VTAM for
MVS/ESA Network Implementation Guide.

Bytes sent, bytes received, messages sent, and messages received are recorded at
both the requester and the server. They provide information on the volume of data
transmitted. However, because of the way distributed SQL is processed for private
protocol, more bytes may be reported as sent than are reported as received.

To determine the percentage of the rows transmitted by block fetch, compare the
total number of rows sent to the number of rows sent in a block fetch buffer, which
is reported as MSG.IN BUFFER (�E�). The number of rows sent is reported at the
server, and the number of rows received is reported at the requester. Block fetch
can significantly affect the number of rows sent across the network.

The number of SQL statements bound for remote access is the number of
statements dynamically bound at the server for private protocol. This field is
maintained at the requester and is reported as STMT BOUND AT SER (�F�).

Because of the manner in which distributed SQL is processed, there may be a
small difference in the number of rows reported as sent versus received. However,

---- DISTRIBUTED ACTIVITY ---
REQUESTER : BOEBDB2REQU ROLLBK(1) RECEIVED : 0 PREPARE RECEIVED : 1
PRODUCT ID : DB2 SQL RECEIVED : 0 LAST AGENT RECV. : 1
PRODUCT VERSION : V6 R1 M0 COMMIT(2) RESP.SENT: 1 THREADS INDOUBT : 0
METHOD : DRDA PROTOCOL BACKOUT(2)RESP.SENT: 0 MESSAGES.IN BUFFER : 0
COMMIT(2) RECEIVED : 1 BACKOUT(2)PERFORMED: 0 ROWS SENT : 0
BACKOUT(2) RECEIVED: 0 MESSAGES SENT : 3 BLOCKS SENT : 0
COMMIT(2) PERFORMED: 1 MESSAGES RECEIVED : 5 CONVERSAT.INITIATED: 1
TRANSACTIONS RECV. : 1 BYTES SENT : 643 FORGET SENT : 0
COMMIT(1) RECEIVED : 0 BYTES RECEIVED : 3507

Figure 123. DDF block of a server thread from a DB2 PM accounting long trace

Chapter 35. Tuning and monitoring in a distributed environment 869

a significantly lower number of rows received may indicate that the application did
not fetch the entire answer set. This is especially true for access that uses DB2
private protocol.

Reporting server-elapsed time
Client applications that access DB2 data using DRDA access can request that DB2
return the server-elapsed time. server-elapsed time allows remote clients to
determine the actual amount of time it takes for DB2 to parse a remote request,
process any SQL statements required to satisfy the request, and generate the reply.
Because server-elapsed time does not include any of the network time used to
receive the request or send the reply, client applications can use the information to
quickly isolate poor response times to the network or to the DB2 server without you
having to perform traces on the server. Only application clients using DB2 Connect
Version 7 can request the server-elapsed time. When the System Monitor statement
switch has been turned on, DB2 returns server-elapsed time information as a new
element through the regular Snapshot Monitoring APIs.

Using RMF to monitor distributed processing
If you use RMF to monitor DDF work, it is important to understand how DDF is
using the enclave SRBs described in “Using Workload Manager to set performance
objectives” on page 629. The information that is reported using RMF or an
equivalent product in the SMF 72 records are the portions of the client’s request
that are covered by individual enclaves. The way DDF uses enclaves relates
directly to whether the DDF thread can become inactive.

Duration of an enclave
“Using inactive threads” on page 626 describes the difference between threads that
are always active and those that can become inactive (sometimes active threads).
From an MVS enclave point of view, an enclave only lasts as long as the thread is
active. Any inactive period, such as think time, is not using an enclave and is not
managed by MVS’s SRM. Inactive periods are therefore not reported in the SMF 72
record.

Active threads that cannot become inactive (always active threads) are treated as a
single enclave from the time it is created until the time it is terminated. This means
that the entire life of the database access thread is reported in the SMF 72 record,
regardless of whether SQL work is actually being processed. Figure 124 on
page 871 contrasts the two types of threads and their management by SRM.

870 Administration Guide

|

|
|
|
|
|
|
|
|
|
|
|

Queue Time: Note that the information reported back to RMF includes queue time.
This particular queue time includes waiting for a new or existing thread to become
available. This queue time is also reported in DB2 class 3 times, but class 3 times
also include time waiting for locks or I/O after the thread is processing work.

RMF records for enclaves
The two most frequently used SMF records are types 30 and 72. The type 30
record contains resource consumption at the address space level. You can pull out
total enclave usage from the record, but you must use DB2 accounting traces to
see resource consumption for a particular enclave.

Type 72 records contain data collected by RMF monitor 1. There is one type 72
record for each service class period, report class, performance group number
(PGN) period, and report performance group (RPGN) per RMF monitor 1 interval.
Each enclave contributes its data to one type 72 for the service class or PGN and
to zero or one (0 or 1) type 72 records for the report class or RPGN. By using WLM
classification rules, you can segregate enclaves into different service classes or
report classes (or PGNs or RPGNs, if using compatibility mode). By doing this, you
can understand the DDF work better.

COMMITCOMMITSELECTCOMMITCONNECT

Application

Sometimes
active
threads

ActiveActive

Enclave

Inactive Active

Enclave

Inactive

Always
active
threads

Database thread is active from creation until termination

Enclave

Queue

ExecuteExecute

Figure 124. Contrasting ’always active’ vs. ’sometimes active’ threads

Chapter 35. Tuning and monitoring in a distributed environment 871

872 Administration Guide

Chapter 36. Monitoring and tuning stored procedures and
user-defined functions

Table 122 summarizes the differences between stored procedures that run in
WLM-established stored procedures address spaces and those that run in
DB2-established stored procedure address space. User-defined functions must run
in a WLM-established address space. Performance tuning information for
user-defined functions and for stored procedures in a WLM-established address
space is the same.

Table 122. Comparing WLM-established and DB2-established stored procedures

DB2-established WLM-established More information

Use a single address space for stored
procedures:

v A failure in one stored procedure
can affect other stored procedures
that are running in that address
space.

v Can be difficult to support more
than 50 stored procedures running
at the same time because of
storage that language products
need below the 16MB line.

Use many address spaces for stored
procedures and user-defined
functions:

v Possible to isolate procedures and
functions from one another so that
failures do not affect others that are
running in other address spaces.

v Reduces demand for storage below
the 16MB line and thereby removes
the limitation on the number of
procedures and functions that can
run concurrently.

v Only one utility can be invoked by a
stored procedure in one address
space at any given time. The start
parameter NUMTCB on the WLM
Application-Environment panel has
to be set to 1.

“Controlling address space storage”
on page 874, and Figure 125 on
page 876

Incoming requests for stored
procedures are handled in a first-in,
first-out order.

Requests are handled in priority order. “Using Workload Manager to set
performance objectives” on page 629

Stored procedures run at the priority
of the stored procedures address
space.

Stored procedures inherit the MVS
dispatching priority of the DB2 thread
that issues the CALL statement.
User-defined functions inherit the
priority of the DB2 thread that invoked
the procedure.

“Using Workload Manager to set
performance objectives” on page 629

No ability to customize the
environment.

Each address space is associated
with a WLM application environment
that you specify. An application
environment is an attribute that you
associate on the CREATE statement
for the function or procedure. The
environment determines which JCL
procedure is used to run a particular
stored procedure.

“Assigning procedures and functions
to WLM application environments” on
page 875

Must run as a MAIN program. Can run as a MAIN or SUB program.
SUB programs can run significantly
faster, but the subprogram must do
more initialization and cleanup
processing itself rather than relying on
LE/370 to handle that.

Part 6 of DB2 Application
Programming and SQL Guide

© Copyright IBM Corp. 1982, 2001 873

Table 122. Comparing WLM-established and DB2-established stored procedures (continued)

DB2-established WLM-established More information

You can access non-relational data,
but that data is not included in your
SQL unit of work. It is a separate unit
of work.

You can access non-relational data. If
the non-relational data is managed by
OS/390 RRS, the updates to that data
are part of your SQL unit of work.

Part 6 of DB2 Application
Programming and SQL Guide

Stored procedures access protected
MVS resources with the authority of
the stored procedures address space.

Procedures or functions can access
protected MVS resources with one of
three authorities, as specified on the
SECURITY option of the CREATE
FUNCTION or CREATE
PROCEDURE statement:

v The authority of the
WLM-established address space
(SECURITY=DB2)

v The authority of the invoker of the
stored procedure or user-defined
function (SECURITY=USER)

v The authority of the definer of the
stored procedure or user-defined
function (SECURITY=DEFINER)

Part 3 (Volume 1) of DB2
Administration Guide

Controlling address space storage
To maximize the number of procedures or functions that can run concurrently in an
address space, use the following guidelines:

v Set REGION size for the address spaces to REGION=0 to obtain the largest
possible amount of storage below the 16MB line.

v Limit storage required by application programs below the 16MB line by:

– Linking editing programs above the line with AMODE(31) and RMODE(ANY)
attributes

– Using the RES and DATA(31) compiler options for COBOL programs

v Limit storage required by Language Environment by using these runtime options:

– HEAP(,,ANY) to allocate program heap storage above the 16MB line

– STACK(,,ANY,) to allocate program stack storage above the 16MB line

– STORAGE(,,,4K) to reduce reserve storage area below the line to 4KB

– BELOWHEAP(4K,,) to reduce the heap storage below the line to 4KB

– LIBSTACK(4K,,) to reduce the library stack below the line to 4KB

– ALL31(ON) to indicate all programs contained in the stored procedure run with
AMODE(31) and RMODE(ANY)

If you follow these guidelines, each TCB that runs in the DB2-established stored
procedures address space requires approximately 100 KB below the 16MB line.
Each TCB that runs in a WLM-established stored procedures address space uses
approximately 200 KB below the line, but because you can have fewer stored
procedures (and user-defined functions) per address space, your total
below-the-line cost can be less.

DB2 needs extra storage for stored procedures and user-defined functions in the
WLM-established address space because you can create both main and sub
programs, and DB2 must create an environment for each.

874 Administration Guide

A stored procedure can invoke only one utility in one address space at any given
time because of the resource requirements of utilities. On the WLM
Application-Environment panel, set NUMTCB to 1. See Figure 125 on page 876.
However, a stored procedure can invoke several compatible utilities at the same
time if you create multiple WLM address spaces and direct each utility to a different
address space.

Dynamically extending load libraries: Use partitioned data set extended (PDSEs)
for load libraries containing stored procedures. Using PDSEs may eliminate your
need to stop and start the stored procedures address space due to growth of the
load libraries. If a load library grows from additions or replacements, the library may
have to be extended.

If you use PDSEs for the load libraries, the new extent information is dynamically
updated and you do not need to stop and start the address space. If PDSs are
used, load failures may occur because the new extent information is not available.

Assigning procedures and functions to WLM application environments
Workload manager routes work to address spaces based on the application
environment name and service class associated with the stored procedure or
function. You must use WLM panels to associate an application environment name
with the JCL procedure used to start an address space. See OS/390 MVS Planning:
Workload Management for details about workload management panels.

Other tasks must be completed before a stored procedure or user-defined function
can run in a WLM-established stored procedures address space. Here is a
summary of those tasks:

1. Make sure you have a numeric value specified in the TIMEOUT VALUE field of
installation panel DSNTIPX. If you have problems with setting up the
environment, this timeout value ensures that your request to execute a stored
procedure will not wait for an unlimited amount of time.

2. If you want to convert to WLM-managed stored procedures that use the
DB2-established stored procedure address space (ssnmSPAS), you must link
edit them or code them so that they use the Recoverable Resource Manager
Services attachment facility (RRSAF) instead of the call attachment facility. Use
the JCL startup procedure for WLM-established stored procedures address
space that was created when you installed or migrated as a model. (The default
name is ssnmWLM.)

Unless a particular application environment or caller’s service class is not used
for a long time, WLM creates on demand at least one address space for each
combination of application environment name and caller’s service class that is
encountered in the workload. For example, if there are five application
environment names that each have calling threads with six possible service
classes, and all those combinations are in demand, it is possible to have 30
address spaces containing stored procedures or user-defined functions.

To prevent creating too many address spaces, create a relatively small number
of WLM application environments and MVS service classes.

3. Use the WLM application environment panels to associate the environment
name with the JCL procedure. Figure 125 on page 876 is an example of this
panel.

Chapter 36. Monitoring and tuning stored procedures and user-defined functions 875

|
|
|
|
|
|
|

4. Specify the WLM application environment name for the WLM_ENVIRONMENT
option on CREATE or ALTER PROCEDURE (or FUNCTION) to associate a
stored procedure or user-defined function with an application environment.

5. Using the install utility in the WLM application, install the WLM service definition
that contains information about this application environment into the couple data
set.

6. Activate a WLM policy from the installed service definition.

7. Issue STOP PROCEDURE and START PROCEDURE for any stored
procedures that run in the ssnmSPAS address space. This process allows those
procedures to pick up the new value for WLM environment.

8. Begin running stored procedures.

Providing DB2 cost information for accessing user-defined table
functions

User-defined table functions add additional access cost to the execution of an SQL
statement. For DB2 to factor in the effect of user-defined table functions in the
selection of the best access path for an SQL statement, the total cost of the
user-defined table function must be determined.

The total cost of a table function consists of the following three components:

v The initialization cost that results from the first call processing

v The cost that is associated with acquiring a single row

v The final call cost that performs the clean up processing

These costs, though, are not known to DB2 when I/O costs are added to the CPU
cost.

To assist DB2 in determining the cost of user-defined table functions, you can use
four fields in SYSIBM.SYSROUTINES. Use the following fields to provide cost
information:

v IOS_PER_INVOC for the estimated number of I/Os per row

v INSTS_PER_INVOC for the estimated number of instructions

Application-Environment Notes Options Help
--

Create an Application Environment
Command ===> ___

Application Environment Name . : WLMENV2
Description Large Stored Proc Env.
Subsystem Type DB2
Procedure Name DSN1WLM
Start Parameters DB2SSN=DB2A,NUMTCB=2,APPLENV=WLMENV2

Select one of the following options.
1 1. Multiple server address spaces are allowed.

2. Only 1 server address space per MVS system is allowed.

Figure 125. WLM panel to create an application environment. You can also use the variable
&IWMSSNM for the DB2SSN parameter (DB2SSN=&IWMSSNM). This variable represents
the name of the subsystem for which you are starting this address space. This variable is
useful for using the same JCL procedure for multiple DB2 subsystems.

876 Administration Guide

v INITIAL_IOS for the estimated number of I/Os performed the first and last time
the function is invoked

v INITIAL_INSTS for the estimated number of instructions for the first and last time
the function is invoked

These values, along with the CARDINALITY value of the table being accessed, are
used by DB2 to determine the cost. The results of the calculations can influence
such things as the join sequence for a multi-table join and the cost estimates
generated for and used in predictive governing.

Determine values for the four fields by examining the source code for the table
function. Estimate the I/Os by examining the code executed during the FIRST call
and FINAL call. Look for the code executed during the OPEN, FETCH, and CLOSE
calls. The costs for the OPEN and CLOSE calls can be amortized over the
expected number of rows returned. Estimate the I/O cost by providing the number
of I/Os that will be issued. Include the I/Os for any file access.

Figure the instruction cost by counting the number of high level instructions
executed in the user-defined table function and multiplying it by a factor of 20. For
assembler programs, the instruction cost is the number of assembler instructions.

If SQL statements are issued within the user-defined table function, use DB2
Estimator to determine the number of instructions and I/Os for the statements.
Examining the JES job statistics for a batch program doing equivalent functions can
also be helpful. For all fields, a precise number of instructions is not required.
Because DB2 already accounts for the costs of invoking table functions, these costs
should not be included in the estimates.

The following example shows how these fields can be updated. The authority to
update is the same authority as that required to update any catalog statistics
column.
UPDATE SYSIBM.SYSROUTINES SET

IOS_PER_INVOC = 0.0,
INSTS_PER_INVOC = 4.5E3,
INITIAL_IOS = 2.0
INITIAL_INSTS = 1.0E4,
CARDINALITY = 5E3

WHERE
SCHEMA = 'SYSADM' AND
SPECIFICNAME = 'FUNCTION1' AND
ROUTINETYPE = 'F';

Accounting trace
Through a stored procedure one SQL statement generates other SQL statements
under the same thread. The processing done by the stored procedure is included in
DB2’s class 1 and class 2 times for accounting.

The accounting report on the server has several fields that specifically relate to
stored procedures processing, as shown in Figure 126 on page 878.

Chapter 36. Monitoring and tuning stored procedures and user-defined functions 877

Descriptions of fields:

v The part of the total CPU time that was spent satisfying stored procedures
requests is indicated in �A�.

v The amount of time spent waiting for a stored procedure to be scheduled is
indicated in �B�.

v The number of calls to stored procedures is indicated in �C�.

v The number of times a stored procedure timed out waiting to be scheduled is
shown in �D�.

What to do for excessive timeouts or wait time: If you have excessive wait time
(�B�) or timeouts (�D�), there are several possible causes.

For user-defined functions, or for stored procedures in a WLM-established address
space, the causes for excessive wait time include:

v The priority of the service class that is running the stored procedure is not high
enough.

v You are running in compatibility mode, which means you might have to manually
start more address spaces.

v If you are using goal mode, make sure that the application environment is
available by using the MVS command DISPLAY WLM,APPLENV=applenv. If the

PLANNAME: PU22301

AVERAGE APPL (CLASS 1) DB2 (CLASS 2) IFI (CLASS 5) CLASS 3 SUSP. AVERAGE TIME AV.EVENT
------------ -------------- -------------- -------------- -------------- ------------ --------
ELAPSED TIME 5.773449 3.619543 N/P LOCK/LATCH 1.500181 1.09
NON-NESTED 2.014711 1.533210 N/A SYNCHRON. I/O 0.002096 0.13
STORED PROC �A� 3.758738 2.086333 N/A DATABASE I/O 0.000810 0.09
UDF 0.000000 0.000000 N/A LOG WRITE I/O 0.001286 0.04
TRIGGER 0.000000 0.000000 N/A OTHER READ I/O 0.000000 0.00

OTHER WRTE I/O 0.000000 0.00
CPU TIME 0.141721 0.093469 N/P SER.TASK SWTCH 0.860814 1.04
AGENT 0.141721 O.093469 N/P UPDATE COMMIT 0.010989 0.06
NON-NESTED 0.048918 0.004176 N/A OPEN/CLOSE 0.448021 0.20
STORED PROC 0.092802 0.089294 N/A SYSLGRNG REC 0.193708 0.61
UDF 0.000000 0.000000 N/A EXT/DEL/DEF 0.160772 0.01
TRIGGER 0.000000 0.000000 N/A OTHER SERVICE 0.047324 0.16
PAR.TASKS O.000000 0.000000 N/A ARC.LOG(QUIES) 0.000000 0.00

ARC.LOG READ 0.000000 0.00
SUSPEND TIME N/A 2.832920 N/A STORED PROC. �B� 0.129187 0.04
AGENT N/A 2.832920 N/A UDF SCHEDULE 0.000000 0.00
PAR.TASKS N/A 0.000000 N/A DRAIN LOCK 0.000000 0.00

CLAIM RELEASE 0.000000 0.00
NOT ACCOUNT. N/A 0.693154 N/A PAGE LATCH 0.000000 0.00
DB2 ENT/EXIT N/A 8.96 N/A NOTIFY MSGS. 0.000000 0.00
EN/EX-STPROC N/A 41.74 N/A GLOBAL CONT. 0.340642 7.37
EN/EX-UDF N/A N/A N/P TOTAL CLASS 3 2.832920 9.67
DCAPT.DESCR. N/A N/A N/P
LOG EXTRACT. N/A N/A N/P

...

STORED PROCEDURES AVERAGE TOTAL
----------------- -------- --------
CALL STATEMENTS �C� 1.00 1
PROCEDURE ABENDS 0.00 0
CALL TIMEOUT �D� 0.00 0
CALL REJECT 0.00 0

...

Figure 126. Partial long accounting report, server —stored procedures

878 Administration Guide

application environment is quiesced, WLM does not start any address spaces for
that environment; CALL statements are queued or rejected.

For stored procedures in a DB2-established address space, the causes for
excessive wait time include:

v Someone issued the DB2 command STOP PROCEDURE ACTION(QUEUE) that
caused requests to queue up for a long time and time out.

v The stored procedures are hanging onto the ssnmSPAS TCBs for too long. In
this case, you need to find out why this is happening.

If you are getting many DB2 lock suspensions, maybe you have too many
ssnmSPAS TCBs, causing them to encounter too many lock conflicts with one
another. Or, maybe you just need to make code changes to your application. Or,
you might need to change your database design to reduce the number of lock
suspensions.

v If the stored procedures are getting in and out quickly, maybe you don’t have
enough ssnmSPAS TCBs to handle the work load. In this case, increase the
number on field NUMBER OF TCBS on installation panel DSNTIPX.

Accounting for nested activities
The accounting class 1 and class 2 CPU and elapsed times for triggers, stored
procedures, and user-defined functions are accumulated in separate fields and
exclude any time accumulated in other nested activity. These CPU and elapsed
times are accumulated for each category during the execution of each agent until
agent deallocation. Package accounting can be used to break out accounting data
for execution of individual stored procedures, user-defined functions, or triggers.
The following sample (Figure 127) shows an agent that executes multiple types of
DB2 nested activities.

Table 123 on page 880 shows the formula used to determine time for nested
activities.

Time Application DB2 SP UDF
------ --------------- ------------------ ------------ ------------
T0 Code
T1 SQL-------------->
T2 <-------------
T3 SQL-------------->
T4 Trigger
T5 SQL
T6 CALL triggered------->
T7 SP code
T8 <-------SQL
T9 ------->SP code
T10 <-------SQL(UDF)
T11 Start UDF
T12 ------------------------------------>UDF code
T13 <------------------------------------SQL
T14 ------------------------------------>UDF code
T16 <------------------------------------UDF ends
T17 Back to SP -------->SP code
T18 SQL <--------Back to trigger
T19 Trigger ends
T20 Code<--------------Return to Application
T22 End

Figure 127. Time spent executing nested activities

Chapter 36. Monitoring and tuning stored procedures and user-defined functions 879

Table 123. Sample for time used for execution of nested activities. TU = Time Used

Count for Formula Class

Application elapsed T22-T1 1

Application TCB (TU) T22-T1 1

Appl in DB2 elapsed T2-T1 + T5-T3 + T20-T19 2

Appl in DB2 TCB (TU) T2-T1 + T5-T3 + T20-T19 2

Trigger in DB2 elapsed T6-T5 + T19-T18 2

Trigger in DB2 TCB (TU) T6-T5 + T19-T18 2

Wait for STP time T7-T6 3

SP lapsed T11-T6 + T18-T16 1

SP TCB (TU) T11-T6 + T18-T16 1

SP SQL elapsed T9-T8 + T11-T10 + T17-16 2

SP SQL elapsed T9-T8 + T11-T10 + T17-T16 2

Wait for UDF time T12-T11 3

UDF elapsed T16-T11 1

UDF TCB (TU) T16-T11 1

UDF SQL elapsed T14-T13 2

UDF SQL TCB (TU) T14-T13 2

The total class 2 time is the total of the ″in DB2″ times for the application, trigger,
SP, and UDF. The class 3 ″wait″ times for the SPs and UDFs need to be added to
the total class 3 times.

880 Administration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1982, 2001 881

882 Administration Guide

Appendix A. DB2 sample tables

The information in this appendix is General-use Programming Interface and
Associated Guidance Information as defined in “Notices” on page 1095.

Most of the examples in this book refer to the tables described in this appendix. As
a group, the tables include information that describes employees, departments,
projects, and activities, and make up a sample application that exemplifies most of
the features of DB2. The sample storage group, databases, tablespaces, tables,
and views are created when you run the installation sample jobs DSNTEJ1 and
DSNTEJ7. DB2 sample objects that include LOBs are created in job DSNTEJ7. All
other sample objects are created in job DSNTEJ1. The CREATE INDEX statements
for the sample tables are not shown here; they, too, are created by the DSNTEJ1
and DSNTEJ7 sample jobs.

Authorization on all sample objects is given to PUBLIC in order to make the sample
programs easier to run. The contents of any table can easily be reviewed by
executing an SQL statement, for example SELECT * FROM DSN8710.PROJ. For
convenience in interpreting the examples, the department and employee tables are
listed here in full.

Activity table (DSN8710.ACT)
The activity table describes the activities that can be performed during a project.
The table resides in database DSN8D71A and is created with:
CREATE TABLE DSN8710.ACT

(ACTNO SMALLINT NOT NULL,
ACTKWD CHAR(6) NOT NULL,
ACTDESC VARCHAR(20) NOT NULL,
PRIMARY KEY (ACTNO))

IN DSN8D71A.DSN8S71P
CCSID EBCDIC;

Content
Table 124 shows the content of the columns.

Table 124. Columns of the activity table

Column Column Name Description

1 ACTNO Activity ID (the primary key)

2 ACTKWD Activity keyword (up to six characters)

3 ACTDESC Activity description

The activity table has these indexes:

Table 125. Indexes of the activity table

Name On Column Type of Index

DSN8710.XACT1 ACTNO Primary, ascending

DSN8710.XACT2 ACTKWD Unique, ascending

© Copyright IBM Corp. 1982, 2001 883

Relationship to other tables
The activity table is a parent table of the project activity table, through a foreign key
on column ACTNO.

Department table (DSN8710.DEPT)
The department table describes each department in the enterprise and identifies its
manager and the department to which it reports.

The table, shown in Table 128 on page 885, resides in table space
DSN8D71A.DSN8S71D and is created with:
CREATE TABLE DSN8710.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO))

IN DSN8D71A.DSN8S71D
CCSID EBCDIC;

Because the table is self-referencing, and also is part of a cycle of dependencies,
its foreign keys must be added later with these statements:
ALTER TABLE DSN8710.DEPT

FOREIGN KEY RDD (ADMRDEPT) REFERENCES DSN8710.DEPT
ON DELETE CASCADE;

ALTER TABLE DSN8710.DEPT
FOREIGN KEY RDE (MGRNO) REFERENCES DSN8710.EMP

ON DELETE SET NULL;

Content
Table 126 shows the content of the columns.

Table 126. Columns of the department table

Column Column Name Description

1 DEPTNO Department ID, the primary key

2 DEPTNAME A name describing the general activities of the
department

3 MGRNO Employee number (EMPNO) of the department
manager

4 ADMRDEPT ID of the department to which this department
reports; the department at the highest level reports to
itself

5 LOCATION The remote location name

The department table has these indexes:

Table 127. Indexes of the department table

Name On Column Type of Index

DSN8710.XDEPT1 DEPTNO Primary, ascending

DSN8710.XDEPT2 MGRNO Ascending

DSN8710.XDEPT3 ADMRDEPT Ascending

884 Administration Guide

Relationship to other tables
The table is self-referencing: the value of the administering department must be a
department ID.

The table is a parent table of:
v The employee table, through a foreign key on column WORKDEPT
v The project table, through a foreign key on column DEPTNO.

It is a dependent of the employee table, through its foreign key on column MGRNO.

Table 128. DSN8710.DEPT: department table
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
A00 SPIFFY COMPUTER

SERVICE DIV.
000010 A00 ----------------

B01 PLANNING 000020 A00 ----------------
C01 INFORMATION CENTER 000030 A00 ----------------
D01 DEVELOPMENT CENTER ------ A00 ----------------
E01 SUPPORT SERVICES 000050 A00 ----------------
D11 MANUFACTURING SYSTEMS 000060 D01 ----------------
D21 ADMINISTRATION SYSTEMS 000070 D01 ----------------
E11 OPERATIONS 000090 E01 ----------------
E21 SOFTWARE SUPPORT 000100 E01 ----------------
F22 BRANCH OFFICE F2 ------ E01 ----------------
G22 BRANCH OFFICE G2 ------ E01 ----------------
H22 BRANCH OFFICE H2 ------ E01 ----------------
I22 BRANCH OFFICE I2 ------ E01 ----------------
J22 BRANCH OFFICE J2 ------ E01 ----------------

The LOCATION column contains nulls until sample job DSNTEJ6 updates this
column with the location name.

Employee table (DSN8710.EMP)
The employee table identifies all employees by an employee number and lists basic
personnel information.

The table shown in Table 131 on page 887 and Table 132 on page 888 resides in
the partitioned table space DSN8D71A.DSN8S71E. Because it has a foreign key
referencing DEPT, that table and the index on its primary key must be created first.
Then EMP is created with:
CREATE TABLE DSN8710.EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) CONSTRAINT NUMBER CHECK

(PHONENO >= '0000' AND
PHONENO <= '9999') ,

HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO) ,

Appendix A. DB2 sample tables 885

FOREIGN KEY RED (WORKDEPT) REFERENCES DSN8710.DEPT
ON DELETE SET NULL)

EDITPROC DSN8EAE1
IN DSN8D71A.DSN8S71E
CCSID EBCDIC;

Content
Table 129 shows the content of the columns. The table has a check constraint,
NUMBER, which checks that the phone number is in the numeric range 0000 to
9999.

Table 129. Columns of the employee table

Column Column Name Description

1 EMPNO Employee number (the primary key)

2 FIRSTNME First name of employee

3 MIDINIT Middle initial of employee

4 LASTNAME Last name of employee

5 WORKDEPT ID of department in which the employee works

6 PHONENO Employee telephone number

7 HIREDATE Date of hire

8 JOB Job held by the employee

9 EDLEVEL Number of years of formal education

10 SEX Sex of the employee (M or F)

11 BIRTHDATE Date of birth

12 SALARY Yearly salary in dollars

13 BONUS Yearly bonus in dollars

14 COMM Yearly commission in dollars

The table has these indexes:

Table 130. Indexes of the employee table

Name On Column Type of Index

DSN8710.XEMP1 EMPNO Primary, partitioned, ascending

DSN8710.XEMP2 WORKDEPT Ascending

Relationship to other tables
The table is a parent table of:
v The department table, through a foreign key on column MGRNO
v The project table, through a foreign key on column RESPEMP.

It is a dependent of the department table, through its foreign key on column
WORKDEPT.

886 Administration Guide

Table 131. Left half of DSN8710.EMP: employee table. Note that a blank in the MIDINIT column is an actual value of '
' rather than null.
EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000010 CHRISTINE I HAAS A00 3978 1965-01-01
000020 MICHAEL L THOMPSON B01 3476 1973-10-10
000030 SALLY A KWAN C01 4738 1975-04-05
000050 JOHN B GEYER E01 6789 1949-08-17
000060 IRVING F STERN D11 6423 1973-09-14
000070 EVA D PULASKI D21 7831 1980-09-30
000090 EILEEN W HENDERSON E11 5498 1970-08-15
000100 THEODORE Q SPENSER E21 0972 1980-06-19
000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16
000120 SEAN O’CONNELL A00 2167 1963-12-05
000130 DOLORES M QUINTANA C01 4578 1971-07-28
000140 HEATHER A NICHOLLS C01 1793 1976-12-15
000150 BRUCE ADAMSON D11 4510 1972-02-12
000160 ELIZABETH R PIANKA D11 3782 1977-10-11
000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15
000180 MARILYN S SCOUTTEN D11 1682 1973-07-07
000190 JAMES H WALKER D11 2986 1974-07-26
000200 DAVID BROWN D11 4501 1966-03-03
000210 WILLIAM T JONES D11 0942 1979-04-11
000220 JENNIFER K LUTZ D11 0672 1968-08-29
000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1969-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER E11 8997 1967-03-24
000290 JOHN R PARKER E11 4502 1980-05-30
000300 PHILIP X SMITH E11 2095 1972-06-19
000310 MAUDE F SETRIGHT E11 3332 1964-09-12
000320 RAMLAL V MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5698 1947-05-05
200010 DIAN J HEMMINGER A00 3978 1965-01-01
200120 GREG ORLANDO A00 2167 1972-05-05
200140 KIM N NATZ C01 1793 1976-12-15
200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15
200220 REBA K JOHN D11 0672 1968-08-29
200240 ROBERT M MONTEVERDE D21 3780 1979-12-05
200280 EILEEN R SCHWARTZ E11 8997 1967-03-24
200310 MICHELLE F SPRINGER E11 3332 1964-09-12
200330 HELENA WONG E21 2103 1976-02-23
200340 ROY R ALONZO E21 5698 1947-05-05

Appendix A. DB2 sample tables 887

Table 132. Right half of DSN8710.EMP: employee table
(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000010) PRES 18 F 1933-08-14 52750.00 1000.00 4220.00
(000020) MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00
(000030) MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00
(000050) MANAGER 16 M 1925-09-15 40175.00 800.00 3214.00
(000060) MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
(000070) MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00
(000090) MANAGER 16 F 1941-05-15 29750.00 600.00 2380.00
(000100) MANAGER 14 M 1956-12-18 26150.00 500.00 2092.00
(000110) SALESREP 19 M 1929-11-05 46500.00 900.00 3720.00
(000120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(000130) ANALYST 16 F 1925-09-15 23800.00 500.00 1904.00
(000140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(000150) DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00
(000160) DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00
(000170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(000180) DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00
(000190) DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00
(000200) DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00
(000210) DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00
(000220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(000230) CLERK 14 M 1935-05-30 22180.00 400.00 1774.00
(000240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(000250) CLERK 15 M 1939-11-12 19180.00 400.00 1534.00
(000260) CLERK 16 F 1936-10-05 17250.00 300.00 1380.00
(000270) CLERK 15 F 1953-05-26 27380.00 500.00 2190.00
(000280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(000290) OPERATOR 12 M 1946-07-09 15340.00 300.00 1227.00
(000300) OPERATOR 14 M 1936-10-27 17750.00 400.00 1420.00
(000310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(000320) FIELDREP 16 M 1932-08-11 19950.00 400.00 1596.00
(000330) FIELDREP 14 M 1941-07-18 25370.00 500.00 2030.00
(000340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00
(200010) SALESREP 18 F 1933-08-14 46500.00 1000.00 4220.00
(200120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(200140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(200170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(200220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(200240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(200280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(200310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(200330) FIELDREP 14 F 1941-07-18 25370.00 500.00 2030.00
(200340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

Employee photo and resume table (DSN8710.EMP_PHOTO_RESUME)
The employee photo and resume table complements the employee table. Each row
of the photo and resume table contains a photo of the employee, in two formats,
and the employee's resume. The photo and resume table resides in table space
DSN8D71A.DSN8S71E. The following statement creates the table:
CREATE TABLE DSN8710.EMP_PHOTO_RESUME

(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(100K),

888 Administration Guide

BMP_PHOTO BLOB(100K),
RESUME CLOB(5K))
PRIMARY KEY EMPNO

IN DSN8D71L.DSN8S71B
CCSID EBCDIC;

DB2 requires an auxiliary table for each LOB column in a table. These statements
define the auxiliary tables for the three LOB columns in
DSN8710.EMP_PHOTO_RESUME:
CREATE AUX TABLE DSN8710.AUX_BMP_PHOTO

IN DSN8D71L.DSN8S71M
STORES DSN8710.EMP_PHOTO_RESUME
COLUMN BMP_PHOTO;

CREATE AUX TABLE DSN8710.AUX_PSEG_PHOTO
IN DSN8D71L.DSN8S71L
STORES DSN8710.EMP_PHOTO_RESUME
COLUMN PSEG_PHOTO;

CREATE AUX TABLE DSN8710.AUX_EMP_RESUME
IN DSN8D71L.DSN8S71N
STORES DSN8710.EMP_PHOTO_RESUME
COLUMN RESUME;

Content
Table 133 shows the content of the columns.

Table 133. Columns of the employee photo and resume table

Column Column Name Description

1 EMPNO Employee ID (the primary key)

2 EMP_ROWID Row ID to uniquely identify each row of the table.
DB2 supplies the values of this column.

3 PSEG_PHOTO Employee photo, in PSEG format

4 BMP_PHOTO Employee photo, in BMP format

5 RESUME Employee resume

The employee photo and resume table has these indexes:

Table 134. Indexes of the employee photo and resume table

Name On Column Type of Index

DSN8710.XEMP_PHOTO_RESUME EMPNO Primary, ascending

The auxiliary tables for the employee photo and resume table have these indexes:

Table 135. Indexes of the auxiliary tables for the employee photo and resume table

Name On Table Type of Index

DSN8710.XAUX_BMP_PHOTO DSN8710.AUX_BMP_PHOTO Unique

DSN8710.XAUX_PSEG_PHOTO DSN8710.AUX_PSEG_PHOTO Unique

DSN8710.XAUX_EMP_RESUME DSN8710.AUX_EMP_RESUME Unique

Relationship to other tables
The table is a parent table of the project table, through a foreign key on column
RESPEMP.

Appendix A. DB2 sample tables 889

Project table (DSN8710.PROJ)
The project table describes each project that the business is currently undertaking.
Data contained in each row include the project number, name, person responsible,
and schedule dates.

The table resides in database DSN8D71A. Because it has foreign keys referencing
DEPT and EMP, those tables and the indexes on their primary keys must be
created first. Then PROJ is created with:
CREATE TABLE DSN8710.PROJ

(PROJNO CHAR(6) PRIMARY KEY NOT NULL,
PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT

'PROJECT NAME UNDEFINED',
DEPTNO CHAR(3) NOT NULL REFERENCES

DSN8710.DEPT ON DELETE RESTRICT,
RESPEMP CHAR(6) NOT NULL REFERENCES

DSN8710.EMP ON DELETE RESTRICT,
PRSTAFF DECIMAL(5, 2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6))

IN DSN8D71A.DSN8S71P
CCSID EBCDIC;

Because the table is self-referencing, the foreign key for that restraint must be
added later with:
ALTER TABLE DSN8710.PROJ

FOREIGN KEY RPP (MAJPROJ) REFERENCES DSN8710.PROJ
ON DELETE CASCADE;

Content
Table 136 shows the content of the columns.

Table 136. Columns of the project table

Column Column Name Description

1 PROJNO Project ID (the primary key)

2 PROJNAME Project name

3 DEPTNO ID of department responsible for the project

4 RESPEMP ID of employee responsible for the project

5 PRSTAFF Estimated mean number of persons needed
between PRSTDATE and PRENDATE to achieve
the whole project, including any subprojects

6 PRSTDATE Estimated project start date

7 PRENDATE Estimated project end date

8 MAJPROJ ID of any project of which this project is a part

The project table has these indexes:

Table 137. Indexes of the project table

Name On Column Type of Index

DSN8710.XPROJ1 PROJNO Primary, ascending

DSN8710.XPROJ2 RESPEMP Ascending

890 Administration Guide

Relationship to other tables
The table is self-referencing: a nonnull value of MAJPROJ must be a project
number. The table is a parent table of the project activity table, through a foreign
key on column PROJNO. It is a dependent of:
v The department table, through its foreign key on DEPTNO
v The employee table, through its foreign key on RESPEMP.

Project activity table (DSN8710.PROJACT)
The project activity table lists the activities performed for each project. The table
resides in database DSN8D71A. Because it has foreign keys referencing PROJ and
ACT, those tables and the indexes on their primary keys must be created first. Then
PROJACT is created with:
CREATE TABLE DSN8710.PROJACT

(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),
FOREIGN KEY RPAP (PROJNO) REFERENCES DSN8710.PROJ

ON DELETE RESTRICT,
FOREIGN KEY RPAA (ACTNO) REFERENCES DSN8710.ACT

ON DELETE RESTRICT)
IN DSN8D71A.DSN8S71P
CCSID EBCDIC;

Content
Table 138 shows the content of the columns.

Table 138. Columns of the project activity table

Column Column Name Description

1 PROJNO Project ID

2 ACTNO Activity ID

3 ACSTAFF Estimated mean number of employees needed to
staff the activity

4 ACSTDATE Estimated activity start date

5 ACENDATE Estimated activity completion date

The project activity table has this index:

Table 139. Index of the project activity table

Name On Columns Type of Index

DSN8710.XPROJAC1 PROJNO, ACTNO,
ACSTDATE

primary, ascending

Relationship to other tables
The table is a parent table of the employee to project activity table, through a
foreign key on columns PROJNO, ACTNO, and EMSTDATE. It is a dependent of:
v The activity table, through its foreign key on column ACTNO
v The project table, through its foreign key on column PROJNO

Appendix A. DB2 sample tables 891

Employee to project activity table (DSN8710.EMPPROJACT)
The employee to project activity table identifies the employee who performs an
activity for a project, tells the proportion of the employee’s time required, and gives
a schedule for the activity.

The table resides in database DSN8D71A. Because it has foreign keys referencing
EMP and PROJACT, those tables and the indexes on their primary keys must be
created first. Then EMPPROJACT is created with:
CREATE TABLE DSN8710.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2) ,
EMSTDATE DATE ,
EMENDATE DATE ,
FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

REFERENCES DSN8710.PROJACT
ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN8710.EMP
ON DELETE RESTRICT)

IN DSN8D71A.DSN8S71P
CCSID EBCDIC;

Content
Table 140 shows the content of the columns.

Table 140. Columns of the employee to project activity table

Column Column Name Description

1 EMPNO Employee ID number

2 PROJNO Project ID of the project

3 ACTNO ID of the activity within the project

4 EMPTIME A proportion of the employee’s full time (between
0.00 and 1.00) to be spent on the activity

5 EMSTDATE Date the activity starts

6 EMENDATE Date the activity ends

The table has these indexes:

Table 141. Indexes of the employee to project activity table

Name On Columns Type of Index

DSN8710.XEMPPROJACT1 PROJNO, ACTNO,
EMSTDATE, EMPNO

Unique, ascending

DSN8710.XEMPPROJACT2 EMPNO Ascending

Relationship to other tables
The table is a dependent of:

v The employee table, through its foreign key on column EMPNO

v The project activity table, through its foreign key on columns PROJNO, ACTNO,
and EMSTDATE.

892 Administration Guide

Relationships among the tables
Figure 128 shows relationships among the tables. These are established by foreign
keys in dependent tables that reference primary keys in parent tables. You can find
descriptions of the columns with descriptions of the tables.

Views on the sample tables
DB2 creates a number of views on the sample tables for use in the sample
applications. Table 142 indicates the tables on which each view is defined and the
sample applications that use the view. All view names have the qualifier DSN8710.

Table 142. Views on sample tables

View name On tables or views Used in application

VDEPT DEPT Organization
Project

VHDEPT DEPT Distributed organization

VEMP EMP Distributed organization
Organization
Project

VPROJ PROJ Project

VACT ACT Project

VEMPPROJACT EMPROJACT Project

VDEPMG1 DEPT
EMP

Organization

CASCADE

CASCADE
RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

EMP_PHOTO_RESUME

Figure 128. Relationships among tables in the sample application. Arrows point from parent
tables to dependent tables.

Appendix A. DB2 sample tables 893

Table 142. Views on sample tables (continued)

View name On tables or views Used in application

VEMPDPT1 DEPT
EMP

Organization

VASTRDE1 DEPT

VASTRDE2 VDEPMG1
EMP

Organization

VPROJRE1 PROJ
EMP

Project

VPSTRDE1 VPROJRE1
VPROJRE2

Project

VPSTRDE2 VPROJRE1 Project

VSTAFAC1 PROJACT
ACT

Project

VSTAFAC2 EMPPROJACT
ACT
EMP

Project

VPHONE EMP
DEPT

Phone

VEMPLP EMP Phone

The SQL statements that create the sample views are shown below.
CREATE VIEW DSN8710.VDEPT

AS SELECT ALL DEPTNO ,
DEPTNAME,
MGRNO ,
ADMRDEPT

FROM DSN8710.DEPT;

CREATE VIEW DSN8710.VHDEPT
AS SELECT ALL DEPTNO ,

DEPTNAME,
MGRNO ,
ADMRDEPT,
LOCATION

FROM DSN8710.DEPT;

CREATE VIEW DSN8710.VEMP
AS SELECT ALL EMPNO ,

FIRSTNME,
MIDINIT ,
LASTNAME,
WORKDEPT

FROM DSN8710.EMP;

CREATE VIEW DSN8710.VPROJ
AS SELECT ALL

PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,
PRSTDATE, PRENDATE, MAJPROJ

FROM DSN8710.PROJ ;

CREATE VIEW DSN8710.VACT
AS SELECT ALL ACTNO ,

ACTKWD ,
ACTDESC

FROM DSN8710.ACT ;

CREATE VIEW DSN8710.VPROJACT
AS SELECT ALL

PROJNO,ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM DSN8710.PROJACT ;

894 Administration Guide

CREATE VIEW DSN8710.VEMPPROJACT
AS SELECT ALL

EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE, EMENDATE
FROM DSN8710.EMPPROJACT ;

CREATE VIEW DSN8710.VDEPMG1
(DEPTNO, DEPTNAME, MGRNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT
FROM DSN8710.DEPT LEFT OUTER JOIN DSN8710.EMP
ON MGRNO = EMPNO ;

CREATE VIEW DSN8710.VEMPDPT1
(DEPTNO, DEPTNAME, EMPNO, FRSTINIT, MIDINIT,
LASTNAME, WORKDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, SUBSTR(FIRSTNME, 1, 1), MIDINIT,
LASTNAME, WORKDEPT
FROM DSN8710.DEPT RIGHT OUTER JOIN DSN8710.EMP
ON WORKDEPT = DEPTNO ;

CREATE VIEW DSN8710.VASTRDE1
(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME, '1',
D2.DEPTNO,D2.DEPTNAME,D2.MGRNO,D2.FIRSTNME,D2.MIDINIT,
D2.LASTNAME
FROM DSN8710.VDEPMG1 D1, DSN8710.VDEPMG1 D2
WHERE D1.DEPTNO = D2.ADMRDEPT ;

CREATE VIEW DSN8710.VASTRDE2
(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME,'2',
D1.DEPTNO,D1.DEPTNAME,E2.EMPNO,E2.FIRSTNME,E2.MIDINIT,
E2.LASTNAME
FROM DSN8710.VDEPMG1 D1, DSN8710.EMP E2
WHERE D1.DEPTNO = E2.WORKDEPT;

CREATE VIEW DSN8710.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ)
AS SELECT ALL

PROJNO,PROJNAME,DEPTNO,EMPNO,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ
FROM DSN8710.PROJ, DSN8710.EMP
WHERE RESPEMP = EMPNO ;

CREATE VIEW DSN8710.VPSTRDE1
(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P2.PROJNO,P2.PROJNAME,P2.RESPEMP,P2.FIRSTNME,P2.MIDINIT,
P2.LASTNAME

FROM DSN8710.VPROJRE1 P1,
DSN8710.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ ;

CREATE VIEW DSN8710.VPSTRDE2
(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,

Appendix A. DB2 sample tables 895

P1.LASTNAME,
P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME

FROM DSN8710.VPROJRE1 P1
WHERE NOT EXISTS

(SELECT * FROM DSN8710.VPROJRE1 P2
WHERE P1.PROJNO = P2.MAJPROJ) ;

CREATE VIEW DSN8710.VFORPLA
(PROJNO,PROJNAME,RESPEMP,PROJDEP,FRSTINIT,MIDINIT,LASTNAME)
AS SELECT ALL

F1.PROJNO,PROJNAME,RESPEMP,PROJDEP, SUBSTR(FIRSTNME, 1, 1),
MIDINIT, LASTNAME
FROM DSN8710.VPROJRE1 F1 LEFT OUTER JOIN DSN8710.EMPPROJACT F2
ON F1.PROJNO = F2.PROJNO;

CREATE VIEW DSN8710.VSTAFAC1
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE,ENDATE, TYPE)
AS SELECT ALL

PA.PROJNO, PA.ACTNO, AC.ACTDESC,' ', ' ', ' ', ' ',
PA.ACSTAFF, PA.ACSTDATE,
PA.ACENDATE,'1'

FROM DSN8710.PROJACT PA, DSN8710.ACT AC
WHERE PA.ACTNO = AC.ACTNO ;

CREATE VIEW DSN8710.VSTAFAC2
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE, ENDATE, TYPE)
AS SELECT ALL

EP.PROJNO, EP.ACTNO, AC.ACTDESC, EP.EMPNO,EM.FIRSTNME,
EM.MIDINIT, EM.LASTNAME, EP.EMPTIME, EP.EMSTDATE,
EP.EMENDATE,'2'

FROM DSN8710.EMPPROJACT EP, DSN8710.ACT AC, DSN8710.EMP EM
WHERE EP.ACTNO = AC.ACTNO AND EP.EMPNO = EM.EMPNO ;

CREATE VIEW DSN8710.VPHONE
(LASTNAME,
FIRSTNAME,
MIDDLEINITIAL,
PHONENUMBER,
EMPLOYEENUMBER,
DEPTNUMBER,
DEPTNAME)

AS SELECT ALL LASTNAME,
FIRSTNME,
MIDINIT ,
VALUE(PHONENO,' '),
EMPNO,
DEPTNO,
DEPTNAME

FROM DSN8710.EMP, DSN8710.DEPT
WHERE WORKDEPT = DEPTNO;

CREATE VIEW DSN8710.VEMPLP
(EMPLOYEENUMBER,
PHONENUMBER)

AS SELECT ALL EMPNO ,
PHONENO

FROM DSN8710.EMP ;

Storage of sample application tables
Figure 129 on page 897 shows how the sample tables are related to databases and
storage groups. Two databases are used to illustrate the possibility. Normally,
related data is stored in the same database.

896 Administration Guide

In addition to the storage group and databases shown in Figure 129, the storage
group DSN8G71U and database DSN8D71U are created when you run DSNTEJ2A.

Storage group
The default storage group, SYSDEFLT, created when DB2 is installed, is not used
to store sample application data. The storage group used to store sample
application data is defined by this statement:
CREATE STOGROUP DSN8G710

VOLUMES (DSNV01)
VCAT DSNC710;

Databases
The default database, created when DB2 is installed, is not used to store the
sample application data. Two databases are used: one for tables related to
applications, the other for tables related to programs. They are defined by the
following statements:
CREATE DATABASE DSN8D71A

STOGROUP DSN8G710
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D71P
STOGROUP DSN8G710
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D71L
STOGROUP DSN8G710
BUFFERPOOL BP0
CCSID EBCDIC;

Table spaces
The following table spaces are explicitly defined by the statements shown below.
The table spaces not explicitly defined are created implicitly in the DSN8D71A
database, using the default space attributes.

Storage group:

Databases:

Table
spaces:

DSN8G 0vr

DSN8D A
application

data

vr DSN8D P
common for

programming
tables

vr

DSN8S D
department

table

vr DSN8S E
employee

table

vr

Separate
spaces for

other
application

tables

DSN8S P
common for

programming
tables

vr

vr is a 2-digit version identifer.

LOB spaces
for employee

photo and
resume table

DSN8D L
LOB application

data

vr

Figure 129. Relationship among sample databases and table spaces

Appendix A. DB2 sample tables 897

CREATE TABLESPACE DSN8S71D
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S71E
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 20
SECQTY 20
ERASE NO

NUMPARTS 4
(PART 1 USING STOGROUP DSN8G710

PRIQTY 12
SECQTY 12,

PART 3 USING STOGROUP DSN8G710
PRIQTY 12
SECQTY 12)

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
COMPRESS YES
CCSID EBCDIC;

CREATE TABLESPACE DSN8S71B
IN DSN8D71L
USING STOGROUP DSN8G710

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE
LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE LOB TABLESPACE DSN8S71M
IN DSN8D71L
LOG NO;

CREATE LOB TABLESPACE DSN8S71L
IN DSN8D71L
LOG NO;

CREATE LOB TABLESPACE DSN8S71N
IN DSN8D71L
LOG NO;

898 Administration Guide

CREATE TABLESPACE DSN8S71C
IN DSN8D71P
USING STOGROUP DSN8G710

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S71P
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE ROW
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S71R
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S71S
IN DSN8D71A
USING STOGROUP DSN8G710

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

Appendix A. DB2 sample tables 899

900 Administration Guide

Appendix B. Writing exit routines

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page 1095.

DB2 provides installation-wide exit points to routines that you provide. They are
described under the following headings:
v “Connection and sign-on routines”
v “Access control authorization exit” on page 909
v “Edit routines” on page 921
v “Validation routines” on page 925
v “Date and time routines” on page 927
v “Conversion procedures” on page 931
v “Field procedures” on page 934
v “Log capture routines” on page 944
v “Routines for dynamic plan selection in CICS” on page 946

Connection and sign-on routines
Your DB2 subsystem has two exit points for authorization routines, one in
connection processing and one in sign-on processing. They perform crucial steps in
the assignment of values to the primary, secondary, and SQL IDs. You must have a
routine for each exit. Default routines are provided for both—DSN3@ATH for
connections and DSN3@SGN for sign-ons.

If your installation has a connection exit routine and you are planning to use
CONNECT with the USER/USING clause, you should examine your exit routine and
take the following into consideration. The security-related control blocks that are
normally associated with the thread or the address space that your exit can access
will not be updated by DB2 to reflect the userid and password specified in the
USER/USING clause of the CONNECT statement.

For a general view of the roles of the exit routines in assigning authorization IDs,
see “Chapter 12. Controlling access to a DB2 subsystem” on page 169. That
description can show that you can most easily provide the security features you
want by assigning identifiers through RACF or some similar program and using the
sample connection and sign-on routines provided by IBM. This section describes
the interfaces for those routines and the functions they provide. If you want to have
secondary authorization IDs, you must replace the default routines with the sample
routines or with routines of your own.

General considerations
“General considerations for writing exit routines” on page 950 applies to these
routines. One exception to the description of execution environments is that the
routines execute in non-cross-memory mode.

Specifying the routines
Your connection routine must have a CSECT name and entry point of DSN3@ATH.
Its load module name can be the same, but need not be. Your sign-on routine must
have a CSECT name and entry point of DSN3@SGN. Its load module name can be
the same, but need not be.

You can use an ALIAS statement of the linkage editor to provide the entry point
name.

© Copyright IBM Corp. 1982, 2001 901

|
|
|
|
|
|

Default routines with those names and entry points already exist in library
prefix.SDSNLOAD; to use your routines instead, place them in library
prefix.SDSNEXIT. You can use the install job DSNTIJEX to assemble and link-edit
the routines and place them in the new library. If you use any other library, you
could have to change the STEPLIB or JOBLIB concatenations in the DB2 start-up
procedures.

You can combine both routines into one CSECT and load module if you wish, but
the module must include both entry points, DSN3@ATH and DSN3@SGN. Use
standard assembler and linkage editor control statements to define the entry points.
DB2 loads the module twice at startup, by issuing the MVS LOAD macro first for
entry point DSN3@ATH and then for entry point DSN3@SGN. However, because
the routines are reentrant, only one copy of each remains in virtual storage.

Sample exit routines
The sample exit routines provide examples of the functions and interfaces
described below. They are provided in source code as members of
prefix.SDSNSAMP. To examine the sample connection routine, list or assemble
member DSN3SATH; for the sample sign-on routine, member DSN3SSGN. To
assemble, you must use Assembler H; both routines use features not available in
Assembler XF.

Change required for some CICS users: If you attach to DB2 with an AUTH
parameter in the RCT other than AUTH=GROUP, you also have the RACF
list-of-groups option active, and you have transactions whose initial primary
authorization ID is not defined to RACF, then you must change the sample sign-on
exit routine (DSN3SSGN) before assembling and using it. Proceed as follows:

1. In the source code, locate this statement:
SSGN035 DS 0H BLANK BACKSCAN LOOP REENTRY

2. Nearby, locate this statement:
B SSGN037 ENTIRE NAME IS BLANK, LEAVE

(At this writing, its line number is 03664000, but that is subject to change.)

3. Replace the previous statement with this one:
B SSGN090 NO GROUP NAME... BYPASS RACF CHECK

The change avoids an abend with SQLCODE -922 in the situation described above.
With the change, DB2 does not use RACF group names unless you use
AUTH=GROUP; for other values of AUTH, the routine provides no secondary IDs.

When exits are taken
Different local processes enter the access control procedure at different points,
depending on the environment they originate from. (Quite different criteria apply to
remote requests; they are described in “Controlling requests from remote
applications” on page 176.)

v These processes go through connection processing only:

– Requests originating in TSO foreground and background (including online
utilities and requests through the call attachment facility)

– JES-initiated batch jobs

– Requests through started task control address spaces (from the MVS START
command)

902 Administration Guide

v These processes go through connection processing and can later go through the
sign-on exit also.
– The IMS control region
– The CICS recovery coordination task
– DL/I batch
– Requests through the Recoverable Resource Manager Services attachment

facility (RRSAF)

v These processes go through sign-on processing:

– Requests from IMS dependent regions (including MPP, BMP, and Fast Path)

– CICS transaction subtasks

For instructions on controlling the IDs associated with connection requests, see
“Processing connections” on page 170. For instructions on controlling the IDs
associated with sign-on requests, see “Processing sign-ons” on page 173.

EXPL for connection and sign-on routines
Figure 130 shows how the parameter list points to other information.

Exit parameter list
Connection and sign-on routines use 28 bytes more of the exit parameter list EXPL
than do other routines. The table that follows shows the entire list. The exit
parameter list is described by macro DSNDEXPL.

Table 143. Exit parameter list for connection and sign-on routines

Name Hex offset Data type Description

EXPLWA 0 Address Address of a 2048-byte work area to be
used by the routine

EXPLWL 4 Signed 4-byte
integer

Length of the work area, in bytes; value is
2048.

EXPLRSV1 8 Signed 2-byte
integer

Reserved

Register 1
Address of EXPL

Address of
authorization ID list

Authorization ID list

Primary ID

Control block information

SQL ID

Maximum number of secondary
ID entries

Reserved

ACEE address of zero

Space for secondary ID list
(= maximum * 8 bytes)

Address of work area

Length of work area

Access return code

DB2 subsystem name

Connection name

Connection type

Location name

LU name

Network name

Work area
(2048 bytes)

Figure 130. How a connection or sign-on parameter list points to other information

Appendix B. Writing exit routines 903

Table 143. Exit parameter list for connection and sign-on routines (continued)

Name Hex offset Data type Description

EXPLRC1 A Signed 2-byte
integer

Not used

EXPLRC2 C Signed 4-byte
integer

Not used

EXPLARC 10 Signed 4-byte
integer

Access return code. Values can be:
0 Access allowed; DB2 continues

processing.
12 Access denied; DB2 terminates

processing with an error.

EXPLSSNM 14 Character, 8
bytes

DB2 subsystem name, left justified; for
example, 'DSN '

EXPLCONN 1C Character, 8
bytes

Connection name for requesting location

EXPLTYPE 24 Character, 8
bytes

Connection type for requesting location. For
DDF threads, the connection type is
'DIST '.

EXPLSITE 2C Character, 16
bytes

For SNA protocols, this is the location name
of the requesting location or <luname>. For
TCP/IP protocols, this is the dotted decimal
IP address of the requester.

EXPLLUNM 3C Character, 8
bytes

For SNA protocols, this is the locally known
LU name of the requesting location. For
TCP/IP protocols, this is the character string
'TCPIP '.

EXPLNTID 44 Character, 17
bytes

For SNA protocols, the fully qualified
network name of the requesting location.
For TCP/IP protocols, this field is reserved.

Authorization ID parameter list
The second parameter list, which is specific to connection and sign-on routines, is
called an authorization ID list. Its contents are shown in Table 144. The description
is given by macro DSNDAIDL.

Table 144. Authorization ID list for a connection or sign-on exit routine

Name Hex offset Data type Description

AIDLPRIM 0 Character, 8
bytes

Primary authorization ID for input and
output; see descriptions in the text.

AIDLCODE 8 Character, 2
bytes

Control block identifier

AIDLTLEN A Signed 2-byte
integer

Total length of control block

AIDLEYE C Character, 4
bytes

Eyecatcher for block, “AIDL”

AIDLSQL 10 Character, 8
bytes

On output, the current SQL ID

AIDLSCNT 18 Signed 4-byte
integer

Number of entries allocated to secondary
authorization ID list. Always equal to 245.

904 Administration Guide

Table 144. Authorization ID list for a connection or sign-on exit routine (continued)

Name Hex offset Data type Description

AIDLSAPM 1C Address For a sign-on routine only, the address of an
8-character additional authorization ID. If
RACF is active, the ID is the user ID's
connected group name. If the address was
not provided, the field contains zero.

AIDLCKEY 20 Character, 1 byte Storage key of the ID pointed to by
AIDLSAPM. To move that ID, use the “move
with key” (MVCK) instruction, specifying this
key.

AIDLRSV1 21 Character, 3
bytes

Reserved

AIDLRSV2 24 Signed 4-byte
integer

Reserved

AIDLACEE 28 Signed 4-byte
integer

The address of the ACEE structure, if
known; otherwise, zero

AIDLRACL 2C Signed 4-byte
integer

Length of data area returned by RACF, plus
4 bytes

AIDLRACR 30 26 bytes Reserved

AIDLSEC 4A Character,
maximum x 8
bytes

List of the secondary authorization IDs, 8
bytes each

Input values
The primary authorization ID has been placed first in the authorization ID list for
compatibility with DB2 Version 1. The default routines, and any authorization routine
you might have written for DB2 Version 1, accept only the first item for input.

The input values of the several authorization IDs are as follows:

For a connection routine
1. The initial primary authorization ID for a local request can be obtained from the

MVS address space extension block (ASXB).

The ASXB contains at most only a 7-character value. That is always sufficient
for a TSO user ID or a user ID from an MVS JOB statement, and the ASXB is
always used for those cases.

For CICS, IMS, or other started tasks, MVS can also pass an 8-character ID. If
an 8-character ID is available, and if its first 7 characters agree with the ASXB
value, then DB2 uses the 8-character ID. Otherwise it uses the ASXB value.

You can alter the sample exit routine to use the ASXB value always. For
instructions, see “Processing in the sample routines” on page 907.

If RACF is active, the field used contains a verified RACF user ID; otherwise, it
contains blanks.

2. The primary ID for a remote request is the ID passed in the conversation attach
request header (SNA FMH5) or in the DRDA SECCHK command.

3. The SQL ID contains blanks.

4. The list of secondary IDs contains blanks.

Appendix B. Writing exit routines 905

For a sign-on routine
1. The initial primary ID is determined. See “Processing sign-ons” on page 173 for

information about how the primary ID is determined.

2. The SQL ID and all secondary IDs contain blanks.

3. Field AIDLSAPM in the authorization ID list can contain the address of an
8-character additional authorization ID, obtained by the CICS attachment facility
using the RACROUTE REQUEST=EXTRACT service with the requester's user
ID. If RACF is active, this ID is the RACF-connected group name from the
ACEE corresponding to the requester's user ID. Otherwise, this field is blanks.
IMS Version 2 Release 2 does not pass this parameter.

4. Field AIDLCKEY contains the storage key of the identifier pointed to by
AIDLSAPM. To move that ID, use the “move with key” (MVCK) instruction,
specifying this key.

5. Field AIDLACEE contains the ACEE address only for a sign-on through the
CICS attachment facility and only when the CICS RCT uses AUTH=GROUP.

Expected output
DB2 uses the output values of the primary, SQL, and secondary IDs. Your routines
can set those to any value that is an SQL short identifier. If your identifier does not
meet the 8-character criteria, the request is abended. Pad shorter identifiers on the
right with blanks. If the values returned are not blank, DB2 interprets them as
follows:

1. The primary ID becomes the primary authorization ID.

2. The list of secondary IDs, down to the first blank entry or to a maximum of 245
entries, becomes the list of secondary authorization IDs. The space allocated for
the secondary ID list is only large enough to contain the maximum number of
authorization IDs. This number is in field AIDLSCNT and is currently 245. If you
do not restrict the number of secondary authorization IDs to 245, disastrous
results (like abends and storage overlays) can occur.

3. The SQL ID is checked to see if it is the same as the primary or one of the
secondary IDs. If it is not, the connection or sign-on process abends. Otherwise,
the validated ID becomes the current SQL ID.

If the returned value of the primary ID is blank, DB2 takes the following steps:

v In connection processing, the default ID defined when DB2 was installed
(UNKNOWN AUTHID on panel DSNTIPP) is substituted as the primary
authorization ID and the current SQL ID. The list of secondary IDs is set to
blanks.

v Sign-on processing abends; there is no default value of the primary ID.

If the returned value of the SQL ID is blank, DB2 makes it equal to the value of the
primary ID. If the list of secondary IDs is blank, it is left so; there are no default
secondary IDs.

Your routine must also set a return code in word 5 of the exit parameter list to allow
or deny access (field EXPLARC). By those means you can deny the connection
altogether. The code must have one of the following values; any other value causes
abends:

Value Meaning
0 Access allowed; continue processing
12 Access denied; terminate

906 Administration Guide

Processing in the sample routines
The sample routines provided by IBM can serve as models of the processing
required in connection and sign-on routines. To write a routine that implements your
own choices, it can be easiest to modify the samples. Both routines have similar
sections for setup, constants, and storage areas. Both routines set values of the
primary, SQL, and secondary IDs in three numbered sections, which perform the
following functions:

In the sample connection routine (DSN3SATH):
Section 1 provides the same function as in the default connection routine. It
tests whether the first character of the input primary ID is greater than blank.
– If the first character is greater, the value is not changed.
– If the first character is not greater, the value is set to:

- The logon ID, if the request is from a TSO foreground address space.
- The job user ID from the JES job control table.

If, after the above processing is done, no primary ID has been located,
Section 2 is bypassed.

At the beginning of Section 2, you can restore one commented-out instruction
that then truncates the primary authorization ID to 7 characters. (The instruction
is identified by comments in the code.) Section 2 next tests RACF options and
makes the following changes in the list of secondary IDs, which is initially blank:

– If RACF is not active, leave the list blank.

– If the list of groups option is not active, but there is an ACEE, copy the
connected group name as the only secondary ID.

– If the list of groups option is active, copy the list of group names from the
ICHPCGRP block into AIDLSEC in the authorization ID list.

Section 3 takes the following steps:

1. Make the SQL ID equal to the primary ID.
If a TSO data set name prefix cannot be found, bypass the remainder of
Section 3.

2. If the TSO data set name prefix is a valid primary or secondary ID, replace
the SQL ID with the TSO data set name prefix. Otherwise, leave the default
(primary ID) as the SQL ID.

In the sample sign-on routine (DSN3SSGN):
Section 1 leaves the primary ID alone.
Section 2 sets the SQL ID to the value of the primary ID.
Section 3 tests RACF options and makes the following changes in the list of
secondary IDs, which is initially blank:

– If RACF is not active, leave the list blank.

– If the list of groups option is active, attempt to find an existing ACEE from
which to copy the authorization ID list.

- If AIDLACEE contains a value other than zero, validate that it is an ACEE
and use it.

Otherwise, look for a valid ACEE chained from the TCB or from the ASXB
or, if no usable ACEE exists, issue RACROUTE to have RACF build an
ACEE structure for the primary ID.

Copy the list of group names from the ACEE structure into the secondary
authorization list.

- If the exit issued RACROUTE to build an ACEE, issue another
RACROUTE macro to have the structure deleted.

Appendix B. Writing exit routines 907

– If a list of secondary authorization IDs has not been built, and AIDLSAPM is
not zero, copy the data pointed to by AIDLSAPM into AIDLSEC.

Performance considerations
Your sign-on exit routine is part of the critical path for transaction processing in IMS
or CICS, so you want it to execute as quickly as possible. Avoid writing SVC calls
like GETMAIN, FREEMAIN, and ATTACH, or I/O operations to any data set or
database. You might want to delete the list of groups processing in Section 3 of the
sample sign-on exit.

The sample sign-on exit routine can issue the RACF RACROUTE macro with the
default option SMC=YES. If another product issues RACROUTE with SMC=NO, a
deadlock could occur. The situation has been of concern in the CICS environment
and might occur in IMS.

Your routine can also possibly enhance the performance of later authorization
checking. Authorization for dynamic SQL statements is checked first for the
CURRENT SQLID, then the primary authorization ID, and then the secondary
authorization IDs. If you know that a user's privilege most often comes from a
secondary authorization ID, then set the CURRENT SQLID to this secondary ID
within your exit routine.

Debugging your exit routine
The diagnostic aids described below can assist in debugging connection and
sign-on exit routines.

Subsystem support identify recovery: The identify ESTAE recovery routine,
DSN3IDES, generates the following VRADATA entries. The last entry, key VRAIMO,
is generated only if the abend occurred within the connection exit routine.

VRA
keyname

Key hex
value

Data length Content

VRAFPI 22 8 Constant 'IDESTRAK'

VRAFP 23 24 32-bit recovery tracking flags. 32-bit integer AGNT
block unique identifier. AGNT block address. AIDL
block address. Initial primary authorization ID as
copied from ASXBUSER.

VRAIMO 7C 10 Connection exit load module load point address.
Connection exit entry point address. Offset of
failing address in the PSW from the connection
exit entry point address.

Subsystem support sign-on recovery: The sign-on ESTAE recovery routine
DSN3SIES generates the following VRADATA entries. The last entry, key VRAIMO,
is generated only if the abend occurred within the sign-on exit routine.

VRA
keyname

Key hex
value

Data length Content

VRAFPI 22 8 Constant 'SIESTRAK'

VRAFP 23 20 Primary authorization ID (CCBUSER). AGNT block
address. Identify-level CCB block address.
Sign-on-level CCB block address

908 Administration Guide

VRA
keyname

Key hex
value

Data length Content

VRAIMO 7C 10 Sign-on exit load module load point address.
Sign-on exit entry point address. Offset of failing
address in the PSW from the sign-on exit entry
point address.

Diagnostics for connection and sign-on exits: The connection (identify) and
sign-on recovery routines provide diagnostics for the corresponding exit routines.
The diagnostics are produced only when the abend occurred in the exit routine.

v Dump Title:

The component failing module name is “DSN3@ATH” for a connection exit or
“DSN3@SGN” for a sign-on exit.

v MVS and RETAIN® symptom data:

SDWA symptom data fields SDWACSCT (CSECT/) and SDWAMODN (MOD/)
are set to “DSN3@ATH” or “DSN3@SGN”, as appropriate.

The component subfunction code (SUB1/ or VALU/C) is set to
“SSSC#DSN3@ATH#IDENTIFY” or “SSSC#DSN3@SGN#SIGNON”, as
appropriate.

v Summary Dump Additions.

The AIDL, if addressable, and the SADL, if present, are included in the summary
dump for the failing allied agent. If the failure occurred in connection or sign-on
processing, the exit parameter list (EXPL) is also included. If the failure occurred
in the system services address space, the entire SADL storage pool is included
in the summary dump.

Access control authorization exit
DB2 provides an exit point that lets you provide your own access control
authorization exit routine, or lets RACF (Security Server for OS/390 Release 4, or
subsequent releases), or an equivalent security system perform DB2 authorization
checking for SQL and utilities. Your routine specifies whether the authorization
checking should all be done by RACF, or partly by RACF and DB2. (Also, the
routine can be called and still let all checking be performed by DB2.) For more
information about how to use the routine provided by the Security Server, see
OS/390 Security Server (RACF) Security Administrator's Guide.

When DB2 invokes the routine, it passes three possible functions to the routine:
v Initialization (DB2 startup)
v Authorization check
v Termination (DB2 shutdown)

The bulk of the work in the routine is for authorization checking. When DB2 must
determine the authorization for a privilege, it invokes your routine. The routine
determines the authorization for the privilege and then indicates to DB2 whether
authorized, not authorized, or whether DB2 should do its own authorization check,
instead.

When the exit routine is bypassed: In the following situations, the exit routine is
not called to check authorization:

v The user has installation SYSADM or installation SYSOPR authority. This
authorization check is made strictly within DB2.

Appendix B. Writing exit routines 909

v DB2 security has been disabled (NO on the USE PROTECTION field of
installation panel DSNTIPP).

v Authorization has been cached from a prior check.

v From a prior invocation of the exit routine, the routine had indicated that it should
not be called again.

v GRANT statements.

General considerations
The routine executes in the ssnmDBM1 address space of DB2.

“General considerations for writing exit routines” on page 950 applies to this routine,
but with the following exceptions to the description of execution environments:

v The routine executes in non-cross-memory mode during initialization and
termination (XAPLFUNC of 1 or 3, described in Table 145 on page 913).

v During authorization checking the routine can execute under a TCB or SRB in
cross-memory or non-cross-memory mode.

Specifying the routine
Your access control authorization routine must have a CSECT name and entry point
of DSNX@XAC. The load module name or alias name must also be DSNX@XAC.
A default routine with this name and entry point exists in library prefix.SDSNLOAD;
to use your routine instead, place it in library prefix.SDSNEXIT. Use installation job
DSNTIJEX to assemble and link-edit the routine and to place it in the new
APF-authorized library. If you use any other library, you might have to change the
STEPLIB or JOBLIB concatenations in the DB2 start-up procedures.

The source code for the default routine is in prefix.SDSNSAMP as DSNXSXAC.
You can use it to write your own exit routine. To assemble it, you must use
Assembler H.

The default routine
The default exit routine returns a code to the DB2 authorization module indicating
that a user-defined access control authorization exit routine is not available. DB2
then performs normal authorization checking and does not attempt to invoke this
exit again.

When the exit is taken
This exit is taken in three instances:

v At DB2 startup.

When DB2 starts, this exit is taken to allow the external authorization checking
application to perform any required setup prior to authorization checking. An
example of a required setup task is loading authorization profiles into storage.
DB2 uses the reason code that the exit routine sets during startup to determine
how to handle exception situations. See “Exception processing” on page 920 for
details.

v When an authorization check is to be performed on a privilege.

At the point when DB2 would access security tables in the catalog, to check
authorization on a privilege, this exit is taken. This exit is only taken if none of
the prior invocations have indicated that the exit must not be called again.

v At DB2 shutdown.

910 Administration Guide

|

|
|
|
|
|
|

When DB2 is stopping, this exit is taken to let the external authorization checking
application perform its cleanup before DB2 stops.

Other considerations for using the access control authorization exit
Here are some other things to be aware of when you use an access control
authorization exit routine:

v Plan for what to do if DB2 cannot provide an ACEE

Sometimes DB2 cannot provide an ACEE. For example, if you are not using
external security in CICS (that is, SEC=NO is specified in the DFHSIT), CICS
does not pass an ACEE to the CICS attachment facility. When DB2 does not
have an ACEE, it passes zeros in the XAPLACEE field. If this happens, your
routine can return a 4 in the EXPLRC1 field, and let DB2 handle the
authorization check.

DB2 does not pass the ACEE address for DB2 commands or IMS transactions.
The ACEE address is passed for CICS transactions, if available.

v Authorization ID, ACEE relationship

XAPL has two authorization ID fields, XAPLUPRM (the primary authorization ID)
and XAPLUCHK (the authorization ID that DB2 uses to perform the
authorization). These two fields might have different values.

The ACEE passed in XAPLACEE is that of the primary authorization ID,
XAPLUPRM.

v Invalid or inoperative plans and packages

In DB2, when a privilege required by a plan or package is revoked, the plan or
package is invalidated. If you use an authorization access control routine, it
cannot tell DB2 that a privilege is revoked. Therefore, DB2 cannot know to
invalidate the plan or package.

If the revoked privilege was EXECUTE on a user-defined function, DB2 marks
the plan or package inoperative instead of invalid.

If a privilege that the plan or package depends on is revoked, and if you want to
invalidate the plan or package or make it inoperative, you must use the SQL
GRANT statement to grant the revoked privilege and then use the SQL REVOKE
statement to revoke it.

v Dropping views

In DB2, when a privilege required to create a view is revoked the view is
dropped. Similar to the revocation of plan privileges, such an event is not
communicated to DB2 by the authorization checking routine.

If you want DB2 to drop the view when a privilege is revoked, you must use the
SQL statements GRANT and REVOKE.

v Caching of EXECUTE on plans

The results of authorization checks on the EXECUTE privilege are not cached
when those checks are performed by the exit routine.

v Caching of EXECUTE on packages and routines

The results of authorization checks on the EXECUTE privilege for packages and
routines are cached (assuming that package and routine authorization caching is
enabled on your system). If this privilege is revoked in the exit routine, the
cached information is not updated to reflect the revoke. You must use the SQL
GRANT and REVOKE statements to update the cached information.

v Caching of dynamic SQL statements

Dynamic statements can be cached when they have passed the authorization
checks (assuming that dynamic statement caching is enabled on your system). If
the privileges that this statement requires are revoked from the authorization ID

Appendix B. Writing exit routines 911

|
|

|

|
|
|

|
|

that is cached with the statement, then this cached statement must be
invalidated. If the privilege is revoked in the exit routine this does not happen,
and you must use the SQL statements GRANT and REVOKE to refresh the
cache.

v Resolution of user-defined functions

The create timestamp for the user-defined function must be older than the bind
timestamp for the package or plan in which the user-defined function is invoked.
If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that invokes a user-defined function, any user-defined
functions that were created after the original BIND or REBIND of the invoking
plan or package are not candidates for execution.

If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package. If a user-defined
function is invoked during an automatic rebind, and that user-defined function is
invoked from a trigger body and receives a transition table, the form of the
invoked function that DB2 uses for function selection includes only the columns
of the transition table that existed at the time of the original BIND or REBIND of
the package or plan for the invoking program.

Parameter list for the access control authorization routine
Figure 131 shows how the parameter list points to other information.

The work area (4096 bytes) is obtained once during the startup of DB2 and only
released when DB2 is shut down. The work area is shared by all invocations to the
exit routine.

Register 1
Address of EXPL

Address of XAPL
authorization
checking list

EXPL

Address of work area

Length of work area

Return code--EXPLRC1

Reason code--EXPLRC2

Work area
(4096 bytes)

Parameter list for DSNX@XAC routine

Control block information

DB2 level information

Store clock value at exit invocation

STOKEN of ACEE address space

Primary authorization ID

Authorization ID DB2 uses for check

ACEE address of primary authorization ID

Function code

.

..

Figure 131. How an authorization routine's parameter list points to other information

912 Administration Guide

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Exit parameter list (XAPL)
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the authorization checking routine uses the standard exit parameter
list (EXPL) described there. Table 145 shows the exit-specific parameter list,
described by macro DSNDXAPL.

Table 145. Parameter list for the access control authorization routine. Field names indicated by an asterisk (*) apply to
initialization, termination, and authorization checking. Other fields apply to authorization checking only.

Name Hex
offset

Data type Input or
output

Description

XAPLCBID* 0 Character,
2-byte
integer

Input Control block identifier; value X'216A'.

XAPLLEN * 2 Signed,
2-byte
integer

Input Length of XAPL; value X'100' (decimal 256).

XAPLEYE * 4 Character, 4
bytes

Input Control block eye catcher; value “XAPL”.

XAPLLVL * 8 Character, 8
bytes

Input DB2 version and level; for example, “VxRxMx ”.

XAPLSTCK * 10 Character, 8
bytes

Input The store clock value when the exit is invoked. Use this to
correlate information to this specific invocation.

XAPLSTKN * 18 Character, 8
bytes

Input STOKEN of the address space in which XAPLACEE resides.
Binary zeroes indicate that XAPLACEE is in the home address
space.

XAPLACEE * 20 Address Input ACEE address:

v Of the DB2 address space (ssnmDBM1) when XAPLFUNC is
1 or 3.

v Of the primary authorization ID associated with this agent
when XAPLFUNC is 2.

There may be cases were an ACEE address is not available
for an agent. In such cases this field contains zero.

XAPLUPRM * 24 Character, 8
bytes

Input One of the following IDs:

v When XAPLFUNC is 1 or 3, it contains the User ID of the
DB2 address space (ssnmDBM1)

v When XAPLFUNC is 2, it contains the primary authorization
ID associated with the agent

XAPLUCHK 2C Character, 8
bytes

Input Authorization ID on which DB2 performs the check. It could be
the primary, secondary, or some other ID.

XAPLFUNC * 34 Signed,
2-byte
integer

Input Function to be performed by exit routine

1 Initialization

2 Authorization Check

3 Termination

XAPLGPAT * 36 Character, 4
bytes

Input DB2 group attachment name for data sharing. The DB2
subsystem name if not data sharing.

XAPLRSV1 3A Character, 4
bytes

Reserved

Appendix B. Writing exit routines 913

Table 145. Parameter list for the access control authorization routine (continued). Field names indicated by an
asterisk (*) apply to initialization, termination, and authorization checking. Other fields apply to authorization checking
only.

Name Hex
offset

Data type Input or
output

Description

XAPLTYPE 3E Character,1 Input DB2 object type:

D Database

R Table space

T Table

P Application plan

K Package

S Storage group

C Collection

B Buffer pool

U System privilege

E Distinct type

F User-defined function

M Schema

O Stored procedure

J JAR

XAPLFLG1 3F Character,1 Input The highest-order bit, bit 8, (XAPLCHKS) is on if the secondary
IDs associated with this authorization ID (XAPLUCHK) are
included in DB2's authorization check. If it is off, only this
authorization ID is checked.

The next highest-order bit, bit 7, (XAPLUTB) is on if this is a
table privilege (SELECT, INSERT, and so on) and if SYSCTRL
is not sufficient authority to perform the specified operation on a
table. SYSCTRL does not have the privilege of accessing user
data unless specifically granted to it.

The next highest-order bit, bit 6, (XAPLAUTO) is on if this is an
AUTOBIND. See “Access control authorization exit” on page 909
for more information on function resolution during an
AUTOBIND.

The next highest-order bit, bit 5, (XAPLCRVW) is on if the
installation parameter DBADM CREATE AUTH is set to YES.

The remaining 4 bits are reserved.

XAPLOBJN 40 Character, 20
bytes

Input Unqualified name of the object with which the privilege is
associated. It is one of the following names:

Name Length

Database 8

Table space 8

Table 18

Application plan 8

Package 8

914 Administration Guide

||

|
|
|
|

|
|

Table 145. Parameter list for the access control authorization routine (continued). Field names indicated by an
asterisk (*) apply to initialization, termination, and authorization checking. Other fields apply to authorization checking
only.

Name Hex
offset

Data type Input or
output

Description

Storage group 8

Collection 18

Buffer pool 8

Schema 8

Distinct type 18

User-defined
function

18

JAR 18

For special system privileges (SYSADM, SYSCTRL, and so on)
this field might be blank. See macro DSNXAPRV.

This parameter is left-justified and padded with blanks. If not
applicable, it contains blanks or binary zeros.

XAPLOWNQ 54 Character, 20
bytes

Input Object owner (creator) or object qualifier. The contents of this
parameter depends on either the privilege being checked or the
object. See Table 147 on page 917.

This parameter is left-justified and padded with blanks. If not
applicable, it contains blanks or binary zeros.

XAPLREL1 68 Character, 20
bytes

Input Other related information. The contents of this parameter
depends on either the privilege being checked or the object.
See Table 147 on page 917.

This parameter is left-justified and padded with blanks. If not
applicable, it contains blanks or binary zeros.

XAPLREL2 7C Character, 64
bytes

Input Other related information. The contents of this parameter
depends on the privilege being checked. See Table 147 on
page 917.

This parameter is left-justified and padded with blanks. If not
applicable, it contains blanks or binary zeros.

XAPLPRIV BC Signed,
2-byte
integer

Input DB2 privilege being checked. See macro DSNXAPRV for a
complete list of privileges.

XAPLFROM BE Character, 1
byte

Input Source of the request:

S Remote request that uses DB2 private protocol.

’ ’ Not a remote request that uses DB2 private protocol.

DB2 authorization restricts remote requests that use
DB2 private protocol to the SELECT, UPDATE,
INSERT and DELETE privileges.

XAPLXBTS BF Timestamp,
10 bytes

Input The function resolution timestamp. Authorizations received prior
to this timestamp are valid.

Applicable to functions and procedures. See DB2 SQL
Reference for more information on function resolution.

XAPLRSV2 C9 Character, 5
bytes

Reserved

Appendix B. Writing exit routines 915

Table 145. Parameter list for the access control authorization routine (continued). Field names indicated by an
asterisk (*) apply to initialization, termination, and authorization checking. Other fields apply to authorization checking
only.

Name Hex
offset

Data type Input or
output

Description

XAPLONWT CE Character, 1
byte

Output Information required by DB2 from the exit routine for the
UPDATE and REFERENCES table privileges:

Value Explanation

’ ’ Requester has privilege on the entire table

* Requester has privilege on just this
column

See macro DSNXAPRV for definition of these privileges.

XAPLDIAG CF Character, 40
bytes

Output Information returned by the exit routine to help diagnose
problems.

XAPLRSV3 F7 Character, 9
bytes

Reserved

Table 146 has database information for determining authorization for creating a
view. The address to this parameter list is in XAPLREL2. See Table 147 on
page 917 for more information on CREATE VIEW.

Table 146. Parameter list for the access control authorization routine—database information

Name Hex
offset

Data type Input or
output

Description

XAPLDBNP 0 Address Input Address of information for the
next database. X'00000000'
indicates no next database exists.

XAPLDBNM 4 Character, 8
bytes

Input Database name.

916 Administration Guide

|
|
|

||

||
|
||
|
|

|||||
|
|

|||
|
||

Table 146. Parameter list for the access control authorization routine—database
information (continued)

Name Hex
offset

Data type Input or
output

Description

XAPLDBDA C Character, 1 byte Output Required by DB2 from the exit
routine for CREATE VIEW.

A value of Y indicates the user ID
in field XAPLUCHK has database
administrator authority on the
database in field XAPLDBNM.

When the exit checks if
XAPLUCHK can create a view for
another authorization ID, it first
checks for SYSADM or SYSCTRL
authority. If the check is
successful, no more checking is
necessary because SYSADM or
SYSCTRL authority satisfies the
requirement that the view owner
has the SELECT privilege for all
tables and views that the view
may be based on.

If the authorization ID does not
have SYSADM or SYSCTRL
authority, the exit checks if the
view creator has DBADM on each
database of the tables that the
view is based on because the
DBADM authority on the
database of the base table
satisfies the requirement that the
view owner has the SELECT
privilege for all base tables in that
database.

XAPLRSV5 D Character, 3
bytes

none Reserved

XAPLOWNQ, XAPLREL1 and XAPLREL2 might further qualify the object or may
provide additional information that can be used in determining authorization for
certain privileges. These privileges and the contents of XAPLOWNQ, XAPLREL1
and XAPLREL2 are shown in Table 147.

Table 147. Related information for certain privileges

Privilege Object type
(XAPLTYPE)

XAPLOWNQ XAPLREL1 XAPLREL2

0053 (UPDATE)
0054 (REFERENCES)

T Table Name
Qualifier

Column Name
if applicable

Database name

Appendix B. Writing exit routines 917

|
|

||
|
||
|
|

|||||
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|||
|
||

|

|

Table 147. Related information for certain privileges (continued)

Privilege Object type
(XAPLTYPE)

XAPLOWNQ XAPLREL1 XAPLREL2

0022 (CATMAINT
CONVERT)

0050 (SELECT)
0051 (INSERT)
0052 (DELETE)
0055 (TRIGGER)
0056 (CREATE INDEX)
0061 (ALTER)
0073 (DROP)
0075 (LOAD)
0076 (CHANGE NAME

QUALIFIER)
0097 (COMMENT ON)
0098 (LOCK)
0102 (CREATE

SYNONYM)
0233 (ANY TABLE

PRIVILEGE)

T Table name
qualifier

blank Database name

0020 (DROP ALIAS)
0104 (DROP SYNONYM)

T Object name
qualifier

blank blank

0103 (ALTER INDEX)
0105 (DROP INDEX)
0274 (COMMENT ON INDEX)

T Object name
qualifier

blank Database name

0108 (CREATE VIEW) T blank blank First 4 bytes has the address
to Database Information.
Blanks indicate no database
information has been passed.

0065 (BIND) P Plan owner blank blank

0064 (EXECUTE) K Collection ID blank blank

0065 (BIND) K Collection ID Package
owner

blank

0073 (DROP) K Collection ID blank Version ID

0225 (COPY ON PKG) K Collection ID Package
owner

blank

0228 (ALLPKAUT) K Collection ID blank blank

0229 (SUBPKAUT) K Collection ID blank blank

0061 (ALTER) R Database name blank blank

0073 (DROP) R Database name blank blank

0087 (USE) R Database name blank blank

0227 (BIND AGENT) U Package owner blank blank

0015 (CREATE ALIAS) U blank blank Database name

0263 (USAGE) E Schema name Distinct type
owner

blank

0263 (USAGE) J Schema name JAR owner blank

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

F Schema name User-defined
function owner

blank

918 Administration Guide

|
|
|

||
|
||

|||||
|
|
|

Table 147. Related information for certain privileges (continued)

Privilege Object type
(XAPLTYPE)

XAPLOWNQ XAPLREL1 XAPLREL2

0064 (EXECUTE)
0265 (START)
0266 (STOP)
0267 (DISPLAY)

O Schema name Procedure
owner

blank

0252 (ALTERIN)
0097 (COMMENT ON)
0252 (DROPIN)

M Schema name Object owner blank

The data types and field lengths of the information shown in Table 147 on page 917
is shown in Table 148.

Table 148. Data types and field lengths

Resource name or other Type Length

Database name Character 8

Table name qualifier Character 8

Object name qualifier Character 8

Column name Character 18

Collection ID Character 18

Plan owner Character 8

Package owner Character 8

Package version ID Character 64

Schema name Character 8

Distinct type owner Character 8

JAR owner Character 8

User-defined function owner Character 8

Procedure owner Character 8

Expected output
Your authorization exit routine is expected to return certain fields when it is called.
These output fields are indicated in Table 145 on page 913. If an unexpected value
is returned in any of these fields an abend occurs. Register 3 points to the field in
error, and abend code 00E70009 is issued.

Field Required or optional

EXPLRC1 Required

EXPLRC2 Optional

XAPLONWT Required only for UPDATE and
REFERENCES table privileges

XAPLDIAG Optional

Handling return codes
Place return codes from the exit routine in the EXPL field named EXPLRC1.

Appendix B. Writing exit routines 919

|||

Return codes during initialization: EXPLRC1 must have one of the following
values during initialization:

Value Meaning
0 Initialization successful
12 Unable to service request; don’t call exit again

See “Exception processing” for an explanation of how the EXPLRC1 value affects
DB2 processing.

Return codes during termination: DB2 does not check EXPLRC1 on return from
the exit routine.

Return codes during authorization check: Make sure that EXPLRC1 has one of
the following values during the authorization check:

Value Meaning
0 Access permitted
4 Unable to determine; perform DB2 authorization checking
8 Access denied
12 Unable to service request; don’t call exit again

See “Exception processing” for an explanation of how the EXPLRC1 value affects
DB2 processing. On authorization failures, the return code is included in the IFCID
0140 trace record.

Handling reason codes
Reason codes during initialization: The reason code (EXPLRC2) that the exit
routine returns after initialization determines how DB2 processes the return code
(EXPLRC1) that the exit returns during initialization and authorization checking. See
“Exception processing” for details.

Value Meaning
–1 Identifies the default exit routine shipped with DB2. If you replace or modify

the default exit, you should not use this value.
16 Indicates to DB2 that it should terminate if the exit routine returns

EXPLRC1=12, an invalid EXPLRC1 or abnormally terminates during
initialization or authorization checking. When the exit sets the reason
code to 16, DB2 does an immediate shutdown, without waiting for
tasks to end. For long-running tasks, an immediate shutdown can mean
that recovery times are long.

Other Ignored by DB2.

Reason codes during authorization check: Field EXPLRC2 lets you put in any
code that would be of use in determining why the authorization check in the exit
routine failed. On authorization failures, the reason code is included in the IFCID
0140 trace record.

Exception processing: During initialization or authorization checking, DB2 issues
diagnostic message DSNX210I to the operator’s console, if one of the following
conditions occur:

v The authorization exit returns a return code of 12 or an invalid return code.

v The authorization exit abnormally terminates.

Additional actions that DB2 performs depend on the reason code that the exit
returns during initialization. Table 149 on page 921 summarizes these actions.

920 Administration Guide

|
|

|
|
|

|
|
|
|
|

||
||
|
||
|
|
|
|
|
||

|
|
|
|

|
|
|

|

|

|
|

Table 149. How an error condition affects DB2 actions during initialization and authorization
checking

Exit Result Reason code of 16 returned by
exit during initialization

Reason code other than 16 or −1
returned by exit during
initialization1

Return code 12 v The task2 abnormally terminates
with reason code 00E70015

v DB2 terminates

v The task2 abnormally terminates
with reason code 00E70009

v DB2 switches to DB2
authorization checking

Invalid return
code

v The task2 abnormally terminates
with reason code 00E70015

v DB2 terminates

v The task2 abnormally terminates
with reason code 00E70009

v DB2 switches to DB2
authorization checking

Abnormal
termination

DB2 terminates DB2 switches to DB2 authorization
checking

Notes:

1. During initialization, DB2 sets a value of −1 to identify the default exit. The user exit
should not set the reason code to −1.

2. During initialization, the task is DB2 startup. During authorization checking, the task is the
application.

Debugging your exit routine
You can use IFCID 0314 to provide a trace record of the parameter list on return
from the exit routine. You can activate this trace by turning on performance trace
class 22.

Determining if the exit routine is active
To determine whether the exit routine or DB2 is performing authorization checks,
follow these steps:

1. Start audit trace class 1.

2. Choose a DB2 table on which to execute a SELECT statement and an
authorization ID to perform the SELECT. The authorization ID must not have the
DB2 SELECT privilege on the table or the external security system SELECT
privilege on the table.

3. Use the authorization ID to execute a SELECT statement on the table. The
SELECT statement should fail.

4. Format the trace data and examine the return code (QW0140RC) in the IFCID
0140 trace record.

v QW0140RC = –1 indicates that DB2 performed the authorization check and
denied access.

v QW0140RC = 8 indicates that the external security system performed the
authorization check and denied access.

Edit routines
Edit routines are assigned to a table by the EDITPROC clause of CREATE TABLE.
An edit routine receives the entire row of the base table in internal DB2 format; it
can transform that row when it is stored by an INSERT or UPDATE SQL statement,
or by the LOAD utility. It also receives the transformed row during retrieval

Appendix B. Writing exit routines 921

||
|

||
|
|
|
|

||
|

|

|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
||
|

|

|
|

|
|
|

|

|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|

operations and must change it back to its original form. Typical uses are to
compress the storage representation of rows to save space on DASD and to
encrypt the data.

You cannot use an edit routine on a table that contains a LOB or a ROWID column.

The transformation your edit routine performs on a row (possibly encryption or
compression) is called edit-encoding. The same routine is used to undo the
transformation when rows are retrieved; that operation is called edit-decoding.

Attention

The edit-decoding function must be the exact inverse of the edit-encoding
function. For example, if a routine encodes 'ALABAMA' to '01', it must decode
'01' to 'ALABAMA'. A violation of this rule can lead to an abend of the DB2
connecting thread, or other undesirable effects.

Your edit routine can encode the entire row of the table, including any index keys.
However, index keys are extracted from the row before the encoding is done,
therefore, index keys are stored in the index in edit-decoded form. Hence, for a
table with an edit routine, index keys in the table are edit-coded; index keys in the
index are not edit-coded.

The sample application contains a sample edit routine, DSN8EAE1. To print it, use
ISPF facilities, IEBPTPCH, or a program of your own. Or, assemble it and use the
assembly listing.

There is also a sample routine that does Huffman data compression, DSN8HUFF in
library prefix.SDSNSAMP. That routine not only exemplifies the use of the exit
parameters, it also has potentially some use for data compression. If you intend to
use the routine in any production application, please pay particular attention to the
warnings and restrictions given as comments in the code. You might prefer to let
DB2 compress your data. For instructions, see “Compressing your data” on
page 606.

General considerations
“General considerations for writing exit routines” on page 950 applies to edit
routines.

Specifying the routine
To name an edit routine for a table, use the EDITPROC clause of the CREATE
TABLE statement, followed by the name of the routine. If you plan to use an edit
routine, specify it when you create the table. In operation, the routine is loaded on
demand.

You cannot add an edit routine to a table that already exists: you must drop the
table and re-create it. Also, you cannot alter a table with an edit routine to add a
column. Again, you must drop the table and re-create it, and presumably also alter
the edit routine in some way to account for the new column.

When exits are taken
An edit routine is invoked to edit-code a row whenever DB2 inserts or updates one,
including inserts made by the LOAD utility. It is invoked after any date routine, time

922 Administration Guide

routine, or field procedure. If there is also a validation routine, the edit routine is
invoked after the validation routine. Any changes made to the row by the edit
routine do not change entries made in an index.

The same edit routine is invoked to edit-decode a row whenever DB2 retrieves one.
On retrieval, it is invoked before any date routine, time routine, or field procedure. If
retrieved rows are sorted, the edit routine is invoked before the sort. An edit routine
is not invoked for a DELETE operation without a WHERE clause that deletes an
entire table in a segmented table space.

Parameter lists on entry
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the edit routine uses the standard exit parameter list (EXPL)
described there. Table 150 shows the exit-specific parameter list, described by
macro DSNDEDIT. Figure 132 on page 924 shows how the parameter list points to
other row information.

Table 150. Parameter list for an edit routine

Name Hex offset Data type Description

EDITCODE 0 Signed 4-byte
integer

Edit code telling the type of function to be
performed, as follows:
0 Edit-encode row for insert or

update
4 Edit-decode row for retrieval

EDITROW 4 Address Address of a row description. Its format is
shown in Table 161 on page 954.

8 Signed 4-byte
integer

Reserved

EDITILTH C Signed 4-byte
integer

Length of the input row

EDITIPTR 10 Address Address of the input row

EDITOLTH 14 Signed 4-byte
integer

Length of output row. On entry, this is the
size of the area in which to place the output
row. The exit must not modify storage
beyond this length.

EDITOPTR 18 Address Address of the output row

Processing requirements
Your routine must be based on the DB2 data formats; see “Row formats for edit and
validation routines” on page 952.

Incomplete rows
Sometimes DB2 passes, to an edit routine, an input row that has fewer fields than
there are columns in the table. In that case, the routine must stop processing the
row after the last input field. Columns for which no input field is provided are always
at the end of the row and are never defined as NOT NULL; either they allow nulls,
they are defined as NOT NULL WITH DEFAULT, or the column is a ROWID
column.

Appendix B. Writing exit routines 923

Use macro DSNDEDIT to get the starting address and row length for edit exits. Add
the row length to the starting address to get the first invalid address beyond the end
of the input buffer; your routine must not process any address as large as that.

Expected output
If EDITCODE contains 0, the input row is in decoded form. Your routine must
encode it.

In that case, the maximum length of the output area, in EDITOLTH, is 10 bytes
more than the maximum length of the record. In counting the maximum length,
“record” includes fields for the lengths of VARCHAR and VARGRAPHIC
columns, and for null indicators, but does not include the 6-byte record header.

If EDITCODE contains 4, the input row is in coded form. Your routine must decode
it.

In that case, EDITOLTH contains the maximum length of the record. As before,
“record” includes fields for the lengths of VARCHAR and VARGRAPHIC
columns, and for null indicators, but not the 6-byte record header.

In either case, put the result in the output area, pointed to by EDITOPTR, and put
the length of your result in EDITOLTH. The length of your result must not be greater
than the length of the output area, as given in EDITOLTH on invocation, and your
routine must not modify storage beyond the end of the output area.

Register 1
Address of
EXPL

Address of
edit parameter
list

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Reason code

Work area
(256 bytes)

Parameter list

EDITCODE: Function to be
performed

Address of row description

Reserved

Length of input row

Address of input row

Length of output row

Address of output row

Row descriptions

Number of columns
in row (n)

Address of column
list

Row type

Output row

Input row

Column descriptions

Column length

Data type

Data attribute

Column name

...n

Figure 132. How the edit exit parameter list points to row information. The address of the nth
column description is given by: RFMTAFLD + (n−1)×(FFMTE−FFMT); see “Parameter list for
row format descriptions” on page 954.

924 Administration Guide

Required return code: Your routine must also leave a return code in EXPLRC1,
with the following meanings:

Value Meaning
0 Function performed successfully.
Nonzero Function failed.

If the function fails, the routine might also leave a reason code in EXPLRC2. DB2
returns SQLCODE -652 (SQLSTATE ’23506’) to the application program and puts
the reason code in field SQLERRD(6) of the SQL communication area (SQLCA).

Validation routines
Validation routines are assigned to a table by the VALIDPROC clause of CREATE
TABLE and ALTER TABLE. A validation routine receives an entire row of a base
table as input, and can return an indication of whether or not to allow a following
INSERT, UPDATE, or DELETE operation. Typically, a validation routine is used to
impose limits on the information that can be entered in a table; for example,
allowable salary ranges, perhaps dependent on job category, for the employee
sample table.

Although VALIDPROCs can be specified for a table that contains a LOB column,
the LOB values are not passed to the validation routine. The indicator column takes
the place of the LOB column.

The return code from a validation routine is checked for a 0 value before any insert,
update, or delete is allowed.

General considerations
“General considerations for writing exit routines” on page 950 applies to validation
routines.

Specifying the routine
To name a validation routine for a table, use the VALIDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the routine.
In operation, the routine is loaded on demand.

You can add a validation routine to a table that is already in existence, but it is not
invoked to validate data already in the table. For suggestions about existing data,
see “Checking rows of a table with a new validation routine” on page 64. You can
also cancel any validation routine for a table, by using VALIDPROC NULL in an
ALTER TABLE statement.

When exits are taken
A validation routine for a table is invoked when DB2 inserts or updates a row,
including inserts made by the LOAD utility. The routine is invoked for most delete
operations, but NOT for a mass delete of all the rows of a table made by a
DELETE statement without a WHERE clause. If there are other exit routines, the
validation routine is invoked before any edit routine, and after any date routine, time
routine, or field procedure.

Parameter lists on entry
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the validation routine uses the standard exit parameter list (EXPL)
described there. Table 151 on page 926 shows the exit-specific parameter list,

Appendix B. Writing exit routines 925

described by macro DSNDRVAL.

Table 151. Parameter List for a Validation Routine

Name Hex offset Data type Description

0 Signed 4-byte
integer

Reserved

RVALROW 4 Address Address of a row description. The format of
the row description is shown in Table 161 on
page 954.

8 Signed 4-byte
integer

Reserved

RVALROWL C Signed 4-byte
integer

Length of the input row to be validated

RVALROWP 10 Address Address of the input row to be validated

14 Signed 4-byte
integer

Reserved

18 Signed 4-byte
integer

Reserved

RVALPLAN 1C Character, 8
bytes

Name of the plan issuing the request

RVALOPER 24 Unsigned 1-byte
integer

Code identifying the operation being
performed, as follows:
1 Insert, update, or load
2 Delete

RVALFL1 25 Character, 1 byte The high-order bit is on if the requester has
installation SYSADM authority. The
remaining 7 bits are reserved.

RVALCSTC 26 Character, 2
bytes

Connection system type code. Values are
defined in macro DSNDCSTC.

Processing requirements
Your routine must be based on the DB2 data formats; see “Row formats for edit and
validation routines” on page 952.

Incomplete rows
Sometimes DB2 passes, to a validation routine, an input row that has fewer fields
than there are columns in the table. In that case, the routine must stop processing
the row after the last input field. Columns for which no input field is provided are
always at the end of the row and are never defined as NOT NULL; either they allow
nulls, they are defined as NOT NULL WITH DEFAULT, or the column is a ROWID
column.

Use macro DSNDRVAL to get the starting address and row length for validation
exits. Add the row length to the starting address to get the first invalid address
beyond the end of the input buffer; your routine must not process any address as
large as that.

Expected output
Your routine must leave a return code in EXPLRC1, with the following meanings:

Value Meaning

926 Administration Guide

0 Allow insert, update, or delete
Nonzero Do not allow insert, update, or delete

If the operation is not allowed, the routine might also leave a reason code in
EXPLRC2. DB2 returns SQLCODE -652 (SQLSTATE ’23506’) to the application
program and puts the reason code in field SQLERRD(6) of the SQL communication
area (SQLCA).

Figure 133 shows how the parameter list points to other information.

Date and time routines
A date routine is a user-written exit routine to change date values from a
locally-defined format into a format recognized by DB2, when loading or inserting
them into a column with data type DATE; and from the ISO format into the
locally-defined format, when retrieving the values and assigning them to a host
variable. Similarly, a time routine changes time values from a locally-defined format
into one recognized by DB2, and from ISO into the locally-defined format. The
following table shows the formats recognized by DB2:

Register 1
Address of
EXPL

Address of
validation
parameter list

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Reason code

Work area
(256 bytes)

Parameter list

Reserved

Address of row description

Reserved

Length of input row to be
validated

Address of input row to be
validated

.

.

.

Row descriptions

Number of columns
in row (n)

Address of column
list

Row type

Column descriptions

Input row

Column length

Data type

Data attribute

Column name

...n

Figure 133. How a validation parameter list points to information. The address of the nth
column description is given by: RFMTAFLD + (n−1)×(FFMTE−FFMT); see “Parameter list for
row format descriptions” on page 954.

Appendix B. Writing exit routines 927

Table 152. Date and Time Formats

Format name Abbreviation Typical date Typical time

IBM European standard EUR 25.12.1992 13.30.05

International Standards Organization ISO 1992-12-25 13.30.05

Japanese Industrial Standard Christian
Era

JIS 1992-12-25 13:30:05

IBM USA standard USA 12/25/1992 1:30 PM

For an example of the use of an exit routine, suppose you want to insert and
retrieve dates in a format like “September 21, 1992”. You might have a date routine
that transforms that date to a format recognized by DB2—say ISO,
“1992-09-21”—on insertion, and transforms “1992-09-21” to “September 21, 1992”
on retrieval.

You can have either a date routine, a time routine, or both. These routines do not
apply to timestamps. Both types of routine follow the rules given below. Special
rules apply if you execute queries at a remote DBMS, through the distributed data
facility; for that case, see Chapter 2 of DB2 SQL Reference.

General considerations
“General considerations for writing exit routines” on page 950 applies to date and
time routines.

Specifying the routine
To establish a date or time routine, set LOCAL DATE LENGTH or LOCAL TIME
LENGTH, when installing DB2, to the length of the longest field required to hold a
date or time in your local format. Allowable values range from 10 to 254. For
example, if you intend to insert and retrieve dates in the form “September 21,
1992”, then you need an 18-byte field. Set LOCAL DATE LENGTH to 18.

Also, replace the IBM-supplied exit routines, using CSECTs DSNXVDTX for a date
routine and DSNXVTMX for a time routine. The routines are loaded when DB2
starts.

To make the local date or time format the default for retrieval, set DATE
FORMAT or TIME FORMAT to LOCAL when installing DB2. That has the effect that
DB2 always takes the exit routine when you retrieve from a DATE or TIME column.
In our example, suppose that you want to retrieve dates in your local format only
occasionally; most of the time you use the USA format. Set DATE FORMAT to USA.

The install parameters for LOCAL DATE LENGTH, LOCAL TIME LENGTH, DATE
FORMAT, and TIME FORMAT can also be updated after DB2 is installed. For
instructions, see Part 2 of DB2 Installation Guide. If you change a length parameter,
you may have to rebind applications.

When exits are taken
On insertion: A date or time routine is invoked to change a value from the
locally-defined format to a format recognized by DB2 in the following circumstances:

v When a date or time value is entered by an INSERT or UPDATE statement, or
by the LOAD utility

928 Administration Guide

v When a constant or host variable is compared to a column with a data type of
DATE, TIME, or TIMESTAMP

v When the DATE or TIME scalar function is used with a string representation of a
date or time in LOCAL format

v When a date or time value is supplied for a limit of a partitioned index in a
CREATE INDEX statement

The exit is taken before any edit or validation routine.

v If the default is LOCAL, DB2 takes the exit immediately. If the exit routine does
not recognize the data (EXPLRC1=8), DB2 then tries to interpret it as a date or
time in one of the recognized formats (EUR, ISO JIS, or USA). DB2 rejects the
data only if that interpretation also fails.

v If the default is not LOCAL, DB2 first tries to interpret the data as a date or
time in one of the recognized formats. If that interpretation fails, DB2 then takes
the exit routine, if it exists.

DB2 checks that the value supplied by the exit routine represents a valid date or
time in some recognized format, and then converts it into an internal format for
storage or comparison. If the value is entered into a column that is a key column in
an index, the index entry is also made in the internal format.

On retrieval: A date or time routine can be invoked to change a value from ISO to
the locally-defined format when a date or time value is retrieved by a SELECT or
FETCH statement. If LOCAL is the default, the routine is always invoked unless
overridden by a precompiler option or by the CHAR function, as by specifying
CHAR(HIREDATE, ISO); that specification always retrieves a date in ISO format. If
LOCAL is not the default, the routine is invoked only when specifically called for by
CHAR, as in CHAR(HIREDATE, LOCAL); that always retrieves a date in the format
supplied by your date exit routine.

On retrieval, the exit is invoked after any edit routine or DB2 sort. A date or time
routine is not invoked for a DELETE operation without a WHERE clause that
deletes an entire table in a segmented table space.

Parameter lists on entry
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the date or time routine uses the standard exit parameter list (EXPL)
described there. Table 153 shows its exit-specific parameter list, described by
macro DSNDDTXP.

Table 153. Parameter list for a date or time routine

Name Hex offset Data type Description

DTXPFN 0 Address Address of a 2-byte integer containing a
function code. The codes and their
meanings are:
4 Convert from local format to ISO.
8 Convert from ISO to local format.

DTXPLN 4 Address Address of a 2-byte integer containing the
length in bytes of the local format. This is
the length given as LOCAL DATE LENGTH
or LOCAL TIME LENGTH when installing
DB2.

DTXPLOC 8 Address Address of the date or time value in local
format

Appendix B. Writing exit routines 929

Table 153. Parameter list for a date or time routine (continued)

Name Hex offset Data type Description

DTXPISO C Address Address of the date or time value in ISO
format (DTXPISO). The area pointed to is
10 bytes long for a date, 8 bytes for a time.

Expected output
If the function code is 4, the input value is in local format, in the area pointed to
by DTXPLOC. Your routine must change it to ISO, and put the result in the area
pointed to by DTXPISO.

If the function code is 8, the input value is in ISO, in the area pointed to by
DTXPISO. Your routine must change it to your local format, and put the result in the
area pointed to by DTXPLOC.

Your routine must also leave a return code in EXPLRC1, a 4-byte integer and the
third word of the EXPL area. The return code has the following meanings:

Value Meaning
0 No errors; conversion was completed.
4 Invalid date or time value.
8 Input value not in valid format; if the function is insertion, and LOCAL is the

default, DB2 next tries to interpret the data as a date or time in one of the
recognized formats (EUR, ISO, JIS, or USA).

12 Error in exit routine.

Figure 134 shows how the parameter list points to other information.

Register 1
Address of
EXPL

Address of
parameter
list

EXPL

Address of
work area

Length of
work area

Return code

Work area
(512 bytes)

Parameter list

Address of function code

Address of format length

Address of LOCAL value

Address of ISO value

Function code:
Function to be
performed

Length of local
format

ISO value

LOCAL value

Figure 134. How a Date or Time Parameter List Points to Other Information

930 Administration Guide

Conversion procedures
A conversion procedure is a user-written exit routine that converts characters from
one coded character set to another coded character set. (For a general discussion
of character sets, and definitions of those terms, see Appendix A of DB2 Installation
Guide.) In most cases, any conversion that is needed can be done by routines
provided by IBM. The exit for a user-written routine is available to handle
exceptions.

General considerations
“General considerations for writing exit routines” on page 950 applies to conversion
routines.

Specifying the routine
To establish a conversion procedure, insert a row into the catalog table
SYSIBM.SYSSTRINGS. The row must contain values for the following columns:

INCCSID
The coded character set identifier (CCSID) of the source string.

OUTCCSID
The CCSID of the converted string.

TRANSTYPE
The nature of the conversion. Values can be:
GG ASCII GRAPHIC to EBCDIC GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED
MP EBCDIC MIXED to ASCII MIXED
MS EBCDIC MIXED to EBCDIC SBCS
PM ASCII MIXED to EBCDIC MIXED
PP ASCII MIXED to ASCII MIXED
PS ASCII MIXED to EBCDIC SBCS
SM EBCDIC SBCS to EBCDIC MIXED
SP SBCS (ASCII or EBCDIC) to ASCII MIXED
SS EBCDIC SBCS to EBCDIC SBCS

TRANSPROC
The name of your conversion procedure.

IBMREQD
Must be N.

DB2 does not use the following columns, but checks them for the allowable values
listed. Values you insert can be used by your routine in any way. If you insert no
value in one of these columns, DB2 inserts the default value listed.

ERRORBYTE
Any character, or null. Default: null.

SUBBYTE
Any character not equal to the value of ERRORBYTE, or null. Default: null.

TRANSTAB
Any character string of length 256 or the empty string. Default: the empty
string.

Appendix B. Writing exit routines 931

When exits are taken
The exit is taken, and your procedure invoked, whenever a conversion is required
from the coded character set identified by INCCSID to the coded character set
identified by OUTCCSID.

Parameter lists on entry
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the conversion procedure uses the standard exit parameter list
(EXPL) described there. A conversion procedure does not use an exit-specific
parameter list, as described in “Parameter lists” on page 951. Instead, the area
pointed to by register 1 at invocation includes three words, which contain the
addresses of the following items:

1. The EXPL parameter list

2. A string value descriptor, described below, that contains the character string to
be converted

3. A copy of a row from SYSIBM.SYSSTRINGS, described below, that names the
conversion procedure identified in TRANSPROC.

The length of the work area pointed to by the exit parameter list is generally 512
bytes. However, if the string to be converted is ASCII MIXED data (the value of
TRANSTYPE in the row from SYSSTRINGS is PM or PS), then the length of the
work area is 256 bytes, plus the length attribute of the string.

The string value descriptor: The descriptor has the format shown in Table 154.

Table 154. Format of string value descriptor for a conversion procedure

Name Hex offset Data type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
20 VARCHAR
28 VARGRAPHIC

FPVDVLEN 2 Signed 2-byte
integer

The maximum length of the string

FPVDVALE 4 None The string. The first halfword is the string's
actual length in characters. If the string is
ASCII MIXED data, it is padded out to the
maximum length by undefined bytes.

The row from SYSSTRINGS: The row copied from the catalog table
SYSIBM.SYSSTRINGS is in the standard DB2 row format described in “Row
formats for edit and validation routines” on page 952. The fields ERRORBYTE and
SUBBYTE each include a null indicator. The field TRANSTAB is of varying length
and begins with a 2-byte length field.

Expected output
Except in the case of certain errors, described below, your conversion procedure
should replace the string in FPVDVALE with the converted string. When converting
MIXED data, your procedure must ensure that the result is well-formed. In any
conversion, if you change the length of the string, you must set the length control
field in FPVDVALE to the proper value. Over-writing storage beyond the maximum
length of the FPVDVALE causes an abend.

932 Administration Guide

Your procedure must also set a return code in field EXPLRC1 of the exit parameter
list, as shown below.

With these two codes, provide the converted string in FPVDVALE:

Code Meaning
0 Successful conversion
4 Conversion with substitution

For the remaining codes, DB2 does not use the converted string:

Code Meaning
8 Length exception
12 Invalid code point
16 Form exception
20 Any other error
24 Invalid CCSID

Exception conditions: Return a length exception (code 8) when the converted
string is longer than the maximum length allowed.

For an invalid code point (code 12), place the 1- or 2-byte code point in field
EXPLRC2 of the exit parameter list.

Return a form exception (code 16) for EBCDIC MIXED data when the source string
does not conform to the rules for MIXED data.

Any other uses of codes 8 and 16, or of EXPLRC2, are optional.

Error conditions: On return, DB2 considers any of the following conditions as a
“conversion error”:

v EXPLRC1 is greater than 16.

v EXPLRC1 is 8, 12, or 16 and the operation that required the conversion is not an
assignment of a value to a host variable with an indicator variable.

v FPVDTYPE or FPVDVLEN has been changed.

v The length control field of FPVDVALE is greater than the original value of
FPVDVLEN or is negative.

In the case of a conversion error, DB2 sets the SQLERRMC field of the SQLCA to
HEX(EXPLRC1) CONCAT X'FF' CONCAT HEX(EXPLRC2).

Figure 135 shows how the parameter list points to other information.

Appendix B. Writing exit routines 933

Field procedures
Field procedures are assigned to a table by the FIELDPROC clause of CREATE
TABLE and ALTER TABLE. A field procedure is a user-written exit routine to
transform values in a single short-string column. When values in the column are
changed, or new values inserted, the field procedure is invoked for each value, and
can transform that value (encode it) in any way. The encoded value is then stored.
When values are retrieved from the column, the field procedure is invoked for each
value, which is encoded, and must decode it back to the original string value.

Any indexes, including partitioned indexes, defined on a column that uses a field
procedure are built with encoded values. For a partitioned index, the encoded value
of the limit key is put into the LIMITKEY column of the SYSINDEXPART table.
Hence, a field procedure might be used to alter the sorting sequence of values
entered in a column. For example, telephone directories sometimes require that
names like “McCabe” and “MacCabe” appear next to each other, an effect that the
standard EBCDIC sorting sequence does not provide. And languages that do not
use the Roman alphabet have similar requirements. However, if a column is
provided with a suitable field procedure, it can be correctly ordered by ORDER BY.

The transformation your field procedure performs on a value is called
field-encoding. The same routine is used to undo the transformation when values
are retrieved; that operation is called field-decoding. Values in columns with a field
procedure are described to DB2 in two ways:

1. The description of the column as defined in CREATE TABLE or ALTER TABLE
appears in the catalog table SYSIBM.SYSCOLUMNS. That is the description of
the field-decoded value, and is called the column description.

2. The description of the encoded value, as it is stored in the data base, appears
in the catalog table SYSIBM.SYSFIELDS. That is the description of the
field-encoded value, and is called the field description.

Attention: The field-decoding function must be the exact inverse of the
field-encoding function. For example, if a routine encodes 'ALABAMA' to '01', it

Register 1
Address of
EXPL

Address of
string value
list

Address of
SYSSTRINGS
row copy

EXPL

Address of
work area

Length of
work area

Reserved

Return code

Invalid code

Work area

Copy of row from
SYSIBM.SYSSTRINGS

String value descriptor

Data type of string

Maximum string length

String length

String value

Figure 135. Pointers at entry to a conversion procedure

934 Administration Guide

must decode '01' to 'ALABAMA'. A violation of this rule can lead to an abend of the
DB2 connecting thread, or other undesirable effects.

Field definition
The field procedure is also invoked when the table is created or altered, to define
the data type and attributes of an encoded value to DB2; that operation is called
field-definition. The data type of the encoded value can be any valid SQL data type
except DATE, TIME, TIMESTAMP, LONG VARCHAR, or LONG VARGRAPHIC; the
allowable types are listed in the description of field FPVDTYPE in Table 157 on
page 939. The length, precision, or scale of the encoded value must be compatible
with its data type.

A user-defined data type can be a valid field if the source type of the data type is a
short string column that has a null default value. DB2 casts the value of the column
to the source type before it passes it to the field procedure.

General considerations
“General considerations for writing exit routines” on page 950 applies to field
procedures.

Specifying the procedure
To name a field procedure for a column, use the FIELDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the
procedure and, optionally, a list of parameters. You can use a field procedure only
with a short string column. You cannot use a field procedure on a column defined
using NOT NULL WITH DEFAULT.

If you plan to use a field procedure, specify it when you create the table. In
operation, the procedure is loaded on demand. You cannot add a field procedure to
an existing column of a table; you can, however, use ALTER TABLE to add to an
existing table a new column that uses a field procedure.

You cannot use a field procedure on a LOB or a ROWID column. Field procedures
can be specified for other columns of a table that contains a LOB or ROWID
column.

The optional parameter list that follows the procedure name is a list of constants,
enclosed in parentheses, called the literal list. The literal list is converted by DB2
into a data structure called the field procedure parameter value list (FPPVL). That
structure is passed to the field procedure during the field-definition operation. At that
time, the procedure can modify it or return it unchanged. The output form of the
FPPVL we call the modified FPPVL; it is stored in the DB2 catalog as part of the
field description. The modified FPPVL is passed again to the field procedure
whenever that procedure is invoked for field-encoding or field-decoding.

When exits are taken
A field procedure specified for a column is invoked in three general situations:

1. For field-definition, when the CREATE TABLE or ALTER TABLE statement that
names the procedure is executed. During this invocation, the procedure is
expected to:

v Determine whether the data type and attributes of the column are valid.

v Verify the literal list, and change it if wanted.

v Provide the field description of the column.

Appendix B. Writing exit routines 935

v Define the amount of working storage needed by the field-encoding and
field-decoding processes.

2. For field-encoding, when a column value is to be field-encoded. That occurs
for any value that:

v Is inserted in the column by an SQL INSERT statement, or loaded by the
DB2 LOAD utility.

v Is changed by an SQL UPDATE statement.

v Is compared to a column with a field procedure, unless the comparison
operator is LIKE. The value being encoded is a host variable or constant.
(When the comparison operator is LIKE, the column value is decoded.)

v Defines the limit of a partition of an index. The value being encoded follows
VALUES in the PART clause of CREATE INDEX.

If there are any other exit routines, the field procedure is invoked before any of
them.

3. For field-decoding, when a stored value is to be field-decoded back into its
original string value. This occurs for any value that is:

v Retrieved by an SQL SELECT or FETCH statement, or by the unload phase
of the REORG utility.

v Compared to another value with the LIKE comparison operator. The value
being decoded is from the column that uses the field procedure.

In this case, the field procedure is invoked after any edit routine or DB2 sort.

A field procedure is never invoked to process a null value, nor for a DELETE
operation without a WHERE clause on a table in a segmented table space.

A warning about blanks: When DB2 compares the values of two strings with
different lengths, it temporarily pads the shorter string with blanks (in EBCDIC or
double-byte characters, as needed) up to the length of the longer string. If the
shorter string is the value of a column with a field procedure, the padding is done to
the encoded value, but the pad character is not encoded. Therefore, if the
procedure changes blanks to some other character, encoded blanks at the end of
the longer string are not equal to padded blanks at the end of the shorter string.
That situation can lead to errors; for example, some strings that ought to be equal
might not be recognized as such. Therefore, we recommend not encoding blanks
by a field procedure.

Control blocks for execution
This section describes certain control blocks that are used to communicate to a field
procedure, under the following headings:

“The field procedure parameter list (FPPL)” on page 937
“The work area” on page 937
“The field procedure information block (FPIB)” on page 937
“The field procedure parameter value list (FPPVL)” on page 938
“Value descriptors” on page 938.

Following that are the specific requirements for the three operations of
field-definition:

“Field-definition (function code 8)” on page 939
“Field-encoding (function code 0)” on page 941
“Field-decoding (function code 4)” on page 943.

936 Administration Guide

The contents of registers at invocation and at exit are different for each of those
operations, and are described with the requirements for the operations.

The field procedure parameter list (FPPL)
The field procedure parameter list is pointed to by register 1 on entry to a field
procedure. It, in turn, contains the addresses of five other areas, as shown in
Figure 136. Those areas are described in the following pages. The FPPL and the
areas it points to are all described by the mapping macro DSNDFPPB.

The work area
The work area is a contiguous, uninitialized area of locally-addressable, pageable,
swappable, fetch-protected storage, obtained in storage key 7 and subpool 229.
The area can be used by a field procedure as working storage. A new area is
provided each time the procedure is invoked.

The size of the area you need depends on the way you have programmed your
field-encoding and field-decoding operations. Suppose, for example, that the longest
work area you need for either of those operations is 1024 bytes. DB2 passes to
your routine, for the field-definition operation, a value of 512 bytes for the length of
the work area; your field-definition operation must change that to 1024. Thereafter,
whenever your field procedure is invoked for encoding or decoding, DB2 makes
available to it an area of 1024 bytes.

If 512 bytes is sufficient for your operations, your field-definition operation need not
change the value supplied by DB2. If you need less than 512 bytes, your
field-definition can return a smaller value.

The field procedure information block (FPIB)
The field procedure information block communicates general information to a field
procedure. For example, it tells what operation is to be done, allows the field
procedure to signal errors, and gives the size of the work area.

Register 1 FPPL Work area

Field procedure
information
block (FPIB)

Column value
descriptor (CVD)

Field value
descriptor (FVD)

Field procedure
parameter value
list (FPPVL) or
literal list

Work address

FPIB address

CVD address

FVD address

FPPVL address

Figure 136. Field procedure parameter list

Appendix B. Writing exit routines 937

It has the format shown in Table 155.

Table 155. Format of FPIB, defined in copy macro DSNDFPPB

Name Hex offset Data type Description

FPBFCODE 0 Signed 2-byte
integer

Function code

Code Means
0 Field-encoding
4 Field-decoding
8 Field-definition

FPBWKLN 2 Signed 2-byte
integer

Length of work area; the maximum is 32767
bytes.

FPBSORC 4 Signed 2-byte
integer

Reserved

FPBRTNC 6 Character, 2
bytes

Return code set by field procedure

FPBRSNCD 8 Character, 4
bytes

Reason code set by field procedure

FPBTOKPT C Address Address of a 40-byte area, within the work
area or within the field procedure's static
area, containing an error message

The field procedure parameter value list (FPPVL)
The field procedure parameter value list communicates the literal list, supplied in
the CREATE TABLE or ALTER TABLE statement, to the field procedure during
field-definition. At that time the field procedure can reformat the FPPVL; it is the
reformatted FPPVL that is stored in SYSIBM.SYSFIELDS and communicated to the
field procedure during field-encoding and field-decoding as the modified FPPVL.

The FPPVL has the format shown in Table 156.

Table 156. Format of FPPVL, defined in copy macro DSNDFPPB

Name Hex offset Data type Description

FPPVLEN 0 Signed 2-byte
integer

Length in bytes of the area containing
FPPVCNT and FPPVVDS. At least 254 for
field-definition.

FPPVCNT 2 Signed 2-byte
integer

Number of value descriptors that follow,
equal to the number of parameters in the
FIELDPROC clause. Zero if no parameters
were listed.

FPPVVDS 4 Structure For each parameter in the FIELDPROC
clause, there is:
1. A signed 4-byte integer giving the length

of the following value descriptor, which
includes the lengths of FPVDTYPE,
FPVDLEN, and FPVDVALE.

2. A value descriptor

Value descriptors
A value descriptor describes the data type and other attributes of a value. Value
descriptors are used with field procedures in these ways:

v During field-definition, they describe each constant in the field procedure
parameter value list (FPPVL). The set of these value descriptors is part of the
FPPVL control block.

938 Administration Guide

v During field-encoding and field-decoding, the decoded (column) value and the
encoded (field) value are described by the column value descriptor (CVD) and
the field value descriptor (FVD).

The column value descriptor (CVD) contains a description of a column value and, if
appropriate, the value itself. During field-encoding, the CVD describes the value to
be encoded. During field-decoding, it describes the decoded value to be supplied by
the field procedure. During field-definition, it describes the column as defined in the
CREATE TABLE or ALTER TABLE statement.

The field value descriptor (FVD) contains a description of a field value and, if
appropriate, the value itself. During field-encoding, the FVD describes the encoded
value to be supplied by the field procedure. During field-decoding, it describes the
value to be decoded. Field-definition must put into the FVD a description of the
encoded value.

Value descriptors have the format shown in Table 157.

Table 157. Format of value descriptors

Name Hex offset Data type Description

FPVDTYPE 0 Signed 2-byte
integer

Data type of the value:

Code Means
0 INTEGER
4 SMALLINT
8 FLOAT
12 DECIMAL
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN 2 Signed 2-byte
integer

v For a varying-length string value, its
maximum length

v For a decimal number value, its precision
(byte 1) and scale (byte 2)

v For any other value, its length

FPVDVALE 4 None The value. The value is in external format,
not DB2 internal format. If the value is a
varying-length string, the first halfword is the
value's actual length in bytes. This field is
not present in a CVD, or in an FVD used as
input to the field-definition operation. An
empty varying-length string has a length of
zero with no data following.

Field-definition (function code 8)
The input provided to the field-definition operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see Figure 136

on page 937 for a schematic diagram.

Appendix B. Writing exit routines 939

2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area consists of 512 contiguous uninitialized bytes.

The FPIB has the following information:

Field Contains
FPBFCODE 8, the function code
FPBWKLN 512, the length of the work area

The CVD has the following information:

Field Contains
FPVDTYPE One of these codes for the data type of the column value:

Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN The length attribute of the column

The FPVDVALE field is omitted.

The FVD provided is 4 bytes long.

The FPPVL has the following information:

Field Contains
FPPVLEN The length, in bytes, of the area containing the parameter value list. The

minimum value is 254, even if there are no parameters.
FPPVCNT The number of value descriptors that follow; zero if there are no

parameters.
FPPVVDS A contiguous set of value descriptors, one for each parameter in the

parameter value list, each preceded by a 4-byte length field.

On EXIT
The registers must have the following information:

Register Contains
2 through 12 The values that they contained on entry.
15 The integer zero if the column described in the CVD is valid for the field

procedure; otherwise the value must not be zero.

Fields listed below must be set as shown; all other fields must remain as on entry.

The FPIB must have the following information:

Field Contains

940 Administration Guide

FPBWKLN The length, in bytes, of the work area to be provided to the field-encoding
and field-decoding operations; 0 if no work area is required.

FPBRTNC An optional 2-byte character return code, defined by the field procedure;
blanks if no return code is given.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure;
blanks if no reason code is given.

FPBTOKP Optionally, the address of a 40-byte error message residing in the work
area or in the field procedure's static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed
into the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message
is determined by the field procedure.

The FVD must have the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the field value. Any of the data

types listed in Table 157 on page 939 is valid.
FPVDVLEN The length of the field value.

Field FPVDVALE must not be set; the length of the FVD is 4 bytes only.

The FPPVL can be redefined to suit the field procedure, and returned as the
modified FPPVL, subject to the following restrictions:

v The field procedure must not increase the length of the FPPVL.

v FPPVLEN must contain the actual length of the modified FPPVL, or 0 if no
parameter list is returned.

The modified FPPVL is recorded in the catalog table SYSIBM.SYSFIELDS, and is
passed again to the field procedure during field-encoding and field-decoding. The
modified FPPVL need not have the format of a field procedure parameter list, and it
need not describe constants by value descriptors.

Field-encoding (function code 0)
The input provided to the field-encoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see Figure 136 on

page 937 for a schematic diagram.
2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

Appendix B. Writing exit routines 941

The FPIB has the following information:

Field Contains
FPBFCODE 0, the function code
FPBWKLN The length of the work area

The CVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the column value, as shown in

Table 157 on page 939.
FPVDVLEN The length of the column value.
FPVDVALE The column value; if the value is a varying-length string, the first

halfword contains its length.

The FVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the field value.
FPVDVLEN The length of the field value.
FPVDVALE An area of unpredictable content that is as long as the field value.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

On EXIT
The registers have the following information:

Register Contains
2 through 12 The values that they contained on entry.
15 The integer zero if the column described in the CVD is valid for the

field procedure; otherwise the value must not be zero.

The FVD must contain the encoded (field) value in field FPVDVALE. If the value is
a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Field Contains
FPBRTNC An optional 2-byte character return code, defined by the field procedure;

blanks if no return code is given.
FPBRSNC An optional 4-byte character reason code, defined by the field procedure;

blanks if no reason code is given.
FPBTOKP Optionally, the address of a 40-byte error message residing in the work

area or in the field procedure's static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed
into the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message
is determined by the field procedure.

All other fields must remain as on entry.

942 Administration Guide

Field-decoding (function code 4)
The input provided to the field-decoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains
1 Address of the field procedure parameter list (FPPL); see Figure 136 on

page 937 for a schematic diagram.
2 through 12 Unknown values that must be restored on exit.
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains
FPBFCODE 4, the function code
FPBWKLN The length of the work area

The CVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the column value, as shown in

Table 157 on page 939.
FPVDVLEN The length of the column value.
FPVDVALE The column value. If the value is a varying-length string, the first halfword

contains its length.

The FVD has the following information:

Field Contains
FPVDTYPE The numeric code for the data type of the field value.
FPVDVLEN The length of the field value.
FPVDVALE The field value. If the value is a varying-length string, the first halfword

contains its length.

The modified FPPVL, produced by the field procedure during field-definition, is
provided.

On EXIT
The registers have the following information:

Register Contains
2 through 12 The values they contained on entry.
15 The integer zero if the column described in the FVD is valid for the field

procedure; otherwise the value must not be zero.

Appendix B. Writing exit routines 943

The CVD must contain the decoded (column) value in field FPVDVALE. If the value
is a varying-length string, the first halfword must contain its length.

The FPIB can have the following information:

Field Contains
FPBRTNC An optional 2-byte character return code, defined by the field procedure;

blanks if no return code is given.
FPBRSNC An optional 4-byte character reason code, defined by the field procedure;

blanks if no reason code is given.
FPBTOKP Optionally, the address of a 40-byte error message residing in the work

area or in the field procedure's static area; zeros if no message is given.

Errors signalled by a field procedure result in SQLCODE -681 (SQLSTATE ’23507’),
which is set in the SQL communication area (SQLCA). The contents of FPBRTNC
and FPBRSNC, and the error message pointed to by FPBTOKP, are also placed
into the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message
is determined by the field procedure.

All other fields must remain as on entry.

Log capture routines
A log capture exit routine makes DB2 log data available for recovery purposes in
real time. The routine receives data when DB2 writes data to the active log. Your
local specifications determine what the routine does with that data. The routine
does not enter or return data to DB2.

Performance warning: Your log capture routine receives control often. Design it
with care: a poorly designed routine can seriously degrade system performance.
Whenever possible, use the instrumentation facility interface (IFI), rather than a log
capture exit routine, to read data from the log. For instructions, see “Reading log
records with IFI” on page 968.

General considerations
“General considerations for writing exit routines” on page 950 applies, but with the
following exceptions to the description of execution environments:

A log capture routine can execute in either TCB mode or SRB mode, depending
on the function it is performing. When in SRB mode, it must not perform any I/O
operations nor invoke any SVC services or ESTAE routines.

Specifying the routine
The module name for the routine is DSNJL004. Its entry point is DSNJW117.

The module is loaded during DB2 initialization and deleted during DB2 termination.
You must link the module into either the prefix.SDSNEXIT or the DB2
prefix.SDSNLOAD library. Specify the REPLACE parameter of the link-edit job to
replace a module that is part of the standard DB2 library for this release. The
module should have attributes AMODE(31) and RMODE(ANY).

When exits are taken
The log capture exit is taken in three possible situations, identified by a character in
the exit parameter list. In two of those situations, processing operates in TCB mode;

944 Administration Guide

in one situation, processing operates in SRB mode. The two modes have different
processing capabilities, which your routine must be aware of. The character
identifications, situations, and modes are:

v I=Initialization, Mode=TCB

The TCB mode allows all MVS/DFP™ functions to be utilized, including ENQ,
ALLOCATION, and OPEN. No buffer addresses are passed in this situation. The
routine runs in supervisor state, key 7, and enabled.

This is the only situation in which DB2 checks a return code from the user's log
capture exit routine. The DB2 subsystem is sensitive to a return code of X'20'
here. Never return X'20' in register 15 in this situation.

v W=Write, Mode=SRB (service request block)

The SRB mode restricts the exit routine's processing capabilities. No supervisor
call (SVC) instructions can be used, including ALLOCATION, OPEN, WTO, any
I/O instruction, and so on. At the exit point, DB2 is running in supervisor state,
key 7, and is enabled.

Upon entry, the exit routine has access to buffers that have log control intervals
with “blocked log records”. The first and last buffer address and control interval
size fields can be used to determine how many buffers are being passed.

See OS/390 MVS Programming: Authorized Assembler Services Guide for
additional material on SRB-mode processing.

Performance warning: All processing time required by the exit routine lengthens
the time required to write the DB2 log. The DB2 address space usually has a
high priority, and all work done in it in SRB mode precedes all TCB access, so
any errors or long processing times can impact all DB2 processing and cause
system-wide performance problems. The performance of your routine is
extremely critical in this phase.

v T=Termination, Mode=TCB

Processing capabilities are the same as for initialization.

A log control interval can be passed more than once. Use the time stamp to
determine the last occurrence of the control interval. This last occurrence should
replace all others. The time stamp is found in the control interval.

Parameter lists on entry
At invocation, registers are set as described in “Registers at invocation” on
page 951, and the log capture routine uses the standard exit parameter list (EXPL)
described there. (The reason and return codes in that list can be ignored.)
Table 158 shows the exit-specific parameter list; it is mapped by macro
DSNDLOGX.

Table 158. Log capture routine specific parameter list

Name Hex offset Data type Description

LOGXEYE 00 Character, 4
bytes

Eye catcher: LOGX

LOGXLNG 04 Signed 2-byte
integer

Length of parameter list

06 Reserved

08 Reserved

Appendix B. Writing exit routines 945

Table 158. Log capture routine specific parameter list (continued)

Name Hex offset Data type Description

LOGXTYPE 10 Character, 1 byte Situation identifier:
I Initialization
W Write
T Termination
P Partial control interval (CI) call

LOGXFLAG 11 Hex Mode identifier.
X’00’ SRB mode
X’01’ TCB mode

LOGXSRBA 12 Character, 6
bytes

First log RBA, set when DB2 is started. The
value remains constant while DB2 is active.

LOGXARBA 18 Character, 6
bytes

Highest log archive RBA used. The value is
updated after completion of each log archive
operation.

1E Reserved

LOGXRBUF 20 Character, 8
bytes

Range of consecutive log buffers:
Address of first log buffer
Address of last log buffer

LOGXBUFL 28 Signed 4-byte
integer

Length of single log buffer (constant 4096)

LOGXSSID 2C Character, 4
bytes

DB2 subsystem id, 4 characters left justified

LOGXSTIM 30 Character, 8
bytes

DB2 subsystem startup time (TIME format
with DEC option: 0CYYDDDFHHMMSSTH)

LOGXREL 38 Character, 3
bytes

DB2 subsystem release level

LOGXMAXB 3B Character, 1 byte Maximum number of buffers that can be
passed on one call. The value remains
constant while DB2 is active.

3C 8 bytes Reserved

LOGXUSR1 44 Character, 4
bytes

First word of a doubleword work area for the
user routine. (The content is not changed by
DB2.)

LOGXUSR2 48 Character, 4
bytes

Second word of user work area.

Routines for dynamic plan selection in CICS
CICS transactions can select plans dynamically by an exit routine.

First, reconsider: The function was originally intended to ease two problems that
can occur, for a program running under a CICS transaction, when all SQL calls are
bound into a single large plan. First, changing one DBRM requires all of them to be
bound again. Second, binding a large plan can be very slow, and the entire
transaction is unavailable for processing during the operation. An application that is
designed around small packages avoids both those problems. For guidance on
using packages, see Part 5 of DB2 Application Programming and SQL Guide.

946 Administration Guide

What the exit routine does
Normally, the parameter PLAN=planname in the RCT names the plan associated
with the thread for a transaction. However, if the RCT has PLNEXIT=YES, the
specified exit routine names the plan dynamically.

The exit routine can name the plan during execution of the transaction at one of two
times:

v When the first SQL statement in the transaction is about to be executed. That
action is called dynamic plan selection.

v When the first SQL statement following a sync point is about to be executed, if
the sync point releases a thread for reuse and if several other conditions are
satisfied. That action is called dynamic plan switching. If you think you need that
function, see particularly “Dynamic plan switching” on page 948 and then
consider packages again.

General considerations
You can specify the same exit routine for all entries in the resource control table
(RCT), or different routines for different entries. You can select plans dynamically for
RCT entries of both TYPE=ENTRY and TYPE=POOL.

Execution environment
The execution environment is:

v Problem program state

v Enabled for interrupts

v PSW Key: the CICS main key for CICS 3.2 and earlier releases, or the key as
specified in the CICS RDO definition ″DEFINE PROGRAM
EXECKEY(USER|CICS)″.

v Non-cross-memory mode

v No MVS locks held

v Under the main TCB in the CICS address space

v 24-bit addressing mode, for any release of CICS earlier than CICS Version 4

Specifying the routine
To specify an exit routine for dynamic plan selection, take these steps:

1. Code the routine (or use the IBM-provided sample exit routine).

2. Link-edit the routine into a load library. Concatenate that library in the DD
statement DFHRPL of the JCL that initializes CICS.

3. Define the routine to CICS with resource definition on line (RDO) or by updating
and re-assembling the processing program table (PPT).

4. Update the RCT with these parameters for DSNCRCT TYPE=ENTRY or
TYPE=POOL:
PLNEXIT=

YES
PLNPGME=

Name of the exit routine

Consider these parameters also for DSNCRCT TYPE=INIT:
PLNPGMI=

Name of the default exit routine for dynamic plan selection
PLNXTR1=

Integer ID for the CICS trace of entry points for plan selection

Appendix B. Writing exit routines 947

PLNXTR2=
Integer ID for the CICS trace of exit points for plans

For detailed information on coding those parameters, see Part 2 of DB2
Installation Guide.

5. Reassemble the RCT.

The exit routine can change the plan that is allocated by changing the contents of
field CPRMPLAN in its parameter list. If the routine does not change the value of
CPRMPLAN, the plan that is allocated has the DBRM name of the first SQL
statement executed.

Sample exit routine
A sample exit routine is available in two versions:

Version
Member and library

Source code
DSNC@EXT in the CICS SDFHSAMP library

Executable
DSNCUEXT in the CICS SDFHLOAD library

The sample routine does not change the parameter list. As a result, the name of the
plan selected is, by default, the DBRM of the first SQL statement. The sample
establishes addressability to the parameter list and then issues EXEC CICS
RETURN.

When exits are taken
The first SQL statement executed in a CICS transaction creates (or reuses) a
thread to DB2. The dynamic plan exit is always taken at the first SQL statement in
a transaction, for dynamic plan selection.

The exit can also be taken at the first SQL statement following a sync point, for
dynamic plan switching. Whether the exit is taken at that time is determined by the
rules described below.

Dynamic plan switching
For you to use dynamic plan switching:

v The sync point must release the thread for reuse.

v The pool thread definition must specify PLNEXIT=YES.

v The transaction must be terminal driven.

v The transaction must use a pool thread or an unprotected entry thread that has
been diverted to the pool. To use a pool thread, do not use an RCT entry, thus
using TYPE=POOL as the default, or code the RCT entry in either of these ways:
– TYPE=POOL
– TYPE=ENTRY, THRDM=0, TWAIT=POOL

v You must not code either of these combinations in your RCT:

– THRDS>0, TWAIT=POOL, and PLNEXIT=YES

– THRDA>THRDS and PLNEXIT=YES (where THRDA and THRDS are both
greater than 0)

948 Administration Guide

|
|
|

Coding the exit routine
An exit routine for dynamic plan selection is a user-written CICS command-level
program. To use different exit routines for different RCT entries, define each routine
in the RCT.

You can use the sample program, DSNC@EXT, as an example for coding your own
exit routine. Your routine:

v Must adhere to normal CICS conventions for command-level programs

v Can be written in any language supported by CICS, such as assembler, COBOL,
or PL/I

v Must establish addressability to the parameter list DFHCOMMAREA, using
standard CICS command-level conventions

v Can update the parameter list if necessary

v Can change the plan that is allocated by changing the contents of field
CPRMPLAN in the parameter list

v Must not contain SQL statements

v Must not issue the command EXEC CICS SYNCPOINT

v Must terminate by using the command EXEC CICS RETURN

Parameter list on entry
When linking, CICS passes a parameter list to the exit routine in the CICS control
block DFHCOMMAREA. Table 159 shows the contents of the list.

Table 159. Parameter list for an exit routine for dynamic plan selection

Name Hex offset Data type Description

CRPMPLAN 0 Character, 8
bytes

The DBRM or plan name for the first SQL
statement to be executed after the exit
routine. The routine can change this field to
establish a new plan.

CPRMAUTH 8 Character, 8
bytes

The primary authorization ID that is passed
to DB2 during sign-on. CICS ignores any
changes made to this field by the exit
routine.

CPRMUSER 10 Character, 4
bytes

Reserved for use by the exit routine. CICS
preserves this field from one exit to the
next.

The field CPRMUSER can be used for such purposes as addressing a user table or
even a CICS GETMAIN area. There is a unique field called CPRMUSER for each
RCT entry with PLNEXIT=YES.

The following sample macros in prefix.SDSNMACS map the parameter list in the
languages shown:

DSNCPRMA Assembler

DSNCPRMC COBOL

DSNCPRMP PL/I

Appendix B. Writing exit routines 949

General considerations for writing exit routines
The rules, requirements, and suggestions below apply to most of the foregoing exit
routines.

Attention: Using an exit routine requires coordination with your system
programmers. An exit routine runs as an extension of DB2 and has all the privileges
of DB2. It can impact the security and integrity of the database. Conceivably, an exit
routine could also expose the integrity of the operating system. Instructions for
avoiding that exposure can be found in the appropriate MVS/ESA or OS/390
publication.

Coding rules
An exit routine must conform to these rules:

v It must be written in assembler.

v It must reside in an authorized program library, either the library containing DB2
modules (prefix.SDSNLOAD) or in a library concatenated ahead of
prefix.SDSNLOAD in the procedure for the database services started task (the
procedure named ssnmDBM1, where ssnm is the DB2 subsystem name).
Authorization routines must be accessible to the ssnmMSTR procedure. For all
routines, we recommend using the library prefix.SDSNEXIT, which is
concatenated ahead of prefix.SDSNLOAD in both started-task procedures.

v Routines listed below must have the names shown. The name of other routines
should not start with “DSN”, to avoid conflict with the DB2 modules.

Type of routine Required load module name
Date DSNXVDTX
Time DSNXVTMX
Connection DSN3@ATH
Sign-on DSN3@SGN

v It must be written to be reentrant and must restore registers before return.

v It must be link-edited with the REENTRANT parameter.

v In the MVS/ESA environment, it must be written and link-edited to execute
AMODE(31),RMODE(ANY).

v It must not invoke any DB2 services—for example, through SQL statements.

v It must not invoke any SVC services or ESTAE routines.

Even though DB2 has functional recovery routines of its own, you can establish
your own functional recovery routine (FRR), specifying MODE=FULLXM and
EUT=YES.

Modifying exit routines
Since exit routines operate as extensions of DB2, they should not be changed or
modified while DB2 is running.

Execution environment
Exit routines are invoked by standard CALL statements. With some exceptions,
which are noted under “General Considerations” in the description of particular
types of routine, the execution environment is:

v Supervisor state

v Enabled for interrupts

950 Administration Guide

v PSW key 7

v No MVS locks held

v For local requests, under the TCB of the application program that requested the
DB2 connection

v For remote requests, under a TCB within the DB2 distributed data facility address
space

v 31-bit addressing mode

v Cross-memory mode

In cross-memory mode, the current primary address space is not equal to the
home address space. Hence, some MVS macro services you cannot use at all,
and some you can use only with restrictions. For more information about
cross-memory restrictions for macro instructions, which macros can be used fully,
and the complete description of each macro, refer to the appropriate MVS/ESA or
OS/390 publication.

Registers at invocation
When DB2 passes control to an exit routine, the registers are set as follows:

Register Contains
1 Address of pointer to the exit parameter list (shown in Table 160). For a

field procedure, the address is that of the field procedure parameter list
(see Figure 136 on page 937).

13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

Parameter lists
Register 1 points to the address of parameter list EXPL, described by macro
DSNDEXPL and shown in Figure 137. The word following points to a second
parameter list, which differs for each type of exit routine.

The EXPL parameter list is shown below; its description is given by macro
DSNDEXPL.

Table 160. Contents of EXPL parameter list

Name Hex offset Data type Description

EXPLWA 0 Address Address of a work area to be used by the
routine

EXPLWL 4 Signed 4-byte
integer

Length of the work area. The value is:
2048 for connection and sign-on routines
512 for date and time routines and
translate procedures (see Note 1).
256 for edit, validation, and log capture
routines

Register 1
Address of EXPL parameter list

Address of exit-specific parameter list

Figure 137. Use of register 1 on invoking an exit routine. (Field procedures and translate
procedures do not use the standard exit-specific parameter list.)

Appendix B. Writing exit routines 951

Table 160. Contents of EXPL parameter list (continued)

Name Hex offset Data type Description

EXPLRSV1 8 Signed 2-byte
integer

Reserved

EXPLRC1 A Signed 2-byte
integer

Return code

EXPLRC2 C Signed 4-byte
integer

Reason code

EXPLARC 10 Signed 4-byte
integer

Used only by connection and sign-on
routines

EXPLSSNM 14 Character, 8
bytes

Used only by connection and sign-on
routines

EXPLCONN 1C Character, 8
bytes

Used only by connection and sign-on
routines

EXPLTYPE 24 Character, 8
bytes

Used only by connection and sign-on
routines

Notes:
1. When translating a string of type PC MIXED, a translation procedure has a work area of

256 bytes plus the length attribute of the string.

Row formats for edit and validation routines
In writing an edit or validation routine, you must be aware of the format in which
DB2 stores the rows of tables. This section describes the special features of that
format.

Column boundaries
DB2 stores columns contiguously, regardless of word boundaries in physical
storage.

LOB columns are an exception. LOB values are not stored contiguously. An
indicator column is stored in a base table in place of the LOB value.

Edit procedures cannot be specified for any table that contains a LOB column or a
ROWID column. In addition, LOB values are not available to validation routines;
indicator columns and ROWID columns represent LOB columns as input to a
validation procedure.

Null values
If null values are allowed for a column, an extra byte is stored before the actual
column value. This byte is X'00' if the column value is not null; it is X'FF' if the
value is null.

The extra byte is included in the column length attribute (parameter FFMTFLEN in
Table 162 on page 954).

Fixed-length rows
If all columns in a table are fixed-length, its rows are stored in fixed-length format.
The rows are merely byte strings.

952 Administration Guide

For example, the sample project activity table has five fixed-length columns. The
first two columns do not allow nulls; the last three do. Here is how a row in the
table looks:

Varying-length rows
If a table has any varying-length columns, its rows contain varying-length values,
and are varying-length rows. Each varying-length value has a 2-byte length field in
front of it. Those 2 bytes are not included in the column length attribute
(FFMTFLEN).

Here is how a row of the sample department table looks:

There are no gaps after varying-length columns. Hence, columns that appear after
varying-length columns are at variable offsets in the row. To get to such a column,
you must scan the columns sequentially after the first varying-length column. An
empty string has a length of zero with no data following.

ROWID and indicator columns are treated like varying length columns. Row IDs are
VARCHAR(17). An indicator columns is VARCHAR(4); it is stored in a base table in
place of a LOB column, and indicates whether the LOB value for the column is null
or zero length.

Varying-length rows with nulls
A varying-length column can also allow null values. The value in the length field
includes the null indicator byte but does not include the length field itself.

Here is how the same row would look in storage if nulls were allowed in the
DEPTNAME column:

An empty string has a length of one, a X'00' null indicator, and no data following.

Column 1 Column 2 Column 3 Column 4 Column 5

MA2100 10 00 0.5 00 820101 00 821101

Column 1 Column 2 Column 3 Column 4

C01 0012 Information Center 000030 A00

Column length (hex)

Column 1 Column 2 Column 3 Column 4

C01 0013 Information Center 000030 A00

Column length (hex)

Appendix B. Writing exit routines 953

Internal formats for dates, times, and timestamps
The values in columns with data types of DATE, TIME, and TIMESTAMP are stored
in the formats shown in the following figure. In each format, each byte consists of
two packed decimal digits.

Parameter list for row format descriptions
DB2 passes a description of the row format to an edit or validation routine through
a parameter list, generated by macro DSNDROW. The description includes both the
general row characteristics and the characteristics of each column. Table 161 shows
the general row description, and Table 162 shows the description of each column.

Table 161. Description of a row format

Name Hex offset Data type Description

RFMTNFLD 0 Signed fullword
integer

Number of columns in a row

RFMTAFLD 4 Address Address of a list of column descriptions. The
format of each column is shown in
Table 162.

RFMTTYPE 8 Character, 1 byte Row type:
X'00' = row with fixed-length columns
X'04' = row with varying-length columns

9 Character, 3
bytes

Reserved

Table 162. Description of a column format

Name Hex offset Data type Description

FFMTFLEN 0 Signed fullword
integer

Column length attribute (see Table 163 on
page 955)

FFMTFTYP 4 Character, 1 byte Data type code (see Table 163 on page 955)

FFMTNULL 5 Character, 1 byte Data attribute:
X'00' = Null values are allowed.
X'04' = Null values are not allowed.

FFMTFNAM 6 Character, 18
bytes

Column name

DATE format: 4 bytes
Content

TIME format: 3 bytes
Content

Year Month Day Hours Minutes Seconds

2 1 1 1 1 1

Number of bytes

Number of bytes

Number of bytes

TIMESTAMP format: 10 bytes
Content

Year Month Day Hours Minutes Seconds Microseconds

2 1 1 1 1 1 3

954 Administration Guide

Table 163. Description of data type codes and length attributes

Data type
Code
(FFMTFTYP) Length attribute (FFMTFLEN)

INTEGER X'00' 4

SMALLINT X'04' 2

FLOAT (single precision) X'08' 4

FLOAT (double precision) X'08' 8

DECIMAL X'0C' INTEGER(p/2), where p is the
precision

CHAR X'10' The length of the string

VARCHAR X'14' The length of the string

DATE X'20' 4

TIME X'24' 3

TIMESTAMP X'28' 10

ROWID X'2C' 17

INDICATOR COLUMN X'30' 4

DB2 codes for numeric data
DB2 stores numeric data in a specially encoded format. That format is called
DB2-coded. To retrieve numeric data in its original form, you must DB2-decode it,
according to its data type, as follows:

Data type DB2 decoding procedure
SMALLINT Invert the sign bit (high order bit).

Value Means ...
8001 0001 (+1 decimal)
7FF3 FFF3 (-13 decimal)

INTEGER Invert the sign bit (high order bit).
Value Means ...
800001F2 000001F2 (+498 decimal)
7FFFFF85 FFFFFF85 (-123 decimal)

FLOAT If the sign bit (high order bit) is 1, invert only that bit. Otherwise, invert all
bits.
Value Means ...
C110000000000000 4110000000000000 (+1.0 decimal)
3EEFFFFFFFFFFFFF C110000000000000 (-1.0 decimal)

DECIMAL Save the high-order hexadecimal digit (sign digit). Shift the number to the
left one hexadecimal digit. If the sign digit is X'F', put X'C' in the low-order
position. Otherwise, invert all bits in the number and put X'D' in the
low-order position.
Value Means ...
F001 001C (+1)
0FFE 001D (-1)

Routine for CICS transaction invocation stored procedure
The DB2–supplied CICS transaction routine stored procedure invokes a user exit
that you use to change values that the stored procedure caller provides. For
information about this stored procedure, see “The CICS transaction invocation
stored procedure (DSNACICS)” on page 1087.

Appendix B. Writing exit routines 955

#

#
#
#
#

956 Administration Guide

Appendix C. Reading log records

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page 1095.

This appendix discusses the following information about the log:
“What the log contains”
“The physical structure of the log” on page 962

For diagnostic or recovery purposes, it can be useful to read DB2 log records. This
appendix also discusses three approaches to writing programs that read log
records:

v “Reading log records with IFI” on page 968

This is an online method using the instrumentation facility interface (IFI) when
DB2 is running. You use the READA (read asynchronously) command of IFI to
read log records into a buffer and the READS (read synchronously) command to
pick up specific log control intervals from a buffer.

v “Reading log records with OPEN, GET, and CLOSE” on page 971

This is a stand-alone method that can be used when DB2 is down. You use the
assembler language macro DSNJSLR to submit OPEN, GET, and CLOSE
functions. This method can be used to capture log records that you cannot pick
up with IFI after DB2 goes down.

v “Reading log records with the log capture exit” on page 980

This is an online method using the log capture exit when DB2 is running. You
write an exit routine to use this exit to capture and transfer log records in real
time.

What the log contains
The log contains the information needed to recover the results of program
execution, the contents of the database, and the DB2 subsystem. It does not
contain information for accounting, statistics, traces, or performance evaluation.

There are three main types of log records which are described under these
headings:

“Unit of recovery log records” on page 958
“Checkpoint log records” on page 961
“Database page set control records” on page 962

Exception information that is not included in any of these types is described under
“Other exception information” on page 962.

Each log record has a header that tells its type, the DB2 subcomponent that made
the record, and, for unit of recovery records, the unit of recovery identifier. The log
records can be extracted and printed by the DSN1LOGP program. For instructions,
refer to Part 3 of DB2 Utility Guide and Reference.

The log relative byte address and log record sequence number: The DB2 log
can contain up to 248 bytes, where 248 is 2 to the 48th power. Each byte is
addressable by its offset from the beginning of the log. That offset is known as its
relative byte address (RBA).

© Copyright IBM Corp. 1982, 2001 957

#

A log record is identifiable by the RBA of the first byte of its header; that RBA is
called the relative byte address of the record. The record RBA is like a timestamp
because it uniquely identifies a record that starts at a particular point in the
continuing log.

In the data sharing environment, each member has its own log. A means is
therefore needed to identify log records uniquely across the data sharing group.
The log record sequence number (LRSN) provides that means. The LRSN is a
6-byte hexadecimal value derived from a store clock timestamp. DB2 uses the
LRSN for recovery in the data sharing environment.

Effects of ESA data compression: Log records can contain compressed data if a
table contains compressed data. For example, if the data in a DB2 row are
compressed, all data logged because of changes to that row (resulting from inserts,
updates and deletes) are compressed. If logged, the record prefix is not
compressed, but all of the data in the record are in compressed format. Reading
compressed data requires access to the dictionary that was in use when the data
was compressed.

Unit of recovery log records
Most of the log records describe changes to the DB2 database. All such changes
are made within units of recovery. We first describe those, and their effects, and
then the corresponding log records.

Undo and redo records
When a change is made to the database, DB2 logs an undo/redo record that
describes the change. The redo information is required if the work is committed and
later must be recovered. The undo information is used to back out work that is not
committed.

If the work is rolled back, the undo/redo record is used to remove the change. At
the same time that the change is removed, a new redo/undo record is created that
contains information, called compensation information, that is used if necessary to
reverse the change. For example, if a value of 3 is changed to 5, redo
compensation information changes it back to 3.

If the work must be recovered, DB2 scans the log forward and applies the redo
portions of log records and the redo portions of compensation records, without
keeping track of whether the unit of recovery was committed or rolled back. If the
unit of recovery had been rolled back, DB2 would have written compensation redo
log records to record the original undo action as a redo action. Using this technique,
the data can be completely restored by applying only redo log records on a single
forward pass of the log.

DB2 also logs the creation and deletion of data sets. If the work is rolled back, the
operations are reversed. For example, if a table space is created using
DB2-managed data sets, DB2 creates a data set; if rollback is necessary, the data
set is deleted. If a table space using DB2-managed data sets is dropped, DB2
deletes the data set when the work is committed, not immediately. If the work is
rolled back, DB2 does nothing.

Database exception table records
Database exception table (DBET) log records register several types of information:
exception states and image copies of special table spaces. DBET log records also
register exception information that is not related to units of recovery (see “Other
exception information” on page 962 for more information.

958 Administration Guide

Exception states: DBET log records register whether any database, table space,
index space, or partition is in an exception state. To list all objects in a database
that are in an exception state, use the command DISPLAY DATABASE (database
name) RESTRICT. For a further explanation of the list produced and of the
exception states, see the description of message DSNT392I in Part 2 of DB2
Messages and Codes.

Image copies of special table spaces: Image copies of DSNDB01.SYSUTILX,
DSNDB01.DBD01, and DSNDB06.SYSCOPY are registered in the DBET log record
rather than in SYSCOPY. During recovery, they are recovered from the log, and
then image copies of other table spaces are located from the recovered SYSCOPY.

Typical unit of recovery log records
Table 164 shows a sequence of log records that might be written for an insert of
one row via TSO. The following record types are included:

Begin_UR
The first request to change a database begins a unit of recovery. The log
record of that event is identified by its log RBA. That same RBA serves as
an ID for the entire unit of recovery (the URID). All records related to that
unit have that RBA in their log record headers (LRH). For rapid backout, the
records are also linked by a backward chain in the LRH.

Undo/Redo
Log records are written for each insertion, deletion, or update of a row.
They register the changes to the stored data, but not the SQL statement
that caused the change. Each record identifies one data or index page and
its changes.

End Phase 2 records
The end of a UR is marked by log records that tell whether the UR was
committed or rolled back, and whether DB2 has completed the work
associated with it. If DB2 terminates before a UR has completed, it
completes the work at the next restart.

Table 164. Example of a log record sequence for an INSERT of one row using TSO

Type of record Information recorded

1. Begin_UR Beginning of the unit of recovery. Includes the connection
name, correlation name, authorization ID, plan name, and
LUWID.

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set
ID, page number, internal record identifier (RID), and the
data inserted.

3. Undo/Redo for Index Insertion of index entry. Includes the DBID, index space
object ID, page number, and index entry to be added.

4. Begin Commit 1 The beginning of the commit process. The application has
requested a commit either explicitly (EXEC SQL COMMIT) or
implicitly (for example, by ending the program).

5. Phase 1-2 Transition The agreement to commit in TSO. In CICS and IMS, an End
Phase 1 record notes that DB2 agrees to commit. If both
parties agree, a Begin Phase 2 record is written; otherwise, a
Begin Abort record is written, noting that the unit of recovery
is to be rolled back.

6. End Phase 2 Completion of all work required for commit.

Appendix C. Reading log records 959

Table 165 shows the log records for processing and rolling back an insertion.

Table 165. Log records written for rolling back an insertion

Type of record Information recorded

1. Begin_UR Beginning of the unit of recovery.

2. Undo/Redo for data Insertion of data. Includes the database ID (DBID), page set
ID, page number, internal record identifier, and the data
inserted.

3. Begin_Abort Beginning of the rollback process.

4. Compensation Redo/Undo Backing-out of data. Includes the database ID (DBID), page
set ID, page number, internal record ID (RID), and data to
undo the previous change.

5. End_Abort End of the unit of recovery, with rollback complete.

Classes of changes to data
Table 166 summarizes the information logged for data and index changes.

Table 166. Information logged for database changes

Operation Information logged

Insert data The new row
v On redo, the row is inserted with its original RID.
v On undo, the row is deleted and the RID is made available for another

row.

Delete data The deleted row

v On redo, the RID is made available for another row.

v On undo, the row is inserted again with its former RID.

Update data The old and new values of the changed data.
v On redo, the new data is replaced.
v On undo, the old data is replaced.

Note: If an update occurs to a table defined with DATA CAPTURE(CHANGES), the entire
before-image and after-image of the data row is logged.

Insert index entry The new key value and the data RID.

Delete index entry The deleted key value and the data RID.

There are three basic classes of changes to a data page:

v Changes to control information. Those changes include pages that map available
space and indicators that show that a page has been modified. The COPY utility
uses that information when making incremental image copies.

v Changes to database pointers. Pointers are used in two situations:

– The DB2 catalog and directory, but not user databases, contain pointers that
connect related rows. Insertion or deletion of a row changes pointers in
related data rows.

– When a row in a user database becomes too long to fit in the available space,
it is moved to a new page. An address, called an overflow pointer, that points
to the new location is left in the original page. With this technique, index
entries and other pointers do not have to be changed. Accessing the row in its
original position gives a pointer to the new location.

v Changes to data. In DB2, a row is confined to a single page. Each row is
uniquely identified by a RID containing:
– The number of the page

960 Administration Guide

– A 1-byte ID that identifies the row within the page. A single page can contain
up to 255 rows; 12 IDs are reused when rows are deleted.

The log record identifies the RID, the operation (insert, delete, or update), and the
data. Depending on the data size and other variables, DB2 can write a single log
record with both undo and redo information, or it can write separate log records for
undo and redo.

Checkpoint log records
To reduce restart time, DB2 takes periodic checkpoints during normal operation, in
the following circumstances:

v When a predefined number of log records have been written

This number is defined by field CHECKPOINT FREQ on installation panel
DSNTIPN described in Part 2 of DB2 Installation Guide.

v When switching from one active log data set to another

v At the end of a successful restart

v At normal termination

At a checkpoint, DB2 logs its current status and registers the log RBA of the
checkpoint in the bootstrap data set (BSDS). At restart, DB2 uses the information in
the checkpoint records to reconstruct its state when it terminated.

Many log records can be written for a single checkpoint. DB2 can write one to begin
the checkpoint; others can then be written, followed by a record to end the
checkpoint. Table 167 summarizes the information logged.

Table 167. Contents of checkpoint log records

Type of log record Information logged

Begin_Checkpoint Marks the start of the summary information. All later records in
the checkpoint have type X'0100' (in the LRH).

Unit of Recovery
Summary

Identifies an incomplete unit of recovery (by the log RBA of the
Begin_UR log record). Includes the date and time of its creation,
its connection ID, correlation ID, authorization ID, the plan name
it used, and its current state (inflight, indoubt, in-commit, or
in-abort).

Page Set Summary Contains information for allocating and opening objects at restart,
and identifies (by the log RBA) the earliest checkpoint interval
containing log records about data changes that have not been
applied to the DASD version of the data or index. There is one
record for each open page set (table space or index space).

Page Set Exception
Summary

Identifies the type of exception state. For descriptions of the
states, see “Database page set control records” on page 962
below. There is one record for each database and page set with
an exception state.

Page Set UR Summary
Record

Identifies page sets modified by any active UR (inflight, in-abort,
or in-commit) at the time of the checkpoint.

End_Checkpoint Marks the end of the summary information about a checkpoint.

12. A page in a catalog table space that has links can contain up to 127 rows.

Appendix C. Reading log records 961

Database page set control records
Page set control records primarily register the allocation, opening, and closing of
every page set (table space or index space). That same information is in the DB2
directory (SYSIBM.SYSLGRNX). It is also registered in the log so that it is available
at restart.

Other exception information
Entries for data pages that are logically in error (logical page list or LPL entries) or
physically in error (write error page range or WEPR entries) are registered in the
DBET log record.

The physical structure of the log
Each active log data set must be a VSAM linear data set (LDS). The physical
output unit written to the active log data set is a control interval (CI) of 4096 bytes
(4 KB). Each CI contains one VSAM record.

Physical and logical log records
The VSAM CI provides 4089 bytes to hold DB2 information. We refer to that space
as a physical record. The information to be logged at a particular time forms a
logical record, whose length varies independently of the space available in the CI.
Hence, one physical record can contain several logical records, one or more logical
records and part of another, or only part of one logical record. The physical record
must also contain 21 bytes of DB2 control information, called the log control interval
definition (LCID), which is further described in “The log control interval definition
(LCID)” on page 964.

Figure 138 on page 963 shows a VSAM CI containing four log records or segments,
namely:

v The last segment of a log record of 768 bytes (X'0300'). The length of the
segment is 100 bytes (X'0064').

v A complete log record of 40 bytes (X'0028').

v A complete log record of 1024 bytes (X'0400').

v The first segment of a log record of 4108 bytes (X'100C'). The length of the
segment is 2911 bytes (X'0B5F').

962 Administration Guide

We use the term log record to refer to a logical record, unless the term physical log
record is used. A part of a logical record that falls within one physical record is
called a segment.

The log record header
Each logical record includes a prefix, called a log record header (LRH), which
contains control information. For the contents of the log record header see
Table 168.

The first segment of a log record must contain the header and some bytes of data.
If the current physical record has too little room for the minimum segment of a new
record, the remainder of the physical record is unused, and a new log record is
written in a new physical record.

The log record can span many VSAM CIs. For example, a minimum of nine CIs are
required to hold the maximum size log record of 32815 bytes. Only the first
segment of the record contains the entire LRH; later segments include only the first
two fields. When a specific log record is needed for recovery, all segments are
retrieved and presented together as if the record were stored continuously.

Table 168. Contents of the log record header

Hex offset Length Information

00 2 Length of this record or segment

0064 8000 Data from last segment of log record 1

0028 0064 Data from log record 2

0400 0028 Data from log record 3

0B5F 4400 Data from first segment of log

Record 4

FF 100C 0300 048C Log RBA 00 Timestamp

Log control interval definition (LCID)

VSAM record
ends here

For data sharing, the LRSN of
the last log record in this CI

Offset of last segment in this CI
(beginning of log record 4)

Total length of spanned record that
ends in this CI (log record 1)

Total length of spanned record that
begins in this CI (log record 4)

Figure 138. A VSAM CI and its contents

Appendix C. Reading log records 963

Table 168. Contents of the log record header (continued)

Hex offset Length Information

02 2 Length of any previous record or segment in this CI; 0 if
this is the first entry in the CI. The two high-order bits tell
the segment type:
B'00' A complete log record
B'01' The first segment
B'11' A middle segment
B'10' The last segment

04 2 Type of log record 1

06 2 Subtype of the log record 1

08 1 Resource manager ID (RMID) of the DB2 component that
created the log record

09 1 Flags

0A 6 Unit of recovery ID, if this record relates to a unit of
recovery2; otherwise, 0

10 6 Log RBA of the previous log record, if this record relates to
a unit of recovery2; otherwise, 0

16 1 Release identifier

17 1 Length of header

18 6 Undo next LSN

1E 8 LRHTIME

Note:
1 For record types and subtypes, see “Log record type codes” on page 966 and “Log
record subtype codes” on page 966.
2 For a description of units of recovery, see “Unit of recovery log records” on page 958.

The log control interval definition (LCID)
Each physical log record includes a suffix called the log control interval definition
(LCID), which tells how record segments are placed in the physical control interval.
For the contents of the LCID, see Table 169.

Table 169. Contents of the log control interval definition

Hex offset Length Information

00 1 Whether the CI contains free space: X'00' = Yes, X'FF' =
No

01 2 Total length of a segmented record that begins in this CI; 0
if no segmented record begins in this CI

03 2 Total length of a segmented record that ends in this CI; 0 if
no segmented record ends in this CI

05 2 Offset of the last record or segment in the CI

07 6 Log RBA of the start of the CI

0D 6 Timestamp, reflecting the date and time the log buffer was
written to the active log data set. The timestamp is the high
order six bytes of the Store Clock value (STCK).

13 2 Reserved

964 Administration Guide

###
#
#

###

Each recovery log record consists of two parts: a header, which describes the
record, and data. Figure 139 shows the format schematically; the list below it
describes each field.

The fields are:

Field Description

Length of this record
The total length of the record in bytes.

Length of previous record
The total length of the previous record in bytes.

Type The code for the type of recovery log record. See “Log record type codes”
on page 966.

Subtype
Some types of recovery log records are further divided into subtypes. See
“Log record subtype codes” on page 966.

Resource manager ID
Identifier of the resource manager that wrote the record into the log. When
the log is read, the record can be given for processing to the resource
manager that created it.

Unit of recovery ID
A unit of recovery to which the record is related. Other log records can be
related to the same unit of recovery; all of them must be examined to
recover the data. The URID is the RBA (relative byte address) of the
Begin-UR log record, and indicates the start of that unit of recovery in the
log.

LINK Chains all records written using their RBAs. For example, the link in an end
checkpoint record links the chains back to the begin checkpoint record.

Data (maximum 32777)

STCK, or LSRN + member ID (8)

Undo next LSN (6)

Length of header (1)

Release identifier (1)

LINK (6)

Unit of recovery ID (6)

Flags (1)

Resource manager ID (1)

Record subtype (2)

Record type (2)

Length of previous record or segment (2)

Length of this record or segment (2)

Figure 139. Format of a DB2 recovery log record

Appendix C. Reading log records 965

Release identifier
Identifies in which release the log was written.

Log record header length
The total length of the header of the log record.

Undo next LSN
Identifies the log RBA of the next log record to be undone during backwards
(UNDO processing) recovery.

STCK, or LRSN+member ID.
In a non data-sharing environment, this is a 6-byte store clock value
(STCK) reflecting the date and time the record was placed in the output
buffer. The last two bytes contain zeros.

In a data sharing environment, this contains a 6-byte log record sequence
number (LRSN) followed by a 2-byte member ID.

Data Data associated with the log record. The contents of the data field depend
on the type and subtype of the recovery log record.

Log record type codes
The type code of a log record tells what kind of DB2 event the record describes:

Code Type of Event
0002 Page set control
0004 SYSCOPY utility
0010 System event
0020 Unit of recovery control
0100 Checkpoint
0200 Unit of recovery undo
0400 Unit of recovery redo
0800 Archive log command
1000 to 8000

Assigned by DB2
2200 Savepoint

A single record can contain multiple type codes that are combined. For example,
0600 is a combined UNDO/REDO record; F400 is a combination of four
DB2-assigned types plus a REDO.

Log record subtype codes
The log record subtype code provides a more granular definition of the event that
occurred to produce the log record. Log record subtype codes are unique only
within the scope of the corresponding log record type code.

Log record type 0004 (SYSCOPY utility) has log subtype codes that correspond to
the page set ID values of the table spaces that have their SYSCOPY records in the
log (SYSIBM.SYSUTILX, SYSIBM.SYSCOPY and DSNDB01.DBD01).

For a description of log record types 0200 (unit of recovery undo) and 0400 (unit of
recovery redo), see the SUBTYPE option of DSN1LOGP in Part 3 of DB2 Utility
Guide and Reference.

Log record type 0800 (quiesce) does not have subtype codes.

Some log record types (1000 to 8000 assigned by DB2) can have proprietary log
record subtype codes assigned.

966 Administration Guide

Subtypes for type 0002 (page set control):

Code Type of Event
0001 Page set open
0002 Data set open
0003 Page set close
0004 Data set close
0005 Page set control checkpoint
0006 Page set write
0007 Page set write I/O
0008 Page set reset write
0009 Page set status

Subtypes for type 0010 (system event):

Code Type of Event
0001 Begin checkpoint
0002 End checkpoint
0003 Begin current status rebuild
0004 Begin historic status rebuild
0005 Begin active unit of recovery backout
0006 Pacing record

Subtypes for type 0020 (unit of recovery control):

Code Type of Event
0001 Begin unit of recovery
0002 Begin commit phase 1 (Prepare)
0004 End commit phase 1 (Prepare)
0008 Begin commit phase 2
000C Commit phase 1 to commit phase 2 transition
0010 End commit phase 2
0020 Begin abort
0040 End abort
0081 End undo
0084 End todo
0088 End redo

Subtypes for type 0100 (checkpoint):

Code Type of Event
0001 Unit of recovery entry
0002 Restart unit of recovery entry

Subtypes for type 2200 (savepoint):

Code Type of Event
0014 Rollback to savepoint
000E Release to savepoint

Interpreting data change log records
DB2 provides the mapping and description of specific log record types that allow
you to interpret data changes made to DB2 tables from the log. The macros are
contained in the data set library prefix.SDSNMACS and are documented by
comments in the macros themselves.

Log record formats for the record types and subtypes listed above are detailed in
the mapping macro DSNDQJ00. DSNDQJ00 provides the mapping of specific data

Appendix C. Reading log records 967

change log records, UR control log records, and page set control log records that
you need to interpret data changes by the UR. DSNDQJ00 also explains the
content and usage of the log records.

Reading log records with IFI
You can write a program that uses IFI to capture log records while DB2 is running.
You can read the records asynchronously, by starting a trace that reads the log
records into a buffer and then issuing an IFI call to read those records out of the
buffer. Or, you can read those log records synchronously, by using an IFI call that
returns those log records directly to your IFI program.

This section describes both methods, in the following topics:
“Reading log records into a buffer”
“Reading specific log records (IFCID 0129)”
“Reading complete log data (IFCID 0306)” on page 969

Either the primary or one of the secondary authorization IDs must have MONITOR2
privilege. For details on how to code an IFI program, see “Appendix E.
Programming for the Instrumentation Facility Interface (IFI)” on page 997.

Reading log records into a buffer
To begin gathering active log records into a buffer, issue the following command in
your IFI program:

-START TRACE(P) CLASS(30) IFCID(126) DEST(OPX)

Where:

v P signifies to start a DB2 performance trace. Any of the DB2 trace types can be
used.

v CLASS(30) is a user-defined trace class (31 and 32 are also user-defined
classes).

v IFCID(126) activates DB2 log buffer recording.

v DEST(OPX) starts the trace to the next available DB2 online performance (OP)
buffer. The size of this OP buffer can be explicitly controlled by the BUFSIZE
keyword of the START TRACE command. Valid sizes range from 8 KB to 1 MB
in 4 KB increments.

When the START TRACE command takes effect, from that point forward, until DB2
terminates, DB2 will begin writing 4 KB log buffer VSAM control intervals (CIs) to
the OP buffer as well as to the active log. As part of the IFI COMMAND invocation,
the application specifies an ECB to be posted and a threshold to which the OP
buffer is filled when the application is posted to obtain the contents of the buffer.
The IFI READA request is issued to obtain OP buffer contents.

Reading specific log records (IFCID 0129)
IFCID 129 can be used with an IFI READS request to return a specific range of log
records from the active log into the return area your program has initialized. Enter
the following command into your IFI program:
CALL DSNWLI(READS,ifca,return_area,ifcid_area,qual_area)

IFCID 129 must appear in the IFCID area.

To retrieve the log control interval, your program must initialize certain fields in the
qualification area:

968 Administration Guide

WQALLTYP
This is a 3-byte field in which you must specify CI (with a trailing blank), which
stands for “control interval”.

WQALLMOD
In this 1-byte field, you specify whether you want the first log CI of the restarted
DB2 subsystem, or whether you want a specific control interval as specified by
the value in the RBA field.

F The “first” option is used to retrieve the first log CI of this DB2 instance.
This option ignores any value in WQALLRBA and WQALLNUM.

P The“partial” option is used to retrieve partial log CIs for the log capture exit
which is described in Appendix B. DB2 places a value in field IFCAHLRS of
the IFI communication area, as follows:

v The RBA of the log CI given to the log capture exit, if the last CI written
to the log was not full.

v 0, if the last CI written to the log was full.

When you specify option P, DB2 ignores values in WQALLRBA and
WQALLNUM.

R The “read” option is used to retrieve a set of up to 7 continuous log CIs. If
you choose this option, you must also specify the WQALLRBA and
WQALLNUM options explained below.

WQALLRBA
In this 8-byte field, you specify the starting log RBA of the control intervals to be
returned. This value must end in X'000' to put the address on a valid boundary.
This field is ignored when using the WQALLMOD=F option.

If you specify an RBA that is not in the active log, reason code 00E60854 is
returned in the field IFCARC2, and the RBA of the first CI of the active log is
returned in field IFCAFCI of the IFCA. These 6 bytes contain the IFCAFCI field.

WQALLNUM
In this 2-byte field, specify the number of control intervals you want returned.
The valid range is from X'0001' through X'0007', which means that you can
request and receive up to seven 4 KB log control intervals. This field is ignored
when using the WQALLMOD=F option. For a complete description of the
qualification area, see Table 182 on page 1004.

If you specify a range of log CIs, but some of those records have not yet been
written to the active log, DB2 returns as many log records as possible. You can find
the number of CIs returned in field QWT02R1N of the self-defining section of the
record. For information about interpreting trace output, see “Appendix D. Interpreting
DB2 trace output” on page 981.

Reading complete log data (IFCID 0306)
The major benefits for using IFCID 0306 are:

v IFCID 0306 can request DB2 to decompress log records if compressed, before
passing them to the return area of your IFI program.

v In a data sharing environment, DB2 merges log records if the value of the IFI
READS qualification WQALFLTR is X'00'. If WQALFLTR is X'01', log records are
not merged.

v IFCID can retrieve log records from the archive data sets.

v Complete log records are always returned.

Appendix C. Reading log records 969

To use this IFCID, use the same call as described in “Reading specific log records
(IFCID 0129)” on page 968. IFCID 0306 must appear in the IFCID area. IFCID 0306
returns complete log records and the spanned record indicators in bytes 2 will have
no meaning, if present. Multi-segmented control interval log records are combined
for a complete log record.

Specifying the return area
For IFCID 0306 requests, your program’s return area must reside in ECSA key 7
storage. The IFI application program must set the eye-catcher to ’I306’ at offset 4 in
the Return Area before making the IFCID 0306 call. There is an additional 60 byte
area that must be included after the 4-byte length indicator and the ’I306’
eye-catcher. This area is used by DB2 between successive application calls and
must not be modified by the application. The return area mapping is documented
later in this section.

The IFI application program needs to run in supervisor state to request the ECSA
key 7 return area. The return area storage size need be a minimum of the largest
DB2 log record returned plus the additional area defined in DSNDQW04. Minimize
the number of IFI calls required to get all log data but do not over use ECSA by the
IFI program. The other IFI storage areas can remain in user storage key 8. The IFI
application must be in supervisor state and key 0 when making IFCID 0306 calls.

Qualifying log records
To retrieve IFCID 0306 log records, your program must initialize certain fields in the
qualification area mapped by DSNDWQAL. These qualification fields are described
here:

WQALLMOD
In this 1-byte field, specify one of the following modes:

D Retrieves the single log record whose RBA value and member id is
specified in WQALLRBA. Issuing a D request while holding a position in the
log, causes the request to fail and terminates the log position held.

F Used as a first call to request log records beyond the LRSN or RBA
specified in WQALLRBA that meet the criteria specified in WQALLCRI.

H Retrieves the highest LRSN or log RBA in the active log. The value is
returned in field IFCAHLRS of the IFI communications area (IFCA). There is
no data returned in the return area and the return code for this call will
indicate that no data was returned.

N Used following mode F or N calls to request any remaining log records that
meet the criteria specified in WQALLCRI. * and any option specified in
WQALLOPT. As many log records as fit in the program’s return area are
returned.

T Terminates the log position that was held by any previous F or N request.
This allows held resources to be released.

Mode R is not used for IFCID 0306.

For both F or N requests, each log record returned contains a record-level
feedback area recorded in QW0306L. The number of log records retrieved is in
QW0306CT. The ending log RBA or LRSN of the log records to be returned is
in QW0306ES.

WQALLRBA
In this 8-byte field, specify the starting log RBA or LRSN of the control records
to be returned. For IFCID 0306, this is used on the “first” option (F) request to

970 Administration Guide

request log records beyond the LRSN or RBA specified in this field. Determine
the RBA or LRSN value from the H request. For RBAs, the value plus one
should be used. For IFCID 0306 with D request of WQALLMOD, the high order
2 bytes must specify member id and the low order 6 bytes contain the RBA.

WQALLCRI
In this 1-byte field, indicate what types of log records you want:

X'00'
Tells DB2 to retrieve only log records for changed data capture and unit of
recovery control.

X'FF'
Tells DB2 to retrieve all types of log records. Use of this option can retrieve
large data volumes and degrade DB2 performance.

WQALLOPT
In this 1-byte field, indicate whether you want the returned log records to be
decompressed.

X'01'
Tells DB2 to decompress the log records before they are returned.

X'00'
Tells DB2 to leave the log records in the compressed format.

A typical sequence of IFCID 0306 calls is::

WQALLMOD=H
This is only necessary if you want to find the current position in the log. The
LRSN or RBA is returned in IFCAHLRS. The return area is not used.

WQALLMOD=F
The WQALLLRBA, WQALLLCRI and WQALLLOPT should be set. If 00E60812
is returned, you have all the data for this scope. You should wait a while before
issuing another WQALLMOD=F call. In data sharing, log buffers are flushed
when the F request is issued.

WQALLMOD=N
If the 00E60812 has not been returned, you issue this call until it is. You should
wait a while before issuing another WQALLMOD=F call.

WQALLMOD=T
This should only be used if you do not want to continue with the
WQALLMOD=N before the end is reached. It has no use if a position is not
held in the log.

IFCID 0306 return area mapping: IFCID 0306 has a unique return area format.
The first section is mapped by QW0306OF instead of the writer header
DSNDQWIN. See “Appendix E. Programming for the Instrumentation Facility
Interface (IFI)” on page 997 for details.

Reading log records with OPEN, GET, and CLOSE
DB2 provides three stand-alone log services that user-written application programs
can use to read DB2 recovery log records and control intervals even when DB2 is
not running:
v OPEN initializes stand-alone log services.
v GET returns a pointer to the next log record or log record control interval.
v CLOSE deallocates data sets and frees storage.

Appendix C. Reading log records 971

To invoke these services, use the assembler language macro, DSNJSLR, specifying
one of the above functions.

These log services use a request block, which contains a feedback area in which
information for all stand-alone log GET calls is returned. The request block is
created when a stand-alone log OPEN call is made. The request block must be
passed as input to all subsequent stand-alone log calls (GET and CLOSE). The
request block is mapped by the DSNDSLRB macro and the feedback area is
mapped by the DSNDSLRF macro.

See Figure 140 on page 979 for an example of an application program that includes
these various stand-alone log calls.

When you issue an OPEN request, you can indicate whether you want to get log
records or log record control intervals. Each GET request returns a single logical
record or control interval depending on which you selected with the OPEN request.
If neither is specified, the default, RECORD, is used. DB2 reads the log in the
forward direction of ascending relative byte addresses or log record sequence
numbers (LRSNs).

If a bootstrap data set (BSDS) is allocated before stand-alone services are invoked,
appropriate log data sets are allocated dynamically by MVS. If the bootstrap data
set is not allocated before stand-alone services are invoked, the JCL for your
user-written application to read a log must specify and allocate the log data sets to
be read.

Table 170 lists and describes the JCL DD statements used by stand-alone services.

Table 170. JCL DD statements for DB2 stand-alone log services

JCL DD
statement Explanation

JOBCAT or
STEPCAT

Specifies the catalog in which the BSDS and the active log data sets are
cataloged. Required if the BSDS or any active log data set is to be
accessed, unless the data sets are cataloged in the system master
catalog.

BSDS Specifies the bootstrap data set (BSDS). Optional. Another ddname can
be used for allocating the BSDS, in which case the ddname must be
specified as a parameter on the FUNC=OPEN (see “Stand-alone log
OPEN request” on page 975 for more information). Using the ddname in
this way causes the BSDS to be used. If the ddname is omitted on the
FUNC=OPEN request, the processing uses DDNAME=BSDS when
attempting to open the BSDS.

ARCHIVE Specifies the archive log data sets to be read. Required if an archive
data set is to be read and the BSDS is not available (the BSDS DD
statement is omitted). Should not be present if the BSDS DD statement
is present. If multiple data sets are to be read, specify them as
concatenated data sets in ascending log RBA order.

ACTIVEn (Where n is a number from 1 to 7). Specifies an active log data set that
is to be read. Should not be present if the BSDS DD statement is
present. If only one data set is to be read, use ACTIVE1 as the ddname.
If multiple active data sets are to be read, use DDNAMEs ACTIVE1,
ACTIVE2, ... ACTIVEn to specify the data sets. Specify the data sets in
ascending log RBA order with ACTIVE1 being the lowest RBA and
ACTIVEn being the highest.

DD statements for data sharing users

972 Administration Guide

Table 170. JCL DD statements for DB2 stand-alone log services (continued)

JCL DD
statement Explanation

GROUP If you are reading logs from every member of a data sharing group in
LRSN sequence, you can use this statement to locate the BSDSs and
log data sets needed. You must include the data set name of one BSDS
in the statement. DB2 can find the rest of the information from that one
BSDS.

All members’ logs and BSDS data sets must be available. If you use this
DD statement, you must also use the LRSN and RANGE parameters on
the OPEN request. The GROUP DD statement overrides any MxxBSDS
statements that are used.

(DB2 searches for the BSDS DD statement first, then the GROUP
statement, and then the MxxBSDS statements. If for some reason you
want to use a particular member’s BSDS for your own processing, you
must call that DD statement something other than BSDS.)

MxxBSDS Names the BSDS data set of a member whose log must participate in
the read operation and whose BSDS is to be used to locate its log data
sets. Use a separate MxxBSDS DD statement for each DB2 member. xx
can be any 2 valid characters.

Use these statements if logs from selected members of the data sharing
group are required and the BSDSs of those members are available.
These statements are ignored if you use the GROUP DD statement.

For one MxxBSDS statement, you can use either RBA or LRSN values to
specify a range. If you use more than one MxxBSDS statement, you
must use the LRSN to specify the range.

MyyARCHV Names the archive log data sets of a member to be used as input. yy
can be any 2 valid characters that do not duplicate any xx used in an
MxxBSDS DD statement.

Concatenate all required archived log data sets of a given member in
time sequence under one DD statement. Use a separate MyyARCHV DD
statement for each member. You must use this statement if the BSDS
data set is unavailable or if you want only some of the log data sets from
selected members of the group.

If you name the BSDS of a member by a MxxBSDS DD statement, do
not name the log of the same member by an MyyARCHV statement. If
both MyyARCHV and MxxBSDS identify the same log data sets, the
service request fails. MyyARCHV statements are ignored if you use the
GROUP DD statement.

MyyACTn Names the active log data set of a member to be used as input. yy can
be any 2 valid characters that do not duplicate any xx used in an
MxxBSDS DD statement. Use the same characters that identify the
MyyARCHV statement for the same member; do not use characters that
identify the MyyARCHV statement for any other member. n is a number
from 1 to 16. Assign values of n in the same way as for ACTIVEn DD
statements.

You can use this statement if the BSDS data sets are unavailable or if
you want only some of the log data sets from selected members of the
group.

If you name the BSDS of a member by a MxxBSDS DD statement, do
not name the log of the same member by an MyyACTn statement.
MyyACTn statements are ignored if you use the GROUP DD statement.

Appendix C. Reading log records 973

The DD statements must specify the log data sets in ascending order of log RBA
(or LRSN) range. If both ARCHIVE and ACTIVEn DD statements are included, the
first archive data set must contain the lowest log RBA or LRSN value. If the JCL
specifies the data sets in a different order, the job terminates with an error return
code with a GET request that tries to access the first record breaking the sequence.
If the log ranges of the two data sets overlap, this is not considered an error;
instead, the GET function skips over the duplicate data in the second data set and
returns the next record. The distinction between out-of-order and overlap is as
follows:

v Out-of-order condition occurs when the log RBA or LRSN of the first record in
a data set is greater than that of the first record in the following data set.

v Overlap condition occurs when the out-of-order condition is not met but the log
RBA or LRSN of the last record in a data set is greater than that of the first
record in the following data set.

Gaps within the log range are permitted. A gap is created when one or more log
data sets containing part of the range to be processed are not available. This can
happen if the data set was not specified in the JCL or is not reflected in the BSDS.
When the gap is encountered, an exception return code value is set, and the next
complete record following the gap is returned.

Normally, the BSDS ddname will be supplied in the JCL, rather than a series of
ACTIVE ddnames or a concatenated set of data sets for the ARCHIVE ddname.
This is commonly referred to as “running in BSDS mode”.

Data sharing users: Which members participate in the read?
The number of members whose logs participate in a particular read request is
determined by:
v The number of members in the group, if you use the GROUP DD statement
v Otherwise, the number of different xxs and yys used in the Mxx and Myy type

DD statements.

For example, assume you need to read log records from members S1, S2, S3, S4,
S5 and S6.

S1 and S2 locate their log data sets by their BSDSs.
S3 and S4 need both archive and active logs.
S4 has two active log data sets.
S5 needs only its archive log.
S6 needs only one of its active logs.

Then you need the following DD statements to specify the required log data sets:

MS1BSDS MS2BSDS MS3ARCHV MS4ARCHV MS5ARCHV MS6ACT1
MS3ACT1 MS4ACT1

MS4ACT2

The order of the DD statements in the JCL stream is not important.

Registers and return codes
The request macro invoking these services can be used by reentrant programs. The
macro requires that register 13 point to an 18-word save area at invocation. In
addition, registers 0, 1, 14, and 15 are used as work and linkage registers. A return

974 Administration Guide

code is passed back in register 15 at the completion of each request. When the
return code is nonzero, a reason code is placed in register 0. Return codes identify
a class of errors, while the reason code identifies a specific error condition of that
class. The stand-alone log return codes are shown in Table 171.

Table 171. Stand-alone log return codes

Return code Explanation

0 Successful completion.

4 Exception condition (for example, end of file), not an error. This return code
is not applicable for OPEN and CLOSE requests.

8 Unsuccessful completion due to improper user protocol.

12 Unsuccessful completion. Error encountered during processing of a valid
request.

The stand-alone log services invoke executable macros that can execute only in
24-bit addressing mode and reference data below the 16MB line. User-written
applications should be link-edited as AMODE(24), RMODE(24).

Stand-alone log OPEN request
Issue this request when you want to initialize the stand-alone log services. The
syntax for the stand-alone log OPEN request is:
{label} DSNJSLR FUNC=OPEN

,LRSN=YES³NO
,DDNAME= address or (Reg. 2-12) optional
,RANGE= address or (Reg. 2-12) optional
,PMO=CI or RECORD

Keyword
Explanation

FUNC=OPEN
Requests the stand-alone log OPEN function.

LRSN Tells DB2 how to interpret the log range:
NO: the log range is specified as RBA values. This is the default.
YES: the log range is specified as LRSN values.

DDNAME
Specifies the address of an 8-byte area which contains the ddname to be
used as an alternate to a ddname of the BSDS when the BSDS is opened,
or a register that contains that address.

RANGE
Specifies the address of a 12-byte area containing the log range to be
processed by subsequent GET requests against the request block
generated by this request, or a register that contains that address.

If LRSN=NO, then the range is specified as RBA values. If LRSN=YES,
then the range is specified as LRSN values.

The first 6 bytes contain the low RBA or LRSN value. The first complete log
record with an RBA or LRSN value equal to or greater than this value is the
record accessed by the first log GET request against the request block. The
last 6 bytes contain the end of the range or high RBA or LRSN value. An
end-of-data condition is returned when a GET request tries to access a
record with a starting RBA or LRSN value greater than this value. A value of
6 bytes of X'FF' indicates that the log is to be read until either the end of

Appendix C. Reading log records 975

the log (as specified by the BSDS) or the end of the data in the last
JCL-specified log data set is encountered.

If BSDS, GROUP, or MxxBSDS DD statements are used for locating the log
data sets to be read, the RANGE parameter is required. If the JCL
determines the log data sets to be read, the RANGE parameter is optional.

PMO Specifies the processing mode. You can use OPEN to retrieve either log
records or control intervals in the same manner. Specify PMO=CI or
RECORD, then use GET to return the data you have selected. The default
is RECORD.

The rules remain the same regarding control intervals and the range
specified for the OPEN function. Control intervals must fall within the range
specified on the RANGE parameter.

Output Explanation

GPR 1
General-purpose register 1 contains the address of a request block on
return from this request. This address must be used for subsequent
stand-alone log requests. When no more log GET operations are required
by the program, this request block should be used by a FUNC=CLOSE
request.

GPR 15
General-purpose register 15 contains a return code upon completion of a
request. For nonzero return codes, a corresponding reason code is
contained in register 0. The return codes are listed and explained in
Table 171 on page 975.

GPR 0
General-purpose register 0 contains a reason code associated with a
nonzero return code in register 15.

See Part 3 of DB2 Messages and Codes for reason codes that are issued with the
return codes.

Log control interval retrieval: You can use the PMO option to retrieve log control
intervals from archive log data sets. DSNJSLR also retrieves log control intervals
from the active log if the DB2 system is not active. During OPEN, if DSNJSLR
detects that the control interval range is not within the archive log range available
(for example, the range purged from BSDS), an error condition is returned.

Specify CI and use GET to retrieve the control interval you have chosen. The rules
remain the same regarding control intervals and the range specified for the OPEN
function. Control intervals must fall within the range specified on the RANGE
parameter.

Log control interval format: A field in the last 7 bytes of the control interval, offset
4090, contains a 7-byte timestamp. This field reflects the time at which the control
interval was written to the active log data set. The timestamp is in store clock
(STCK) format and is the high order 7 bytes of the 8-byte store clock value.

Stand-alone log GET request
This request returns a pointer to a buffer containing the next log record based on
position information in the request block.

976 Administration Guide

A log record is available in the area pointed to by the request block until the next
GET request is issued. At that time, the record is no longer available to the
requesting program. If the program requires reference to a log record’s content after
requesting a GET of the next record, the program must move the record into a
storage area that is allocated by the program.

The first GET request, after a FUNC=OPEN request that specified a RANGE
parameter, returns a pointer in the request feedback area. This points to the first
record with a log RBA value greater than or equal to the low log RBA value
specified by the RANGE parameter. If the RANGE parameter was not specified on
the FUNC=OPEN request, then the data to be read is determined by the JCL
specification of the data sets. In this case, a pointer to the first complete log record
in the data set that is specified by the ARCHIVE, or by ACTIVE1 if ARCHIVE is
omitted, is returned. The next GET request returns a pointer to the next record in
ascending log RBA order. Subsequent GET requests continue to move forward in
log RBA sequence until the function encounters the end of RANGE RBA value, the
end of the last data set specified by the JCL, or the end of the log as determined by
the bootstrap data set.

The syntax for the stand-alone log GET request is:
{label} DSNJSLR FUNC=GET

,RBR=(Reg. 1-12)

Keyword
Explanation

FUNC=GET
Requests the stand-alone log GET function.

RBR Specifies a register that contains the address of the request block this
request is to use. Although you can specify any register between 1 and 12,
using register 1 (RBR=(1)) avoids the generation of an unnecessary load
register and is therefore more efficient. The pointer to the request block
(that is passed in register n of the RBR=(n) keyword) must be used by
subsequent GET and CLOSE function requests.

Output Explanation

GPR 15
General-purpose register 15 contains a return code upon completion of a
request. For nonzero return codes, a corresponding reason code is
contained in register 0. Return codes are listed and explained in Table 171
on page 975.

GPR 0
General-purpose register 0 contains a reason code associated with a
nonzero return code in register 15.

See Part 3 of DB2 Messages and Codes for reason codes that are issued with the
return codes.

Reason codes 00D10261 - 00D10268 reflect a damaged log. In each case, the
RBA of the record or segment in error is returned in the stand-alone feedback block
field (SLRFRBA). A damaged log can impair DB2 restart; special recovery
procedures are required for these circumstances. For recovery from these errors,
refer to “Chapter 22. Recovery scenarios” on page 409.

Information about the GET request and its results is returned in the request
feedback area, starting at offset X'00'. If there is an error in the length of some

Appendix C. Reading log records 977

record, the control interval length is returned at offset X'0C' and the address of the
beginning of the control interval is returned at offset X'08'.

On return from this request, the first part of the request block contains the feedback
information that this function returns. Mapping macro DSNDSLRF defines the
feedback fields which are shown in Table 172. The information returned is status
information, a pointer to the log record, the length of the log record, and the 6-byte
log RBA value of the record.

Table 172. Stand-alone log get feedback area contents

Field name Hex
offset

Length
(bytes)

Field contents

SLRFRC 00 2 Log request return code

SLRFINFO 02 2 Information code returned by dynamic allocation.
Refer to the MVS SPF job management publication
for information code descriptions

SLRFERCD 04 2 VSAM or dynamic allocation error code, if register 15
contains a nonzero value.

SLRFRG15 06 2 VSAM register 15 return code value.

SLRFFRAD 08 4 Address of area containing the log record or CI

SLRFRCLL 0C 2 Length of the log record or RBA

SLRFRBA 0E 6 Log RBA of the log record

SLRFDDNM 14 8 ddname of data set on which activity occurred

Stand-alone log CLOSE request
This request deallocates any log data sets that were dynamically allocated by
previous processing. Also, all storage that was obtained by previous functions,
including the request block specified on this request, is freed.

The syntax for the stand-alone log CLOSE request is:
{label} DSNJSLR FUNC=CLOSE

,RBR=(Reg. 1-12)

Keyword
Explanation

FUNC=CLOSE
Requests the CLOSE function.

RBR Specifies a register that contains the address of the request block that this
function uses. Although you can specify any register between 1 and 12,
using register 1 (RBR=(1)) avoids the generation of an unnecessary load
register and is therefore more efficient.

Output Explanation

GPR 15
Register 15 contains a return code upon completion of a request. For
nonzero return codes, a corresponding reason code is contained in register
0. The return codes are listed and explained in Table 171 on page 975.

GPR 0
Register 0 contains a reason code that is associated with a nonzero return
code that is contained in register 15. The only reason code used by the
CLOSE function is 00D10030.

978 Administration Guide

See Part 3 of DB2 Messages and Codes for reason code details.

Sample application program using stand-alone log services
Figure 140 shows sample segments of an assembler program that uses the three
stand-alone log services (OPEN, GET, and CLOSE) to process one log record.

TSTJSLR5 CSECT...

OPENCALL EQU *
LA R2,NAME GET BSDS DDNAME ADDRESS
LA R3,RANGER GET ADDRESS OF RBA RANGE
DSNJSLR FUNC=OPEN,DDNAME=(R2),RANGE=(R3)
LTR R15,R15 CHECK RETURN CODE FROM OPEN
BZ GETCALL OPEN OK, DO GET CALLS...

Figure 140. Excerpts from a sample program using stand-alone log services (Part 1 of 4)

* HANDLE ERROR FROM OPEN FUNCTION AT THIS POINT *
***...

GETCALL EQU *
DSNJSLR FUNC=GET,RBR=(R1)
C R0,=X'00D10020' END OF RBA RANGE ?
BE CLOSE YES, DO CLEANUP
C R0,=X'00D10021' RBA GAP DETECTED ?
BE GAPRTN HANDLE RBA GAP
LTR R15,R15 TEST RETURN CODE FROM GET
BNZ ERROR...

Figure 140. Excerpts from a sample program using stand-alone log services (Part 2 of 4)

...

**
* PROCESS RETURNED LOG RECORD AT THIS POINT. IF LOG RECORD *
* DATA MUST BE KEPT ACROSS CALLS, IT MUST BE MOVED TO A *
* USER-PROVIDED AREA. *
**

USING SLRF,1 BASE SLRF DSECT
L R8,SLRFFRAD GET LOG RECORD START ADDR
LR R9,R8
AH R9,SLRFRCLL GET LOG RECORD END ADDRESS
BCTR R9,R0...

Figure 140. Excerpts from a sample program using stand-alone log services (Part 3 of 4)

Appendix C. Reading log records 979

Reading log records with the log capture exit
You can use the log capture exit to capture DB2 log data in real time. This
installation exit presents log data to a log capture exit routine when the data is
written to the DB2 active log. This exit is not intended to be used for general
purpose log auditing or tracking. The IFI interface (see “Reading log records with
IFI” on page 968) is designed (and is more appropriate) for this purpose.

The log capture exit executes in an area of DB2 that is critical for performance. As
such, it is primarily intended as a mechanism to capture log data for recovery
purposes such as with the Remote Recovery Data Facility (RRDF) Release 2
program offering. In addition, the log capture exit operates in a very restrictive MVS
environment, which severely limits its capabilities as a stand-alone routine.

To capture log records with this exit, you must first write an exit routine (or use the
one provided by the program offering mentioned above) that can be loaded and
called under the various processing conditions and restrictions required of this exit.
See “Log capture routines” on page 944 and refer to the previous sections of this
appendix, “What the log contains” on page 957 and “The physical structure of the
log” on page 962.

CLOSE EQU *
DSNJSLR FUNC=CLOSE,RBR=(1)...

NAME DC C'DDBSDS'
RANGER DC X'00000000000000000005FFFF'...

DSNDSLRB
DSNDSLRF
EJECT

R0 EQU 0
R1 EQU 1
R2 EQU 2...

R15 EQU 15
END

Figure 140. Excerpts from a sample program using stand-alone log services (Part 4 of 4)

980 Administration Guide

Appendix D. Interpreting DB2 trace output

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page 1095.

When you activate a DB2 trace, it produces trace records based on the parameters
you specified for the -START TRACE command. Each record identifies one or more
significant DB2 events. You can use DB2 Performance Monitor (DB2 PM), a
separately licensed program, to format, print, and interpret DB2 trace output.
However, if you do not have DB2 PM or you want to do your own analysis of the
trace output, you can use the information in this appendix and the trace field
descriptions which are shipped to you as part of the DB2 product. By examining a
DB2 trace record, you can determine the type of trace that produced the record
(statistics, accounting, audit, performance, monitor, or global) and the event the
record reports.

Please note that where the trace output indicates a particular release level, you will
see 'xx' to show that this information varies according to the actual release of DB2
that you are using.

Processing trace records
Trace records can be written to SMF or GTF. Regardless of whether you write the
record to SMF or GTF, it contains up to four basic sections:
v An SMF or GTF writer header section
v A self-defining section
v A product section
v Zero or more data sections

Figure 141 shows the format of DB2 trace records.

The writer header section begins at the first byte of the record and continues for a
fixed length. (The GTF writer header is longer than the SMF writer header.)

The self-defining section follows the writer header section (both GTF and SMF) and
is further described in “Self-defining section” on page 988. The first self-defining

Writer header section Self-defining section

For SMF: record length, record type,
timestamp, system and subsystem ID,
For GTF: record length, timestamp,
and event ID

Pointer to
product
section

Pointer
to data
section
#1

Pointer
to data
section
#n

…

Data section
#1

Data section
#n

… Product
section

Data sections Product section

Figure 141. General format of trace records written by DB2

© Copyright IBM Corp. 1982, 2001 981

section always points to a special data section called the product section. Among
other things, the product section contains an instrumentation facility component
identifier (IFCID). Descriptions of the records differ for each IFCID. For a list of
records, by IFCID, for each class of a trace, see the description of the START
TRACE command in DB2 Command Reference.

To interpret a record, find its description, by IFCID, in one of the following mapping
macros:

IFCID Mapped by Macro

0001 DSNDQWST, subtype=0

0002 DSNDQWST, subtype=1

0003 DSNDQWAS

0004—0057 DSNDQW00

0058—0139 (except 0106) DSNDQW01

0106 DSNDQWPZ

0140—196, 198, 199 DSNDQW02

0201—0249 (except 0202, 230 and 239) DSNDQW03

0202 DSNDQWS2, subtype=2

0230 DSNDQWST, subtype=3

0239 DSNDQWAS and DSNDQWA1

0250—0330 DSNDQW04

The product section also contains field QWHSNSDA, which indicates how many
self-defining data sections the record contains. You can use this field to keep from
trying to access data sections that do not exist. In trying to interpret the trace
records, remember that the various keywords you specified when you started the
trace determine whether any data is collected. If no data has been collected, field
QWHSNSDA shows a data length of zero.

SMF writer header section
In SMF, writer headers for statistics records are mapped by macro DSNDQWST, for
accounting records by DSNDQWAS, and for performance, audit, and monitor
records by DSNDQWSP. When these macros are assembled, they include the other
macros necessary to map the remainder of the trace records sent to SMF.

The SMF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the header fields. The fields are
described in Table 173. Figure 142 on page 983 is a sample of the first record of
DB2 performance trace output sent to SMF.

Table 173. Contents of SMF writer header section

Hex Offset
Macro DSNDQWST,
statistics field

Macro
DSNDQWAS,
accounting field

Macro
DSNDQWSP,
monitor, audit,
and
performance
field Description

0 SM100LEN SM101LEN SM102LEN Total length of SMF record

2 SM100SGD SM101SGD SM102SGD Segment descriptor

982 Administration Guide

Table 173. Contents of SMF writer header section (continued)

Hex Offset
Macro DSNDQWST,
statistics field

Macro
DSNDQWAS,
accounting field

Macro
DSNDQWSP,
monitor, audit,
and
performance
field Description

4 SM100FLG SM101FLG SM102FLG System indicator

5 SM100RTY SM101RTY SM102RTY SMF record type

Statistics=100(dec),
Accounting=101(dec),
Monitor=102(dec), Audit=102(dec),
Performance=102(dec)

6 SM100TME SM101TME SM102TME SMF record timestamp, time portion

A SM100DTE SM101DTE SM102DTE SMF record timestamp, date portion

E SM100SID SM101SID SM102SID System ID

12 SM100SSI SM101SSI SM102SSI Subsystem ID

16 SM100STF SM101STF SM102STF Reserved

17 SM100RI SM101RI SM102RI Reserved

18 SM100BUF SM101BUF SM102BUF Reserved

1C SM100END SM101END SM102END End of SMF header

Key to Figure 142 Description
�A�0124 Record length (field SM102LEN); beginning of SMF writer header

section
�B�66 Record type (field SM102RTY)
�C�0030 9EEC Time (field SM102TME)
�D�0093 018F Date (field SM102DTE)
�E�F3F0 F9F0 System ID (field SM102SID)
�F�E2E2 D6D7 Subsystem ID (field SM102SSI)
�G� End of SMF writer header section
�H�0000008C Offset to product section; beginning of self-defining section
�I�0098 Length of product section
�J�0001 Number of times the product section is repeated
�K�0000002C Offset to first (in this case, only) data section
�L�005D Length of data section

�A� �B� �C� �D� �E� �F� �G��H�
000000 01240000 0E660030 9EEC0093 018FF3F0 F9F0E2E2 D6D70000 00000000 0000008C

�I� �J� �K� �L� �M� �N�
000020 00980001 0000002C 005D0001 00550053 4DE2E3C1 D9E340E3 D9C1C3C5 404DE2E3
000040 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D 5C405DD7 D3C1D540 4D5C405D
000060 C1E4E3C8 C9C4404D 5C405DC9 C6C3C9C4 404D5C40 5DC2E4C6 E2C9E9C5 404D5C40

�O� �P� �Q��R�
000080 5D000000 01000101 01000000 004C0110 000402xx 00B3AB78 E2E2D6D7 A6E9BACB

�S�
0000A0 F6485E02 00000003 00000021 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2
0000C0 C4C2F2D5 C5E34040 D3E4D5C4 F0404040 A6E9BACB F4570001 004C0200 E2E8E2D6
0000E0 D7D94040 F0F2F34B C7C3E2C3 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040
000100 E2E8E2D6 D7D94040 00000000 00000000 00000000 00000000 00000000 00000000
000120 00000000�T�

Figure 142. DB2 trace output sent to SMF (printed with DFSERA10 print program of IMS)

Appendix D. Interpreting DB2 trace output 983

Key to Figure 142 on page 983 Description
�M�0001 Number of times the data section is repeated
�N�00550053 Beginning of data section
�O� Beginning of product section
�P�0004 IFCID (field QWHSIID)
�Q�02 Number of self-defining sections in the record (field QWHSNSDA)
�R�xx Release indicator number (field QWHSRN); this varies according to

the actual level of DB2 you are using.
�S�E2C1D5E3... Local location name (16 bytes)
�T� End of first record

GTF writer header section
The length and content of the writer header section differs between SMF and GTF
records, but the other sections of the records are the same for SMF and GTF.

The GTF writer header section begins at the first byte of the record. After
establishing addressability, you can examine the fields of the header. The writer
headers for trace records sent to GTF are always mapped by macro DSNDQWGT.
The fields are described in Table 174.

Table 174. Contents of GTF writer header section

Offset

Macro
DSNDQWGT
field Description

0 QWGTLEN Length of Record

2 Reserved

4 QWGTAID Application identifier

5 QWGTFID Format ID

6 QWGTTIME Timestamp; you must specify TIME=YES
when you start GTF.

14 QWGTEID Event ID: X’EFB9’

16 QWGTASCB ASCB address

20 QWGTJOBN Job name

28 QWGTHDRE Extension to header

28 QWGTDLEN Length of data section

30 QWGTDSCC Segment control code

0=Complete 2=Last 1=First 3=Middle

31 QWGTDZZ2 Reserved

32 QWGTSSID Subsystem ID

36 QWGTWSEQ Sequence number

40 QWGTEND End of GTF header

Figure 143 on page 985 contains trace output sent to GTF.

984 Administration Guide

DFSERA10 - PRINT PROGRAM

000000 001A0000 0001FFFF 94B6A6E9 BD6636FA 5C021000 00010000 0000
�A� �B� �C� �D� �E� �F�

000000 011C0000 FF00A6E9 C33E28F7 DD03EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000100
�G� �H� �I� �J� �K� �L� �M� �N� �O�

000020 E2E2D6D7 00000001 000000A0 00980001 00000038 00680001 0060005E 4DE2E3C1
000040 D9E340E3 D9C1C3C5 404DE2E3 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D
000060 5C405DC4 C5E2E340 4DC7E3C6 405DD7D3 C1D5404D 5C405DC1 E4E3C8C9 C4404D5C
000080 405DC9C6 C3C9C440 4D5C405D C2E4C6E2 C9E9C540 4D5C405D FFFFFFFF 00040101

�P� �Q� �R��S�
0000A0 004C0110 000402xx 00B3ADB8 E2E2D6D7 A6E9C33E 28EF4403 00000006 00000001

�T�
0000C0 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4
0000E0 F0404040 A6E9C33E 271F0001 004C0200 E2E8E2D6 D7D94040 F0F2F34B C7C3E2C3
000100 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040 E2E8E2D6 D7D94040

�U�
000000 00440000 FF00A6E9 C33E2901 1303EFB9 00F91400 E2E2D6D7 D4E2E3D9 00280200
000020 E2E2D6D7 00000001 00000000 00000000 00000000 00000000 00000000 00000000
000040 00000000�V�

�W� �X�
000000 011C0000 FF00A6E9 C33E2948 E203EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000100
000020 E2E2D6D7 00000002 000006D8 004C0001 00000090 001C0004 00000100 001C000E
000040 00000288 0018000E 00000590 00400001 000005D0 00740001 00000480 00440001
000060 000003D8 00800001 00000458 00280001 00000644 00480001 000004E4 00AC0001
000080 0000068C 004C0001 000004C4 00200001 D4E2E3D9 00000001 762236F2 00000000
0000A0 59F48900 001E001E 00F91400 C4C2D4F1 00000001 1A789573 00000000 95826100
0000C0 001F001F 00F90E00 C4C9E2E3 00000000 3413C60E 00000000 1C4D0A00 00220022
0000E0 00F90480 C9D9D3D4 00000000 0629E2BC 00000000 145CE000 001D001D 00F91600
000100 E2D4C640 00000046 00000046 00000000 00000000 00000000 00000000

�Y�
000000 011C0000 FF00A6E9 C33E294B 1603EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 D9C5E240 00000000 00000000 00000000 00000000 00000000
000040 00000000 C7E3C640 00000001 00000001 00000000 00000000 00000000 00000000
000060 E2D9E540 00000000 00000000 00000000 00000000 00000000 00000000 E2D9F140
000080 00000156 000000D2 00000036 00000036 00000000 00000004 E2D9F240 00000000
0000A0 00000000 00000000 00000000 00000000 00000000 D6D7F140 00000000 00000000
0000C0 00000000 00000000 00000000 00000000 D6D7F240 00000000 00000000 00000000
0000E0 00000000 00000000 00000000 D6D7F340 00000000 00000000 00000000 00000000
000100 00000000 00000000 D6D7F440 00000000 00000000 00000000 00000000

�Y�
000000 011C0000 FF00A6E9 C33E294D 3C03EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 00000000 00000000 D6D7F540 00000000 00000000 00000000
000040 00000000 00000000 00000000 D6D7F640 00000000 00000000 00000000 00000000
000060 00000000 00000000 D6D7F740 00000000 00000000 00000000 00000000 00000000
000080 00000000 D6D7F840 00000000 00000000 00000000 00000000 00000000 00000000
0000A0 00010000 0000000E 0000000D 00000000 00000000 00000000 00020000 0000000D
0000C0 0000000D 00000000 00000000 00000000 00030000 00000003 00000003 00000000
0000E0 00000000 00000000 00040000 00000006 00000006 00000000 00000000 00000000
000100 00050000 00000005 00000005 00000000 00000000 00000000 006A0000

�Y�
000000 011C0000 FF00A6E9 C33E294F 6103EFB9 00F91400 E2E2D6D7 D4E2E3D9 01000300
000020 E2E2D6D7 00000002 00000005 00000005 00000000 00000000 00000000 008C0000
000040 00000000 00000000 00000000 00000000 00000000 008D0000 00000000 00000000

...

�Z�
000000 00780000 FF00A6E9 C33E2957 D103EFB9 00F91400 E2E2D6D7 D4E2E3D9 005C0200

�AA�
000020 E2E2D6D7 00000002 00000000 004C011A 00010D31 02523038 E2E2D6D7 A6E9C33E
000040 29469A03 0000000E 00000002 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2
000060 40404040 40404040 40404040 40404040 A6E9B6B4 9A2B0001

Figure 143. DB2 trace output sent to GTF (spanned records printed with DFSERA10 print
program of IMS)

Appendix D. Interpreting DB2 trace output 985

Key to Figure 143 on page 985 Description
�A�011C Record length (field QWGTLEN); beginning of GTF

writer header section
�B�A6E9 C33E28F7 DD03 Timestamp (field QWGTTIME)
�C�EFB9 Event ID (field QWGTEID)
�D�E2E2D6D7 D4E2E3D9 Job name (field QWGTJOBN)
�E�0100 Length of data section
�F�01 Segment control code (01 = first segment of the first

record)
�G�E2E2D6D7 Subsystem ID (field QWGTSSID)
�H� End of GTF writer header section
�I�000000A0 Offset to product section; beginning of self-defining

section
�J�0098 Length of product section
�K�0001 Number of times the product section is repeated
�L�00000038 Offset to first (in this case, only) data section
�M�0068 Length of data section
�N�0001 Number of times the data section is repeated
�O�0060005E Beginning of data section
�P�004C0110... Beginning of product section
�Q�0004 IFCID (field QWHSIID)
�R�02 Number of self-defining sections in the record (field

QWHSNSDA)
�S�xx Release indicator number (field QWHSRN); this varies

according to the actual release level of DB2 you are
using.

�T�E2C1D5E3... Local location name (16 bytes)
�U�02 Last segment of the first record
�V� End of first record
�W� Beginning of GTF header for new record
�X�01 First segment of a spanned record (QWGTDSCC =

QWGTDS01)
�Y�03 Middle segment of a spanned record (QWGTDSCC =

QWGTDS03)
�Z�02 Last segment of a spanned record (QWGTDSCC =

QWGTDS02)
�AA�004C Beginning of product section

GTF records are blocked to 256 bytes. Because some of the trace records exceed
the GTF limit of 256 bytes, they have been blocked by DB2. Use the following logic
to process GTF records:

1. Is the GTF event ID of the record equal to the DB2 ID (that is, does QWGTEID
= X'xFB9')?

If it is not equal, get another record.

If it is equal, continue processing.

2. Is the record spanned?

If it is spanned (that is, QWGTDSCC ¬ = QWGTDS00), test to determine
whether it is the first, middle, or last segment of the spanned record.

a. If it is the first segment (that is, QWGTDSCC = QWGTDS01), save the
entire record including the sequence number (QWGTWSEQ) and the
subsystem ID (QWGTSSID).

b. If it is a middle segment (that is, QWGTDSCC = QWGTDS03), find the first
segment matching the sequence number (QWGTSEQ) and on the

986 Administration Guide

subsystem ID (QWTGSSID). Then move the data portion immediately after
the GTF header to the end of the previous segment.

c. If it is the last segment (that is, QWGTDSCC = QWGTDS02), find the first
segment matching the sequence number (QWGTSEQ) and on the
subsystem ID (QWTGSSID). Then move the data portion immediately after
the GTF header to the end of the previous record.

Now process the completed record.

If it is not spanned, process the record.

Figure 144 shows the same output after it has been processed by a user-written
routine, which follows the logic outlined above.

000000 01380000 FF00A6E9 DCA7E275 1204EFB9 00F91400 E2E2D6D7 D4E2E3D9 011C0000
000020 E2E2D6D7 00000019 000000A0 00980001 00000038 00680001 0060005E 4DE2E3C1
000040 D9E340E3 D9C1C3C5 404DE2E3 C1E3405D C3D3C1E2 E2404D5C 405DD9D4 C9C4404D
000060 5C405DC4 C5E2E340 4DC7E3C6 405DD7D3 C1D5404D 5C405DC1 E4E3C8C9 C4404D5C
000080 405DC9C6 C3C9C440 4D5C405D C2E4C6E2 C9E9C540 4D5C405D 00000001 00040101
0000A0 004C0110 000402xx 00B3ADB8 E2E2D6D7 0093018F 11223310 0000000C 00000019
0000C0 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4
0000E0 F0404040 A6E9DCA7 DF960001 004C0200 E2E8E2D6 D7D94040 F0F2F34B C7C3E2C3
000100 D5F6F0F2 E2E2D6D7 40404040 40404040 40404040 E2E8E2D6 D7D94040 00000000
000120 00000000 00000000 00000000 00000000 00000000 00000000

�A� �B�
000000 07240000 FF00A6E9 DCA8060C 2803EFB9 00F91400 E2E2D6D7 D4E2E3D9 07080000

�C��D� �E�
000020 E2E2D6D7 0000001A 000006D8 004C0001 00000090 001C0004 00000100 001C000E
000040 00000288 0018000E 00000590 00400001 000005D0 00740001 00000480 00440001
000060 000003D8 00800001 00000458 00280001 00000644 00480001 000004E4 00AC0001

�F�
000080 0000068C 004C0001 000004C4 00200001 D4E2E3D9 00000003 27BCFDBC 00000000
0000A0 AB000300 001E001E 00F91400 C4C2D4F1 00000001 1DE8AEE2 00000000 DB0CB200
0000C0 001F001F 00F90E00 C4C9E2E3 00000000 4928674B 00000000 217F6000 00220022
0000E0 00F90480 C9D9D3D4 00000000 07165F79 00000000 3C2EF500 001D001D 00F91600
000100 E2D4C640 0000004D 0000004D 00000000 00000000 00000000 00000000 D9C5E240
000120 00000000 00000000 00000000 00000000 00000000 00000000 C7E3C640 00000019
000140 00000019 00000000 00000000 00000000 00000000 E2D9E540 00000000 00000000
000160 00000000 00000000 00000000 00000000 E2D9F140 00000156 000000D2 00000036
000180 00000036 00000000 00000004 E2D9F240 00000092 00000001 00000091 00000091
0001A0 00000000 0000000C D6D7F140 00000002 00000001 00000001 00000000 00010000
0001C0 20000004 D6D7F240 00000000 00000000 00000000 00000000 00000000 00000000
0001E0 D6D7F340 00000000 00000000 00000000 00000000 00000000 00000000 D6D7F440
000200 00000000 00000000 00000000 00000000 00000000 00000000 D6D7F540 00000000
000220 00000000 00000000 00000000 00000000 00000000 D6D7F640 00000000 00000000
000240 00000000 00000000 00000000 00000000 D6D7F740 00000000 00000000 00000000
000260 00000000 00000000 00000000 D6D7F840 00000000 00000000 00000000 00000000
000280 00000000 00000000 00010000 00000042 00000011 00000030 00000000 00000000
0002A0 00020000 00000041 00000011 00000030 00000000 00000000 00030000 00000003
0002C0 00000003 00000000 00000000 00000000 00040000 0000000C 0000000C 00000000
0002E0 00000000 00000000 00050000 0000000B 0000000A 00000001 00000000 00000000
000300 006A0000 0000000C 0000000B 00000001 00000000 00000000 008C0000 00000000
000320 00000000 00000000 00000000 00000000 008D0000 00000000 00000000 00000000
000340 00000000 00000000 008E0000 00000000 00000000 00000000 00000000 00000000

Figure 144. DB2 trace output sent to GTF (assembled with a user-written routine and printed
with DFSERA10 print program of IMS) (Part 1 of 2)

Appendix D. Interpreting DB2 trace output 987

Key to Figure 144 on page 987 Description
�A�0724 Length of assembled record; beginning of GTF writer

header section of second record (field QWGTLEN)
�B�EFB9 GTF event ID (field QWGTEID)
�C� End of GTF writer header section of second record
�D�000006D8 Offset to product section
�E�00000090 Offset to first data section
�F�000004C4 Offset to last data section
�G�004C011A Beginning of product section
�H� End of second record

Self-defining section
The self-defining section following the writer header contains pointers that enable
you to find the product and data sections, which contain the actual trace data.

Each “pointer” is a descriptor containing 3 fields, which are:

1. A fullword containing the offset from the beginning of the record to the data
section.

2. A halfword containing the length of each item in the data section.

3. A halfword containing the number of times the data section is repeated. If that
field contains “0”, the data section is not in the record. If it contains a number
greater than 1, multiple data items are stored contiguously within that data

000360 008F0000 00000000 00000000 00000000 00000000 00000000 00900000 00000000
000380 00000000 00000000 00000000 00000000 00910000 00000000 00000000 00000000
0003A0 00000000 00000000 00920000 00000000 00000000 00000000 00000000 00000000
0003C0 00CA0000 00000041 00000011 00000030 00000000 00000000 00000000 00000000
0003E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000400 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000440 00000000 00000000 00000000 00000004 00000000 00000000 000005D4 00000130
000460 0000000D 0000000A 00000029 00000009 000000C3 00000000 00000000 00000000
000480 00000001 0000000C 00000000 04A29740 00000000 00000000 00000001 00000000
0004A0 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0004C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0004E0 00000000 E2C1D56D D1D6E2C5 40404040 40404040 00000000 00000002 00000003
000500 00000000 000004A8 000005C7 00000000 00000001 00000003 00000003 00000000
000520 00000001 00000000 00000001 00000000 00000000 00000000 00000000 00000000
000540 00000002 00000001 00000000 00000000 00000000 00000000 00000000 00000000
000560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000580 00000000 00000000 00000002 00000000 00000003 00000000 00000003 00000006
0005A0 00000000 00000000 00000000 00000000 00000005 00000003 00000000 00000000
0005C0 00000000 00000003 00000000 00000000 00000000 00000000 00000000 00000000
0005E0 00000000 00000000 0000000C 00000001 00000000 00000007 00000000 00000000
000600 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000000
000620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000640 00000000 003C0048 D8E2E2E3 00000035 00000006 00000002 0000009E 0000002B
000660 00000078 00000042 00000048 000000EE 0000001B 0000007B 0000004B 00000000
000680 00000000 00000000 00000000 0093004C D8D1E2E3 00000000 000000FC 0000000E
0006A0 00000000 00000000 0000009D 00000000 00000000 00000016 0000000F 00000018

�G�
0006C0 00000000 00000000 00000000 00000000 00000000 00000000 004C011A 00010Dxx
0006E0 02523038 E2E2D6D7 0093018F 11223324 00000042 0000001A 00000001 E2C1D5E3
000700 C16DE3C5 D9C5E2C1 6DD3C1C2 40404040 40404040 40404040 40404040 A6E9B6B4
000720 9A2B0001�H�

Figure 144. DB2 trace output sent to GTF (assembled with a user-written routine and printed
with DFSERA10 print program of IMS) (Part 2 of 2)

988 Administration Guide

section. To find the second data item, add the length of the first data item to the
address of the first data item (and so forth). Multiple data items within a specific
data section always have the same length and format.

Pointers occur in a fixed order, and their meanings are determined by the IFCID of
the record. Different sets of pointers can occur, and each set is described by a
separate DSECT. Therefore, to examine the pointers, you must first establish
addressability using the DSECT that provides the appropriate description of the
self-defining section. To do this:

1. Compute the address of the self-defining section.

The self-defining section begins at label “SM100END” for statistics records,
“SM101END” for accounting records, and “SM102END” for performance and
audit records. It does not matter which mapping DSECT you use, because the
length of the SMF writer header is always the same.

For GTF, use QWGTEND.

2. Determine the IFCID of the record.

Use the first field in the self-defining section; it contains the offset from the
beginning of the record to the product section. The product section contains the
IFCID.

The product section is mapped by DSNDQWHS; the IFCID is mapped by
QWHSIID.

For statistics records having IFCID 0001, establish addressability using label
“QWS0”; for statistics records having IFCID 0002, establish addressability using
label “QWS1”. For accounting records, establish addressability using label
“QWA0”. For performance and audit records, establish addressability using label
“QWT0”.

After establishing addressability using the appropriate DSECT, use the pointers in
the self-defining section to locate the record’s data sections.

To help make your applications independent of possible future releases of DB2,
always use the length values contained in the self-defining section rather than
symbolic lengths that you may find in the macro expansions.

The relationship between the contents of the self-defining section “pointers” and the
items in a data section is shown in Figure 145 on page 990.

Appendix D. Interpreting DB2 trace output 989

Product section
The product section for all record types contains the standard header. The other
headers—correlation, CPU, distributed, and data sharing data—may also be
present.

Table 175. Contents of product section standard header

Hex
Offset

Macro
DSNDQWHS
field Description

0 QWHSLEN Length of standard header

2 QWHSTYP Header type

3 QWHSRMID RMID

4 QWHSIID IFCID

6 QWHSRELN Release number section

6 QWHSNSDA Number of self-defining sections

7 QWHSRN DB2 release identifier

8 QWHSACE ACE address

C QWHSSSID Subsystem ID

10 QWHSSTCK Timestamp—STORE CLOCK value assigned
by DB2

18 QWHSISEQ IFCID sequence number

1C QWHSWSEQ Destination sequence number

20 QWHSMTN Active trace number mask

24 QWHSLOCN Local location Name

34 QWHSLWID Logical unit of work ID

34 QWHSNID Network ID

3C QWHSLUNM LU name

44 QWHSLUUV Uniqueness value

Pointer to data section #n

Offset from start
of the record to
data section #n

Length of each
item in data
section #n

Number of items
(m) in data
section #n

Pointer
to data

section #n

Data
section
#1

Data
section
#2

…… …Item #1 Item #2 Item #n

Data section #n

Data sectionsSelf-defining
section

Figure 145. Relationship between self-defining section and data sections

990 Administration Guide

Table 175. Contents of product section standard header (continued)

Hex
Offset

Macro
DSNDQWHS
field Description

4A QWHSLUCC Commit count

4C QWHSEND End of product section standard header

Table 176. Contents of product section correlation header

Hex
Offset

Macro
DSNDQWHC
field Description

0 QWHCLEN Length of correlation header

2 QWHCTYP Header type

3 Reserved

4 QWHCAID Authorization ID

C QWHCCV Correlation ID

18 QWHCCN Connection name

20 QWHCPLAN Plan name

28 QWHCOPID Original operator ID

30 QWHCATYP The type of system that is connecting

34 QWHCTOKN Trace accounting token field

4A Reserved

4C QWHCEUID User ID of at the workstation for the end
user

5C QWHCEUTX Transaction name for the end user

7C QWHCEUWN Workstation name for the end user

8E QWHCEND End of product section correlation header

Table 177. Contents of CPU header

Hex
Offset

Macro
DSNDQWHU
field Description

0 QWHULEN Length of CPU header

2 QWHUTYP Header type

3 Reserved

4 QWHUCPU CPU time of MVS TCB or SRB dispatched

C QWHUCNT Count field reserved

E QWHUEND End of header

Table 178. Contents of distributed data header

Hex
Offset

Macro
DSNDQWHD
field Description

0 QWHDLEN Length of the distributed header

2 QWHDTYP Header type

Appendix D. Interpreting DB2 trace output 991

Table 178. Contents of distributed data header (continued)

Hex
Offset

Macro
DSNDQWHD
field Description

3 Reserved

4 QWHDRQNM Requester location name

14 QWHDTSTP Timestamp for DBAT trace record

1C QWHDSVNM EXCSAT SRVNAM parameter

2C QWHDPRID ACCRDB PRDID parameter

30 QWHDEND End of distributed header

Table 179. Contents of trace header

Hex
Offset

Macro
DSNDQWHT
field Description

0 QWHTLEN Length of the trace header

2 QWHTTYP Header type

3 Reserved

4 QWHTTID Event ID

6 QWHTTAG ID specified on DSNWTRC macro

7 QWHTFUNC Resource manager function code. Default is
0.

8 QWHTEB Execution block address

C QWHTPASI Prior address space ID - EPAR

E QWHTR14A Register 14 address space ID

10 QWHTR14 Contents of register 14

14 QWHTR15 Contents of register 15

18 QWHTR0 Contents of register 0

1C QWHTR1 Contents of register 1

20 QWHTEXU Address of MVS execution unit

24 QWHTDIM Number of data items

26 QWHTHASI Home address space ID

28 QWHTDATA Address of the data

2C QWHTFLAG Flags in the trace list

2E QWHTDATL Length of the data list

30 QWHTEND End of header

Table 180. Contents of data sharing header

Hex
Offset

Macro
DSNDQWHA
field Description

0 QWHALEN Length of the data sharing header

2 QWHATYP Header type

3 Reserved

992 Administration Guide

Table 180. Contents of data sharing header (continued)

Hex
Offset

Macro
DSNDQWHA
field Description

4 QWHAMEMN DB2 member name

C QWHADSGN DB2 data sharing group name

14 QWHAEND End of header

Figure 146 on page 994 is an actual sample of accounting trace for a distributed
transaction sent to SMF.

Appendix D. Interpreting DB2 trace output 993

�A�
000000 065C0000 0E650030 C8AB0093 018FF3F0 F9F0E2E2 D6D70000 00000000 00000590

�B� �C� �D� �E� �F� �G� �H� �I�
000020 00CC0001 00000064 00E40001 0000046C 00E40001 00000550 00400001 00000414

�J� �K� �L� �M�
000040 00580001 00000148 00DC0001 00000224 01000001 00000000 00000000 00000324

�N�
000060 00F00001 A6E9BB19 BDF7AC04 A6E9BB31 D4221703 00000000 00ACCF00 00000000
000080 06582600 00000000 12C41000 00000000 19EA6A00 0000000C 40404040 40404040
0000A0 00000000 00000000 00000001 00000000 00000013 BC47FF09 00000000 051D0700
0000C0 00000000 0509B300 00000000 00000000 00000000 000BD200 00000008 00000000
0000E0 00000002 6ADF1503 00000000 00000000 00000000 00000000 00000000 00000000
000100 00000002 00000002 00000000 00000000 00000000 00000000 00000000 00000000
000120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�O�
000140 00000000 00030001 E2C1D56D D1D6E2C5 40404040 40404040 00000000 00000002
000160 00000003 00000000 000004A8 000005C7 00000000 00000001 00000003 00000003
000180 00000000 00000001 00000000 00000001 00000000 00000000 00000000 00000000
0001A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000002
0001C0 00000001 00000000 00000000 00000000 00000000 80000113 00000000 00000000
0001E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000200 00000000 00000000 00000000 00000000 00000000 00000002 00000000 C4E2D5F0

�P�
000220 F3F0F1F0 54C4E2D5 F0F3F0F1 F0E2C1D5 6DD1D6E2 C5404040 40404040 40C4C2F2
000240 D5C5E340 40D3E4D5 C4F14040 40E3E2D6 40404040 40C2C1E3 C3C84040 40E2E8E2
000260 C1C4D440 40404040 40E2E8E2 C1C4D440 40C4E2D5 C5E2D7D9 D9000000 00000000
000280 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0002A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0002C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0002E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000300 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�Q�
000320 00000000 0001003A 40404040 40404040 40404040 40404040 40404040 40404040
000340 40404040 40404040 4040C4E2 D5C5E2D4 F6F84040 40404040 40404040 14D7D8F5
000360 1525F5F4 00000008 A6E9BB2F 4A964600 A6E9BB30 7E95B704 00000013 BC41EF09
000380 00000000 058EA200 00000000 060DDB00 00000000 0516F700 00000006 00000000
0003A0 00000000 00000000 00000000 000BD200 00000002 6ADF1503 00000000 00000000
0003C0 00000000 00000000 00000000 00000000 00000002 00000002 00000000 00000000
0003E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�R�
000400 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000420 00000000 00000000 00000003 00000000 00000000 00000000 00000000 00000000
000440 00000001 00000000 00000008 00000002 00000000 00000001 00000000 00000004

�S�
000460 00000000 00000000 00000000 209500E4 D8E7E2E3 00000000 00000000 00000000
000480 00000000 00000001 00000001 00000001 00000001 00000000 00000000 00000000
0004A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0004C0 00000000 00000000 00000000 00000000 00000003 00000000 00000000 00000000
0004E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000500 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000520 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�T�
000540 00000000 00000000 00000000 00000000 00000000 0000000B 00000000 00000000
000560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�U�
000580 00000000 00000000 00000009 00000000 004C011A 00030961 00B3ADB8 E2E2D6D7
0005A0 A6E9BB31 E074C605 00000003 0000002D 00000002 E2C1D5E3 C16DE3C5 D9C5E2C1

Figure 146. DB2 distributed data trace output sent to SMF (printed with DFSERA10 print
program of IMS) (Part 1 of 2). In this example there is one accounting record (IFCID 0003)
from the server site (SANTA_TERESA_LAB). The self-defining section for IFCID 0003 is
mapped by DSNDQWA0.

994 Administration Guide

Key to Figure 146 on page 994 Description
�A� 00000590 Offset to product section; beginning of self-defining

section
�B� 00CC Length of product section
�C� 0001 Number of times product section is repeated
�D� 00000064 Offset to accounting section
�E� 00E4 Length of accounting section
�F� 0001 Number of times accounting section is repeated
�G� 0000046C Offset to SQL accounting section
�H� 00000550 Offset to buffer manager accounting section
�I� 00000414 Offset to locking accounting section
�J� 00000148 Offset to distributed section
�K� 00000224 Offset to MVS/DDF accounting section
�L� 00000000 Offset to IFI accounting section
�M� 00000324 Offset to package/DBRM accounting section
�N� A6E9BB19... Beginning of accounting section (DSNDQWAC)
�0� E2C1D56D... Beginning of distributed section (DSNDQLAC)
�P� 54C4E2D5... Beginning of MVS/DDF accounting section

(DSNDQMDA)
�Q� 0001003A... Beginning of package/DBRM accounting section

(DSNDQPAC)
�R� 00000000... Beginning of locking accounting section (DSNDQTXA)
�S� 209500E4... Beginning of SQL accounting section (DSNDQXST)
�T� 00000000... Beginning of buffer manager accounting section

(DSNDQBAC)
�U� 004C011A... Beginning of product section (DSNDQWHS); beginning

of standard header
�V� 004C0200... Beginning of correlation header (DSNDQWHC)
�W� 00341000... Beginning of distributed header (DSNDQWHD)

Trace field descriptions
If you intend to write a program to read DB2 trace records, use the assembler
mapping macros in prefix.SDSNMACS.

You can use the TSO or ISPF browse function to look at the field descriptions in the
trace record mapping macros online, even when DB2 is down. If you prefer to look
at the descriptions in printed form, you can use ISPF to print a listing of the data
set.

�V�
0005C0 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4 F1404040 A6E9BAEC C4D90002 008E0200
0005E0 E2E8E2C1 C4D44040 E2E8E2C1 C4D44040 40404040 E3E2D640 40404040 C4E2D5C5
000600 E2D7D9D9 E2E8E2C1 C4D44040 00000007 00000000 00000000 00000000 00000000
000620 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000640 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

�W�
000660 00000000 E0000000 00000034 1000E2C1 D56DD1D6 E2C54040 40404040 4040A6E9
000680 BB2F38CC AC01E2C1 D56DD1D6 E2C54040 40404040 4040C4E2 D5F0F3F0 F1F0

Figure 146. DB2 distributed data trace output sent to SMF (printed with DFSERA10 print
program of IMS) (Part 2 of 2). In this example there is one accounting record (IFCID 0003)
from the server site (SANTA_TERESA_LAB). The self-defining section for IFCID 0003 is
mapped by DSNDQWA0.

Appendix D. Interpreting DB2 trace output 995

996 Administration Guide

Appendix E. Programming for the Instrumentation Facility
Interface (IFI)

The information in this appendix is Product-sensitive Programming Interface and
Associated Guidance Information as defined in “Notices” on page 1095.

The DB2 instrumentation facility gathers trace data that can be written to one or
more destinations that you specify. The instrumentation facility interface (IFI) is
designed for a program needing online trace information. IFI can be accessed
through any of the DB2 attachment facilities.

IFI uses the standard security mechanisms that DB2 uses—connection
authorization, plan authorization, and so forth. For more information about security,
see “Part 3. Security and auditing” on page 93. Security checks specifically related
to IFI are included in the descriptions of the functions.

Before using IFI, you should be familiar with the material in “DB2 trace” on
page 1033, which includes information on the DB2 trace facility and instrumentation
facility component identifiers (IFCIDs).

Please note that where the trace output indicates a particular release level, you will
see 'xx' to show that this information varies according to the actual release of DB2
that you are using.

You can use IFI in a monitor program (a program or function outside of DB2 that
receives information about DB2) to perform the following tasks:
v “Submitting DB2 commands through IFI”
v “Obtaining trace data” on page 998
v “Passing data to DB2 through IFI” on page 998

When a DB2 trace is active, internal events trigger the creation of trace records.
The records, identified by instrumentation facility component identifiers (IFCIDs),
can be written to buffers, and you can read them later with the IFI READA function.
This means you are collecting the data asynchronously; you are not reading the
data at the time it was written.

When the DB2 monitor trace is started for class 1, you can trigger the creation of
certain types of trace records by an external event—your use of the IFI READS
function. The records, identified as usual by IFCIDs, do not need a buffer; they are
passed immediately to your monitor program through IFI. This means you are
collecting the data synchronously. The data is collected at the time of the request
for the data.

Submitting DB2 commands through IFI
You can submit any DB2 command through IFI, but this capability is most useful for
submitting DB2 trace commands to start, stop, display, and modify traces.

Using specified trace classes and IFCIDs, a monitor program can control the
amount and type of its data. You can design your monitor program to:

v Activate and deactivate pre-defined trace classes.

v Activate and deactivate a trace record or group of records (identified by IFCIDs).

© Copyright IBM Corp. 1982, 2001 997

v Activate and deactivate predefined trace classes and trace records (identified by
IFCIDs) restricting tracing to a set of DB2 identifiers (plan name, authorization ID,
resource manager identifier (RMID), and so on).

Obtaining trace data
You might want to collect trace data from DB2:

v To obtain accounting information for online billing.

v To periodically obtain system-wide information about DB2, highlight exceptional
conditions, or provide throughput information.

The following illustrates the logic flow:

1. Initialize.

2. Set a timer.

3. Wait for the timer to expire.

4. Call IFI to obtain statistics data via a READS request.

5. Do delta calculations to determine activity.

This step is not necessary for IFCID 0199 because DB2 resets statistics at
the beginning of every collection interval.

6. Display the information on a terminal.

7. Loop back to the timer.

v To learn which processes have been connected to DB2 the longest, or which
processes have used the most CPU time in DB2.

v To obtain accounting records as transactions terminate.

v To determine the access and processing methods for an SQL statement. Start a
trace, issue a PREPARE statement, and then use the resulting trace data as an
alternative to using EXPLAIN.

v To capture log buffers online for use in remote recovery, as described in
“Appendix C. Reading log records” on page 957.

v To retrieve SQL changes synchronously from the log for processing in an
application. See “Reading log records with IFI” on page 968 for more information.

Passing data to DB2 through IFI
You can use IFI to pass data to the destination of a DB2 trace. For example, you
can:

v Extend accounting data collected within DB2. For example, a monitor program
can collect batch file I/O counts, store them in a user-defined trace record, and
process them along with standard DB2 accounting data.

v Include accounting data from QMF, IMS, or CICS.

v Permit CICS users to write the CICS accounting token and task number into the
DB2 trace, assuming TOKENE=NO.

IFI functions
A monitor program can use the following IFI functions:

COMMAND To submit DB2 commands. For more information, see “COMMAND:
Syntax and usage” on page 1000.

READS To obtain monitor trace records synchronously. The READS request

998 Administration Guide

causes those records to be returned immediately to the monitor
program. For more information, see “READS: Syntax and usage” on
page 1002.

READA To obtain trace records of any trace type asynchronously. DB2
records trace events as they occur and places that information into
a buffer; a READA request moves the buffered data to the monitor
program. For more information, see “READA: Syntax and usage” on
page 1015.

WRITE To write information to a DB2 trace destination that was previously
activated by a START TRACE command. For more information, see
“WRITE: Syntax and usage” on page 1017.

Invoking IFI from your program
IFI can be used by assembler and PL/I programs. To use IFI, include a call to
DSNWLI in your monitor program.

The following example depicts an IFI call in an assembler program. All examples in
this appendix are given for assembler.
CALL DSNWLI,(function,ifca,parm-1,...parm-n),VL

The parameters passed on the call indicate the function wanted (as described in
“IFI functions” on page 998), point to communication areas used by the function,
and provide other information that depends on the function specified. Because the
parameter list may vary in length, the high-order bit of the last parameter must be
on to signal that it is the last parameter in the list. To do this in Assembler for
example, use the VL option to signal a variable length parameter list. The
communication areas used by IFI are described in “Common communication areas”
on page 1019.

After you insert this call in your monitor program, you must link-edit the program
with the correct language interface. Each of the following language interface
modules has an entry point of DSNWLI for IFI:

CAF DSNALI TSO DSNELI
CICS DSNCLI IMS DFSLI000
RRSAF DSNRLI

A second entry point of DSNWLI2 has been added to the CAF (call attachment
facility) language interface module, DSNALI. The monitor program that link-edits
DSNALI with the program can make IFI calls directly to DSNWLI. The monitor
program that loads DSNALI must also load DSNWLI2 and remember its address.
When the monitor program calls DSNWLI, the program must have a dummy entry
point to handle the call to DSNWLI and then call the real DSNWLI2 routine. See
Part 6 of DB2 Application Programming and SQL Guide for additional information
about using CAF.

Considerations for writing a monitor program: A monitor program issuing IFI
requests must be connected to DB2 at the thread level. If the program contains
SQL statements, you must precompile the program and create a DB2 plan using
the BIND process. If the monitor program does not contain any SQL statements, it
does not have to be precompiled. However, as is the case in all the attachment

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 999

environments, even though an IFI only program (one with no SQL statements) does
not have a plan of its own, it can use any plan to get the thread level connection to
DB2.

The monitor program can run in either 24- or 31-bit mode.

Monitor trace classes: Monitor trace classes 1 through 8 can be used to collect
information related to DB2 resource usage. Use monitor trace class 5, for example,
to find out how much time is spent processing IFI requests. Monitor trace classes 2,
3, and 5 are identical to accounting trace classes 2, 3, and 5. For more information
about these traces, see “Monitor trace” on page 1036.

Monitor authorization: On the first READA or READS call from a user, an
authorization is checked to determine if the primary authorization ID or one of the
secondary authorization IDs of the plan executor has MONITOR1 or MONITOR2
privilege. If your installation is using the access control authorization exit routine,
then that exit might be controlling the privileges that can use the monitor trace. If
you have an authorization failure, an audit trace (class 1) record is generated that
contains the return and reason codes from the exit. This is included in IFCID 0140.
See “Access control authorization exit” on page 909for more information on the
access control authorization exit routine.

Using IFI from stored procedures
You can use the IFI interface from a stored procedure. The output of the trace can
be returned to the client. It is also possible to issue DB2 commands, such as
“DISPLAY THREAD”, from a stored procedure and get the results returned to the
client.

COMMAND: Syntax and usage
A DB2 command resides in the output area; a monitor program can submit that
command by issuing a COMMAND request to IFI. The DB2 command is processed
and the output messages are returned to the monitor program in the return area.

Any DB2 command can be submitted, including START TRACE, STOP TRACE,
DISPLAY TRACE, and MODIFY TRACE. Because the program can also issue other
DB2 commands, you should be careful about which commands you use. For
example, do not use STOP DB2.

Authorization
For an application program to submit a command, the primary authorization ID or
one of the secondary authorization IDs of the process must have the appropriate
DB2 command authorization, or the request is denied. An application program might
have the authorization to issue DB2 commands, but not the authorization to issue
READA requests.

Syntax
CALL DSNWLI,('COMMAND ',ifca,return-area,output-area,buffer-info .),VL

ifca IFCA (instrumentation facility communication area) is an area of storage
that contains the return code and reason code indicating the success or
failure of the request, diagnostic information from the DB2 component that
executed the command, the number of bytes moved to the return area, and
the number of bytes of the message segments that did not fit in the return

1000 Administration Guide

area. It is possible for some commands to complete and return valid
information and yet result in the return code and reason code being set to a
non-zero value. For example, the DISPLAY DATABASE command may
indicate that more information could be returned than was allowed.

If multiple errors occur, the last error is returned to the caller. For example,
if the command was in error and the error message did not fit in the area,
the error return code and reason code would indicate the return area was
too small.

If a monitor program issues START TRACE, the ownership token
(IFCAOWNR) in the IFCA determines the owner of the asynchronous buffer.
The owner of the buffer is the only process that can obtain data through a
subsequent READA request. See “IFCA” on page 1019 for a description of
the IFCA.

return-area
When the issued command finishes processing, it places messages (if any)
in the return area. The messages are stored as varying-length records, and
the total number of bytes in the records is placed in the IFCABM (bytes
moved) field of the IFCA. If the return area is too small, as many message
records as will fit are placed into the return area.

It is the monitor program's responsibility to analyze messages returned by
the command function. See “Return area” on page 1022 for a description of
the return area.

output-area
Contains the varying-length command. See “Output area” on page 1023 for
a description of the output area.

buffer-info
This parameter is required for starting traces to an OP buffer. Otherwise, it
is not needed. This parameter is used only on COMMAND requests. It
points to an area containing information about processing options when a
trace is started by an IFI call to an unassigned OPn destination buffer. An
OPn destination buffer is considered unassigned if it is not owned by a
monitor program.

If the OPn destination buffer is assigned, then the buffer information area is
not used on a later START or MODIFY TRACE command to that OPn
destination. For more information about using OPn buffers, see “Usage
notes” on page 1016.

When you use buffer-info on START TRACE, you can specify the number of
bytes that can be buffered before the monitor program ECB is posted. The
ECB is posted when the amount of trace data collected has reached the
value specified in the byte count field. The byte count field is also specified
in the buffer information area.

Table 181. Buffer information area fields. This area is mapped by assembler mapping macro DSNDWBUF.

Name
Hex
offset Data type Description

WBUFLEN 0 Signed two-byte
integer

Length of the buffer information area, plus 4. A zero indicates the
area does not exist.

2 Signed two-byte
integer

Reserved.

WBUFEYE 4 Character, 4
bytes

Eye catcher for block, WBUF.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1001

Table 181. Buffer information area fields (continued). This area is mapped by assembler mapping macro
DSNDWBUF.

Name
Hex
offset Data type Description

WBUFECB 8 Address The ECB address to post when the buffer has reached the byte
count specification (WBUFBC, below). The ECB must reside in
monitor key storage. A zero indicates not to post the monitor
program. In this case, the monitor program should use its own timer
to determine when to issue a READA request.

WBUFBC C Signed four-byte
integer

The records placed into the instrumentation facility must reach this
value before the ECB will be posted. If the number is zero, and an
ECB exists, posting occurs when the buffer is full.

Example
This example issues a DB2 START TRACE command for MONITOR Class 1.

READS: Syntax and usage
READS allows your monitor program to read DB2 status information that is
collected at the time of the IFI call. Monitor class 1 must be activated prior to any
READS requests. The records available are for IFCIDs 0001, 0002, 0106, 0124,
0129, 0147, 0148, 0149, 0150, 0185, 0199, 0202, 0230, 0254 0306, 0316, and
0317. For a description of the data these records provide, see “Synchronous data”
on page 1012. IFCID 0124, 0129, 0147 through 0150, 0197, 0254, 0316, and 0317
can be obtained only through the IFI READS interface.

Monitor class 1 need not be started by the program that issues the READS request,
because no ownership of an OP buffer is involved when obtaining data via the

CALL DSNWLI,('COMMAND ',IFCAAREA,RETAREA,OUTAREA,BUFAREA),VL...

COMMAND DC CL8 'COMMAND '
**
* Function parameter declaration *
**
* Storage of LENGTH(IFCA) and properly initialized *
**
IFCAAREA DS 0CL180...

**
* Storage for length and returned info. *
**
RETAREA DS CL608
**
* Storage for length and DB2 Command *
**
OUTAREA DS 0CL42
OUTLEN DC X'002A0000'
OUTCMD DC CL38'-STA TRAC(MON) DEST(OPX) BUFSIZE(32)
**
* Storage of LENGTH(WBUF) and properly initialized *
**
BUFAREA DS 0CL16...

Figure 147. Starting a trace using IFI

1002 Administration Guide

READS interface. Data is written directly to the application program's return area,
bypassing the OP buffers. This is in direct contrast to the READA interface where
the application that issues READA must first issue a START TRACE command to
obtain ownership of an OP buffer and start the appropriate traces.

Authorization
On a READS request, a check is made to see if monitor class 1 is active; if it is not
active, the request is denied. The primary authorization ID or one of the secondary
authorization IDs of the process running the application program must have
MONITOR1 or MONITOR2 privilege. If neither the primary authorization ID nor one
of the secondary authorization IDs has authorization, the request is denied. IFCID
185 requests are an exception—they do not require the MONITOR1 or MONITOR2
privilege. READS requests are checked for authorization once for each user
(ownership token) of the thread. (Several users can use the same thread, but an
authorization check is performed each time the user of the thread changes.)

If you use READS to obtain your own data (IFCID 0124, 0147, 0148, or 0150 not
qualified), then no authorization check is performed.

Syntax
CALL DSNWLI,('READS ',ifca,return-area,ifcid-area,qual-area),VL

ifca
Contains information about the success of the call. See “IFCA” on page 1019
for a description of the IFCA.

return-area
Contains the varying-length records returned by the instrumentation facility. IFI
monitor programs might need large enough READS return areas to
accommodate the following:

v Larger IFCID 0147 and 0148 records containing distributed thread data (both
allied and database access) that is returned to them.

v Additional records returned when database access threads exist that satisfy
the specified qualifications on the READS request.

v Log record control intervals with IFCID 129. For more information about using
IFI to return log records, see “Reading specific log records (IFCID 0129)” on
page 968.

v Log records based on user-specified criteria with IFCID 306. For example,
the user can retrieve compressed or decompressed log records. For more
information about reading log records, see “Appendix C. Reading log records”
on page 957.

v Data descriptions and changed data returned with IFCID 185.

If the return area is too small to hold all the records returned, it contains as
many records as will fit. The monitor program obtains the return area for
READS requests in its private address space. See “Return area” on page 1022
for a description of the return area.

ifcid-area
Contains the IFCIDs of the information wanted. The number of IFCIDs can be
variable. If the length specification of the IFCID area is exceeded or an IFCID of
X’FFFF’ is encountered, the list is terminated. If an invalid IFCID is specified no
data is retrieved. See “IFCID area” on page 1023 for a description of the IFCID
area.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1003

qual-area
This parameter is optional, and is used only on READS requests. It points to
the qualification area, where a monitor program can specify constraints on the
data that is to be returned. If the qualification area does not exist (length of
binary zero), information is obtained from all active allied threads and database
access threads. Information is not obtained for any inactive database access
threads that might exist.

The length constants for the qualification area are provided in the DSNDWQAL
mapping macro. If the length is not equal to the value of one of these
constants, IFI considers the call invalid.

The following trace records, identified by IFCID, cannot be qualified; if you
attempt to qualify them, the qualification is ignored: 0001, 0002, 0106, 0202,
0230.

The rest of the synchronous records can be qualified. See “Synchronous data”
on page 1012 for information about these records. However, not all the
qualifications in the qualification area can be used for these IFCIDs. See “Which
qualifications are used?” on page 1010 for qualification restrictions. Unless the
qualification area has a length of binary zero (in which case the area does not
exist), the address of qual-area supplied by the monitor program points to an
area formatted by the monitor program as shown in Table 182.

Table 182. Qualification area fields. This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALLEN 0 Signed two-byte
integer

Length of the qualification area, plus 4. The following constants set
the qualification area length field:
v WQALLN21. When specified, the location name qualifications

(WQALLOCN and WQALLUWI) are ignored.
v WQALLN22. When specified, the location name qualifications

(WQALLOCN and WQALLUWI) are used.
v WQALLN23. When specified, the log data access fields

(WQALLTYP, WQALLMOD, WQALLRBA, and WQALLNUM) are
used for READS calls using IFCID 129.

v WQALLN4. When specified, the location name qualifications
(WQALLOCN and WQALLUWI), the group buffer pool qualifier
(WQALGBPN) and the read log fields are used.

v WQALLN5. When specified, the dynamic statement cache fields
(WQALFFLD, WQALFVAL, WQALSTNM, and WQALSTID) are
used for READS calls for IFCID 0316 and 0317.

v WQALLN6. When specified, the end-user identification fields
(WQALEUID, WQALEUTX, and WQALEUWS) are used for
READS calls for IFCID 0124, 0147, 0148, 0149, and 0150.

2 Signed two-byte
integer

Reserved.

WQALEYE 4 Character, 4 bytes Eye catcher for block, WQAL.

WQALACE 8 Address Thread identification token value. This value indicates the specific
thread wanted; binary zero if it is not to be used.

WQALAIT2 C Address Reserved.

WQALPLAN 10 Character, 8 bytes Plan name; binary zero if it is not to be used.

WQALAUTH 18 Character, 8 bytes The current primary authorization ID; binary zero if it is not to be
used.

WQALOPID 20 Character, 8 bytes The original authorization ID; binary zero if it is not to be used.

WQALCONN 28 Character, 8 bytes Connection name; binary zero if it is not to be used.

1004 Administration Guide

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALCORR 30 Character, 12
bytes

Correlation ID; binary zero if it is not to be used.

WQALREST 3C Character, 32
bytes

Resource token for a specific lock request when IFCID 0149 is
specified. The field must be set by the monitor program. The
monitor program can obtain the information from a previous
READS request for IFCID 0150 or from a READS request for IFCID
0147 or 0148.

WQALHASH 5C Hex, 4 bytes Resource hash value specifying the resource token for a specific
lock request when IFCID 0149 is specified. The field must be set by
the monitor program. The monitor program can obtain the
information from a previous READS request for IFCID 0150 or
possibly from a READS request for IFCID 0147 or 0148.

WQALASID 60 Hex, 2 bytes ASID specifying the address space of the process wanted.

WQALFOPT 62 Hex, 1 byte Filtering options for IFCID 0150:
v X'80' - Return lock information only for resources that have

waiters.
v X'40' - Return lock information only for resources that have one

or more interested agents.

63 Hex, 1 byte Reserved.

64 Character, 24
bytes

LUWID (logical unit of work ID) of the thread wanted; binary zero if
it is not to be used

7C Character, 16
bytes

Location name. If specified, then data is returned only for
distributed agents, which originate at the specified location. For
example, if site A is located where the IFI program is running and
SITE A is specified in the WQALLOCN, then distributed agents,
both database access threads and distributed allied agents,
executing at SITE A are reported. Local non-distributed agents are
not reported. If site B is specified and the IFI program is still
executing at site A, then information on database access threads
which are executing in support of a distributed allied agent at site B
are reported. If WQALLOCN is not specified, then information on all
threads executing at SITE A (the site where the IFI program is
executing) is returned. This includes local non-distributed threads,
local database access agents, and local distributed allied agents.

WQALLTYP 8C Character, 3 bytes Specifies the type of log data access. 'CI ' must be specified to
obtain log record control intervals (CIs).

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1005

||||
|
|
|
|

||||

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALLMOD 8F Character, 1 byte The mode of log data access:
v 'D' - return the direct log record specified in WQALLRBA if the

IFCID is 0306.
v 'F' - access the first log CI of the restarted DB2 system if the

IFCID is 0129. One CI is returned, and the WQALLNUM and
WQALLRBA fields are ignored. It indicates to return the first set
of qualified log records if the IFCID is 0306.

v 'R' - access the CIs specified by the value in the WQALLRBA
field:
– If the requested number of complete CIs (as specified in

WQALLNUM) are currently available, those CIs are returned.
If fewer than the requested number of complete CIs are
available, IFI returns as many complete CIs as are available.

– If the WQALLRBA value is beyond the end of the active log,
IFI returns a return code of X'0000000C' and a reason code
of X'00E60855'. No records are returned.

– If no complete CIs exist beyond the WQALLRBA value, IFI
returns a return code of X'0000000C' and a reason code of
X'00E60856'. No records are returned.

v 'H' - return the highest LRSN or log RBA in the active log. The
value is returned in the field IFCAHLRS in the IFCA.

v 'N' - return the next set of qualified log records.
v 'T' - terminate the log position that is held to anticipate a future

mode 'N' call.
v 'P' - the last partial CI written to the active log is given to the Log

Capture Exit. If the last CI written to the log was not full, the RBA
of the log CI given to the Log Exit is returned in the IFCAHLRS
field of the IFI communication area (IFCA). Otherwise, an RBA of
zero is returned in IFCAHLRS. This option ignores WQALLRBA
and WQALLNUM.

WQALLNUM 90 Hex, 2 bytes The number of log CIs to be returned. The valid range is X'0001' to
X'0007'.

WQALCDCD 92 Character, 1 byte Data description request flag (A,Y,N):
v 'A' indicates that a data description will only be returned the first

time a DATA request is issued from the region or when it was
changed for a given table. This is the default.

v 'Y' indicates that a data description will be returned for each
table in the list for every new request.

v 'N' indicates that a data description will not be returned.

93 Hex, 1 byte Reserved.

WQALLRBA 94 Hex, 8 bytes v If the IFCID is 0129, the starting log RBA of the CI to be
returned. The CI starting log RBA value must end in X'000'. The
RBA value must be right-justified.

v If the IFCID is 0306, this is the log RBA or LRSN to be used in
mode 'F'.

1006 Administration Guide

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALGBPN 9C Character, 8 bytes Group buffer pool name for IFCID 0254. Buffer pool name for IFCID
0199. To specify a single buffer pool or group buffer pool, specify
the buffer pool name in hexadecimal, followed by hexadecimal
blanks. For example, to specify buffer pool BP1, put
X'C2D7F14040404040' in this field. To specify more than one buffer
pool or group buffer pool, use the pattern-matching character X'00'
in any position in the buffer pool name. X'00' indicates that any
character can appear in that position, and in all positions that
follow. For example, if you put X'C2D7F10000000000' in this field,
you indicate that you want data for all buffer pools whose names
begin with BP1, so IFI collects data for BP1, BP10 through BP19,
and BP16K0 through BP16K9. If you put X'C2D700F100000000' in
this field, you indicate that you want data for all buffer pools whose
names begin with BP, so IFI collects data for all buffer pools. IFI
ignores X'F1' in position four because it occurs after the first X'00'.

WQALLCRI A4 Hex, 1 byte Log Record Selection Criteria
v '00' indicates the return DB2CDC and UR control log records.

WQALLOPT A5 Hex, 1 byte Processing Options relating to decompression
v '01' indicates to decompress the log records if they are

compressed.
v '00' indicates that decompression should not occur.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1007

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFLTR A6 Hex, 1 byte For an IFCID 0316 request, identifies the filter method:

v X'00' indicates no filtering. This value tells DB2 to return
information for as many cached statements as fit in the return
area.

v X'01' indicates that DB2 returns information about the cached
statements that have the highest values for a particular statistics
field. Specify the statistics field in WQALFFLD. DB2 returns
information for as many statements as fit in the return area. For
example, if the return is large enough for information about 10
statements, the statements with the ten highest values for the
specified statistics field are reported.

v X'02' indicates that DB2 returns information about the cached
statements that exceed a threshold value for a particular
statistics field. Specify the name of the statistics field in
WQALFFLD. Specify the threshold value in WQALFVAL. DB2
returns information for as many qualifying statements as fit in the
return area.

v X'04' indicates that DB2 returns information about a single
cached statement. The application provides the four-byte cached
statement identifier in field WQALSTID. An IFCID 0316 request
with this qualifier is intended for use with IFCID 0172 or IFCID
0196, to obtain information about the statements that are
involved in a timeout or deadlock.

For an IFCID 0317 request, identifies the filter method:

v X'04' indicates that DB2 returns information about a single
cached statement. The application provides the four-byte cached
statement identifier in field WQALSTID. An IFCID 0317 request
with this qualifier is intended for use with IFCID 0172 or IFCID
0196, to obtain information about the statements that are
involved in a timeout or deadlock.

For an IFCID 0306 request, indicates whether DB2 merges log
records in a data sharing environment:

v X'00' indicates that DB2 merges log records from data sharing
members.

v X'03' indicates that DB2 does not merge log records from data
sharing members.

1008 Administration Guide

|
|
|
|
|
|

|
|
|
|
|
|

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALFFLD A7 Character, 1 byte For an IFCID 0316 request, when WQALFLTR is X'01' or X'02', this
field specifies the statistics field used to determine the cached
statements about which DB2 reports. The following list shows the
values you can enter and the statistics fields they represent:

v ’E’ - the number of executions of the statement (QW0316NE)

v ’B’ - the number of buffer reads (QW0316NB)

v ’G’ - the number of GETPAGE requests (QW0316NB)

v ’R’ - the number of rows examined (QW0316NR)

v ’P’ - the number of rows processed (QW0316NP)

v ’S’ - the number of sorts performed (QW0316NS)

v ’I’ - the number of index scans (QW0316NI)

v ’T’ - the number of table space scans (QW0316NT)

v ’L’ - the number of parallel groups (QW0316NL)

v ’W’ - the number of buffer writes (QW0316NW)

v ’A’ - the accumulated elapsed time (QW0316AE). This option is
valid only when QWALFLTR=X'01'.

v ’X’ - the number of times that a RID list was not used because
the number of RIDs would have exceeded one or more internal
DB2 limits (QW0316RT).

v ’Y’ - the number of times that a RID list was not used because
not enough storage was available (QW0316RS).

v ’C’ - the accumulated CPU time (QW0316CT). This option is
valid only when QWALFLTR=X'01'.

v ’1’ - the accumulated wait time for synchronous I/O
(QW0316W1). This option is valid only when QWALFLTR=X'01'.

v ’2’ - the accumulated wait time for lock and latch requests
(QW0316W2). This option is valid only when QWALFLTR=X'01'.

v ’3’ - the accumulated wait time for a synchronous execution unit
switch (QW0316W3). This option is valid only when
QWALFLTR=X'01'.

v ’4’ - the accumulated wait time for global locks (QW0316W4).
This option is valid only when QWALFLTR=X'01'.

v ’5’ - the accumulated wait time for read activity by another thread
(QW0316W5). This option is valid only when QWALFLTR=X'01'.

v ’6’ - the accumulated wait time for write activity by another thread
(QW0316W6). This option is valid only when QWALFLTR=X'01'.

WQALFVAL A8 Signed 4-byte
integer

For an IFCID 0316 request, when WQALFLTR is X'02', this field
and WQALFFLD determine the cached statements about which
DB2 reports.

To be eligible for reporting, a cached statement must have a value
for the statistics field specified by WQALFFLD that is no smaller
than the value you specify in this field. DB2 reports information on
as many eligible statements as fit in the return area.

WQALSTNM AC Character, 16
bytes

For an IFCID 0317 request, when WQALFLTR is not X'04', this field
specifies the name of a cached statement about which DB2
reports. This is a name that DB2 generates when it caches the
statement. To obtain this name, issue a READS request for IFCID
0316. The name is in field QW0316NM. This field and WQALSTID
uniquely identify a cached statement.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1009

Table 182. Qualification area fields (continued). This area is mapped by the assembler mapping macro DSNDWQAL.

Name
Hex
offset Data type Description

WQALSTID BC Unsigned 4-byte
integer

For an IFCID 0316 or IFCID 0317 request, this field specifies the ID
of a cached statement about which DB2 reports. This is an ID that
DB2 generates when it caches the statement.

v For an IFCID 0317 request, when WQALFLTR is not X'04',
obtain this ID by issuing a READS request for IFCID 0316. The
ID is in field QW0316TK. This field and WQALSTNM uniquely
identify a cached statement.

v For an IFCID 0316 or IFCID 0317 request, when WQALFLTR is
X'04', obtain this ID by issuing a READS request for IFCID 0172
or IFCID 0196. The ID is in field QW0172H9 (cached statement
ID for the holder in a deadlock), QW0172W9 (cached statement
ID for the waiter in a deadlock), or QW0196H9 (cached
statement ID of the holder in a timeout). This field uniquely
identifies a cached statement.

WQALEUID C0 Character, 16
bytes

The end user's workstation user ID. This value can be different
from the authorization ID used to connect to DB2. This field
contains binary zeroes if the client did not supply this information.

WQALEUTX D0 Character, 32
bytes

The name of the transaction or application that the end user is
running. This value identifies the application that is currently
running, not the product that is used to run the application. This
field contains binary zeroes if the client did not supply this
information.

WQALEUWS F0 Character, 18
bytes

The end user's workstation name. This value can be different from
the authorization ID used to connect to DB2. This field contains
binary zeroes if the client did not supply this information.

Note: If your monitor program does not initialize the qualification area, the READS request is denied.

Which qualifications are used?
Not all qualifications are used for all IFCIDs. The following table lists the
qualification fields that are used for each IFCID.

Table 183. Qualification fields for IFCIDs

These IFCIDs... Are allowed to use these qualification fields

0124, 0147, 0148, 0150 WQALACE
WQALAIT2
WQALPLAN1

WQALAUTH1

WQALOPID1

WQALCONN1

WQALCORR1

WQALASID
WQALLUWI1

WQALLOCN1

WQALEUID
WQALEUTX
WQALEUWS

0129 WQALLTYP
WQALLMOD
WQALLRBA
WQALLNUM

1010 Administration Guide

|
|
|
|
|
|
|

Table 183. Qualification fields for IFCIDs (continued)

These IFCIDs... Are allowed to use these qualification fields

0149 WQALREST
WQALHASH

0150 WQALFOPT

0185 WQALCDCD

0199, 0254 WQALGBPN2

0306 WQALFLTR
WQALLMOD
WQALLRBA
WQALLCRI
WQALLOPT

0316 WQALFLTR
WQALFFLD
WQALFVAL
WQALSTID

0317 WQALFLTR
WQALSTNM
WQALSTID

Note:
1. DB2 allows you to partially qualify a field and fill the rest of the field with binary zero. For

example, the 12-byte correlation value for a CICS thread contains the 4-character CICS
transaction code in positions 5-8. Assuming a CICS transaction code of AAAA, the
following hexadecimal qual-area correlation qualification can be used to find the first
transaction with a correlation value of AAAA in positions 5-8:
X'00000000C1C1C1C100000000'.

2. X'00' in this field indicates a pattern-matching character. X'00' in any position of the field
indicates that IFI collects data for buffer pools whose names contain any character in that
position and all following positions.

Usage notes
Due to performance considerations, the majority of data obtained by a monitor
program probably comes over the synchronous interface: summarized DB2
information is easier for a monitor program to process, and the monitor program
logic is simpler since a smaller number of records are processed.

After you issue the START TRACE command to activate monitor class 1, you can
issue a READS request to obtain information immediately and return the information
to your monitor program in the return area. Start monitor classes 2, 3, 5, 7, and 8 to
collect additional summary and status information for later probing. In this case an
instrumentation facility trace is started and information is summarized by the
instrumentation facility, but not returned to the caller until requested by a READS
call.

The READS request may reference data being updated during the retrieval process.
It might be necessary to do reasonability tests on data obtained through READS.
The READS function does not suspend activity taking place under structures being
referred to. Thus, an abend can occur. If so, the READS function is terminated
without a dump and the monitor program is notified through the return code and
reason code information in the IFCA. However, the return area can contain valid
trace records, even if an abend occurred; therefore, your monitor program should
check for a non-zero value in the IFCABM (bytes moved) field of the IFCA.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1011

||

When using a READS with a query parallelism task, keep in mind that each parallel
task is a separate thread. Each parallel thread has a separate READS output. See
“Chapter 34. Parallel operations and query performance” on page 841 for more
information on tracing the parallel tasks. It is also possible that a READS request
might return thread information for parallel tasks on a DB2 data sharing member
without the thread information for the originating task in a Sysplex query parallelism
case. See DB2 Data Sharing: Planning and Administration .

When starting monitor trace class 1, specifying a PLAN, an AUTHID, an RMID, or a
LOCATION has no effect on the number of records returned on IFI READS
requests. The qual-area parameter, mapped by DSNDWQAL, is the only means of
qualifying the trace records to be returned on IFI READS requests.

Synchronous data
There are certain types of records that you can read synchronously, as long as
monitor trace class 1 is active. Identified by IFCID, these records are:

0001 Statistical data on the systems services address space, including
task control block (TCB) and service request block (SRB) times for
system services, database services, including DDF statistics, and
Internal Resource Lock Manager (IRLM) address spaces.

0002 Statistical data on the database services address space.

0106 Static system parameters.

0124 An active SQL snapshot giving status information about the
process, the SQL statement text, the relational data system input
parameter list (RDI) block, and status flags to indicate certain bind
and locking information.

It is possible to obtain a varying amount of data because the
request requires the process to be connected to DB2, have a
cursor table allocated (RDI and status information is provided), and
be active in DB2 (SQL text is provided if available). The SQL text
provided does not include the SQL host variables.

For dynamic SQL, IFI provides the original SQL statement. The
RDISTYPE field contains the actual SQL function taking place. For
example, for a SELECT statement, the RDISTYPE field can indicate
that an open cursor, fetch, or other function occurred. For static
SQL, you can see the DECLARE CURSOR statement, and the
RDISTYPE indicates the function. The RDISTYPE field is mapped
by mapping macro DSNXRDI.

0129 Returns one or more VSAM control intervals (CIs) containing DB2
recovery log records. For more information about using IFI to return
these records for use in remote site recovery, see “Appendix C.
Reading log records” on page 957.

0147 An active thread snapshot giving a status summary of processes at
a DB2 thread or non-thread level.

0148 An active thread snapshot giving more detailed status of processes
at a DB2 thread or non-thread level.

0149 Information indicating who (the thread identification token) is holding
locks and waiting for locks on a particular resource and hash token.
The data provided is in the same format defined for IFCID 0150.

1012 Administration Guide

0150 All the locks held and waited on by a given user or owner (thread
identification token).

0199 Information about buffer pool usage by DB2 data sets. DB2 reports
this information for an interval you specify in field DATASET STATS
TIME of installation panel DSNTIPN. At the beginning of each
interval, DB2 resets these statistics to 0.

0202 Dynamic system parameters.

0230 Global statistics for data sharing.

0254 Group buffer pool usage in the data sharing group.

0316 Returns information about the contents of the dynamic statement
cache. The IFI application can request information for all statements
in the cache, or provide qualification parameters to limit the data
returned. DB2 reports the following information about a cached
statement:

v A statement name and ID that uniquely identify the statement

v If IFCID 0318 is active, performance statistics for the statement

v The first 60 bytes of the statement text

0317 Returns the complete text of an SQL statement in the dynamic
statement cache. To identify a statement for which you want the
complete text, you must the statement name and statement ID from
IFCID 0316 output. For more information on using IFI to obtain
information about the dynamic statement cache, see “Using READS
calls to monitor the dynamic statement cache”.

You can read another type of record synchronously as long as monitor trace class 6
is active:

0185 Data descriptions for each table for which captured data is returned
on this DATA request. IFCID 0185 data is only available through a
propagation exit routine triggered by DB2.

0306 Returns compressed or decompressed log records in both a data
sharing or non data-sharing environment. For IFCID 306 requests,
your program's return area must reside in ECSA key 7 storage with
the IFI application program running in key 0 supervisor state. The
IFI application program must set the eye-catcher to “I306” before
making the IFCID 306 call. See “IFCA” on page 1019 for more
information on the instrumentation facility communication area
(IFCA) and what is expected of the monitor program.

For more information on IFCID field descriptions, see the mapping macros in
prefix.SDSNMACS. See also “DB2 trace” on page 1033 and “Appendix D.
Interpreting DB2 trace output” on page 981 for additional information.

Using READS calls to monitor the dynamic statement cache
You can use READS requests from an IFI application to monitor the contents of the
dynamic statement cache, and optionally, to see some accumulated statistics for
those statements. This can help you detect and diagnose performance problems for
those cached dynamic SQL statements.

An IFI program that monitors the dynamic statement cache should include these
steps:

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1013

1. Acquire and initialize storage areas for common IFI communication areas.

2. Issue an IFI COMMAND call to start monitor trace class 1.

This lets you make READS calls for IFCID 0316 and IFCID 0317.

3. Issue an IFI COMMAND call to start performance trace class 30 for IFCID
0318.

This enables statistics collection for statements in the dynamic statement
cache. See “Controlling collection of dynamic statement cache statistics with
IFCID 0318” on page 1015 for information on when you should start a trace for
IFCID 0318.

4. Put the IFI program into a wait state.

During this time, SQL applications in the subsystem execute dynamic SQL
statements using the dynamic statement cache.

5. Resume the IFI program after enough time has elapsed for a reasonable
amount of activity to occur in the dynamic statement cache.

6. Set up the qualification area for a READS call for IFCID 0316 as described in
Table 182 on page 1004.

7. Set up the IFCID area to request data for IFCID 0316.

8. Issue an IFI READS call to retrieve the qualifying cached SQL statements.

9. Examine the contents of the return area.

For a statement with unexpected statistics values:

a. Obtain the statement name and statement ID from the IFCID 0316 data.

b. Set up the qualification area for a READS call for IFCID 0317 as described
in Table 182 on page 1004.

c. Set up the IFCID area to request data for IFCID 0317.

d. Issue a READS call for IFCID 0317 to get the entire text of the statement.

e. Obtain the statement text from the return area.

f. Use the statement text to execute an SQL EXPLAIN statement.

g. Fetch the EXPLAIN results from the PLAN_TABLE.

10. Issue an IFI COMMAND call to stop monitor trace class 1.

11. Issue an IFI COMMAND call to stop performance trace class 30 for IFCID
0318.

An IFI program that monitors deadlocks and timeouts of cached statements should
include these steps:

1. Acquire and initialize storage areas for common IFI communication areas.

2. Issue an IFI COMMAND call to start monitor trace class 1.

This lets you make READS calls for IFCID 0316 and IFCID 0317.

3. Issue an IFI COMMAND call to start performance trace class 30 for IFCID
0318.

This enables statistics collection for statements in the dynamic statement
cache. See “Controlling collection of dynamic statement cache statistics with
IFCID 0318” on page 1015 for information on when you should start a trace for
IFCID 0318.

4. Start performance trace class 3 for IFCID 0172 to monitor deadlocks, or
performance trace class 3 for IFCID 0196 to monitor timeouts.

5. Put the IFI program into a wait state.

During this time, SQL applications in the subsystem execute dynamic SQL
statements using the dynamic statement cache.

1014 Administration Guide

|
|

|

|

|

|
|

|
|
|
|

|
|

|

|
|

6. Resume the IFI program when a deadlock or timeout occurs.

7. Issue a READA request to obtain IFCID 0172 or IFCID 0196 trace data.

8. Obtain the cached statement ID of the statement that was involved in the
deadlock or timeout from the IFCID 0172 or IFCID 0196 trace data. Using the
statement ID, set up the qualification area for a READS call for IFCID 0316 or
IFCID 0317 as described in Table 182 on page 1004.

9. Set up the IFCID area to request data for IFCID 0316 or IFCID 0317.

10. Issue an IFI READS call to retrieve the qualifying cached SQL statement.

11. Examine the contents of the return area.

12. Issue an IFI COMMAND call to stop monitor trace class 1.

13. Issue an IFI COMMAND call to stop performance trace class 30 for IFCID
0318 and performance trace class 3 for IFCID 0172 or IFCID 0196.

Controlling collection of dynamic statement cache statistics with IFCID
0318

The collection of statistics for statements in the dynamic statement cache can
increase the processing cost for those statements. To minimize this increase, use
IFCID 0318 to enable and disable the collection of dynamic statement cache
statistics. When IFCID 0318 is inactive, DB2 does not collect those statistics. DB2
tracks the statements in the dynamic statement cache, but does not accumulate the
statistics as those statements are used. When you are not actively monitoring the
cache, you should turn off the trace for IFCID 0318.

If you issue a READS call for IFCID 0316 while IFCID 0318 is inactive, DB2 returns
identifying information for all statements in the cache, but returns 0 in all the IFCID
0316 statistics counters.

When you stop or start the trace for IFCID 0318, DB2 resets the IFCID 0316
statistics counters for all statements in the cache to 0.

READA: Syntax and usage
The READA function allows a monitor program to asynchronously read data that
has accumulated in an OPn buffer.

Authorization
On a READA request the application program must own the specified destination
buffer, or the request is denied. You can obtain ownership of a storage buffer by
issuing a START TRACE to an OPn destination. The primary authorization ID or
one of the secondary authorization IDs of the process must have MONITOR1 or
MONITOR2 privilege or the request is denied. READA requests are checked for
authorization once for each user of the thread. (Several users can use the same
thread, but an authorization check is performed each time the user of the thread
changes.)

Syntax
CALL DSNWLI,('READA ',ifca,return-area),VL

ifca
Contains information about the OPn destination and the ownership token value
(IFCAOWNR) at call initiation. After the READA call has been completed, the
IFCA contains the return code, reason code, the number of bytes moved to the
return area, the number of bytes not moved to the return area if the area was

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1015

|

|

|
|
|
|

|

|

|

|

|
|

too small, and the number of records lost. See “Common communication areas”
on page 1019 for a description of the IFCA.

return-area
Contains the varying-length records returned by the instrumentation facility. If
the return area is too small, as much of the output as will fit is placed into the
area (a complete varying-length record). Reason code 00E60802 is returned in
cases where the monitor program's return area is not large enough to hold the
returned data. See “Return area” on page 1022 for a description of the return
area.

IFI allocates up to 8 OP buffers upon request from storage above the line in
extended CSA. IFI uses these buffers to store trace data until the owning
application performs a READA request to transfer the data from the OP buffer
to the application's return area. An application becomes the owner of an OP
buffer when it issues a START TRACE command and specifies a destination of
OPN or OPX. Each buffer can be of size 4K to 1M. IFI allocates a maximum of
4MB of storage for the 8 OP buffers. The default monitor buffer size is
determined by the MONSIZE parameter in the DSNZPARM module.

Usage notes
You can use a monitor trace that uses any one of eight online performance monitor
destinations, OPn, (where n is equal to a value from 1 to 8). Typically, the
destination of OPn is only used with commands issued from a monitor program. For
example, the monitor program can pass a specific online performance monitor
destination (OP1, for example) on the START TRACE command to start
asynchronous trace data collection.

If the monitor program passes a generic destination of OPX, the instrumentation
facility assigns the next available buffer destination slot and returns the OPn
destination name to the monitor program. To avoid conflict with another trace or
program that might be using an OP buffer, you should use the generic OPX
specification when you start tracing. You can then direct the data to the destination
specified by the instrumentation facility with the START or MODIFY TRACE
commands.

There are times, however, when you should use a specific OPn destination initially:

v When you plan to start numerous asynchronous traces to the same OPn
destination. To do this, you must specify the OPn destination in your monitor
program. The OPn destination started is returned in the IFCA.

v When the monitor program specifies that a particular monitor class (defined as
available) together with a particular destination (for example OP7) indicates that
certain IFCIDs are started. An operator can use the DISPLAY TRACE command
to determine which monitors are active and what events are being traced.

Buffering data: To have trace data go to the OPn buffer, you must start the trace
from within the monitor program. After the trace is started, DB2 collects and buffers
the information as it occurs. The monitor program can then issue a read
asynchronous (READA) request to move the buffered data to the monitor program.
The buffering technique ensures that the data is not being updated by other users
while the buffer is being read by the READA caller. For more information, see “Data
integrity” on page 1027.

Possible data loss: Although it is possible to activate all traces and have the trace
data buffered, it is definitely not recommended, because performance might suffer
and data might be lost.

1016 Administration Guide

Data loss occurs when the buffer fills before the monitor program can obtain the
data. DB2 does not wait for the buffer to be emptied, but, instead, informs the
monitor program on the next READA request (in the IFCARLC field of the IFCA)
that the data has been lost. It is the user's responsibility to have a high enough
dispatching priority that the application can be posted and then issue the READA
request before significant data is lost.

Asynchronous data
DB2 buffers all IFCID data that is activated by the START TRACE command and
passes it to a monitor program on a READA request. The IFCID events include all
of the following:
v Serviceability
v Statistics
v Accounting
v Performance
v Audit data
v IFCIDs defined for the IFI write function

IFCID events are discussed in “DB2 trace” on page 1033.

Your monitor program can request an asynchronous buffer, which records trace
data as trace events occur. The monitor program is then responsible for unloading
the buffer on a timely basis. One method is to set a timer to wake up and process
the data. Another method is to use the buffer information area on a START TRACE
command request, shown in Table 181 on page 1001, to specify an ECB address to
post when a specified number of bytes have been buffered.

Example
The following depicts the logic flow for monitoring DB2 accounting and for
displaying the information on a terminal:

1. Initialize.

2. Use GETMAIN to obtain a storage area equal to BUFSIZE.

3. Start an accounting trace by issuing a DB2 START TRACE=ACCTG
DEST=OPX command through IFI indicating to wake up this routine by a
POST whenever the buffer is 20% full.

4. Check the status in the IFCA to determine if the command request was
successful.

5. WAIT for the buffer to be posted.

6. Clear the post flag.

7. Call IFI to obtain the buffer data via a READA request.

8. Check the status of the IFCA to determine if the READA request was
successful.

9. De-block the information provided.

10. Display the information on a terminal.

11. Loop back to the WAIT.

WRITE: Syntax and usage
A monitor program can write information to a DB2 trace destination by issuing a
write (WRITE) request for a specific IFCID.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1017

Authorization
WRITE requests are not checked for authorization, but a DB2 trace must be active
for the IFCID being written. If the IFCID is not active, the request is denied. For a
WRITE request, no other authorization checks are made.

Syntax
CALL DSNWLI,('WRITE ',ifca,output-area,ifcid-area),VL

The write function must specify an IFCID area. The data written is defined and
interpreted by your site.

ifca Contains information regarding the success of the call. See “IFCA” on
page 1019 for a description of the IFCA.

output-area
Contains the varying-length of the monitor program's data record to be
written. See “Output area” on page 1023 for a description of the output
area.

ifcid-area
Contains the IFCID of the record to be written. Only the IFCIDs defined to
the write function (see Table 184) are allowed. If an invalid IFCID is
specified or the IFCID is not active (was not started by a TRACE
command), no data is written. See Table 184 for IFCIDs that can be used
by the write function.

Table 184. Valid IFCIDs for WRITE Function

IFCID
(decimal)

IFCID
(hex) Trace type Class Comment

0146 0092 Auditing 9 Write to IFCID 146

0151 0097 Accounting 4 Write to IFCID 151

0152 0098 Statistics 2 Write to IFCID 152

0153 0099 Performance 1 Background events and write to
IFCID 153

0154 009A Performance 15 Write to IFCID 154

0155 009B Monitoring 4 Write to IFCID 155

0156 009C Serviceability 6 Reserved for user-defined
serviceability trace

See “IFCID area” on page 1023 for a description of the IFCID area.

Usage notes
The information is written to the destination that was previously activated by a
START TRACE command for that ID.

If your site uses the IFI write function, you should establish usage procedures and
standards. Procedures are necessary to ensure that the correct IFCIDs are active
when DB2 is performing the WRITE function. Standards are needed to determine
what records and record formats a monitor program should send to DB2. You
should place your site's record type and sub-type in the first fields in the data record
since your site can use one IFCID to contain many different records.

1018 Administration Guide

Common communication areas
The following communication areas are used on all IFI calls:
v “IFCA”, below
v “Return area” on page 1022
v “IFCID area” on page 1023
v “Output area” on page 1023

IFCA
The program's IFCA (instrumentation facility communication area) is a
communications area between the monitor program and IFI. A required parameter
on all IFI requests, the IFCA contains information about the success of the call in its
return code and reason code fields.

The monitor program is responsible for allocating storage for the IFCA and
initializing it. The IFCA must be initialized to binary zeros and the eye catcher,
4-byte owner field, and length field must be set by the monitor program. Failure to
properly initialize the IFCA results in denying any IFI requests.

The monitor program is also responsible for checking the IFCA return code and
reason code fields to determine the status of the request.

The IFCA fields are described in Table 185.

Table 185. Instrumentation facility communication area. The IFCA is mapped by assembler mapping macro
DSNDIFCA.

Name
Hex
offset Data type Description

IFCALEN 0 Hex, 2 bytes Length of IFCA.

IFCAFLGS 2 Hex, 1 byte Processing flags.

v IFCAGLBL, X'80'

This bit is on if an IFI request is to be processed on all members
of a data sharing group.

3 Hex, 1 byte Reserved.

IFCAID 4 Character, 4
bytes

Eye catcher for block, IFCA.

IFCAOWNR 8 Character, 4
bytes

Owner field, provided by the monitor program. This value is used to
establish ownership of an OPn destination and to verify that a
requester can obtain data from the OPn destination. This is not the
same as the owner ID of a plan.

IFCARC1 C Four-byte signed
integer

Return code for the IFI call. Binary zero indicates a successful call.
See Part 3 of DB2 Messages and Codes for information about
reason codes. For a return code of 8 from a COMMAND request,
the IFCAR0 and IFCAR15 values contain more information.

IFCARC2 10 Four-byte signed
integer

Reason code for the IFI call. Binary zero indicates a successful call.
See Part 3 of DB2 Messages and Codes for information about
reason codes.

IFCABM 14 Four-byte signed
integer

Number of bytes moved to the return area. A non-zero value in this
field indicates information was returned from the call. Only complete
records are moved to the monitor program area.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1019

Table 185. Instrumentation facility communication area (continued). The IFCA is mapped by assembler mapping
macro DSNDIFCA.

Name
Hex
offset Data type Description

IFCABNM 18 Four-byte signed
integer

Number of bytes that did not fit in the return area and still remain in
the buffer. Another READA request will retrieve that data. Certain IFI
requests return a known quantity of information. Other requests will
terminate when the return area is full.

1C Four-byte signed
integer

Reserved.

IFCARLC 20 Four-byte signed
integer

Indicates the number of records lost prior to a READA call. Records
are lost when the OP buffer storage is exhausted before the
contents of the buffer are transferred to the application program via
an IFI READA request. Records that do not fit in the OP buffer are
not written and are counted as records lost.

IFCAOPN 24 Character, 4
bytes

Destination name used on a READA request. This field identifies the
buffer requested, and is required on a READA request. Your monitor
program must set this field. The instrumentation facility fills in this
field on START TRACE to an OPn destination from an monitor
program. If your monitor program started multiple OPn destination
traces, the first one is placed in this field. If your monitor program
did not start an OPn destination trace, the field is not modified. The
OPn destination and owner ID are used on subsequent READA
calls to find the asynchronous buffer.

IFCAOPNL 28 Two-byte signed
integer

Length of the OPn destinations started. On any command entered
by IFI, the value is set to X'0004'. If an OPn destination is started,
the length is incremented to include all OPn destinations started.

2A Two-byte signed
integer

Reserved.

IFCAOPNR 2C Character, 8 fields
of 4 bytes each

Space to return 8 OPn destination values.

IFCATNOL 4C Two-byte signed
integer

Length of the trace numbers plus 4. On any command entered by
IFI the value is set to X'0004'. If a trace is started, the length is
incremented to include all trace numbers started.

4E Two-byte signed
integer

Reserved.

IFCATNOR 50 Character, 8 fields
of 2 bytes each.

Space to hold up to eight EBCDIC trace numbers that were started.
The trace number is required if the MODIFY TRACE command is
used on a subsequent call.

IFCADL 60 Hex, 2 bytes Length of diagnostic information.

62 Hex, 2 bytes Reserved.

1020 Administration Guide

Table 185. Instrumentation facility communication area (continued). The IFCA is mapped by assembler mapping
macro DSNDIFCA.

Name
Hex
offset Data type Description

IFCADD 64 Character, 80
bytes

Diagnostic information.

v IFCAFCI, offset 64, 6 bytes

This contains the RBA of the first CI in the active log if IFCARC2
is 00E60854. See “Reading specific log records (IFCID 0129)” on
page 968 for more information.

v IFCAR0, offset 6C, 4 bytes

For COMMAND requests, this field contains -1 or the return code
from the component that executed the command.

v IFCAR15, offset 70, 4 bytes

For COMMAND requests, this field contains one of the following
values:

0 The command completed successfully.

4 Internal error.

8 The command was not processed because of errors in
the command.

12 The component that executed the command returned the
return code in IFCAR0.

16 An abend occurred during command processing.
Command processing might be incomplete, depending
on when the error occurred. See IFCAR0 for more
information.

20 Response buffer storage was not available. The
command completed, but no response messages are
available. See IFCAR0 for more information.

24 Storage was not available in the DSNMSTR address
space. The command was not processed.

28 CSA storage was not available. If a response buffer is
available, the command might have partially completed.
See IFCAR0 for more information.

32 The user is not authorized to issue the command. The
command was not processed.

v IFCAGBPN, offset 74, 8 bytes

This is the group buffer pool name in error if IFCARC2 is
00E60838 or 00E60860

v IFCABSRQ, offset 88, 4 bytes

This is the size of the return area required when the reason code
is 00E60864.

v IFCAHLRS, offset 8C, 6 bytes

This field can contain the highest LRSN or log RBA in the active
log (when WQALLMOD is 'H'). Or, it can contain the RBA of the
log CI given to the Log Exit when the last CI written to the log
was not full, or an RBA of zero (when WQALLMOD is 'P').

IFCAGRSN 98 Four-byte signed
integer

Reason code for the situation in which an IFI calls requests data
from members of a data sharing group, and not all the data is
returned from group members. See Part 3 of DB2 Messages and
Codes for information about reason codes.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1021

Table 185. Instrumentation facility communication area (continued). The IFCA is mapped by assembler mapping
macro DSNDIFCA.

Name
Hex
offset Data type Description

IFCAGBM 9C Four-byte signed
integer

Total length of data that was returned from other data sharing group
members and fit in the return area.

IFCAGBNM A0 Four-byte signed
integer

Total length of data that was returned from other data sharing group
members and did not fit in the return area..

IFCADMBR A4 Character, 8
bytes

Name of a single data sharing group member on which an IFI
request is to be executed. Otherwise, this field is blank. If this field
contains a member name, DB2 ignores field IFCAGLBL.

IFCARMBR AC Character, 8
bytes

Name of the data sharing group member from which data is being
returned. DB2 sets this field in each copy of the IFCA that it places
in the return area, not in the IFCA of the application that makes the
IFI request.

Return area
You must specify a return area on all READA, READS, and COMMAND requests.
IFI uses the return area to return command responses, synchronous data, and
asynchronous data to the monitor program.

Table 186. Return area

Hex
offset Data type Description

0 Signed four-byte integer The length of the return area, plus 4. This must be set by the
monitor program. The valid range for READA requests is 100 to
1048576 (X’00000064’ to X’00100000’). The valid range for READS
requests is 100 to 2147483647 (X’00000064’ to X’7FFFFFFF’).

4 Character, varying-length DB2 places as many varying-length records as it can fit into the area
following the length field. The monitor program’s length field is not
modified by DB2. Each varying-length trace record has a 2-byte
length field.

After a COMMAND request, the last character in the return area is a
new-line character (X'15').

Table 187. Return area using IFCID 306

Hex Data type Description

0 Signed four-byte integer The length of the return area

4 Character, 4 bytes The eye-catcher, a constant, I306. Beginning of QW0306OF
mapping.

8 Character, 60 bytes. Reserved

44 Signed four-byte integer The length of the returned data.

Note: For more information about reading log records, see “Appendix C. Reading log records” on page 957

The destination header for data returned on a READA or READS request is
mapped by macro DSNDQWIW or the header QW0306OF for IFCID 306 requests.
Please refer to prefix.SDSNSAMP(DSNWMSGS) for the format of the trace record
and its header. The size of the return area for READA calls should be as large as
the buffer specified on the BUFSIZE keyword when the trace is started.

1022 Administration Guide

Data returned on a COMMAND request consists of varying-length segments
(X'xxxxrrrr' where the length is 2 bytes and the next 2 bytes are reserved), followed
by the message text. More than one record can be returned. The last character in
the return area is a new-line character (X'15').

The monitor program must compare the number of bytes moved (IFCABM in the
IFCA) to the sum of the record lengths to determine when all records have been
processed.

IFCID area
You must specify the IFCID area on READS and WRITE requests. The IFCID area
contains the IFCIDs to process.

Table 188. IFCID area

Hex
Offset Data type Description

0 Signed two-byte integer Length of the IFCID area, plus 4. The length can range from X'0006'
to X'0044'. For WRITE requests, only one IFCID is allowed, so the
length must be set to X'0006'.

For READS requests, you can specify multiple IFCIDs. If so, you
must be aware that the returned records can be in a different
sequence than requested and some records can be missing.

2 Signed two-byte integer Reserved.

4 Hex, n fields of 2 bytes each The IFCIDs to be processed. Each IFCID is placed contiguous to the
previous IFCID for a READS request. The IFCIDs start at X'0000'
and progress upward. You can use X'FFFF' to signify the last IFCID
in the area to process.

Output area
The output area is used on command and WRITE requests. The area can contain a
DB2 command or information to be written to the instrumentation facility. The first
two bytes of area contain the length of the monitor program’s record to write or the
DB2 command to be issued, plus 4 additional bytes. The next two bytes are
reserved. You can specify any length from 10 to 4096 (X'000A0000' to
X'10000000'). The rest of the area is the actual command or record text.

For example, a START TRACE command is formatted as follows in an assembler
program:

DC X'002A0000' LENGTH INCLUDING LL00 + COMMAND
DC CL38'-STA TRACE(MON) DEST(OPX) BUFSIZE(32) '

Using IFI in a data sharing group
You can use IFI READA and READS calls in an application that runs on one
member of a data sharing group to gather trace data from other members of the
data sharing group. You can also use an IFI COMMAND call to execute a command
at another member of a data sharing group. In addition to the IFCA fields that you
use for an IFI request for a single subsystem, you need to set or read the following
fields for an IFI request for a data sharing group:

IFCAGLBL
Set this flag on to indicate that the READS or READA request should be sent to
all members of the data sharing group.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1023

IFCADMBR
If you want an IFI READS, READA, or COMMAND request to be executed at a
single member of the data sharing group, assign the name of the group
member to this field. If you specify a name in this field, DB2 ignores IFCAGLBL.

Setting the IFCADMBR field and issuing an IFI COMMAND request is a useful
way to issue a DB2 command that does not support SCOPE(GROUP) at
another member of a data sharing group.

If the member whose name you specify is not active when DB2 executes the IFI
request, DB2 returns an error.

IFCARMBR
The name of the data sharing member that generated the data that follows the
IFCA. DB2 sets this value in the copy of the IFCA that it places in the
requesting program's return area.

IFCAGRSN
A reason code that DB2 sets when not all data is returned from other data
sharing group members. See Part 3 of DB2 Messages and Codes for specific
reason codes.

IFCAGBM
The number of bytes of data that is returned from other members of the data
sharing group and fits in the requesting program's return area.

IFCAGBNM
The number of bytes of data that is returned from other members of the data
sharing group and does not fit in the requesting program's return area.

As with READA or READS requests for single DB2 subsystems, you need to issue
a START TRACE command before you issue the READA or READS request. You
can issue START TRACE with the parameter SCOPE(GROUP) to start the trace at
all members of the data sharing group. For READA requests, you specify
DEST(OPX) in the START TRACE command. DB2 collects data from all data
sharing members and returns it to the OPX buffer for the member from which you
issued the READA request.

If a new member joins a data sharing group while a trace with SCOPE(GROUP) is
active, the trace starts at the new member.

After you issue a READS or READA call for all members of a data sharing group,
DB2 returns data from all members in the requesting program's return area. Data
from the local member is first, followed by the IFCA and data for all other members.
For example, if the local DB2 is called DB2A, and the other two members in the
group are DB2B and DB2C, the return area looks like this:
Data for DB2A
IFCA for DB2B (DB2 sets IFCARMBR to DB2B)
Data for DB2B
IFCA for DB2C (DB2 sets IFCARMBR to DB2C)
Data for DB2C

If an IFI application requests data from a single other member of a data sharing
group (IFCADMBR contains a member name), the requesting program's return area
contains the data for that member but no IFCA for the member. All information
about the request is in the requesting program's IFCA.

1024 Administration Guide

Because a READA or READS request for a data sharing group can generate much
more data than a READA or READS request for a single DB2, you need to increase
the size of your return area to accommodate the additional data.

Interpreting records returned by IFI
The following section describes the format of the records returned by IFI as a result
of READA, READS, and COMMAND requests.

Trace data record format
Trace records returned from READA and READS requests contain:

v A writer header that reports the length of the entire record, whether the record
was in the first, middle, or last section of data, and other specific information for
the writer.

The writer header for IFI is mapped by DSNDQWIW or the header QW0306OF
for IFCID 306 requests. See the mapping macros in prefix.SDSNMACS for the
formats.

v A self-defining section

v A product section containing specific DB2 information based on the active trace

v Data areas containing the actual recorded data are mapped by multiple mapping
macros described in prefix.SDSNMACS.

For detailed information about the format of trace records and their mapping
macros, see “Appendix D. Interpreting DB2 trace output” on page 981, or see the
mapping macros in prefix.SDSNMACS.

The following example, in dump format, shows the return area after a READS
request successfully executed.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1025

Figure label Description
�A�05A8 Length of record. The next two bytes are reserved.
�B�00000510 Offset to product section standard header.
�C�00000054 Offset to first data section.
�D�80000018 Beginning of first data section.
�E�004C011A Beginning of product section standard header.
�F�006A IFCID (decimal 106).

For more information on IFCIDs and mapping macros, see “DB2 trace” on
page 1033 and “Appendix D. Interpreting DB2 trace output” on page 981.

Command record format
The record returned from a command request can contain none or many message
text segments. Each segment is a varying-length message (LLZZ, where LL is the
2-byte length and ZZ is a 2-byte reserved area) followed by message text. The
IFCA’s IFCABM field contains the total number of bytes moved.

DFSERA10 - PRINT PROGRAM...

�A� �B� �C�
000000 05A80000 00000510 00980001 00000054 00B80001 0000010C 01000001 0000020C
000020 01160001 00000324 01B00001 000004D4 00000000 000004D4 00080001 000004DC

�D�
000040 00010001 000004E0 00000000 000004E0 00300001 80000018 00000010 000003E8
000060 00640064 000A0028 003D0000 0000A000 00033000 00033000 00010000 E0000000
000080 00000000 00000000 00000000 C1C4D4C6 F0F0F140 F0F20080 00003084 00000000
0000A0 00002000 0005003C 0028F040 40404040 40404040 40404040 40404040 40404040

...

000320 B0000000 202701D0 E2D7D9D4 D2C4C4F0 F0F1F940 01980064 00000000 E7C14000
000340 00400280 C5E2E8E2 C1C4D440 40000000 000E1000 000001BC 000001B0 C9C2D4E4
000360 E2C5D940 C9D9D3D4 D7D9D6C3 C9D9D3D4 0000003C 0000012C 0000000A 8080008C
000380 00FA0000 00007D00 000A0014 00050028 000E0002 00080008 00400077 00000514
0003A0 000003E8 012C0000 0000000E 000A01F4 00FA0000 00000032 000003E8 00002710
0003C0 E2E8E2C1 C4D44040 E2E8E2D6 D7D94040 E2E8E2D6 D7D94040 000A0080 00140000
0003E0 00000080 0005000A 13880078 0008000A 00040004 00040005 0001000A 00020005
000400 00003000 00007800 00000001 000007D0 00040400 00780078 00010003 00019000
000420 0000000A 00000020 00000019 00000000 0005000A 0006000A 00640064 00040063
000440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000460 30C4E2D5 D9C7C3D6 D3C4E2D5 6DD9C5C7 C9E2E3C5 D96DC1D7 D7D3C4E2 D56DD9C5
000480 C7C9E2E3 C5D96DD6 C2D1E380 C4E2D5D9 C7C6C4C2 000009FD C5000000 00001060
0004A0 00020000 00001000 40000000 00000000 00000000 00000000 00000000 00000000
0004C0 00000000 00000000 00000000 F1F161F1 F361F9F2 C4E2D5C3 F3F1F040 80000000
0004E0 00160030 C6C1C340 00010000 C4C4C640 40404040 C1800002 00000000 C1C3E3C9

�E� �F�
000500 E5C54040 00000000 00000000 00000000 004C011A 006A0A31 00B45B78 E2E2D6D7
000520 A6E9C7D5 EBDB1104 00000008 00000002 00000001 E2C1D5E3 C16DE3C5 D9C5E2C1
000540 6DD3C1C2 C4C2F2D5 C5E34040 D3E4D5C4 F0404040 A6E9C7D2 E73C0001 004C0200
000560 E2E8E2C1 C4D44040 D4D7C9E3 E2F14040 40404040 C2C1E3C3 C8404040 C4E2D5C5
000580 C4C3D340 E2E8E2C1 C4D44040 00000001 00000000 00000000 00000000 00000000
0005A0 00000000 00000000

Figure 148. Example of IFI return area after READS request (IFCID 106). This output was
assembled by a user-written routine and printed with the DFSERA10 print program of IMS.

1026 Administration Guide

The following example, in dump format, shows the return area after a START
TRACE command successfully executed.

Figure label Description
�A�007E0000 Field entered by print program
�B�0000007A Length of return area
�C�003C Length of record (003C). The next two bytes are reserved.
�D�C4E2D5E6 Beginning of first message
�E�003A Length of record. The next two bytes are reserved.
�F�C4E2D5F9 Beginning of second message

The IFCABM field in the IFCA would indicate that X'00000076' (�C� + �E�) bytes
have been moved to the return area.

Data integrity
Although IFI displays DB2 statistics, agent status, and resource status data, it does
not change or display DB2 database data. When a process retrieves data,
information is moved from DB2 fetch-protected storage to the user’s address space,
or from the address space to DB2 storage, in the storage key of the requester. Data
moved by the READA request is serialized so that only clean data is moved to the
address space of the requester.

The serialization techniques used to obtain data for a given READA request could
have a minor performance impact on processes that are storing data into the
instrumentation facility buffer simultaneously. Failures during the serialization
process are handled by DB2.

The DB2 structures searched on a READS request are validated before they are
used. If the DB2 structures are updated while being searched, inconsistent data
might be returned. If the structures are deleted while being searched, users might
access invalid storage areas, causing an abend. If an abend does occur, the
functional recovery routine of the instrumentation facility traps the abend and
returns information about it to the application program’s IFCA.

Auditing data
Starting, stopping, or modifying trace through IFI might cause changes to the events
being traced for audit. Each time these trace commands are processed a record is
sent to the destination processing the trace type. In the case of audit, the audit
destination receives a record indicating a trace status has been changed. These
records are IFCID 0004 and 0005.

DFSERA10 - PRINT PROGRAM...

�A� �B� �C� �D�
000000 007E0000 0000007A 003C0001 C4E2D5E6 F1F3F0C9 406F40D4 D6D540E3 D9C1C3C5
000020 40E2E3C1 D9E3C5C4 6B40C1E2 E2C9C7D5 C5C440E3 D9C1C3C5 40D5E4D4 C2C5D940

�E� �F�
000040 F0F24015 003A0001 C4E2D5F9 F0F2F2C9 406F40C4 E2D5E6E5 C3D4F140 7D60E2E3
000060 C1D9E340 E3D9C1C3 C57D40D5 D6D9D4C1 D340C3D6 D4D7D3C5 E3C9D6D5 4015

Figure 149. Example of IFI return area after a START TRACE command. This output was
assembled with a user-written routine and printed with DFSERA10 program of IMS.

Appendix E. Programming for the Instrumentation Facility Interface (IFI) 1027

Locking considerations
When designing your application to use IFI, you need to consider the potential for
locking delays, deadlocks, and time-out conflicts. Locks are obtained for IFI in the
following situations:

v When READS and READA requests are checked for authorization, short duration
locks on the DB2 catalog are obtained. When the check is made, subsequent
READS or READA requests are not checked for authorization. Remember, if you
are using the access control exit routine, then that routine might be controlling
the privileges that the monitor trace can use.

v When DB2 commands are submitted, each command is checked for
authorization. DB2 database commands obtain additional locks on DB2 objects.

A program can issue SQL statements through an attachment facility and DB2
commands through IFI. This environment creates the potential for an application to
deadlock or time-out with itself over DB2 locks acquired during the execution of
SQL statements and DB2 database commands. You should ensure that all DB2
locks acquired by preceding SQL statements are no longer held when the DB2
database command is issued. You can do this by:

v Binding the DB2 plan with ACQUIRE(USE) and RELEASE(COMMIT) bind
parameters

v Initiating a commit or rollback to free any locks your application is holding, before
issuing the DB2 command

If you use SQL in your application, the time between commit operations should be
short. For more information on locking, see “Chapter 30. Improving concurrency” on
page 643.

Recovery considerations
When an application program issues an IFI call, the function requested is
immediately performed. If the application program subsequently abends, the IFI
request is not backed out. In contrast, requests that do not use IFI are committed
and abended as usual. For example, if an IFI application program also issues SQL
calls, a program abend causes the SQL activity to be backed out.

Errors
While using IFI, you might encounter any of these types of error:
v Connection failure, because the user is not authorized to connect to DB2
v Authorization failure, because the process is not authorized to access the DB2

resources specified

Requests sent through IFI can fail for a variety of reasons, including:
v One or more parameters are invalid.
v The IFCA area is invalid.
v The specified OPn is in error.
v The requested information is not available.
v The return area is too small.

Return code and reason code information is stored in the IFCA in fields IFCARC1
and IFCARC2. Further return and reason code information is contained in Part 3 of
DB2 Messages and Codes.

1028 Administration Guide

Appendix F. Using tools to monitor performance

This section describes the various facilities for monitoring DB2 activity and
performance. It includes information on facilities within the DB2 product as well as
tools available outside of DB2. Figure 150 shows various monitoring tools that can
be used in a DB2 environment.

CICS Monitoring Facility (CMF) provides performance information about each
CICS transaction executed. It can be used to investigate the resources used
and the time spent processing transactions. Be aware that overhead is
significant when CMF is used to gather performance information.

IMS Performance Analyzer (IMS PA), a separately licensed program, can be
used to produce transit time information based on the IMS log data set. It can
also be used to investigate response-time problems of IMS DB2 transactions.

Fast Path Log Analysis Utility (DBFULTA0), an IMS utility, provides
performance data.

CICS
monitoring

facility

IMS
DC monitor

IMS log
records

DB2 trace
facility*

DB2 RUNSTATS
facility*

DB2 STOSPACE
utility*

DB2 EXPLAIN
statement*

DB2 DISPLAY
command*

DB2 catalog
queries*

CICS attachment
Statistics*

MVS RMF

GTF

SMF or
CICS journal

IMS
log

SMF
or GTF

Data source Data writer Reporting tool Reduction and
history

Performance
reporter for

MVS

IMS
DFSUTR20

utility

IMS PA

DBFULTA0

DB2 PM

Online

RMF
monitor III

RMF
monitor II

Online or
reports

Online or
reports

reportsRMF monitor ISMF

Performance
reporter
for MVS

Reports

Reports

Reports

Reports
graphics

Online
monitor

*Facilities available with the DB2 product

Figure 150. Monitoring tools in a DB2 environment

© Copyright IBM Corp. 1982, 2001 1029

|

DB2 trace facility provides DB2 performance and accounting information. It is
described under “DB2 trace” on page 1033.

System Management Facility (SMF) is an MVS service aid used to collect
information from various MVS subsystems. This information is dumped and
reported periodically, such as once a day. Refer to “Recording SMF trace data”
on page 1037 for more information.

Generalized Trace Facility (GTF) is an MVS service aid that collects
information to analyze particular situations. GTF can also be used to analyze
seek times and Supervisor Call instruction (SVC) usage, and for other services.
See “Recording GTF trace data” on page 1039 for more information.

DB2 Performance Monitor (DB2 PM) is an orderable feature of DB2 used to
analyze DB2 trace records. DB2 PM is described under “DB2 Performance
Monitor (DB2 PM)” on page 1039.

DB2 RUNSTATS utility can report space use and access path statistics in the
DB2 catalog. See “Gathering monitor and update statistics” on page 775 and
Part 2 of DB2 Utility Guide and Reference.

DB2 STOSPACE utility provides information about the actual space allocated
for storage groups, table spaces, table space partitions, index spaces, and index
space partitions. See in Part 2 of DB2 Utility Guide and Reference.

DB2 EXPLAIN statement provides information about the access paths used by
DB2. See “Chapter 33. Using EXPLAIN to improve SQL performance” on
page 789 and Chapter 5 of DB2 SQL Reference.

DB2 DISPLAY command gives you information about the status of threads,
databases, buffer pools, traces, allied subsystems, applications, and the
allocation of tape units for the archive read process. For information about the
DISPLAY BUFFERPOOL command, see “Monitoring and tuning buffer pools
using online commands” on page 563. For information about using the DISPLAY
command to monitor distributed data activity, see “Using the DISPLAY
command” on page 866. For the detailed syntax of each command, refer to
Chapter 2 of DB2 Command Reference.

DB2 Connect can monitor and report DB2 server-elapsed time for client
applications that access DB2 data. See “Reporting server-elapsed time” on
page 870.

Performance Reporter for MVS, formerly known as EPDM, is a licensed
program that collects SMF data into a DB2 database and allows you to create
reports on the data. See “Performance Reporter for MVS” on page 1040.

DB2 catalog queries help you determine when to reorganize table spaces and
indexes. See the description of the REORG utility in Part 2 of DB2 Utility Guide
and Reference.

CICS Attachment Facility statistics provide information about the use of CICS
threads. This information can be displayed on a terminal or printed in a report.

Resource Measurement Facility (RMF) is an optional feature of OS/390 that
provides system-wide information on processor utilization, I/O activity, storage,
and paging. There are three basic types of RMF sessions: Monitor I, Monitor II,
and Monitor III. Monitor I and Monitor II sessions collect and report data
primarily about specific system activities. Monitor III sessions collect and report
data about overall system activity in terms of work flow and delay.

Using MVS, CICS, and IMS tools
To monitor DB2 and CICS, you can use:
v RMF Monitor II for physical resource utilizations
v GTF for detailed I/O monitoring when needed

1030 Administration Guide

|
|
|

v Performance Reporter for MVS for application processor utilization, transaction
performance, and system statistics.

You can use RMF Monitor II to dynamically monitor system-wide physical resource
utilizations, which can show queuing delays in the I/O subsystem.

In addition, the CICS attachment facility DSNC DISPLAY command allows any
authorized CICS user to dynamically display statistical information related to thread
usage and situations when all threads are busy. For more information about the
DSNC DISPLAY command, see Chapter 2 of DB2 Command Reference.

Be sure that the number of threads reserved for specific transactions or for the pool
is large enough to handle the actual load. You can dynamically modify the value
specified in the resource control table (RCT) with the DSNC MODIFY
TRANSACTION command. You might also need to modify the maximum number of
threads specified for the MAX USERS field on installation panel DSNTIPE.

To monitor DB2 and IMS, you can use:

v RMF Monitor II for physical resource utilizations

v GTF for detailed I/O monitoring when needed

v IMS Performance Analyzer, or its equivalent, for response-time analysis and
tracking all IMS-generated requests to DB2

v Fast Path Log Analysis Utility (DBFULTA0) for performance data

In addition, the DB2 IMS attachment facility allows you to use the DB2 command
DISPLAY THREAD command to dynamically observe DB2 performance.

Monitoring system resources
Monitor system resources to:
v Detect resource constraints (processor, I/O, storage)
v Determine how resources are consumed
v Check processor, I/O, and paging rate to detect a bottleneck in the system
v Detect changes in resource use over comparable periods.

Figure 151 shows an example of a suggested system resources report.

Appendix F. Using tools to monitor performance 1031

|
|

The RMF reports used to produce the information in Figure 151 were:

v The RMF CPU activity report, which lists TOTAL CPU Busy and the TOTAL I/Os
per second.

v RMF paging activity report, which lists the TOTAL Paging rate per second for
main storage.

v The RMF work load activity report, which is used to estimate where resources
are spent. Each address space or group of address spaces to be reported on
separately must have different SRM reporting or performance groups. The
following SRM reporting groups are considered:
– DB2 address spaces:

DB2 Database Address Space (ssnmDBM1)
DB2 System Services Address Space (ssnmMSTR)
Distributed Data Facility (ssnmDIST)
IRLM (IRLMPROC)

– IMS or CICS
– TSO-QMF
– DB2 batch and utility jobs

The CPU for each group is obtained using the ratio (A/B) × C, where:
A is the sum of CPU and service request block (SRB) service units for the
specific group
B is the sum of CPU and SRB service units for all the groups
C is the total processor utilization.

The CPU and SRB service units must have the same coefficient.

You can use a similar approach for an I/O rate distribution.

MAJOR CHANGES shows the important environment changes, such as:

v DB2 or any related software-level change

v DB2 changes in the load module for system parameters

SYSTEM RESOURCES REPORT DATE xx/xx/xx
FROM xx:xx:xx
TO xx:xx:xx

TOTAL CPU Busy 74.3 %

DB2 & IRLM 9.3 %
IMS/CICS 45.3 %
QMF Users 8.2 %
DB2 Batch & Util 2.3 %
OTHERS 9.2 %

SYSTEM AVAILABLE 98.0 %

TOTAL I/Os/sec. 75.5

TOTAL Paging/sec. 6.8
Short Medium Long
Transaction Transaction Transaction

Average Response Time 3.2 secs 8.6 secs 15.0 secs

MAJOR CHANGES:
DB2 application DEST07 moved to production

Figure 151. User-Created system resources report

1032 Administration Guide

v New applications put into production

v Increase in the number of QMF users

v Increase in batch and utility jobs

v Hardware changes

MAJOR CHANGES is also useful for discovering the reason behind different
monitoring results.

Monitoring transaction manager throughput
Use IMS or CICS monitoring facilities to determine throughput, in terms of
transactions processed, and transaction response times. Depending on the
transaction manager, you can use the following reports:
v IMS Performance Analyzer
v Fast Path Log Analysis Utility (DBFULTA0)
v Performance Reporter for MVS

In these reports:

v The transactions processed include DB2 and non-DB2 transactions.

v The transaction processor time includes the DB2 processor time for IMS but not
for CICS.

v The transaction transit response time includes the DB2 transit time.

A historical database is useful for saving monitoring data from different periods.
Such data can help you track the evolution of your system. You can use
Performance Reporter for MVS or write your own application based on DB2 and
QMF when creating this database.

DB2 trace
The information under this heading, up to “Recording SMF trace data” on
page 1037, is General-use Programming Interface and Associated Guidance
Information as defined in “Notices” on page 1095.

DB2’s instrumentation facility component (IFC) provides a trace facility that you can
use to record DB2 data and events. With the IFC, however, analysis and reporting
of the trace records must take place outside of DB2. You can use the IBM
DATABASE 2 Performance Monitor (DB2 PM) feature of DB2, to format, print, and
interpret DB2 trace output. You can view an online snapshot from trace records by
using DB2 PM or other online monitors. For more information on DB2 PM, see DB2
PM for OS/390 General Information. For the exact syntax of the trace commands
see Chapter 2 of DB2 Command Reference.

If you do not have DB2 PM, or if you want to do your own analysis of the DB2 trace
output, refer to “Appendix D. Interpreting DB2 trace output” on page 981. Also
consider writing your own program using the instrumentation facility interface (IFI).
Refer to “Appendix E. Programming for the Instrumentation Facility Interface (IFI)”
on page 997 for more information on using IFI.

Each trace class captures information on several subsystem events. These events
are identified by many instrumentation facility component identifiers (IFCIDs). The
IFCIDs are described by the comments in their mapping macros, contained in
prefix.SDSNMACS, which is shipped to you with DB2.

Appendix F. Using tools to monitor performance 1033

Types of traces
DB2 trace can record six types of data: statistics, accounting, audit, performance,
monitor, and global. The description of the START TRACE command in Chapter 2
of DB2 Command Reference indicates which IFCIDs are activated for the different
types of trace and the classes within those trace types. For details on what
information each IFCID returns, see the mapping macros in prefix.SDSNMACS.

The trace records are written using GTF or SMF records. See “Recording SMF
trace data” on page 1037 and “Recording GTF trace data” on page 1039 before
starting any traces. Trace records can also be written to storage, if you are using
the monitor trace class.

Statistics trace
The statistics trace reports information about how much the DB2 system services
and database services are used. It is a system-wide trace and should not be used
for chargeback accounting. Use the information the statistics trace provides to plan
DB2 capacity, or to tune the entire set of active DB2 programs.

Statistics trace classes 1, 3, 4, and 5 are the default classes for the statistics trace
if statistics is specified YES in panel DSNTIPN. If the statistics trace is started using
the START TRACE command, then class 1 is the default class.

v Class 1 provides information about system services and database statistics. It
also includes the system parameters that were in effect when the trace was
started.

v Class 3 provides information about deadlocks and timeouts.

v Class 4 provides information about exceptional conditions.

v Class 5 provides information about data sharing.

If you specified YES in the SMF STATISTICS field on the Tracing Panel
(DSNTIPN), the statistics trace starts automatically when you start DB2, sending
class 1, 3, 4 and 5 statistics data to SMF. SMF records statistics data in both SMF
type 100 and 102 records. IFCIDs 0001, 0002, 0202, and 0230 are of SMF type
100. All other IFCIDs in statistics trace classes are of SMF type 102. From panel
DSNTIPN, you can also control the statistics collection interval (STATISTICS TIME
field).

The statistics trace is written on an interval basis, and you can control the exact
time that statistics traces are taken.

Accounting trace
The DB2 accounting trace provides information related to application programs,
including such things as:

Start and stop times
Number of commits and aborts
The number of times certain SQL statements are issued
Number of buffer pool requests
Counts of certain locking events
Processor resources consumed
Thread wait times for various events
RID pool processing
Distributed processing
Resource limit facility statistics

1034 Administration Guide

DB2 trace begins collecting this data at successful thread allocation to DB2, and
writes a completed record when the thread terminates or when the authorization ID
changes.

During CICS thread reuse, a change in the authid or transaction code initiates the
sign-on process, which terminates the accounting interval and creates the
accounting record. TXIDSO=NO eliminates the sign-on process when only the
transaction code changes. When a thread is reused without initiating sign-on,
several transactions are accumulated into the same accounting record, which can
make it very difficult to analyze a specific transaction occurrence and correlate DB2
accounting with CICS accounting. However, applications that use TOKENE=YES or
TOKENI=YES initiate a “partial sign-on”, which creates an accounting record for
each transaction. You can use this data to perform program-related tuning and
assess and charge DB2 costs.

Accounting data for class 1 (the default) is accumulated by several DB2
components during normal execution. This data is then collected at the end of the
accounting period; it does not involve as much overhead as individual event tracing.

On the other hand, when you start class 2, 3, 7, or 8, many additional trace points
are activated. Every occurrence of these events is traced internally by DB2 trace,
but these traces are not written to any external destination. Rather, the accounting
facility uses these traces to compute the additional total statistics that appear in the
accounting record, IFCID 003, when class 2 or class 3 is activated. Accounting
class 1 must be active to externalize the information.

To turn on accounting for packages and DBRMs, accounting trace classes 1 and 7
must be active. Though you can turn on class 7 while a plan is being executed,
accounting trace information is only gathered for packages or DBRMs executed
after class 7 is activated. Activate accounting trace class 8 with class 1 to collect
information about the amount of time an agent was suspended in DB2 for each
executed package. If accounting trace classes 2 and 3 are activated, there is
minimal additional performance cost for activating accounting trace classes 7 and 8.

If you want information from either, or both, accounting class 2 and 3, be sure to
activate classes 2 and/or 3 before your application starts. If these classes are
activated during the application, the times gathered by DB2 trace are only from the
time the class was activated.

Accounting trace class 5 provides information on the amount of elapsed time and
TCB time that an agent spent in DB2 processing instrumentation facility interface
(IFI) requests. If an agent did not issue any IFI requests, these fields are not
included in the accounting record.

If you specified YES for SMF ACCOUNTING on the Tracing Panel (DSNTIPN), the
accounting trace starts automatically when you start DB2, and sends IFCIDs that
are of SMF type 100 to SMF. The accounting record IFCID 0003 is of SMF type
101.

Audit trace
The audit trace collects information about DB2 security controls and is used to
ensure that data access is allowed only for authorized purposes. On the CREATE
TABLE or ALTER TABLE statements, you can specify whether or not a table is to
be audited, and in what manner; you can also audit security information such as
any access denials, grants, or revokes for the table. The default causes no auditing

Appendix F. Using tools to monitor performance 1035

to take place. For descriptions of the available audit classes and the events they
trace, see “Audit class descriptions” on page 220.

If you specified YES for AUDIT TRACE on the Tracing Panel (DSNTIPN), audit
trace class 1 starts automatically when you start DB2. By default, DB2 will send
audit data to SMF. SMF records audit data in type 102 records. When you invoke
the -START TRACE command, you can also specify GTF as a destination for audit
data. “Chapter 14. Auditing” on page 219 describes the audit trace in detail.

Performance trace
The performance trace provides information about a variety of DB2 events,
including events related to distributed data processing. You can use this information
to further identify a suspected problem, or to tune DB2 programs and resources for
individual users or for DB2 as a whole.

You cannot automatically start collecting performance data when you install or
migrate DB2. To trace performance data, you must use the -START
TRACE(PERFM) command. For more information about the -START
TRACE(PERFM) command, refer to Chapter 2 of DB2 Command Reference.

The performance trace defaults to GTF.

Monitor trace
The monitor trace records data for online monitoring with user-written programs.
This trace type has several predefined classes; those that are used explicitly for
monitoring are listed here:

v Class 1 (the default) allows any application program to issue an instrumentation
facility interface (IFI) READS request to the IFI facility. If monitor class 1 is
inactive, a READS request is denied. Activating class 1 has a minimal impact on
performance.

v Class 2 collects processor and elapsed time information. The information can be
obtained by issuing a READS request for IFCID 0147 or 0148. In addition,
monitor trace class 2 information is available in the accounting record, IFCID
0003. Monitor class 2 is equivalent to accounting class 2 and results in
equivalent overhead. Monitor class 2 times appear in IFCIDs 0147, 0148, and
0003 if either monitor trace class 2 or accounting class 2 is active.

v Class 3 activates DB2 wait timing and saves information about the resource
causing the wait. The information can be obtained by issuing a READS request
for IFCID 0147 or 0148. In addition, monitor trace class 3 information is available
in the accounting record, IFCID 0003. As with monitor class 2, monitor class 3
overhead is equivalent to accounting class 3 overhead.

When monitor trace class 3 is active, DB2 can calculate the duration of a class 3
event, such as when an agent is suspended due to an unavailable lock. Monitor
class 3 times appear in IFCIDs 0147, 0148, and 0003, if either monitor class 3 or
accounting class 3 is active.

v Class 5 traces the amount of time spent processing IFI requests.

v Class 7 traces the amount of time an agent spent in DB2 to process each
package. If monitor trace class 2 is active, activating class 7 has minimal
performance impact.

v Class 8 traces the amount of time an agent was suspended in DB2 for each
package executed. If monitor trace class 3 is active, activating class 8 has
minimal performance impact.

For more information on the monitor trace, refer to “Appendix E. Programming for
the Instrumentation Facility Interface (IFI)” on page 997.

1036 Administration Guide

Effect on DB2 performance
The volume of data DB2 trace collects can be quite large. Consequently, the
number of trace records you request will affect system performance. In particular,
when you activate a performance trace, you should qualify the -START TRACE
command with the particular classes, plans, authorization IDs, and IFCIDs you want
to trace.

The following recommendations apply:

v When starting a performance trace, be sure that you know what you want to
report, for example, I/O only or SQL only. See DB2 PM for examples of which
classes produce which reports. Otherwise, you might have incomplete reports
and have to rerun or collect too much data, overloading the data collector.

v When the statistics trace is active, statistics are collected by SMF at all times.
Use the default statistics frequency of 30 minutes.

v Decide if the continuous collection of accounting data is needed. If a transaction
manager provides enough accounting information, DB2 accounting might not be
needed. In environments where the processor is heavily loaded, consider not
running accounting on a continuous basis.

v When using accounting on a continuous basis, start classes 1 and 3 to SMF
(SMF ACCOUNTING on panel DSNTIPN). You might also want to start
accounting class 2 because it provides additional information that can be useful
in resolving problems. Accounting class 2 does introduce some additional
processor cost.

v Use the performance trace for short periods of time (START/STOP TRACE) and
restrict it to certain users, applications, and classes. Use the default destination
GTF to allow immediate analysis of the trace information.

v Start the global trace only if a problem is under investigation, and IBM service
personnel have requested a trace.

For more detailed information about the amount of processor resources consumed
by DB2 trace, see “Reducing the amount of processor resources consumed” on
page 544.

Recording SMF trace data
Each location is responsible for processing the SMF records produced by DB2
trace.

For example, during DB2 execution, you can use the MVS operator command
SETSMF or SS to alter SMF parameters you specified previously. The following
command records statistics (record type 100), accounting (record type 101), and
performance (record type 102) data to SMF. To execute this command, specify
PROMPT(ALL) or PROMPT(LIST) in the SMFPRMxx member used from
SYS1.PARMLIB.
SETSMF SYS(TYPE(100:102))

If you are not using measured usage licensing, do not specify type 89 records or
you will incur the overhead of collecting that data.

You can use the SMF program IFASMFDP to dump these records to a sequential
data set. You might want to develop an application or use DB2 PM to process these
records. For a sample DB2 trace record sent to SMF, see Figure 142 on page 983.
For more information about SMF, refer to OS/390 JES2 Initialization and Tuning
Guide.

Appendix F. Using tools to monitor performance 1037

Activating SMF
SMF must be running before you can send data to it. To make it operational, update
member SMFPRMxx of SYS1.PARMLIB, which indicates whether SMF is active and
which types of records SMF accepts. For member SMFPRMxx, xx are two
user-defined alphanumeric characters appended to 'SMFPRM' to form the name of
an SMFPRMxx member. To update this member, specify the ACTIVE parameter
and the proper TYPE subparameter for SYS and SUBSYS.

You can also code an IEFU84 SMF exit to process the records that are produced.

Allocating additional SMF buffers
When you specify a performance trace type, the volume of data that DB2 can
collect can be quite large. If you are sending this data to SMF, you must allocate
adequate SMF buffers; the default buffer settings will probably be insufficient.

If an SMF buffer shortage occurs, SMF rejects any trace records sent to it. DB2
sends a message (DSNW133I) to the MVS operator when this occurs. DB2 treats
the error as temporary and remains active even though data could be lost. DB2
sends another message (DSNW123I) to the MVS operator when the shortage has
been alleviated and trace recording has resumed.

You can determine if trace data has been lost by examining the DB2 statistics
records with an IFCID of 0001, as mapped by macro DSNQWST. These records
show:
v The number of trace records successfully written
v The number of trace records that could not be written
v The reason for the failure

If your location uses SMF for performance data or global trace data, be sure that:
v Your SMF data sets are large enough to hold the data.
v SMF is set up to accept record type 102. (Specify member SMFPRMxx, for

which ’xx’ are two user-defined alphanumeric characters.)
v Your SMF buffers are large enough.

Specify SMF buffering on the VSAM BUFSP parameter of the access method
services DEFINE CLUSTER statement. Do not use the default settings if DB2
performance or global trace data is sent to SMF. Specify CISZ(4096) and
BUFSP(81920) on the DEFINE CLUSTER statement for each SMF VSAM data set.
These values are the minimum required for DB2; you might have to increase them,
depending on your MVS environment.

DB2 runs above the 16MB line of virtual storage in a cross-memory environment.

Reporting data in SMF
There are several ways to report trace records sent to SMF:

v Use Performance Reporter for MVS to collect the data and create graphical or
tabular reports.

v Write an application program to read and report information from the SMF data
set. You can tailor it to fit your exact needs.

v Use DB2 PM. See “DB2 Performance Monitor (DB2 PM)” on page 1039 for a
discussion of DB2 PM’s capabilities.

1038 Administration Guide

In any of those ways you can compare any report for a current day, week, or month
with an equivalent sample, as far back as you want to go. The samples become
more widely spaced but are still available for analysis.

Recording GTF trace data
The default destination for the performance trace classes is the generalized trace
facility (GTF). The MVS operator must start GTF before you can send data to it.
When starting GTF, specify TIME=YES, and then TRACE=USRP. Start GTF as
follows to ensure that offsets map correctly. Be sure that no GTF member exists in
SYS1.PARMLIB.

You enter... System responds...

S GTF,,,(TIME=YES) AHL100A SPECIFY TRACE OPTIONS

TRACE=USRP AHL101A SPECIFY TRACE EVENT KEYWORDS --USR=

USR=(FB9) AHL102A CONTINUE TRACE DEFINITION OR REPLY END

END AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

U AHL031I GTF INITIALIZATION COMPLETE

Note: To make stopping GTF easier, you can give the GTF session a name when you start
it. For example, you could specify S GTF.GTF,,,(TIME=YES).

If a GTF member exists in SYS1.PARMLIB, the GTF trace option USR might not be
in effect. When no other member exists in SYS1.PARMLIB, you are sure to have
only the USR option activated, and no other options that might add unwanted data
to the GTF trace.

When starting GTF, if you use the JOBNAMEP option to obtain only those trace
records written for a specific job, trace records written for other agents are not
written to the GTF data set. This means that a trace record that is written by a
system agent that is processing for an allied agent is discarded if the JOBNAMEP
option is used. For example, after a DB2 system agent performs an IDENTIFY
request for an allied agent, an IFCID record is written. If the JOBNAMEP keyword is
used to collect trace data for a specific job, however, the record for the IDENTIFY
request is not written to GTF, even if the IDENTIFY request was performed for the
job named on the JOBNAMEP keyword.

You can record DB2 trace data in GTF using a GTF event ID of X'FB9'.

Trace records longer than the GTF limit of 256 bytes are spanned by DB2. For
instructions on how to process GTF records, refer to “Appendix D. Interpreting DB2
trace output” on page 981.

DB2 Performance Monitor (DB2 PM)
DB2 PM is a performance analysis tool for DB2. Its primary objective is to report
DB2 instrumentation data in a form that is easy to understand and analyze.

DB2 PM presents this instrumentation data in the following ways:

v The Batch report sets present the data you select in comprehensive reports or
graphs containing system-wide and application-related information for both single
DB2 subsystems and DB2 members of a data sharing group. You can combine
instrumentation data from several different DB2 locations into one report.

Appendix F. Using tools to monitor performance 1039

Batch reports can be used to examine performance problems and trends over a
period of time.

v The Online Monitor gives a current “snapshot” view of a running DB2 subsystem,
including applications that are running. Its history function displays information
about subsystem and application activity in the recent past.

See DB2 PM for OS/390 General Information for more information about the latest
features in DB2 PM.

Performance Reporter for MVS
Performance Reporter for MVS, formerly known as EPDM, collects data into a DB2
database and allows you to create graphical and tabular reports to use in managing
systems performance. The data can come from different sources, including SMF,
the IMS log, the CICS journal, RMF, and DB2.

When considering the use of Performance Reporter for MVS, consider the following:

v Performance Reporter data collection and reporting are based on user
specifications. Therefore, an experienced user can produce more suitable reports
than the predefined reports produced by other tools.

v Performance Reporter provides historical performance data that you can use to
compare a current situation with previous data.

v Performance Reporter can be used very effectively for reports based on the DB2
statistics and accounting records. When using it for the performance trace
consider that:

– Because of the large number of different DB2 performance records, a
substantial effort is required to define their formats to Performance Reporter.
Changes in the records require review of the definitions.

– Performance Reporter not handle information from paired records, such as
“start event” and “end event.” These record pairs are used by DB2 PM to
calculate elapsed times, such as the elapsed time of I/Os and lock
suspensions.

The general recommendation for Performance Reporter and DB2 PM use in a DB2
subsystem is:

v If Performance Reporter is already used or there is a plan to use it at the
location:
– Extend Performance Reporter usage to the DB2 accounting and statistics

records.
– Use DB2 PM for the DB2 performance trace.

v If Performance Reporter is not used and there is no plan to use it:
– Use DB2 PM for the statistics, accounting, and performance trace.
– Consider extending DB2 PM with user applications based on DB2 and QMF,

to provide historical performance data.

Monitoring application plans and packages
The following statements identify plans and packages that:

v Possibly redo validity checks at run time; if an invalid object or missing authority
is found, DB2 issues a warning and checks again for the object or authorization
at run time.

v Use repeatable read.

1040 Administration Guide

v Are invalid (must be rebound before use), for example, the deleting an index or
revoking authority can render a plan or package invalid.

v Are inoperative (require an explicit BIND or REBIND before use). A plan or
package can be marked inoperative after an unsuccessful REBIND.

General-use Programming Interface

SELECT NAME, VALIDATE, ISOLATION, VALID, OPERATIVE
FROM SYSIBM.SYSPLAN
WHERE VALIDATE = 'R' OR ISOLATION = 'R'

OR VALID = 'N' OR OPERATIVE = 'N';

SELECT COLLID, NAME, VERSION, VALIDATE, ISOLATION, VALID, OPERATIVE
FROM SYSIBM.SYSPACKAGE
WHERE VALIDATE = 'R' OR ISOLATION = 'R'

OR VALID = 'N' OR OPERATIVE = 'N';

End of General-use Programming Interface

Appendix F. Using tools to monitor performance 1041

1042 Administration Guide

Appendix G. Real-time statistics tables

The information under this heading is Product-sensitive Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

DB2 collects statistics that you can use to determine when you need to perform
certain maintenance functions on your table spaces and index spaces.

DB2 collects the statistics in real time. You create tables into which DB2 periodically
writes the statistics. You can then write applications that query the statistics and
help you decide when to run REORG, RUNSTATS, or COPY, or enlarge your data
sets. For information on a DB2-supplied stored procedure that queries the real-time
statistics tables, see “The DB2 real-time statistics stored procedure” on page 1069.

The following sections provide detailed information about the real-time statistics
tables:
v “Setting up your system for real-time statistics”
v “Contents of the real-time statistics tables” on page 1045
v “Operating with real-time statistics” on page 1057

Setting up your system for real-time statistics
DB2 always generates in-memory statistics for each table space and index space in
your system. For partitioned spaces, DB2 generates information for each partition.
However, you need to perform the following steps before DB2 externalizes the
statistics to DB2 tables:

1. Create the real-time statistics objects. See “Creating and altering the real-time
statistics objects”.

2. Set the interval for writing statistics. See “Setting the interval for writing real-time
statistics” on page 1044.

3. Start the real-time statistics database. See “Starting the real-time statistics
database” on page 1045.

Creating and altering the real-time statistics objects
You need to create a database, table space, tables and indexes for the real-time
statistics. Those objects are listed in Table 189 on page 1044. Use the SQL
statements in member DSNTESS of data set DSN710.SDSNSAMP as a model for
creating the real-time statistics objects. You can create these objects in
user-managed or DB2-managed data sets.

Figure 152. Real-Time Statistics overview

© Copyright IBM Corp. 1982, 2001 1043

#

#
#
#

#

#

#
#

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#

#
#
#
#

#
#

#
#

#
#

#

#
#
#
#
#

Restrictions on changing the provided definitions for the real-time statistics objects:
You can change most of the attributes in the provided definitions of the real-time
statistics objects. However, you cannot change the following items:

v Object names

You must use the names that are specified in DSNTESS for the database, table
space, tables, indexes, and table columns.

v The CCSID parameter on the CREATE DATABASE, CREATE TABLESPACE,
and CREATE TABLE statements

The CCSID must be EBCDIC.

v Number of columns or column definitions

You cannot add table columns or modify column definitions.

Before you can alter an object in the real-time statistics database, you must stop
the database. Otherwise, you receive an SQL error.

Table 189. DB2 objects for storing real-time statistics

Object name Description

DSNRTSDB Database for real-time statistics objects

DSNRTSTS Table space for real-time statistics objects

SYSIBM.TABLESPACESTATS Table for statistics on table spaces and table space
partitions

SYSIBM.INDEXSPACESTATS Table for statistics on index spaces and index space
partitions

SYSIBM.TABLESPACESTATS_IX Unique Index on SYSIBM.TABLESPACESTATS
(columns DBID, PSID, and PARTITION)

SYSIBM.INDEXSPACESTATS_IX Unique Index on SYSIBM.INDEXSPACESTATS
(columns DBID, PSID, and PARTITION)

To create the real-time statistics objects, you need the authority to create tables and
indexes on behalf of the SYSIBM authorization ID.

DB2 inserts one row in the table for each partition or non-partitioned table space or
index space. You therefore need to calculate the amount of disk space that you
need for the real-time statistics tables based on the current number of table spaces
and indexes in your subsystem.

To determine the amount of storage that you need for the real-time statistics when
they are in memory, estimate the peak number of objects that might be updated
concurrently, and multiply that total by the amount of in-memory space that DB2
uses for each object (152 bytes):
Amount of Storage in bytes = Maximum concurrent objects updated * 152 bytes

Recommendation: Place the statistics indexes and tables in their own buffer pool.
When the statistics pages are in memory, the speed at which in-memory statistics
are written to the tables improves.

Setting the interval for writing real-time statistics
You can set the interval for writing real-time statistics when you install DB2 and
update that interval online. The installation field is REAL TIME STATS on panel
DSNTIPO. The default interval is 30 minutes. To update the interval, modify system
parameter STATSINT.

1044 Administration Guide

#
#
#

#

#
#

#
#

#

#

#

#
#

##

##

##

##

##
#

##
#

##
#

##
#
#

#
#

#
#
#
#

#
#
#
#

#

#
#
#

#

#
#
#
#

In a data sharing environment, each member has its own interval for writing
real-time statistics.

Starting the real-time statistics database
After you create the real-time statistics database, DB2 puts it into a stopped state.
After you create all the objects in the database, you need to issue START
DATABASE(DSNRTSDB) to explicitly start the database.

You must start the database in read-write mode to make it possible for DB2 to
externalize real-time statistics. See “When DB2 externalizes real-time statistics” on
page 1057 for information on when DB2 externalizes the statistics.

Contents of the real-time statistics tables
The SYSIBM.TABLESPACESTATS table contains statistics information on table
spaces and table space partitions. The SYSIBM.INDEXSPACESTATS table contains
statistics information on index spaces and index space partitions.

Table 190 describes the columns of the TABLESPACESTATS table and explains
how you can use them in deciding when to run REORG, RUNSTATS, or COPY.

Table 190. Descriptions of columns in the TABLESPACESTATS table

Column name Data type Description

DBNAME CHAR(8) NOT NULL The name of the database.

This column is used to map a database to its statistics.

NAME CHAR(8) NOT NULL The name of the table space.

This column is used to map a table space to its statistics.

PARTITION SMALLINT NOT NULL The data set number within the table space.

This column is used to map a data set number in a table space to
its statistics. For partitioned table spaces, this value corresponds to
the partition number for a single partition. For nonpartitioned table
spaces, this value is 0.

DBID SMALLINT NOT NULL The internal identifier of the database.

This column is used to map a DBID to its statistics.

PSID SMALLINT NOT NULL The internal identifier of the table space page set descriptor.

This column is used to map a PSID to its statistics.

Appendix G. Real-time statistics tables 1045

#
#

#

#
#
#

#
#
#

#
#

#
#
#

#
#

##

###

###

#

###

#

###

#
#
#
#

###

#

###

#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

UPDATESTATSTIME TIMESTAMP NOT
NULL WITH DEFAULT

The timestamp when the row was inserted or last updated.

This column is updated with the current timestamp when a row in
the TABLESPACESTATS table is inserted or updated. You can use
this column in several ways:

v To determine the actions that caused the latest change to the
table. Do this by selecting any of the timestamp columns and
comparing them to the UPDATESTATSTIME column.

v To determine whether an analysis of data is needed. This
determination might be based on a given time interval, or on a
combination of the time interval and the amount of activity.

For example, suppose you want to analyze statistics for the last
seven days. To determine whether there has been any activity in
the past seven days, check whether the difference between the
current date and the UPDATESTATSTIME value is less than or
equal to seven:

(JULIAN_DAY(CURRENT DATE)-JULIAN_DAY(UPDATESTATSTIME))<= 7

TOTALROWS FLOAT The number of rows or LOBs in the table space or partition.

If the table space contains more than one table, this value is the
sum of all rows in all tables. A null value means that the number of
rows is unknown, or REORG or LOAD has never been run.

Use this value with the value of any column that contains a number
of affected rows to determine the percentage of rows that are
affected by a particular action.

NACTIVE INTEGER The number of active pages in the table space or partition.

A null value means the number of active pages is unknown.

This value is equivalent to the number of preformatted pages. For
multi-piece table spaces, this value is the total number of
preformatted pages in all data sets.

Use this value with the value of any column that contains a number
of affected pages to determine the percentage of pages that are
affected by a particular action.

For example, suppose that your site's maintenance policies require
that COPY is run after 20 per cent of the pages in a table space
have changed. To determine if a COPY might be required,
calculate the ratio of updated pages since the last COPY to the
total number of active pages. If the percentage is greater than 20,
you need to run COPY:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

SPACE INTEGER The amount of space that is allocated to the table space or
partition, in kilobytes.

For multi-piece linear page sets, this value is the amount of space
in all data sets. A null value means the amount of space is
unknown.

Use this value to monitor growth and validate design assumptions.

1046 Administration Guide

#

###

##
#
#

#
#
#

#
#
#

#
#
#

#
#
#
#
#

#

###

#
#
#

#
#
#

###

#

#
#
#

#
#
#

#
#
#
#
#
#

#

###
#

#
#
#

#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

EXTENTS SMALLINT The number of physical extents in the table space or partition.

For multi-piece linear page sets, this value is the number of extents
for the last data set. A null value means the number of extents is
unknown.

Use this value to determine:

v When the primary or secondary allocation value for a table
space or partition needs to be altered.

v When you are approaching the maximum number of extents and
risking extend failures.

LOADRLASTTIME TIMESTAMP The timestamp of the last LOAD REPLACE on the table space or
partition.

A null value means LOAD REPLACE has never been run on the
table space or partition, or the timestamp of the last LOAD
REPLACE is unknown.

You can compare this timestamp to the timestamp of the last
COPY on the same object to determine when a COPY is needed. If
the date of the last LOAD REPLACE is more recent than the last
COPY, you might need to run COPY:

(JULIAN_DAY(LOADRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGLASTTIME TIMESTAMP The timestamp of the last REORG on the table space or partition.

A null value means REORG has never been run on the table space
or partition, or the timestamp of the last REORG is unknown.

You can compare this timestamp to the timestamp of the last
COPY on the same object to determine when a COPY is needed. If
the date of the last REORG is more recent than the last COPY, you
might need to run COPY:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGINSERTS INTEGER The number of records or LOBs that have been inserted since the
last REORG or LOAD REPLACE on the table space or partition.

A null value means that the number of inserted records or LOBs is
unknown.

REORGDELETES INTEGER The number of records or LOBs that have been deleted since the
last REORG or LOAD REPLACE on the table space or partition.

A null value means that the number of deleted records or LOBs is
unknown.

Appendix G. Real-time statistics tables 1047

#

###

###

#
#
#

#

#
#

#
#

###
#

#
#
#

#
#
#
#

#

###

#
#

#
#
#
#

#

###
#

#
#

###
#

#
#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

REORGUPDATES INTEGER The number of rows that have been updated since the last REORG
or LOAD REPLACE on the table space or partition.

This value does not include LOB updates because LOB updates
are really deletions followed by insertions. A null value means that
the number of updated rows is unknown.

This value can be used with REORGDELETES and
REORGINSERTS to determine if a REORG is necessary. For
example, suppose that your site's maintenance policies require that
REORG is run after 20 per cent of the rows in a table space have
changed. To determine if a REORG is required, calculate the sum
of updated, inserted, and deleted rows since the last REORG.
Then calculate the ratio of that sum to the total number of rows. If
the percentage is greater than 20, you might need to run REORG:

(((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS)>20

REORGDISORGLOB INTEGER The number of LOBs that were inserted since the last REORG or
LOAD REPLACE that are not perfectly chunked.

A LOB is perfectly chunked if the allocated pages are in the
minimum number of chunks. A null value means that the number of
imperfectly chunked LOBs is unknown.

Use this value to determine whether you need to run REORG. For
example, you might want to run REORG if the ratio of
REORGDISORGLOB to the total number of LOBs is greater than
10 per cent:

((REORGDISORGLOB*100)/TOTALROWS)>10

REORGUNCLUSTINS INTEGER The number of records that were inserted since the last REORG or
LOAD REPLACE. that are not well-clustered with respect to the
clustering index.

A record is well-clustered if the record is inserted into a page that
is within 16 pages of the ideal candidate page. The clustering index
determines the ideal candidate page. A null value means that the
number of badly-clustered pages is unknown.

You can use this value to determine whether you need to run
REORG. For example, you might want to run REORG if the
following comparison is true:

((REORGUNCLUSTINS*100)/TOTALROWS)>10

REORGMASSDELETE INTEGER The number of mass deletes from a segmented or LOB table
space, or the number of dropped tables from a segmented table
space, since the last REORG or LOAD REPLACE.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, a REORG might be necessary.

REORGNEARINDREF INTEGER The number of overflow records that were created since the last
REORG or LOAD REPLACE and were relocated near the pointer
record.

For nonsegmented table spaces, a page is near the present page if
the two page numbers differ by 16 or less. For segmented table
spaces, a page is near the present page if the two page numbers
differ by SEGSIZE*2 or less. A null value means that the number of
overflow records near the pointer record is unknown.

1048 Administration Guide

#

###

###
#

#
#
#

#
#
#
#
#
#
#
#

#

###
#

#
#
#

#
#
#
#

#

###
#
#

#
#
#
#

#
#
#

#

###
#
#

#

#

###
#
#

#
#
#
#
#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

REORGFARINDEF INTEGER The number of overflow records that were created since the last
REORG or LOAD REPLACE and were relocated far from the
pointer record.

For nonsegmented table spaces, a page is far from the present
page if the two page numbers differ by more than 16. For
segmented table spaces, a page is far from the present page if the
two page numbers differ by at least (SEGSIZE*2)+1. A null value
means that the number of overflow records far from the pointer
record is unknown.

For example, in a non-data sharing environment, you might run
REORG if the following comparison is true:

(((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS)>10

In a data sharing environment, you might run REORG if the
following comparison is true:

(((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS)>5

STATSLASTTIME TIMESTAMP The timestamp of the last RUNSTATS on the table space or
partition.

A null value means RUNSTATS has never been run on the table
space or partition, or the timestamp of the last RUNSTATS is
unknown.

You can compare this timestamp to the timestamp of the last
REORG on the same object to determine when RUNSTATS is
needed. If the date of the last REORG is more recent than the last
RUNSTATS, you might need to run RUNSTATS:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(STATSLASTTIME))

STATSINSERTS INTEGER The number of records or LOBs that have been inserted since the
last RUNSTATS on the table space or partition.

A null value means that the number of inserted records or LOBs is
unknown.

STATSDELETES INTEGER The number of records or LOBs that have been deleted since the
last RUNSTATS on the table space or partition.

A null value means that the number of deleted records or LOBs is
unknown.

STATSUPDATES INTEGER The number of rows that have been updated since the last
RUNSTATS on the table space or partition.

This value does not include LOB updates because LOB updates
are really deletions followed by insertions. A null value means that
the number of updated rows is unknown.

This value can be used with STATSDELETES and STATSINSERTS
to determine if RUNSTATS is necessary. For example, suppose
that your site's maintenance policies require that RUNSTATS is run
after 20 per cent of the rows in a table space have changed. To
determine if RUNSTATS is required, calculate the sum of updated,
inserted, and deleted rows since the last RUNSTATS. Then
calculate the ratio of that sum to the total number of rows. If the
percentage is greater than 20, you need to run RUNSTATS:

(((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS)>20

Appendix G. Real-time statistics tables 1049

#

###

###
#
#

#
#
#
#
#
#

#
#

#

#
#

#

###
#

#
#
#

#
#
#
#

#

###
#

#
#

###
#

#
#

###
#

#
#
#

#
#
#
#
#
#
#
#

#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

STATSMASSDELETE INTEGER The number of mass deletes from a segmented or LOB table
space, or the number of dropped tables from a segmented table
space, since the last RUNSTATS.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, RUNSTATS might be necessary.

COPYLASTTIME TIMESTAMP The timestamp of the last full or incremental image copy on the
table space or partition.

A null value means COPY has never been run on the table space
or partition, or the timestamp of the last full image copy is
unknown.

You can compare this timestamp to the timestamp of the last
REORG on the same object to determine when a COPY is needed.
If the date of the last REORG is more recent than the last COPY,
you might need to run COPY:

(JULIAN_DAY(REORGRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

COPYUPDATEDPAGES INTEGER The number of distinct pages that have been updated since the
last COPY.

A null value means that the number of updated pages is unknown.

You can compare this value to the total number of pages to
determine when a COPY is needed.

For example, you might want to take an incremental image copy
when one percent of the pages have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>1

You might want to take a full image copy when 20 percent of the
pages have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

COPYCHANGES INTEGER The number of insert, delete, and update operations since the last
COPY.

A null value means that the number of insert, delete, or update
operations is unknown.

This number indicates the approximate number of log records that
DB2 processes to recover to the current state.

For example, you might want to take an incremental image copy
when DB2 processes more than one percent of the rows from the
logs:

((COPYCHANGES*100)/TOTALROWS)>1

You might want to take a full image copy when DB2 processes
more than 10 percent of the rows from the logs:

((COPYCHANGES*100)/TOTALROWS)>10

1050 Administration Guide

#

###

###
#
#

#

#

###
#

#
#
#

#
#
#
#

#

###
#

#

#
#

#
#

#

#
#

#

###
#

#
#

#
#

#
#
#

#

#
#

#

Table 190. Descriptions of columns in the TABLESPACESTATS table (continued)

Column name Data type Description

COPYUPDATELRSN CHAR(6) FOR BIT
DATA

The LRSN or RBA of the first update after the last COPY.

A null value means that the LRSN or RBA is unknown.

Consider running COPY if this value is not in the active logs. To
determine the oldest LRSN or RBA in the active logs, use the Print
Log Map utility (DSNJU004).

COPYUPDATETIME TIMESTAMP The timestamp of the first update after the last COPY.

A null value means that the timestamp is unknown.

This value has a similar purpose to COPYUPDATELRSN.

Table 191 describes the columns of the INDEXSPACESTATS table and explains
how you can use them in deciding when to run REORG, RUNSTATS, or COPY.

Table 191. Descriptions of columns in the INDEXSPACESTATS table

Column name Data type Description

DBNAME CHAR(8) NOT NULL The name of the database.

This column is used to map a database to its statistics.

NAME CHAR(8) NOT NULL The name of the index space.

This column is used to map an index space to its statistics.

PARTITION SMALLINT NOT
NULL

The data set number within the index space.

This column is used to map a data set number in an index space
to its statistics. For partitioned index spaces, this value
corresponds to the partition number for a single partition. For
nonpartitioned index spaces, this value is 0.

DBID SMALLINT NOT
NULL

The internal identifier of the database.

This column is used to map a DBID to its statistics.

ISOBID SMALLINT NOT
NULL

The internal identifier of the index space page set descriptor.

This column is used to map an ISOBID to its statistics.

PSID SMALLINT NOT
NULL

The internal identifier of the table space page set descriptor for
the table space on which the index that is represented by this row
is created.

This column is used to map a PSID to the statistics for the
associated index.

Appendix G. Real-time statistics tables 1051

#

###

##
#
#

#

#
#
#

###

#

#
#
#
#

##

###

###

#

###

#

##
#
#

#
#
#
#

##
#
#

#

##
#
#

#

##
#
#
#
#

#
#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

UPDATESTATSTIME TIMESTAMP NOT
NULL WITH
DEFAULT

The timestamp when the row was inserted or last updated.

This column is updated with the current timestamp when a row in
the INDEXSPACESTATS table is inserted or updated. You can
use this column in several ways:

v To determine the actions that caused the latest change to the
INDEXSPACESTATS table. Do this by selecting any of the
timestamp columns and comparing them to the
UPDATESTATSTIME column.

v To determine whether an analysis of data is needed. This
determination might be based on a given time interval, or on a
combination of the time interval and the amount of activity.

For example, suppose you want to analyze statistics for the
last seven days. To determine whether there has been any
activity in the past seven days, check whether the difference
between the current date and the UPDATESTATSTIME value is
less than or equal to seven:

(JULIAN_DAY(CURRENT DATE)-JULIAN_DAY(UPDATESTATSTIME))<= 7

TOTALENTRIES FLOAT The number of entries, including duplicate entries, in the index
space or partition.

A null value means that the number of entries is unknown, or
REORG, LOAD, or REBUILD has never been run.

Use this value with the value of any column that contains a
number of affected index entries to determine the percentage of
index entries that are affected by a particular action.

NLEVELS SMALLINT The number of levels in the index tree.

A null value means that the number of levels is unknown.

NACTIVE INTEGER The number of active pages in the index space or partition.

A null value means the number of active pages is unknown.

This value is equivalent to the number of preformatted pages.

Use this value with the value of any column that contains a
number of affected pages to determine the percentage of pages
that are affected by a particular action.

For example, suppose that your site's maintenance policies
require that COPY is run after 20 per cent of the pages in an
index space have changed. To determine if a COPY is required,
calculate the ratio of updated pages since the last COPY to the
total number of active pages. If the percentage is greater than 20,
you need to run COPY:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

SPACE INTEGER The amount of space that is allocated to the index space or
partition, in kilobytes.

For multi-piece linear page sets, this value is the amount of space
in all data sets. A null value means the amount of space is
unknown.

Use this value to monitor growth and validate design
assumptions.

1052 Administration Guide

#

###

##
#
#

#

#
#
#

#
#
#
#

#
#
#

#
#
#
#
#

#

###
#

#
#

#
#
#

###

#

###

#

#

#
#
#

#
#
#
#
#
#

#

###
#

#
#
#

#
#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

EXTENTS SMALLINT The number of physical extents in the index space or partition.

For multi-piece linear page sets, this value is the number of
extents for the last data set. A null value means the number of
extents is unknown.

Use this value to determine:

v When the primary allocation value for an index space or
partition needs to be altered.

v When you are approaching the maximum number of extents
and risking extend failures.

LOADRLASTTIME TIMESTAMP The timestamp of the last LOAD REPLACE on the index space or
partition.

A null value means that the timestamp of the last LOAD
REPLACE is unknown.

If COPY YES was specified when the index was created (the
value of COPY is Y in SYSIBM.SYSINDEXES), you can compare
this timestamp to the timestamp of the last COPY on the same
object to determine when a COPY is needed. If the date of the
last LOAD REPLACE is more recent than the last COPY, you
might need to run COPY:

(JULIAN_DAY(LOADRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REBUILDLASTTIME TIMESTAMP The timestamp of the last REBUILD INDEX on the index space or
partition.

A null value means the timestamp of the last REBUILD INDEX is
unknown.

If COPY YES was specified when the index was created (the
value of COPY is Y in SYSIBM.SYSINDEXES), you can compare
this timestamp to the timestamp of the last COPY on the same
object to determine when a COPY is needed. If the date of the
last REBUILD INDEX is more recent than the last COPY, you
might need to run COPY:

(JULIAN_DAY(REBUILDLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGLASTTIME TIMESTAMP The timestamp of the last REORG INDEX on the index space or
partition.

A null value means the timestamp of the last REORG INDEX is
unknown.

If COPY YES was specified when the index was created (the
value of COPY is Y in SYSIBM.SYSINDEXES), you can compare
this timestamp to the timestamp of the last COPY on the same
object to determine when a COPY is needed. If the date of the
last REORG INDEX is more recent than the last COPY, you might
need to run COPY:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(COPYLASTTIME))

REORGINSERTS INTEGER The number of index entries that have been inserted since the
last REORG, REBUILD INDEX or LOAD REPLACE on the index
space or partition.

A null value means that the number of inserted index entries is
unknown.

Appendix G. Real-time statistics tables 1053

#

###

###

#
#
#

#

#
#

#
#

###
#

#
#

#
#
#
#
#
#

#

###
#

#
#

#
#
#
#
#
#

#

###
#

#
#

#
#
#
#
#
#

#

###
#
#

#
#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

REORGDELETES INTEGER The number of index entries that have been deleted since the last
REORG, REBUILD INDEX, or LOAD REPLACE on the index
space or partition.

A null value means that the number of deleted index entries is
unknown.

This value can be used with REORGINSERTS to determine if a
REORG is necessary. For example, suppose that your site's
maintenance policies require that REORG is run after 20 per cent
of the index entries have changed. To determine if a REORG is
required, calculate the sum of inserted and deleted rows since the
last REORG. Then calculate the ratio of that sum to the total
number of index entries. If the percentage is greater than 20, you
need to run REORG:

(((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES)>20

REORGAPPENDINSERT INTEGER The number of index entries that have been inserted since the
last REORG, REBUILD INDEX or LOAD REPLACE on the index
space or partition that have a key value that is greater than the
maximum key value in the index or partition.

A null value means the number of inserted index entries is
unknown.

This value can be used with REORGINSERTS to decide when to
adjust the PCTFREE specification for the index. For example, if
the ratio of REORGAPPENDINSERT to REORGINSERTS is
greater than 10 per cent, you might need to run ALTER INDEX to
adjust PCTFREE or run REORG more frequently:

((REORGAPPENDINSERT*100)/REORGINSERTS)>10

REORGPSEUDODELETES INTEGER The number of index entries that have been pseudo-deleted since
the last REORG, REBUILD INDEX, or LOAD REPLACE on the
index space or partition. A pseudo-delete is a RID entry that has
been marked as deleted.

A null value means that the number of pseudo-deleted index
entries is unknown.

This value can be used to determine if a REORG is necessary.
For example, if the ratio of pseudo-deletes to total index entries is
greater than 10 per cent, you might need to run REORG:

((REORGPSEUDODELETES*100)/TOTALENTRIES)>10

REORGMASSDELETE INTEGER The number of times that an index or index space partition was
mass deleted since the last REORG, REBUILD INDEX, or LOAD
REPLACE.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, a REORG might be necessary.

REORGLEAFNEAR INTEGER The number of index page splits that occurred since the last
REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was near the location of the original
page.

The higher part of a split page is near the original page if the two
page numbers differ by 16 or less. A null value means that the
number of split pages near their original pages is unknown.

1054 Administration Guide

#

###

###
#
#

#
#

#
#
#
#
#
#
#
#

#

###
#
#
#

#
#

#
#
#
#
#

#

###
#
#
#

#
#

#
#
#

#

###
#
#

#

#

###
#
#
#

#
#
#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

REORGLEAFFAR INTEGER The number of index page splits that occurred since the last
REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the location of the
original page.

The higher part of a split page is far from the original page if the
two page numbers differ by more than 16. A null value means that
the number of split pages that are far from their original pages is
unknown.

This value can be used to decide when to run REORG. For
example, calculate the ratio of index page splits in which the
higher part of the split page was far from the location of the
original page to the number of active pages. If this value is
greater than 10 per cent, you might need to run REORG:

((REORGLEAFFAR*100)/NACTIVE)>10

REORGNUMLEVELS INTEGER The number of levels in the index tree that were added or
removed since the last REORG, REBUILD INDEX, or LOAD
REPLACE.

A null value means that the number of added or deleted levels is
unknown.

If this value has increased since the last REORG, REBUILD
INDEX, or LOAD REPLACE, you need to check other values
such as REORGPSEUDODELETES to determine whether to run
REORG.

If this value is less than zero, the index space contains empty
pages. Running REORG can save disk space and decrease
index sequential scan I/O time by eliminating those empty pages.

STATSLASTTIME TIMESTAMP The timestamp of the last RUNSTATS on the index space or
partition.

A null value means RUNSTATS has never been run on the index
space or partition, or the timestamp of the last RUNSTATS is
unknown.

You can compare this timestamp to the timestamp of the last
REORG on the same object to determine when RUNSTATS is
needed. If the date of the last REORG is more recent than the
last RUNSTATS, you might need to run RUNSTATS:

(JULIAN_DAY(REORGLASTTIME)>JULIAN_DAY(STATSLASTTIME))

STATSINSERTS INTEGER The number index entries that have been inserted since the last
RUNSTATS on the index space or partition.

A null value means that the number of inserted index entries
unknown.

Appendix G. Real-time statistics tables 1055

#

###

###
#
#
#

#
#
#
#

#
#
#
#
#

#

###
#
#

#
#

#
#
#
#

#
#
#

###
#

#
#
#

#
#
#
#

#

###
#

#
#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

STATSDELETES INTEGER The number of index entries that have been deleted since the last
RUNSTATS on the index space or partition.

A null value means that the number of deleted index entries
unknown.

This value can be used with STATSINSERTS to determine if
RUNSTATS is necessary. For example, suppose that your site's
maintenance policies require that RUNSTATS is run after 20 per
cent of the rows in an index space have changed. To determine if
RUNSTATS is required, calculate the sum of inserted and deleted
index entries since the last RUNSTATS. Then calculate the ratio
of that sum to the total number of index entries. If the percentage
is greater than 20, you need to run RUNSTATS:

(((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES)>20

STATSMASSDELETE INTEGER The number of times that the index or index space partition was
mass deleted since the last RUNSTATS.

A null value means that the number of mass deletes is unknown.

If this value is non-zero, RUNSTATS might be necessary.

COPYLASTTIME TIMESTAMP The timestamp of the last full image copy on the index space or
partition.

A null value means COPY has never been run on the index space
or partition, or the timestamp of the last full image copy is
unknown.

You can compare this timestamp to the timestamp of the last
REORG on the same object to determine when a COPY is
needed. If the date of the last REORG is more recent than the
last COPY, you might need to run COPY:

(JULIAN_DAY(REORGRLASTTIME)>JULIAN_DAY(COPYLASTTIME))

COPYUPDATEDPAGES INTEGER The number of distinct pages that have been updated since the
last COPY.

A null value means that the number of updated pages is
unknown, or the index was created with COPY NO.

You can compare this value to the total number of pages to
determine when a COPY is needed.

For example, you might want to take a full image copy when 20
percent of the pages have changed:

((COPYUPDATEDPAGES*100)/NACTIVE)>20

COPYCHANGES INTEGER The number of insert delete operations since the last COPY.

A null value means that the number of insert or update operations
is unknown, or the index was created with COPY NO.

This number indicates the approximate number of log records that
DB2 processes to recover to the current state.

For example, you might want to take a full image copy when DB2
processes more than 10 percent of the index entries from the
logs:

((COPYCHANGES*100)/TOTALENTRIES)>10

1056 Administration Guide

#

###

###
#

#
#

#
#
#
#
#
#
#
#

#

###
#

#

#

###
#

#
#
#

#
#
#
#

#

###
#

#
#

#
#

#
#

#

###

#
#

#
#

#
#
#

#

Table 191. Descriptions of columns in the INDEXSPACESTATS table (continued)

Column name Data type Description

COPYUPDATELRSN CHAR(6) FOR BIT
DATA

The LRSN or RBA of the first update after the last COPY.

A null value means that the LRSN or RBA is unknown, or the
index was created with COPY NO.

Consider running COPY if this value is not in the active logs. To
determine the oldest LRSN or RBA in the active logs, use the
Print Log Map utility (DSNJU004).

COPYUPDATETIME TIMESTAMP The timestamp of the first update after the last COPY.

A null value means that the timestamp is unknown, or the index
was created with COPY NO.

This value has a similar purpose to COPYUPDATELRSN.

Operating with real-time statistics
To use the real-time statistics effectively, you need to understand when DB2 collects
and externalizes them, and what factors in your system can affect the statistics.
This section contains the following topics:
v “When DB2 externalizes real-time statistics”
v “How DB2 utilities affect the real-time statistics” on page 1058
v “How non-DB2 utilities affect real-time statistics” on page 1064
v “Real-time statistics on objects in work file databases and the TEMP database”

on page 1065
v “Real-time statistics on read-only objects” on page 1065
v “How dropping objects affects real-time statistics” on page 1065
v “How SQL operations affect real-time statistics counters” on page 1065
v “Real-time statistics in data sharing” on page 1066
v “Improving concurrency with real-time statistics” on page 1066
v “Recovering the real-time statistics tables” on page 1066
v “Statistics accuracy” on page 1066

When DB2 externalizes real-time statistics
DB2 externalizes real-time statistics at the following times:
v When you issue -STOP DATABASE(DSNRTSDB)

This command stops the in-memory statistics database and externalizes statistics
for all objects in the subsystem.

v When you issue -STOP DATABASE(database-name) SPACENAM(space-name)

This command externalizes statistics only for database-name and space-name.
v At the end of the time interval that you specify during installation

See “Setting the interval for writing real-time statistics” on page 1044 for
information on how to set this time interval.

v When you issue -STOP DB2 MODE(QUIESCE)

DB2 writes any statistics that are in memory when you issue this command to
the statistics tables. However, if you issue -STOP DB2 MODE(FORCE), DB2
does not write the statistics, and you lose them.

v During utility operations

“How DB2 utilities affect the real-time statistics” on page 1058 gives details on
how the utilities modify the statistics tables.

DB2 does not maintain real-time statistics for any objects in the real-time
statistics database. Therefore, if you run a utility with a utility list, and the list

Appendix G. Real-time statistics tables 1057

#

###

##
#
#

#
#

#
#
#

###

#
#

#
#

#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#

#
#
#

#
#

#
#
#

#
#
#
#

#
#

#
#

contains any real-time statistics objects, DB2 does not externalize real-time
statistics during the execution of that utility for any of the objects in the utility list.

Recommendation: Do not include real-time statistics objects in utility lists.

DB2 does not externalize real-time statistics at a tracker site.

How DB2 utilities affect the real-time statistics
In general, SQL INSERT, UPDATE, and DELETE statements cause DB2 to modify
the real-time statistics. However, certain DB2 utilities also affect the statistics. The
following section discuss the affect of each of those utilities on the statistics.

How LOAD affects real-time statistics
Table 192 shows how running LOAD on a table space or table space partition
affects the TABLESPACESTATS statistics.

Table 192. Changed TABLESPACESTATS values during LOAD

Column name Settings for LOAD REPLACE after RELOAD
phase

TOTALROWS Number of rows or LOBs loaded3

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGUPDATES 0

REORGDISORGLOB 0

REORGUNCLUSTINS 0

REORGMASSDELETE 0

REORGNEARINDREF 0

REORGFARINDEF 0

STATSLASTTIME Current timestamp1

STATSINSERTS 01

STATSDELETES 01

STATSUPDATES 01

STATSMASSDELETE 01

COPYLASTTIME Current timestamp2

COPYUPDATEDPAGES 02

COPYCHANGES 02

COPYUPDATELRSN Null2

COPYUPDATETIME Null2

1058 Administration Guide

#
#

#

#

#

#
#
#

#
#
#

##

##
#

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

Table 192. Changed TABLESPACESTATS values during LOAD (continued)

Column name Settings for LOAD REPLACE after RELOAD
phase

Note:

1. DB2 sets this value only if the LOAD invocation includes the STATISTICS option.

2. DB2 sets this value only if the LOAD invocation includes the COPYDDN option.

3. Under certain conditions, such as a utility restart, the LOAD utility might not have an
accurate count of loaded records. In those cases, DB2 sets this value to null. Some rows
that are loaded into a table space and are included in this value might later be removed
during the index validation phase or the referential integrity check. DB2 includes counts
of those removed records in the statistics that record deleted records.

Table 193 shows how running LOAD affects the INDEXSPACESTATS statistics for
an index space or physical index partition.

Table 193. Changed INDEXSPACESTATS values during LOAD

Column name Settings for LOAD REPLACE after BUILD
phase

TOTALENTRIES Number of index entries added3

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

LOADRLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

STATSLASTTIME Current timestamp1

STATSINSERTS 01

STATSDELETES 01

STATSMASSDELETE 01

COPYLASTTIME Current timestamp2

COPYUPDATEDPAGES 02

COPYCHANGES 02

COPYUPDATELRSN Null2

COPYUPDATETIME Null2

Notes:

1. DB2 sets this value only if the LOAD invocation includes the STATISTICS option.

2. DB2 sets this value only if the LOAD invocation includes the COPYDDN option.

3. Under certain conditions, such as a utility restart, the LOAD utility might not have an
accurate count of loaded records. In those cases, DB2 sets this value to null.

Appendix G. Real-time statistics tables 1059

#

##
#

#

#

#

#
#
#
#
#
#

#
#

##

##
#

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

#

#

#

#
#

For a logical index partition:

v DB2 does not reset the nonpartitioning index when it does a LOAD REPLACE on
a partition. Therefore, DB2 does not reset the statistics for the index. The
REORG counters from the last REORG are still correct. DB2 updates
LOADRLASTTIME when the entire nonpartitioning index is replaced.

v When DB2 does a LOAD RESUME YES on a partition, after the BUILD phase,
DB2 increments TOTALENTRIES by the number of index entries that were
inserted during the BUILD phase.

How REORG affects real-time statistics
Table 194 shows how running REORG on a table space or table space partition
affects the TABLESPACESTATS statistics.

Table 194. Changed TABLESPACESTATS values during REORG

Column name Settings for REORG
SHRLEVEL NONE after
RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

TOTALROWS Number rows or LOBs
loaded3

For SHRLEVEL REFERENCE: Number of
rows or LOBs loaded during RELOAD
phase

For SHRLEVEL CHANGE: Number of rows
or LOBs loaded during RELOAD phase
+Number of rows inserted during LOG
APPLY phase-Number of rows deleted
during LOG phase

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

REORGINSERTS 0 Actual value4

REORGDELETES 0 Actual value4

REORGUPDATES 0 Actual value4

REORGDISORGLOB 0 Actual value4

REORGUNCLUSTINS 0 Actual value4

REORGMASSDELETE 0 Actual value4

REORGNEARINDREF 0 Actual value4

REORGFARINDEF 0 Actual value4

STATSLASTTIME Current timestamp1 Current timestamp1

STATSINSERTS 01 Actual value4

STATSDELETES 01 Actual value4

STATSUPDATES 01 Actual value4

STATSMASSDELETE 01 Actual value4

COPYLASTTIME Current timestamp2 Current timestamp

COPYUPDATEDPAGES 02 Actual value4

COPYCHANGES 02 Actual value4

COPYUPDATELRSN Null2 Actual value5

1060 Administration Guide

#

#

#
#
#
#

#
#
#

#
#
#

##

##
#
#

#
#
#

##
#
#
#
#

#
#
#
#
#

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

Table 194. Changed TABLESPACESTATS values during REORG (continued)

Column name Settings for REORG
SHRLEVEL NONE after
RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

COPYUPDATETIME Null2 Actual value5

Notes:

1. DB2 sets this value only if the REORG invocation includes the STATISTICS option.

2. DB2 sets this value only if the REORG invocation includes the COPYDDN option.

3. Under certain conditions, such as a utility restart, the REORG utility might not have an accurate count of loaded
records. In those cases, DB2 sets this value to null. Some rows that are loaded into a table space and are
included in this value might later be removed during the index validation phase or the referential integrity check.
DB2 includes counts of those removed records in the statistics that record deleted records.

4. This is the actual number of inserts, updates, or deletes that are due to applying the log to the shadow copy.

5. This is the LRSN or timestamp for the first update that is due to applying the log to the shadow copy.

Table 195 shows how running REORG affects the INDEXSPACESTATS statistics for
an index space or physical index partition.

Table 195. Changed INDEXSPACESTATS values during REORG

Column name Settings for REORG
SHRLEVEL NONE after
RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

TOTALENTRIES Number of index entries
added3

For SHRLEVEL REFERENCE: Number of
index entries added during BUILD phase

For SHRLEVEL CHANGE: Number of index
entries added during BUILD phase
+Number of index entries added during
LOG phase-Number of index entries
deleted during LOG phase

NLEVELS Actual value Actual value

NACTIVE Actual value Actual value

SPACE Actual value Actual value

EXTENTS Actual value Actual value

REORGLASTTIME Current timestamp Current timestamp

REORGINSERTS 0 Actual value4

REORGDELETES 0 Actual value4

REORGAPPENDINSERT 0 Actual value4

REORGPSEUDODELETES 0 Actual value4

REORGMASSDELETE 0 Actual value4

REORGLEAFNEAR 0 Actual value4

REORGLEAFFAR 0 Actual value4

REORGNUMLEVELS 0 Actual value4

STATSLASTTIME Current timestamp1 Current timestamp1

STATSINSERTS 01 Actual value4

STATSDELETES 01 Actual value4

STATSMASSDELETE 01 Actual value4

COPYLASTTIME Current timestamp2 Unchanged5

Appendix G. Real-time statistics tables 1061

#

##
#
#

#
#
#

###

#

#

#

#
#
#
#

#

#
#

#
#

##

##
#
#

#
#
#

##
#
#
#

#
#
#
#
#

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

Table 195. Changed INDEXSPACESTATS values during REORG (continued)

Column name Settings for REORG
SHRLEVEL NONE after
RELOAD phase

Settings for REORG SHRLEVEL
REFERENCE or CHANGE after SWITCH
phase

COPYUPDATEDPAGES 02 Unchanged5

COPYCHANGES 02 Unchanged5

COPYUPDATELRSN Null2 Unchanged5

COPYUPDATETIME Null2 Unchanged5

Notes:

1. DB2 sets this value only if the REORG invocation includes the STATISTICS option.

2. DB2 sets this value only if the REORG invocation includes the COPYDDN option.

3. Under certain conditions, such as a utility restart, the REORG utility might not have an accurate count of loaded
records. In those cases, DB2 sets this value to null.

4. This is the actual number of inserts, updates, or deletes that are due to applying the log to the shadow copy.

5. Inline COPY is not allowed for SHRLEVEL CHANGE or SHRLEVEL REFERENCE.

For a logical index partition: DB2 does not reset the nonpartitioning index when it
does a REORG on a partition. Therefore, DB2 does not reset the statistics for the
index. The REORG counters from the last REORG are still correct. DB2 updates
REORGLASTTIME when the entire nonpartitioning index is reorganized.

How REBUILD INDEX affects real-time statistics
Table 196 shows how running REBUILD INDEX affects the INDEXSPACESTATS
statistics for an index space or physical index partition.

Table 196. Changed INDEXSPACESTATS values during REBUILD INDEX

Column name Settings after BUILD phase

TOTALENTRIES Number of index entries added1

NLEVELS Actual value

NACTIVE Actual value

SPACE Actual value

EXTENTS Actual value

REBUILDLASTTIME Current timestamp

REORGINSERTS 0

REORGDELETES 0

REORGAPPENDINSERT 0

REORGPSEUDODELETES 0

REORGMASSDELETE 0

REORGLEAFNEAR 0

REORGLEAFFAR 0

REORGNUMLEVELS 0

Note:

1. Under certain conditions, such as a utility restart, the REBUILD utility might not have an
accurate count of loaded records. In those cases, DB2 sets this value to null.

For a logical index partition: DB2 does not collect TOTALENTRIES statistics for the
entire nonpartitioning index when it runs REBUILD INDEX. Therefore, DB2 does not

1062 Administration Guide

#

##
#
#

#
#
#

###

###

###

###

#

#

#

#
#

#

#
#

#
#
#
#

#
#
#

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

##

#

#
#
#

#
#

reset the statistics for the index. The REORG counters from the last REORG are
still correct. DB2 updates REBUILDLASTTIME when the entire nonpartitioning index
is rebuilt.

How RUNSTATS affects real-time statistics
Only RUNSTATS UPDATE ALL affects the real-time statistics. When the
RUNSTATS job starts, DB2 externalizes all in-memory statistics to the real-time
statistics tables.

Table 197 shows how running RUNSTATS UPDATE ALL on a table space or table
space partition affects the TABLESPACESTATS statistics.

Table 197. Changed TABLESPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of
RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

STATSDELETES Actual value1 Actual value2

STATSUPDATES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

Table 198 shows how running RUNSTATS UPDATE ALL on an index affects the
INDEXSPACESTATS statistics.

Table 198. Changed INDEXSPACESTATS values during RUNSTATS UPDATE ALL

Column name During UTILINIT phase After RUNSTATS phase

STATSLASTTIME Current timestamp1 Timestamp of the start of
RUNSTATS phase

STATSINSERTS Actual value1 Actual value2

STATSDELETES Actual value1 Actual value2

STATSMASSDELETE Actual value1 Actual value2

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

How COPY affects real-time statistics
When a COPY job starts, DB2 externalizes all in-memory statistics to the real-time
statistics tables. Statistics are gathered only for a full image copy or an incremental
copy, but not for a data set copy.

Table 199 on page 1064 shows how running COPY on a table space or table space
partition affects the TABLESPACESTATS statistics.

Appendix G. Real-time statistics tables 1063

#
#
#

#
#
#
#

#
#

##

###

###
#

###

###

###

###

#

#

#
#
#

#
#

##

###

###
#

###

###

###

#

#

#
#
#

#
#
#
#

#
#

Table 199. Changed TABLESPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of
COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

Notes:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

3. This value is null for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

Table 200 shows how running COPY on an index affects the INDEXSPACESTATS
statistics.

Table 200. Changed INDEXSPACESTATS values during COPY

Column name During UTILINIT phase After COPY phase

COPYLASTTIME Current timestamp1 Timestamp of the start of
COPY phase

COPYUPDATEDPAGES Actual value1 Actual value2

COPYCHANGES Actual value1 Actual value2

COPYUPDATELRSN Actual value1 Actual value3

COPYUPDATETIME Actual value1 Actual value3

Note:

1. DB2 externalizes the current in-memory values.

2. This value is 0 for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

3. This value is null for SHRLEVEL REFERENCE, or the actual value for SHRLEVEL
CHANGE.

How RECOVER affects real-time statistics
After recovery to the current state, the in-memory counter fields are still valid, so
DB2 does not modify them. However, after a point-in-time recovery, the statistics
might not be valid. DB2 therefore sets all the REORG, STATS, and COPY counter
statistics to null after a point-in-time recovery. After recovery to the current state,
DB2 sets NACTIVE, SPACE, and EXTENTS to their new values. After a
point-in-time recovery, DB2 sets NLEVELS, NACTIVE, SPACE, and EXTENTS to
their new values.

How non-DB2 utilities affect real-time statistics
Non-DB2 utilities do not affect real-time statistics. Therefore, an object that is the
target of a non-DB2 COPY, LOAD, REBUILD, REORG or RUNSTATS can cause
incorrect statistics to be inserted in the real-time statistics tables. Follow this
process to ensure correct statistics when you run non-DB2 utilities:

1064 Administration Guide

##

###

###
#

###

###

###

###

#

#

#
#

#
#
#

#
#

##

###

###
#

###

###

###

###

#

#

#
#

#
#
#

#
#
#
#
#
#
#
#

#

#
#
#
#

1. Stop the table space or index on which you plan to run the utility. This action
causes DB2 to write the in-memory statistics to the real-time statistics tables
and initialize the in-memory counters.

2. Run the utility.

3. When the utility completes, update the statistics tables with new totals,
timestamps and zero incremental counter values.

Real-time statistics on objects in work file databases and the TEMP
database

Although you cannot run utilities on objects in the work files databases and TEMP
database, DB2 records the NACTIVE, SPACE, and EXTENTS statistics on table
spaces in those databases.

Real-time statistics on read-only objects
DB2 does not externalize the NACTIVE, SPACE, or EXTENTS statistics for
read-only objects.

How dropping objects affects real-time statistics
If you drop a table space or index, DB2 deletes its statistics from the real-time
statistics tables. However, if the real-time statistics database is not available when
you drop a table space or index, the statistics remain in the real-time statistics
tables, even though the corresponding object no longer exists. You need to use
SQL DELETE statements to manually remove those rows from the real-time
statistics tables.

If a row still exists in the real-time statistics tables for a dropped table space or
index, and if you create a new object with the same DBID and PSID as the dropped
object, DB2 reinitializes the row before it updates any values in that row.

How SQL operations affect real-time statistics counters
SQL operations affect the counter columns in the real-time statistics tables. These
are the columns that record that record the number of insert, delete, or update
operations, as well as total counters TOTALROWS and TOTALENTRIES.

UPDATE: When you perform an UPDATE, DB2 increments the update counters.

INSERT: When you perform an INSERT, DB2 increments the insert counters. DB2
keeps separate counters for clustered and unclustered UPDATEs.

DELETE: When you perform a DELETE, DB2 increments the delete counters.

ROLLBACK: When you perform a ROLLBACK, DB2 increments the the counters,
depending on the type of SQL operation that is rolled back:

Rolled-back SQL statement Incremented counters

UPDATE Update counters

INSERT Delete counters

DELETE Insert counters

Mass DELETE: When you perform a mass delete operation on a table space does
not cause DB2 to reset the counter columns in the real-time statistics tables. After a

Appendix G. Real-time statistics tables 1065

#
#
#

#

#
#

#

#

#
#
#

#

#
#

#

#
#
#
#
#
#

#
#
#

#

#
#
#

#

#
#

#

#
#

###

##

##

##
#

#
#

mass delete operation, the value in a counter column includes the count from
before the mass delete operation, as well as the count after the mass delete
operation.

Real-time statistics in data sharing
In a data sharing environment, DB2 members update their statistics serially. Each
member reads the target row from the statistics table, obtains a lock, aggregates its
in-memory statistics, and updates the statistics table with the new totals. Each
member sets its own interval for writing real-time statistics.

DB2 does locking based on the lock size of the DSNRTSDB.DSNRTSTS table
space. DB2 uses cursor stability isolation and CURRENTDATA(YES) when it reads
the statistics tables.

At the beginning of a RUNSTATS job, all data sharing members externalize their
statistics to the real-time statistics tables and reset their in-memory statistics. If all
members cannot externalize their statistics, DB2 sets STATSLASTTIME to null. An
error in gathering and externalizing statistics does not prevent RUNSTATS from
running.

At the beginning of a COPY job, all data sharing members externalize their
statistics to the real-time statistics tables and reset their in-memory statistics. If all
members cannot externalize their statistics, DB2 sets COPYLASTTIME to null. An
error in gathering and externalizing statistics does not prevent COPY from running.

Utilities that reset page sets to empty can invalidate the in-memory statistics of
other DB2 members. The member that resets a page set notifies the other DB2
members that a page set has been reset to empty, and the in-memory stats are
invalidated. If the notify process fails, the utility that resets the page set does not
fail. DB2 sets the appropriate timestamp (REORGLASTTIME, STATSLASTTIME or
COPYLASTTIME) to null in the row for the empty page set to indicate that the
statistics for that page set are unknown.

Improving concurrency with real-time statistics
Follow these recommendations to reduce the risk of timeouts and deadlocks when
you work with the real-time statistics tables:

v When you run COPY, RUNSTATS or REORG on the real-time statistics objects,
use SHRLEVEL CHANGE.

v When you execute SQL statements to query the real-time statistics tables, use
uncommitted read isolation.

Recovering the real-time statistics tables
When you recover a DB2 subsystem after a disaster, you need to perform the
following actions on the real-time statistics database:

v Recover the real-time statistics objects after you recover the DB2 catalog and
directory.

v Start the real-time statistics database explicitly, after DB2 restart.

Statistics accuracy
In general, the real-time statistics are accurate values. However, several factors can
affect the accuracy of the statistics:
v Certain utility restart scenarios
v A DB2 subsystem failure

1066 Administration Guide

#
#
#

#

#
#
#
#

#
#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#

#

#
#

#
#

#
#

#

#
#

#
#

#

#

#
#
#
#

v A notify failure in a data sharing environment

If you think that some statistics values might be inaccurate, you can correct the
statistics by running REORG, RUNSTATS, or COPY on the objects for which DB2
generated the statistics.

Appendix G. Real-time statistics tables 1067

#

#
#
#

1068 Administration Guide

Appendix H. Stored procedures shipped with DB2

DB2 provides several stored procedures that you can call in your application
programs to perform a number of utility and application programming functions.
Those stored procedures are:

v The utilities stored procedure (DSNUTILS)

This stored procedure lets you invoke utilities from a local or remote client
program. See Appendix B of DB2 Utility Guide and Reference for information.

v The DB2 UDB Control Center table space and index information stored
procedure (DSNACCQC)

This stored procedure helps you determine when utilities should be run on your
databases. This stored procedure is designed primarily for use by the DB2 UDB
Control Center but can be invoked from any client program. See Appendix B of
DB2 Utility Guide and Reference for information.

v The DB2 UDB Control Center partition information stored procedure
(DSNACCAV)

This stored procedure helps you determine when utilities should be run on your
partitioned table spaces. This stored procedure is designed primarily for use by
the DB2 UDB Control Center but can be invoked from any client program. See
Appendix B of DB2 Utility Guide and Reference for information.

v The real-time statistics stored procedure (DSNACCOR)

This stored procedure queries the DB2 real-time statistics tables to help you
determine when you should run COPY, REORG, or RUNSTATS, or enlarge your
DB2 data sets. See “The DB2 real-time statistics stored procedure” for
information.

v The WLM environment refresh stored procedure (WLM_REFRESH)

This stored procedure lets you refresh a WLM environment from a remote
workstation. See Appendix I of DB2 Application Programming and SQL Guide for
information.

v The CICS transaction invocation stored procedure (DSNACICS)

This stored procedure lets you invoke CICS transactions fom a remote
workstation. See “The CICS transaction invocation stored procedure
(DSNACICS)” on page 1087 for information.

The DB2 real-time statistics stored procedure
The information under this heading is Product-sensitive Programming Interface and
Associated Guidance Information, as defined in “Notices” on page 1095.

The DSNACCOR stored procedure is a sample stored procedure that makes
recommendations to help you maintain your DB2 databases. In particular,
DSNACCOR performs these actions:

v Recommends when you should reorganize, image copy, or update statistics for
table spaces or index spaces

v Indicates table spaces or index spaces that have exceeded their data set extents

v Indicates whether an object for which it recommends an action is in a restricted
state when DSNACCOR runs

DSNACCOR uses data from the SYSIBM.TABLESPACESTATS and
SYSIBM.INDEXSPACESTATS real-time statistics tables to make its
recommendations. DSNACCOR provides its recommendations in a result set.

© Copyright IBM Corp. 1982, 2001 1069

#

#
#

#
#
#

#
#

#

#
#

#
#
#

DSNACCOR uses the set of criteria shown in “Formulas for recommending actions”
on page 1077 to evaluate table spaces and index spaces. By default, DSNACCOR
evaluates all table spaces and index spaces in the subsystem that have entries in
the real-time statistics tables. However, you can override this default through input
parameters.

Important information about DSNACCOR recommendations:

v DSNACCOR makes recommendations based on general formulas that require
input from the user about the maintenance policies for a subsystem. These
recommendations might not be accurate for every installation.

v If the real-time statistics tables contain information for only a small percentage of
your DB2 subsystem, the recommendations that DSNACCOR makes might not
be accurate for the entire subsystem.

v Before you perform any action that DSNACCOR recommends, ensure that the
object for which DSNACCOR makes the recommendation is available, and that it
is possible to perform the recommended action on that object. For example,
before you can perform an image copy on an index, the index must have the
COPY YES attribute.

Environment
DSNACCOR must run in a WLM-established stored procedure address space.

DSNACCOR creates and uses declared temporary tables. Therefore, before you
can invoke DSNACCOR, you need to create a TEMP database and segmented
table spaces in the TEMP database. Specify a 4KB buffer pool when you create the
TEMP database. For information on creating TEMP databases and table spaces,
see the CREATE DATABASE and CREATE TABLESPACE sections in Chapter 5 of
DB2 SQL Reference.

Before you can invoke DSNACCOR, the real-time statistics tables,
SYSIBM.TABLESPACESTATS and SYSIBM.INDEXSPACESTATS, must exist, and
the real-time statistics database must be started. See “Appendix G. Real-time
statistics tables” on page 1043 for information on the real-time statistics tables.

Authorization required
To execute the CALL DSNACCOR statement, the owner of the package or plan that
contains the CALL statement must have one or more of the following privileges on
each package that the stored procedure uses:

v The EXECUTE privilege on the package for DSNACCOR

v Ownership of the package

v PACKADM authority for the package collection

v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have:
v SELECT authority on the real-time statistics tables
v The DISPLAY system privilege

DSNACCOR syntax diagram
The following syntax diagram shows the CALL statement for invoking DSNACCOR.
Because the linkage convention for DSNACCOR is GENERAL WITH NULLS, if you
pass parameters in host variables, you need to include a null indicator with every

1070 Administration Guide

#
#
#
#
#

#

#
#
#

#
#
#

#
#
#
#
#

#

#

#
#
#
#
#
#

#
#
#
#

#

#
#
#

#

#

#

#

#
#
#
#

#

#
#
#

host variable. Null indicators for input host variables must be initialized before you
execute the CALL statement.

DSNACCOR option descriptions
In the following option descriptions, the default value for an input parameter is the
value that DSNACCOR uses if you specify a null value.

QueryType
Specifies the types of actions that DSNACCOR recommends. This field
contains one or more of the following values. Each value is enclosed in single
quotation marks and separated from other values by a space.

ALL Make recommendations for all of the following actions.

COPY Make a recommendation on whether to perform an image copy.

RUNSTATS Make a recommendation on whether to perform RUNSTATS.

REORG Make a recommendation on whether to perform REORG.
Choosing this value causes DSNACCOR to process the
EXTENTS value also.

EXTENTS Indicate when data sets have exceeded a user-specified
extents limit.

RESTRICT Indicate which objects are in a restricted state.

ff CALL DSNACCOR (QueryType ,
NULL

ObjectType ,
NULL

ICType ,
NULL

StatsSchema ,
NULL

f

f CatlgSchema ,
NULL

LocalSchema ,
NULL

ChkLvl ,
NULL

Criteria ,
NULL

Unused ,
NULL

f

f CRUpdatedPagesPct ,
NULL

CRChangesPct ,
NULL

CRDaySncLastCopy ,
NULL

ICRUpdatedPagesPct ,
NULL

f

f ICRChangesPct ,
NULL

CRIndexSize ,
NULL

f

f RRTInsDelUpdPct ,
NULL

RRTUnclustInsPct ,
NULL

RRTDisorgLOBPct ,
NULL

RRTMassDelLimit ,
NULL

f

f RRTIndRefLimit ,
NULL

RRIInsertDeletePct ,
NULL

RRIAppendInsertPct ,
NULL

f

f RRIPseudoDeletePct ,
NULL

RRIMassDelLimit ,
NULL

RRILeafLimit ,
NULL

RRINumLevelsLimit ,
NULL

f

f SRTInsDelUpdPct ,
NULL

SRTInsDelUpdAbs ,
NULL

SRTMassDelLimit ,
NULL

SRIInsDelUpdPct ,
NULL

f

f SRIInsDelUpdAbs ,
NULL

SRIMassDelLimit ,
NULL

ExtentLimit ,
NULL

f

f LastStatement, ReturnCode, ErrorMessage, IFCARetCode, IFCAResCode, XSBytes) fg

Appendix H. Stored procedures shipped with DB2 1071

#

###
#

#
###
#

#
###
#

#
#########################

#

###
#

#
#################################
#

#
###
#

#
###
#

#
###################################

#

###################
#
#
#

#
#
##

#

#
#

#
#
#
#

##

##

##

##
#
#

##
#

##

This is an input parameter of type VARCHAR(40). The default is 'ALL'.

ObjectType
Specifies the types of objects for which DSNACCOR recommends actions:

ALL Table spaces and index spaces.

TS Table spaces only.

IX Index spaces only.

This is an input parameter of type VARCHAR(3). The default is 'ALL'.

ICType
Specifies the types of image copies for which DSNACCOR should make
recommendations:

F Full image copy.

I Incremental image copy. This value is valid for table spaces only.

B Full image copy or incremental image copy.

This is an input parameter of type VARCHAR(1). The default is 'B'.

StatsSchema
Specifies the qualifier for the real-time statistics table names. This is an input
parameter of type VARCHAR(128). The default is 'SYSIBM'.

CatlgSchema
Specifies the qualifier for DB2 catalog table names. This is an input parameter
of type VARCHAR(128). The default is 'SYSIBM'.

LocalSchema
Specifies the qualifier for the names of tables that DSNACCOR creates. This is
an input parameter of type VARCHAR(128). The default is 'DSNACC'.

ChkLvl
Specifies the types of checking that DSNACCOR performs, and indicates
whether to include objects that fail those checks in the DSNACCOR
recommendations result set. This value is the sum of any combination of the
following values:

0 DSNACCOR performs none of the following actions.

1 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted. If value 16 is not also chosen, exclude
rows for the deleted objects from the recommendations result set.

2 For index spaces that are listed in the recommendations result set,
check the SYSTABLES, SYSTABLESPACE, and SYSINDEXES catalog
tables to determine the name of the table space that is associated with
each index space.

Choosing this value causes DSNACCOR to also check for rows in the
recommendations result set for objects that have been deleted but have
entries in the real-time statistics tables (value 1). This means that if
value 16 is not also chosen, rows for deleted objects are excluded from
the recommendations result set.

4 Check whether rows that are in the DSNACCOR recommendations
result set refer to objects that are in the exception table. For
recommendations result set rows that have corresponding exception

1072 Administration Guide

#

#
#

##

##

##

#

#
#
#

##

##

##

#

#
#
#

#
#
#

#
#
#

#
#
#
#
#

##

##
#
#
#

##
#
#
#

#
#
#
#
#

##
#
#

table rows, copy the contents of the QUERYTYPE column of the
exception table to the INEXCEPTTABLE column of the
recommendations result set.

8 Check whether objects that have rows in the recommendations result
set are restricted. Indicate the restricted status in the OBJECTSTATUS
column of the result set.

16 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted (value 1). In result set rows for deleted
objects, specify the word ORPHANED in the OBJECTSTATUS column.

32 Exclude rows from the DSNACCOR recommendations result set for
index spaces for which the related table spaces have been
recommended for REORG. Choosing this value causes DSNACCOR to
perform the actions for values 1 and 2.

This is an input parameter of type INTEGER. The default is 7 (values 1+2+4).

Criteria
Narrows the set of objects for which DSNACCOR makes recommendations.
This value is the search condition of an SQL WHERE clause. This is an input
parameter of type VARCHAR(4096). The default is that DSNACCOR makes
recommendations for all table spaces and index spaces in the subsystem.

Unused
A parameter that is reserved for future use. Specify the null value for this
parameter. This is an input parameter of type VARCHAR(80).

CRUpdatedPagesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. For a table space, if the ratio of distinct updated pages to
preformatted pages, expressed as a percentage, is greater than this value,
DSNACCOR recommends an image copy. (See item 2 in Figure 153 on
page 1078.) For an index space, if the ratio of distinct updated pages to
preformatted pages, expressed as a percentage, is greater than this value, and
the number of active pages in the index space or partition is greater than
CRIndexSize, DSNACCOR recommends an image copy. (See items 2 and 3 in
Figure 154 on page 1078.) This is an input parameter of type INTEGER. The
default is 20.

CRChangesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. For a table space, if the ratio of the number INSERTs, UPDATEs,
and DELETEs since the last image copy to the total number of rows or LOBs in
a table space or partition, expressed as a percentage, is greater than this value,
DSNACCOR recommends an image copy. (See item 3 in Figure 153 on
page 1078.) For an index space, if the ratio of the number INSERTs and
DELETEs since the last image copy to the total number of entries in the index
space or partition, expressed as a percentage, is greater than this value, and
the number of active pages in the index space or partition is greater than
CRIndexSize, DSNACCOR recommends an image copy. (See items 2 and 4 in
Figure 154 on page 1078.) This is an input parameter of type INTEGER. The
default is 10.

CRDaySncLastCopy
Specifies a criterion for recommending a full image copy on a table space or
index space. If the number of days since the last image copy is greater than
this value, DSNACCOR recommends an image copy. (See item 1 in Figure 153
on page 1078

Appendix H. Stored procedures shipped with DB2 1073

#
#
#

##
#
#

##
#
#
#

##
#
#
#

#

#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

on page 1078 and item 1 in Figure 154 on page 1078.) This is an input
parameter of type INTEGER. The default is 7.

ICRUpdatedPagesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the ratio of the number of distinct pages updated since the last image
copy to the total number of active pages in the table space or partition,
expressed as a percentage, is greater than this value, DSNACCOR
recommends an incremental image copy. (See item 1 in Figure 155 on
page 1078.) This is an input parameter of type INTEGER. The default is 1.

ICRChangesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the ratio of the number INSERTs, UPDATEs, and DELETEs since the
last image copy to the total number of rows or LOBs in a table space or
partition, expressed as a percentage, is greater than this value, DSNACCOR
recommends an incremental image copy. (See item 2 in Figure 155 on
page 1078.) This is an input parameter of type INTEGER. The default is 1.

CRIndexSize
Combined with CRUpdatedPagesPct or CRChangesPct, specifies a criterion for
recommending a full image copy on an index space. (See items 2, 3, and 4 in
Figure 154 on page 1078.) This is an input parameter of type INTEGER. The
default is 50.

RRTInsDelUpdPct
Specifies a criterion for recommending that the REORG utility should be run on
a table space. If the ratio of the sum of INSERTs, UPDATEs, and DELETEs
since the last REORG to the total number of rows or LOBs in the table space or
partition, expressed as a percentage, is greater than this value, DSNACCOR
recommends running REORG. (See item 1 in Figure 156 on page 1078.) This is
an input parameter of type INTEGER. The default is 20.

RRTUnclustInsPct
Specifies a criterion for recommending that the REORG utility should be run on
a table space. If the ratio of the number of unclustered INSERTs to the total
number of rows or LOBs in the table space or partition, expressed as a
percentage, is greater than this value, DSNACCOR recommends running
REORG. (See item 2 in Figure 156 on page 1078.) This is an input parameter
of type INTEGER. The default is 10.

RRTDisorgLOBPct
Specifies a criterion for recommending that the REORG utility should be run on
a table space. If the ratio of the number of imperfectly chunked LOBs to the
total number of rows or LOBs in the table space or partition, expressed as a
percentage, is greater than this value, DSNACCOR recommends running
REORG. (See item 3 in Figure 156 on page 1078.) This is an input parameter
of type INTEGER. The default is 10.

RRTMassDelLimit
Specifies a criterion for recommending that the REORG utility should be run on
a table space. If the number of mass deletes from a segmented or LOB table
space since the last REORG or LOAD REPLACE, or the number of dropped
tables from a nonsegmented table space since the last REORG or LOAD
REPLACE is greater than this value, DSNACCOR recommends running
REORG. (See item 5 in Figure 156 on page 1078.) This is an input parameter
of type INTEGER. The default is 0.

RRTIndRefLimit
Specifies a criterion for recommending that the REORG utility should be run on

1074 Administration Guide

#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#

a table space. If the ratio of the total number of overflow records that were
created since the last REORG or LOAD REPLACE to the total number of rows
or LOBs in the table space or partition, expressed as a percentage, is greater
than this value, DSNACCOR recommends running REORG. (See item 4 in
Figure 156 on page 1078.) This is an input parameter of type INTEGER. The
default is 10.

RRIInsertDeletePct
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the ratio of the sum of the number of index entries that were
inserted and deleted since the last REORG to the total number of index entries
in the index space or partition, expressed as a percentage, is greater than this
value, DSNACCOR recommends running REORG. (See item 1 in Figure 157 on
page 1079.) This is an input parameter of type INTEGER. The default is 20.

RRIAppendInsertPct
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the ratio of the number of index entries that were inserted
since the last REORG, REBUILD INDEX, or LOAD REPLACE, and had a key
value greater than the maximum key value in the index space or partition, to the
number of index entries in the index space or partition, expressed as a
percentage, is greater than this value, DSNACCOR recommends running
REORG. (See item 2 in Figure 157 on page 1079.) This is an input parameter
of type INTEGER. The default is 10.

RRIPseudoDeletePct
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the ratio of the number of index entries that were
pseudo-deleted since the last REORG, REBUILD INDEX, or LOAD REPLACE
to the number of index entries in the index space or partition, expressed as a
percentage, is greater than this value, DSNACCOR recommends running
REORG. (See item 3 in Figure 157 on page 1079.) This is an input parameter
of type INTEGER. The default is 10.

RRIMassDelLimit
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the number of mass deletes from an index space or partition
since the last REORG, REBUILD, or LOAD REPLACE is greater than this
value, DSNACCOR recommends running REORG. (See item 4 in Figure 157 on
page 1079.) This is an input parameter of type INTEGER. The default is 0.

RRILeafLimit
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the ratio of the number of index page splits that occurred
since the last REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the location of the original page, to the
total number of active pages in the index space or partition, expressed as a
percentage, is greater than this value, DSNACCOR recommends running
REORG. (See item 5 in Figure 157 on page 1079.) This is an input parameter
of type INTEGER. The default is 10.

RRINumLevelsLimit
Specifies a criterion for recommending that the REORG utility should be run on
an index space. If the number of levels in the index tree that were added or
removed since the last REORG, REBUILD INDEX, or LOAD REPLACE is
greater than this value, DSNACCOR recommends running REORG. (See item 6
in Figure 157 on page 1079.) This is an input parameter of type INTEGER. The
default is 0.

Appendix H. Stored procedures shipped with DB2 1075

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

SRTInsDelUpdPct
Combined with SRTInsDelUpdAbs, specifies a criterion for recommending that
the RUNSTATS utility should be run on a table space. If the ratio of the number
INSERTs, UPDATEs, and DELETEs since the last RUNSTATS on a table space
or partition, to the total number of rows or LOBs in the table space or partition,
expressed as a percentage, is greater than SRTInsDelUpdPct, and the sum of
the number INSERTs, UPDATEs, and DELETEs since the last RUNSTATS on a
table space or partition is greater than SRTInsDelUpdAbs, DSNACCOR
recommends running RUNSTATS. (See items 1 and 2 in Figure 158 on
page 1079.) This is an input parameter of type INTEGER. The default is 20.

SRTInsDelUpdAbs
Combined with SRTInsDelUpdAbs, specifies a criterion for recommending that
the RUNSTATS utility should be run on a table space. (See items 1 and 2 in
Figure 158 on page 1079.) This is an input parameter of type INTEGER. The
default is 0.

SRTMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility should be run
on a table space. If the number of mass deletes from a table space or partition
since the last REORG or LOAD REPLACE is greater than this value,
DSNACCOR recommends running RUNSTATS. (See item 3 in Figure 158 on
page 1079 .) This is an input parameter of type INTEGER. The default is 0.

SRIInsDelUpdPct
Combined with SRIInsDelUpdAbs, specifies a criterion for recommending that
the RUNSTATS utility should be run on an index space. If the ratio of the
number inserted and deleted index entries since the last RUNSTATS on an
index space or partition, to the total number of index entries in the index space
or partition, expressed as a percentage, is greater than SRIInsDelUpdPct, and
the sum of the number inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs,
DSNACCOR recommends running RUNSTATS. (See items 1 and 2 in
Figure 159 on page 1079.) This is an input parameter of type INTEGER. The
default is 20.

SRIInsDelUpdAbs
Combined with SRIInsDelUpdPct, specifies a criterion for recommending that
the RUNSTATS utility should be run on an index space. (See items 1 and 2 in
Figure 159 on page 1079.) This is an input parameter of type INTEGER. The
default is 0.

SRIMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility should be run
on an index space. If the number of mass deletes from an index space or
partition since the last REORG, REBUILD INDEX, or LOAD REPLACE is
greater than this value, DSNACCOR recommends running RUNSTATS. (See
item 3 in Figure 159 on page 1079.) This is an input parameter of type
INTEGER. The default is 0.

ExtentLimit
Specifies a criterion for recommending that the RUNSTATS or REORG utility
should be run on a table space or index space. Also specifies that DSNACCOR
should warn the user that the table space or index space has used too many
extents. If the number of physical extents in the index space, table space, or
partition is greater than this value, DSNACCOR recommends running
RUNSTATS or REORG and altering data set allocations. (See Figure 160 on
page 1079.) This is an input parameter of type INTEGER. The default is 50.

1076 Administration Guide

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#

LastStatement
When DSNACCOR returns a severe error (return code 12), this field contains
the SQL statement that was executing when the error occurred. This is an
output parameter of type VARCHAR(8012).

ReturnCode
The return code from DSNACCOR execution. Possible values are:

0 DSNACCOR executed successfully. The ErrorMsg parameter contains
the approximate percentage of the total number of objects in the
subsystem that have information in the real-time statistics tables.

4 DSNACCOR completed, but one or more input parameters might be
incompatible. The ErrorMsg parameter contains the input parameters
that might be incompatible.

8 DSNACCOR terminated with errors. The ErrorMsg parameter contains
a message that describes the error.

12 DSNACCOR terminated with severe errors. The ErrorMsg parameter
contains a message that describes the error. The LastStatement
parameter contains the SQL statement that was executing when the
error occurred.

14 DSNACCOR terminated because it could not access one or more of the
real-time statistics tables. The ErrorMsg parameter contains the names
of the tables that DSNACCOR could not access.

15 DSNACCOR terminated because it encountered a problem with one of
the declared temporary tables that it defines and uses.

16 DSNACCOR terminated because it could not define a declared
temporary table. No table spaces were defined in the TEMP database.

NULL DSNACCOR terminated but could not set a return code.

This is an output parameter of type INTEGER.

ErrorMsg
Contains information about DSNACCOR execution. If DSNACCOR runs
successfully (ReturnCode=0), this field contains the approximate percentage of
objects in the subsystem that are in the real-time statistics tables. Otherwise,
this field contains error messages. This is an output parameter of type
VARCHAR(1331).

IFCARetCode
Contains the return code from an IFI COMMAND call. DSNACCOR issues
commands through the IFI interface to determine the status of objects. This is
an output parameter of type INTEGER.

IFCAResCode
Contains the reason code from an IFI COMMAND call. This is an output
parameter of type INTEGER.

XSBytes
Contains the number of bytes of information that did not fit in the IFI return area
after an IFI COMMAND call. This is an output parameter of type INTEGER.

Formulas for recommending actions
The following formulas specify the criteria that DSNACCOR uses for its
recommendations and warnings. The variables in italics are DSNACCOR input
parameters. The capitalized variables are columns of the

Appendix H. Stored procedures shipped with DB2 1077

#
#
#
#

#
#

##
#
#

##
#
#

##
#

##
#
#
#

##
#
#

##
#

##
#

##

#

#
#
#
#
#
#

#
#
#
#

#
#
#

#
#
#

#

#
#
#

SYSIBM.TABLESPACESTATS or SYSIBM.INDEXSPACESTATS tables. The
numbers to the right of selected items are reference numbers for the option
descriptions in the previous section.

((QueryType='COPY' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL') AND
ICType='F') AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �2�
(COPYCHANGES*100)/TOTALROWS>CRChangesPct) �3�

Figure 153. When DSNACCOR recommends a full image copy on a table space

((QueryType='COPY' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL') AND
(ICType='F' OR ICType='B')) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
REBUILDLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(NACTIVE>CRIndexSize AND �2�
((COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �3�
(COPYCHANGES*100)/TOTALENTRIES>CRChangesPct))) �4�

Figure 154. When DSNACCOR recommends a full image copy on an index space

((QueryType='COPY' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL') AND
ICType='I' AND
COPYLASTTIME IS NOT NULL) AND
(LOADRLASTTIME>COPYLASTTIME OR
REORGLASTTIME>COPYLASTTIME OR
(COPYUPDATEDPAGES*100)/NACTIVE>ICRUpdatedPagesPct OR �1�
(COPYCHANGES*100)/TOTALROWS>ICRChangesPct)) �2�

Figure 155. When DSNACCOR recommends an incremental image copy on a table space

((QueryType='REORG' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL')) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS>RRTInsDelUpdPct OR �1�
(REORGUNCLUSTINS*100)/TOTALROWS>RRTUnclustInsPct OR �2�
(REORGDISORGLOB*100)/TOTALROWS>RRTDisorgLOBPct OR �3�
((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS>RRTIndRefLimit OR �4�
REORGMASSDELETE>RRTMassDelLimit OR �5�
EXTENTS>ExtentLimit) �6�

Figure 156. When DSNACCOR recommends a REORG on a table space

1078 Administration Guide

#

#
#
#
#
#
#
#
#
#

#
#
#
##

#
#
#
#
#
#
#
#
#
#
#

#
#
#
##

#
#
#
#
#
#
#
#

#
#
#
##

#
#
#
#
#
#
#
#
#

#
#
#
#

#
#
#
#####

Using an exception table
An exception table is an optional, user-created DB2 table that you can use to place
information in the INEXCEPTTABLE column of the recommendations result set. You
can put any information in the INEXCEPTTABLE column, but the most common use
of this column is to filter the recommendations result set. Each row in the exception
table represents an object for which you want to provide information for the
recommendations result set.

To create the exception table, execute the following SQL statement:
CREATE TABLE DSNACC.EXCEPT_TBL
(DBNAME CHAR(8) NOT NULL,
NAME CHAR(8) NOT NULL,
QUERYTYPE CHAR(40) NOT NULL);

The meanings of the columns are:

((QueryType='REORG' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL')) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES>RRIInsertDeletePct OR �1�
(REORGAPPENDINSERT*100)/TOTALENTRIES>RRIAppendInsertPct OR �2�
(REORGPSEUDODELETES*100)/TOTALENTRIES>RRIPseudoDeletePct OR �3�
REORGMASSDELETE>RRIMassDeleteLimit OR �4�
(REORGLEAFFAR*100)/NACTIVE>RRILeafLimit OR �5�
REORGNUMLEVELS>RRINumLevelsLimit OR �6�
EXTENTS>ExtentLimit) �7�

Figure 157. When DSNACCOR recommends a REORG on an index space

((QueryType='RUNSTATS' OR QueryType='ALL') AND
(ObjectType='TS' OR ObjectType='ALL')) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS>SRTInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR �2�
STATSMASSDELETE>SRTMassDeleteLimit) �3�

Figure 158. When DSNACCOR recommends RUNSTATS on a table space

((QueryType='RUNSTATS' OR QueryType='ALL') AND
(ObjectType='IX' OR ObjectType='ALL')) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES>SRIInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES)>SRIInsDelUpdAbs) OR �2�
STATSMASSDELETE>SRIMassDelLimit) �3�

Figure 159. When DSNACCOR recommends RUNSTATS on an index space

EXTENTS>ExtentLimit

Figure 160. When DSNACCOR warns that too many data set extents for a table space or
index space are used

Appendix H. Stored procedures shipped with DB2 1079

#

#
#
#
#
#
#
#
#
#
#

#
#
#
#

#

#
#
#
#
#
#

#
#
#
##

#
#
#
#
#
#

#
#
#
##

#

#
#
#
#
#

####

#

#
#
#
#
#
#

#

#
#
#
#

#

DBNAME
The database name for an object in the exception table.

NAME
The table space name or index space name for an object in the exception table.

QUERYTYPE
The information that you want to place in the INEXCEPTTABLE column of the
recommendations result set.

If you put a null value in this column, DSNACCOR puts the value YES in the
INEXCEPTTABLE column of the recommendations result set row for the object
that matches the DBNAME and NAME values.

After you create the exception table, insert a row for each object for which you want
to include information in the INEXCEPTTABLE column. For example, suppose that
you want the INEXCEPTTABLE column to contain the string ’IRRELEVANT’ for
table space STAFF in database DSNDB04. You also want the INEXCEPTTABLE
column to contain ’CURRENT’ for table space DSN8S71D in database DSN8D71A.
Execute these INSERT statements:
INSERT INTO DSNACC.EXCEPT_TBL VALUES('DSNDB04 ', 'STAFF ', 'IRRELEVANT');
INSERT INTO DSNACC.EXCEPT_TBL VALUES('DSN8D71A', 'DSN8S71D', 'CURRENT');

To use the contents of INEXCEPTTABLE for filtering, include a condition that
involves the INEXCEPTTABLE column in the search condition that you specify in
your criteria input parameter. For example, suppose that you want to include all
rows for database DSNDB04 in the recommendations result set, except for those
rows that contain the string ’IRRELEVANT’ in the INEXCEPTTABLE column. You
might include the following search condition in your criteria input parameter:
DBNAME='DSNDB04' AND INEXCEPTTABLE<>'IRRELEVANT'

Example of DSNACCOR invocation
The following COBOL example shows variable declarations and an SQL CALL for
obtaining recommendations for objects in databases DSN8D71A and DSN8D71L.
WORKING-STORAGE SECTION....

* DSNACCOR PARAMETERS *

01 QUERYTYPE.

49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.
49 QUERYTYPE-DTA PICTURE X(40) VALUE 'ALL'.

01 OBJECTTYPE.
49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.
49 OBJECTTYPE-DTA PICTURE X(3) VALUE 'ALL'.

01 ICTYPE.
49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.
49 ICTYPE-DTA PICTURE X(1) VALUE 'B'.

01 STATSSCHEMA.
49 STATSSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 STATSSCHEMA-DTA PICTURE X(128) VALUE 'SYSIBM'.

01 CATLGSCHEMA.
49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

49 CATLGSCHEMA-DTA PICTURE X(128) VALUE 'SYSIBM'.
01 LOCALSCHEMA.

49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 LOCALSCHEMA-DTA PICTURE X(128) VALUE 'DSNACC'.

01 CHKLVL PICTURE S9(9) COMP VALUE +3.
01 CRITERIA.

49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.

1080 Administration Guide

#
#

#
#

#
#
#

#
#
#

#
#
#
#
#
#

#
#

#
#
#
#
#
#

#

#

#
#

####
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.
01 RESTRICTED.

49 RESTRICTED-LN PICTURE S9(4) COMP VALUE 80.
49 RESTRICTED-DTA PICTURE X(80) VALUE SPACES.

01 CRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.
01 ICRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.
01 RRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 RRTUNCLUSTINSPCT PICTURE S9(9) COMP VALUE +0.
01 RRTDISORGLOBPCT PICTURE S9(9) COMP VALUE +0.
01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRIINSERTDELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIAPPENDINSERTPCT PICTURE S9(9) COMP VALUE +0.
01 RRIPSEUDODELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.

01 LASTSTATEMENT.
49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.
49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.

01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
01 ERRORMSG

49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.
49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.

01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.
01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.
01 XSBYTES PICTURE S9(9) COMP VALUE +0.

* INDICATOR VARIABLES. *
* INITIALIZE ALL NON-ESSENTIAL INPUT *
* VARIABLES TO -1, TO INDICATE THAT THE *
* INPUT VALUE IS NULL. *

01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 STATSSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RESTRICTED-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIINSERTDELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.

Appendix H. Stored procedures shipped with DB2 1081

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.
01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 XSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0.

PROCEDURE DIVISION....

* SET VALUES FOR DSNACCOR INPUT PARAMETERS: *
* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOR TO CHECK *
* FOR ORPHANED OBJECTS AND INDEX SPACES WITHOUT *
* TABLE SPACES, BUT INCLUDE THOSE OBJECTS IN THE *
* RECOMMENDATIONS RESULT SET (CHKLVL=1+2+16=19) *
* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOR TO *
* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *
* DSN8D71A AND DSN8D71L. *
* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *
* WHICH ARE LOWER THAN THE DEFAULTS: *
* CRUPDATEDPAGESPCT 4 *
* CRCHANGESPCT 2 *
* RRTINSDELUPDPCT 2 *
* RRTUNCLUSTINSPCT 5 *
* RRTDISORGLOBPCT 5 *
* RRIAPPENDINSERTPCT 5 *
* SRTINSDELUPDPCT 5 *
* SRIINSDELUPDPCT 5 *
* EXTENTLIMIT 3 *

MOVE 19 TO CHKLVL.
MOVE SPACES TO CRITERIA-DTA.
MOVE 'DBNAME = ''DSN8D71A'' OR DBNAME = ''DSN8D71L'''

TO CRITERIA-DTA.
MOVE 46 TO CRITERIA-LN.
MOVE 4 TO CRUPDATEDPAGESPCT.
MOVE 2 TO CRCHANGESPCT.
MOVE 2 TO RRTINSDELUPDPCT.
MOVE 5 TO RRTUNCLUSTINSPCT.
MOVE 5 TO RRTDISORGLOBPCT.
MOVE 5 TO RRIAPPENDINSERTPCT.
MOVE 5 TO SRTINSDELUPDPCT.
MOVE 5 TO SRIINSDELUPDPCT.
MOVE 3 TO EXTENTLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

MOVE SPACES TO LASTSTATEMENT-DTA.
MOVE 1 TO LASTSTATEMENT-LN.
MOVE 0 TO RETURNCODE-O2.
MOVE SPACES TO ERRORMSG-DTA.
MOVE 1 TO ERRORMSG-LN.
MOVE 0 TO IFCARETCODE.
MOVE 0 TO IFCARESCODE.
MOVE 0 TO XSBYTES.

1082 Administration Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
####
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *
* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *
* DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *
* PARAMETERS. *

MOVE 0 TO CHKLVL-IND.
MOVE 0 TO CRITERIA-IND.
MOVE 0 TO CRUPDATEDPAGESPCT-IND.
MOVE 0 TO CRCHANGESPCT-IND.
MOVE 0 TO RRTINSDELUPDPCT-IND.
MOVE 0 TO RRTUNCLUSTINSPCT-IND.
MOVE 0 TO RRTDISORGLOBPCT-IND.
MOVE 0 TO RRIAPPENDINSERTPCT-IND.
MOVE 0 TO SRTINSDELUPDPCT-IND.
MOVE 0 TO SRIINSDELUPDPCT-IND.
MOVE 0 TO EXTENTLIMIT-IND.
MOVE 0 TO LASTSTATEMENT-IND.
MOVE 0 TO RETURNCODE-IND.
MOVE 0 TO ERRORMSG-IND.
MOVE 0 TO IFCARETCODE-IND.
MOVE 0 TO IFCARESCODE-IND.
MOVE 0 TO XSBYTES-IND....

* CALL DSNACCOR *

EXEC SQL
CALL SYSPROC.DSNACCOR
(:QUERYTYPE :QUERYTYPE-IND,
:OBJECTTYPE :OBJECTTYPE-IND,
:ICTYPE :ICTYPE-IND,
:STATSSCHEMA :STATSSCHEMA-IND,
:CATLGSCHEMA :CATLGSCHEMA-IND,
:LOCALSCHEMA :LOCALSCHEMA-IND,
:CHKLVL :CHKLVL-IND,
:CRITERIA :CRITERIA-IND,
:CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,
:CRCHANGESPCT :CRCHANGESPCT-IND,
:CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,
:ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,
:CRINDEXSIZE :CRINDEXSIZE-IND,
:RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,
:RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,
:RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,
:RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,
:RRTINDREFLIMIT :RRTINDREFLIMIT-IND,
:RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,
:RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,
:RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,
:RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,
:RRILEAFLIMIT :RRILEAFLIMIT-IND,
:RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,
:SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,
:SRTINSDELUPDABS :SRTINSDELUPDABS-IND,
:SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,
:SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,
:SRIINSDELUPDABS :SRIINSDELUPDABS-IND,
:SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,
:EXTENTLIMIT :EXTENTLIMIT-IND,
:LASTSTATEMENT :LASTSTATEMENT-IND,
:RETURNCODE :RETURNCODE-IND,
:ERRORMSG :ERRORMSG-IND,
:IFCARETCODE :IFCARETCODE-IND,

Appendix H. Stored procedures shipped with DB2 1083

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
####
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

:IFCARESCODE :IFCARESCODE-IND,
:XSBYTES :XSBYTES-IND)

END-EXEC.

DSNACCOR output
If DSNACCOR executes successfully, in addition to the output parameters
described in “DSNACCOR option descriptions” on page 1071, DSNACCOR returns
two result sets.

The first result set contains the results from IFI COMMAND calls that DSNACCOR
makes. Table 201 shows the format of the first result set.

Table 201. Result set row for first DSNACCOR result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

The second result set contains DSNACCOR's recommendations. This result set
contains one or more rows for a table space or index space. A nonpartitioned table
space or nonpartitioning index space can have at most one row in the result set. A
partitioned table space or partitioning index space can have at most one row for
each partition. A table space, index space, or partition has a row in the result set if
the following conditions are true:

v If the Criteria input parameter contains a search condition, the search condition is
true for the table space, index space, or partition.

v DSNACCOR recommends at least one action for the table space, index space,
or partition.

Table 202 shows the columns of a result set row.

Table 202. Result set row for second DSNACCOR result set

Column name Data type Description

DBNAME CHAR(8) Name of the database that contains the object.

NAME CHAR(8) Table space or index space name.

PARTITION INTEGER Data set number or partition number.

OBJECTTYPE CHAR(2) DB2 object type:
v TS for a table space
v IX for an index space

OBJECTSTATUS CHAR(36) Status of the object:

v ORPHANED, if the object is an index space with no
corresponding table space, or the object does not exist

v If the object is in a restricted state, one of the following
values:
– TS=restricted-state, if OBJECTTYPE is TS
– IX=restricted-state, if OBJECTTYPE is IX

restricted-state is one of the status codes that appear in
DISPLAY DATABASE output. See Chapter 2 of DB2
Command Reference for details.

IMAGECOPY CHAR(3) COPY recommendation:
v If OBJECTTYPE is TS: FUL (full image copy), INC

(incremental image copy), or NO
v If OBJECTTYPE is IX: YES or NO

1084 Administration Guide

#
#
#

#

#
#
#

#
#

##

###

###

###
#

#
#
#
#
#
#

#
#

#
#

#

##

###

###

###

###

###
#
#

###

#
#

#
#
#
#

#
#
#

###
#
#
#

Table 202. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

RUNSTATS CHAR(3) RUNSTATS recommendation: YES or NO.

EXTENTS CHAR(3) Whether the data sets for the object have exceeded
ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:
v Text that you specify in the QUERYTYPE column of the

exception table.
v YES, if you put a row in the exception table for the object

that this result set row represents, but you specify NULL in
the QUERYTYPE column.

v NO, if the exception table exists but does not have a row for
the object that this result set row represents.

v Null, if the exception table does not exist, or the ChkLvl
input parameter does not include the value 4.

ASSOCIATEDTS CHAR(8) If OBJECTTYPE is IX and the ChkLvl input parameter includes
the value 2, this value is the name of the table space that is
associated with the index space. Otherwise this value is null.

COPYLASTTIME TIMESTAMP Timestamp of the last full image copy on the object. This value
is null if COPY was never run, or the last COPY execution was
terminated.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the object. NULL if
LOAD REPLACE was never run, or the last LOAD REPLACE
execution was terminated.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the object. This
value is null if REBUILD INDEX was never run, or if the last
REBUILD INDEX execution was terminated.

CRUPDPGSPCT INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the
ratio of distinct updated pages to preformatted pages,
expressed as a percentage. Otherwise, this value is null.

CRCPYCHGPCT INTEGER If OBJECTTYPE is TS and IMAGECOPY is YES, this value is
the ratio of the number INSERTs, UPDATEs, and DELETEs
since the last image copy to the total number of rows or LOBs
in the table space or partition, expressed as a percentage. If
OBJECTTYPE is IX and IMAGECOPY is YES, this value is the
ratio of the number INSERTs and DELETEs since the last
image copy to the total number of entries in the index space or
partition, expressed as a percentage. Otherwise, this value is
null.

CRDAYSCELSTCPY INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the
number of days since the last image copy. Otherwise, this
value is null.

CRINDEXSIZE INTEGER If OBJECTTYPE is IX and IMAGECOPY is YES, the number
of active pages in the index space or partition. Otherwise, this
value is null.

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. This value is null
if REORG was never run, or if the last REORG execution was
terminated.

RRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
sum of INSERTs, UPDATEs, and DELETEs since the last
REORG to the total number of rows or LOBs in the table
space or partition, expressed as a percentage. Otherwise, this
value is null.

Appendix H. Stored procedures shipped with DB2 1085

#

###

###

###
#

###

###
#
#
#
#
#
#
#
#
#

###
#
#

###
#
#

###
#
#

###
#
#

###
#
#

###
#
#
#
#
#
#
#
#

###
#
#

###
#
#

###
#
#

###
#
#
#
#

Table 202. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

RRTUNCINSPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of unclustered INSERTs to the total number of rows or
LOBs in the table space or partition, expressed as a
percentage. Otherwise, this value is null.

RRTDISORGLOBPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of imperfectly chunked LOBs to the total number of
rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise, this value is null.

RRTMASSDELETE INTEGER If OBJECTTYPE is TS, REORG is YES, and the table space is
a segmented table space or LOB table space, this value is the
number of mass deletes since the last REORG or LOAD
REPLACE. If OBJECTTYPE is TS, REORG is YES, and the
table space is nonsegmented, this value is the number of
dropped tables since the last REORG or LOAD REPLACE.
Otherwise, this value is null.

RRTINDREF INTEGER If OBJECTTYPE is TS, REORG is YES, the ratio of the total
number of overflow records that were created since the last
REORG or LOAD REPLACE to the total number of rows or
LOBs in the table space or partition, expressed as a
percentage. Otherwise, this value is null.

RRIINSDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
sum of INSERTs and DELETEs since the last REORG to the
total number of index entries in the index space or partition,
expressed as a percentage. Otherwise, this value is null.

RRIAPPINSPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were inserted since the last
REORG, REBUILD INDEX, or LOAD REPLACE and had a key
value greater than the maximum key value in the index space
or partition, to the number of index entries in the index space
or partition, expressed as a percentage. Otherwise, this value
is null.

RRIPSDDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were pseudo-deleted since the
last REORG, REBUILD INDEX, or LOAD REPLACE to the
number of index entries in the index space or partition,
expressed as a percentage. Otherwise, this value is null.

RRIMASSDELETE INTEGER If OBJECTTYPE is IX and REORG is YES, the number of
mass deletes from the index space or partition since the last
REORG, REBUILD, or LOAD REPLACE. Otherwise, this value
is null.

RRILEAF INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index page splits that occurred since the last
REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the location of the
original page, to the total number of active pages in the index
space or partition, expressed as a percentage. Otherwise, this
value is null.

RRINUMLEVELS INTEGER If OBJECTTYPE is IX and REORG is YES, the number of
levels in the index tree that were added or removed since the
last REORG, REBUILD INDEX, or LOAD REPLACE.
Otherwise, this value is null.

1086 Administration Guide

#

###

###
#
#
#

###
#
#
#

###
#
#
#
#
#
#

###
#
#
#
#

###
#
#
#

###
#
#
#
#
#
#

###
#
#
#
#

###
#
#
#

###
#
#
#
#
#
#

###
#
#
#

Table 202. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object. This value is
null if RUNSTATS was never run, or if the last RUNSTATS
execution was terminated.

SRTINSDELPCT INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the ratio of the
number INSERTs, UPDATEs, and DELETEs since the last
RUNSTATS on a table space or partition, to the total number
of rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise, this value is null.

SRTINSDELABS INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the number
INSERTs, UPDATEs, and DELETEs since the last RUNSTATS
on a table space or partition. Otherwise, this value is null.

SRTMASSDELETE INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the number of
mass deletes from the table space or partition since the last
REORG or LOAD REPLACE. Otherwise, this value is null.

SRIINSDELPCT INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the ratio of the
number INSERTs and DELETEs since the last RUNSTATS on
the index space or partition, to the total number of index
entries in the index space or partition, expressed as a
percentage. Otherwise, this value is null.

SRIINSDELABS INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number
INSERTs and DELETEs since the last RUNSTATS on the
index space or partition. Otherwise, this value is null.

SRIMASSDELETE INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number of
mass deletes from the index space or partition since the last
REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise,
this value is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical extents in the
table space, index space, or partition. Otherwise, this value is
null.

The CICS transaction invocation stored procedure (DSNACICS)
The CICS transaction invocation stored procedure (DSNACICS) invokes CICS
server programs. DSNACICS gives workstation applications a way to invoke CICS
server programs while using TCP/IP as their communication protocol. The
workstation applications use TCP/IP and DB2 Connect to connect to a DB2 for
OS/390 and z/OS subsystem, and then call DSNACICS to invoke the CICS server
programs.

The DSNACICS input parameters require knowledge of various CICS resource
definitions with which the workstation programmer might not be familiar. For this
reason, DSNACICS invokes the DSNACICX user exit. The system programmer can
write a version of DSNACICX that checks and overrides the parameters that the
DSNACICS caller passes. If no user version of DSNACICX is provided, DSNACICS
invokes the default version of DSNACICX, which does not modify any parameters.

Environment
DSNACICS runs in a WLM-established stored procedure address space and uses
the Recoverable Resource Manager Services attachment facility to connect to DB2.

Appendix H. Stored procedures shipped with DB2 1087

#

###

###
#
#

###
#
#
#
#

###
#
#

###
#
#

###
#
#
#
#

###
#
#

###
#
#
#

###
#
#
#

#
#

#
#
#
#
#
#

#
#
#
#
#
#

#

#
#

If you use CICS Transaction Server for OS/390 Version 1 Release 3 or later, you
can register your CICS system as a resource manager with recoverable resource
management services (RRMS). When you do that, changes to DB2 databases that
are made by the program that calls DSNACICS and the CICS server program that
DSNACICS invokes are in the same two-phase commit scope. This means that
when the calling program performs an SQL COMMIT or ROLLBACK, DB2 and RRS
inform CICS about the COMMIT or ROLLBACK.

If the CICS server program that DSNACICS invokes accesses DB2 resources, the
server program runs under a separate unit of work from the original unit of work
that calls the stored procedure. This means that the CICS server program might
deadlock with locks that the client program acquires.

Authorization required
To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DSNACICS
v Ownership of the stored procedure
v SYSADM authority

The CICS server program that DSNACICS calls runs under the same user ID as
DSNACICS. That user ID depends on the SECURITY parameter that you specify
when you define DSNACICS. See Part 2 of DB2 Installation Guide.

The DSNACICS caller also needs authorization from an external security system,
such as RACF, to use CICS resources. See Part 2 of DB2 Installation Guide.

DSNACICS syntax diagram
The following syntax diagram shows the SQL CALL statement for invoking
DSNACICS. Because the linkage convention for DSNACICS is GENERAL WITH
NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

DSNACICS option descriptions
parm-level

Specifies the level of the parameter list that is supplied to the stored procedure.
This is an input parameter of type INTEGER. The value must be 1.

pgm-name
Specifies the name of the CICS program that DSNACICS invokes. This is the

ff CALL DSNACICS (parm-level ,
NULL

pgm-name ,
NULL

CICS-applid ,
NULL

CICS-level ,
NULL

f

f connect-type ,
NULL

netname ,
NULL

mirror-trans ,
NULL

COMMAREA ,
NULL

COMMAREA-total-len ,
NULL

f

f sync-opts ,
NULL

return-code, msg-area) fg

1088 Administration Guide

#

###
#

#
###
#

#
#####################

#
#
#

#
#
#
#
#
#
#

#
#
#
#

#

#
#
#
#
#

#
#
#

#
#

#

#
#
#
#
#
##

#

#
#
#

#
#

name of the program that the CICS mirror transaction calls, not the CICS
transaction name. This is an input parameter of type CHAR(8).

CICS-applid
Specifies the applid of the CICS system to which DSNACICS connects. This is
an input parameter of type CHAR(8).

CICS-level
Specifies the level of the target CICS subsystem:

1 The CICS subsystem is CICS for MVS/ESA Version 4 Release 1, CICS
Transaction Server for OS/390 Version 1 Release 1, or CICS
Transaction Server for OS/390 Version 1 Release 2.

2 The CICS subsystem is CICS Transaction Server for OS/390 Version 1
Release 3 or later.

This is an input parameter of type INTEGER.

connect-type
Specifies whether the CICS connection is generic or specific. Possible values
are GENERIC or SPECIFIC. This is an input parameter of type CHAR(8).

netname
If the value of connection-type is SPECIFIC, specifies the name of the specific
connection that is to be used. This value is ignored if the value of
connection-type is GENERIC. This is an input parameter of type CHAR(8).

mirror-trans
Specifies the name of the CICS mirror transaction to invoke. This mirror
transaction calls the CICS server program that is specified in the pgm-name
parameter. mirror-trans must be defined to the CICS server region, and the
CICS resource definition for mirror-trans must specify DFHMIRS as the program
that is associated with the transaction.

If this parameter contains blanks, DSNACICS passes a mirror transaction
parameter value of null to the CICS EXCI interface. This allows an installation
to override the transaction name in various CICS user-replaceable modules. If a
CICS user exit does not specify a value for the mirror transaction name, CICS
invokes CICS-supplied default mirror transaction CSMI.

This is an input parameter of type CHAR(4).

COMMAREA
Specifies the communication area (COMMAREA) that is used to pass data
between the DSNACICS caller and the CICS server program that DSNACICS
calls. This is an input/output parameter of type VARCHAR(32704). In the length
field of this parameter, specify the number of bytes that DSNACICS sends to
the CICS server program.

commarea-total-len
Specifies the total length of the COMMAREA that the server program needs.
This is an input parameter of type INTEGER. This length must be greater than
or equal to the value that you specify in the length field of the COMMAREA
parameter and less than or equal to 32704. When the CICS server program
completes, DSNACICS passes the server program's entire COMMAREA, which
is commarea-total-len bytes in length, to the stored procedure caller.

sync-opts
Specifies whether the calling program controls resource recovery, using
two-phase commit protocols that are supported by OS/390 RRS. Possible
values are:

Appendix H. Stored procedures shipped with DB2 1089

#
#

#
#
#

#
#

##
#
#

##
#

#

#
#
#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#

#

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

1 The client program controls commit processing. The CICS server region
does not perform a syncpoint when the server program returns control
to CICS. Also, the server program cannot take any explicit syncpoints.
Doing so causes the server program to abnormally terminate.

2 The target CICS server region takes a syncpoint on successful
completion of the server program. If this value is specified, the server
program can take explicit syncpoints.

When CICS has been set up to be an RRS resource manager, the client
application can control commit processing using SQL COMMIT requests. DB2
for OS/390 and z/OS ensures that CICS is notified to commit any resources
that the CICS server program modifies during two-phase commit processing.

When CICS has not been set up to be an RRS resource manager, CICS forces
syncpoint processing of all CICS resources at completion of the CICS server
program. This commit processing is not coordinated with the commit processing
of the client program.

This option is ignored when CICS-level is 1. This is an input parameter of type
INTEGER.

return-code
Return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The request to run the CICS server program failed. The msg-area
parameter contains messages that describe the error.

This is an output parameter of type INTEGER.

msg-area
Contains messages if an error occurs during stored procedure execution. The
first messages in this area are generated by the stored procedure. Messages
that are generated by CICS or the DSNACICX user exit might follow the first
messages. The messages appear as a series of concatenated, viewable text
strings. This is an output parameter of type VARCHAR(500).

DSNACICX user exit
DSNACICS always calls user exit DSNACICX. You can use DSNACICX to change
the values of DSNACICS input parameters before you pass those parameters to
CICS. If you do not supply your own version of DSNACICX, DSNACICS calls the
default DSNACICX, which modifies no values and does an immediate return to
DSNACICS. The source code for the default version of DSNACICX is in member
DSNASCIX in data set prefix.SDSNSAMP. The source code for a sample version of
DSNACICX that is written in COBOL is in member DSNASCIO in data set
prefix.SDSNSAMP.

General considerations
The DSNACICX exit must follow these rules:

v It can be written in assembler, COBOL, PL/I, or C.

v It must follow the Language Environment calling linkage when the caller is an
assembler language program.

v The load module for DSNACICX must reside in an authorized program library
that is in the STEPLIB concatenation of the stored procedure address space
startup procedure.

1090 Administration Guide

##
#
#
#

##
#
#

#
#
#
#

#
#
#
#

#
#

#
#

##

##
#

#

#
#
#
#
#
#

#

#
#
#
#
#
#
#
#

#
#

#

#
#

#
#
#

You can replace the default DSNACICX in the prefix.SDSNLOAD, library, or you
can put the DSNACICX load module in a library that is ahead of
prefix.SDSNLOAD in the STEPLIB concatenation. It is recommended that you
put DSNACICX in the prefix.SDSNEXIT library. Sample installation job DSNTIJEX
contains JCL for assembling and link-editing the sample source code for
DSNACICX into prefix.SDSNEXIT. You need to modify the JCL for the libraries
and the compiler that you are using.

v The load module must be named DSNACICX.

v The exit must save and restore the caller’s registers. Only the contents of
register 15 can be modified.

v It must be written to be reentrant and link-edited as reentrant.

v It must be written and link-edited to execute as AMODE(31),RMODE(ANY).

v DSNACICX can contain SQL statements. However, if it does, you need to
change the DSNACICS procedure definition to reflect the appropriate SQL
access level for the types of SQL statements that you use in the user exit.

Specifying the routine
DSNACICS always calls an exit routine named DSNACICX. DSNACICS calls your
DSNACICX exit routine if it finds it before the default DSNACICX exit routine.
Otherwise, it calls the default DSNACICX exit routine.

When the exit is taken
The DSNACICX exit is taken whenever DSNACICS is called. The exit is taken
before DSNACICS invokes the CICS server program.

Loading a new version of the exit
DB2 loads DSNACICX only once, when DSNACICS is first invoked. If you change
DSNACICX, you can load the new version by quiescing and then resuming the
WLM application environment for the stored procedure address space in which
DSNACICS runs:
VARY WLM,APPLENV=DSNACICS-applenv-name,QUIESCE
VARY WLM,APPLENV=DSNACICS-applenv-name,RESUME

Parameter list for DSNACICX
At invocation, registers are set as described in Table 203.

Table 203. Registers at invocation of DSNACICX
Register Contains
1 Address of pointer to the exit parameter list (XPL).
13 Address of the register save area.
14 Return address.
15 Address of entry point of exit routine.

Table 204 shows the contents of the DSNACICX exit parameter list, XPL. Member
DSNDXPL in data set prefix.SDSNMACS contains an assembler language mapping
macro for XPL. Sample exit DSNASCIO in data set prefix.SDSNSAMP includes a
COBOL mapping macro for XPL.

Table 204. Contents of the XPL exit parameter list

Name
Hex
offset Data type Description

Corresponding
DSNACICS
parameter

XPL_EYEC 0 Character, 4 bytes Eye-catcher: 'XPL '

XPL_LEN 4 Character, 4 bytes Length of the exit parameter list

Appendix H. Stored procedures shipped with DB2 1091

#
#
#
#
#
#
#

#

#
#

#

#

#
#
#

#
#
#
#

#
#
#

#
#
#
#
#

#
#

#
#

##
##
##
##
##
##
#

#
#
#
#

##

#
#
###

#
#
#

#####

#####

Table 204. Contents of the XPL exit parameter list (continued)

Name
Hex
offset Data type Description

Corresponding
DSNACICS
parameter

XPL_LEVEL 8 4-byte integer Level of the parameter list parm-level

XPL_PGMNAME C Character, 8 bytes Name of the CICS server
program

pgm-name

XPL_CICSAPPLID 14 Character, 8 bytes CICS VTAM applid CICS-applid

XPL_CICSLEVEL 1C 4-byte integer Level of CICS code CICS-level

XPL_CONNECTTYPE 20 Character, 8 bytes Specific or generic connection
to CICS

connect-type

XPL_NETNAME 28 Character, 8 bytes Name of the specific connection
to CICS

netname

XPL_MIRRORTRAN 30 Character, 8 bytes Name of the mirror transaction
that invokes the CICS server
program

mirror-trans

XPL_COMMAREAPTR 38 Address, 4 bytes Address of the COMMAREA 1

XPL_COMMINLEN 3C 4–byte integer Length of the COMMAREA that
is passed to the server program

2

XPL_COMMTOTLEN 40 4–byte integer Total length of the COMMAREA
that is returned to the caller

commarea-total-len

XPL_SYNCOPTS 44 4–byte integer Syncpoint control option sync-opts

XPL_RETCODE 48 4–byte integer Return code from the exit
routine

return-code

XPL_MSGLEN 4C 4–byte integer Length of the output message
area

return-code

XPL_MSGAREA 50 Character, 256 bytes Output message area msg-area3

Note:

1. The area that this field points to is specified by DSNACICS parameter COMMAREA. This area does not include
the length bytes.

2. This is the same value that the DSNACICS caller specifies in the length bytes of the COMMAREA parameter.

3. Although the total length of msg-area is 500 bytes, DSNACICX can use only 256 bytes of that area.

Example of DSNACICS invocation
The following PL/I example shows the variable declarations and SQL CALL
statement for invoking the CICS transaction that is associated with program
CICSPGM1.
/***********************/
/* DSNACICS PARAMETERS */
/***********************/
DECLARE PARM_LEVEL BIN FIXED(31);
DECLARE PGM_NAME CHAR(8);
DECLARE CICS_APPLID CHAR(8);
DECLARE CICS_LEVEL BIN FIXED(31);
DECLARE CONNECT_TYPE CHAR(8);
DECLARE NETNAME CHAR(8);
DECLARE MIRROR_TRANS CHAR(4);
DECLARE COMMAREA_TOTAL_LEN BIN FIXED(31);
DECLARE SYNC_OPTS BIN FIXED(31);
DECLARE RET_CODE BIN FIXED(31);
DECLARE MSG_AREA CHAR(500) VARYING;

1092 Administration Guide

#

#
#
###

#
#
#

#####

####
#
#

#####

#####

####
#
#

####
#
#

####
#
#

#

#####

####
#
#

####
#
#

#####

####
#
#

####
#
#

#####

#

#
#

#

#
#

#

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

DECLARE 1 COMMAREA BASED(P1),
3 COMMAREA_LEN BIN FIXED(15),
3 COMMAREA_INPUT CHAR(30),
3 COMMAREA_OUTPUT CHAR(100);

/***/
/* INDICATOR VARIABLES FOR DSNACICS PARAMETERS */
/***/
DECLARE 1 IND_VARS,

3 IND_PARM_LEVEL BIN FIXED(15),
3 IND_PGM_NAME BIN FIXED(15),
3 IND_CICS_APPLID BIN FIXED(15),
3 IND_CICS_LEVEL BIN FIXED(15),
3 IND_CONNECT_TYPE BIN FIXED(15),
3 IND_NETNAME BIN FIXED(15),
3 IND_MIRROR_TRANS BIN FIXED(15),
3 IND_COMMAREA BIN FIXED(15),
3 IND_COMMAREA_TOTAL_LEN BIN FIXED(15),
3 IND_SYNC_OPTS BIN FIXED(15),
3 IND_RETCODE BIN FIXED(15),
3 IND_MSG_AREA BIN FIXED(15);

/**************************/
/* LOCAL COPY OF COMMAREA */
/**************************/
DECLARE P1 POINTER;
DECLARE COMMAREA_STG CHAR(130) VARYING;

/**/
/* ASSIGN VALUES TO INPUT PARAMETERS PARM_LEVEL, PGM_NAME, */
/* MIRROR_TRANS, COMMAREA, COMMAREA_TOTAL_LEN, AND SYNC_OPTS. */
/* SET THE OTHER INPUT PARAMETERS TO NULL. THE DSNACICX */
/* USER EXIT MUST ASSIGN VALUES FOR THOSE PARAMETERS. */
/**/
PARM_LEVEL = 1;
IND_PARM_LEVEL = 0;

PGM_NAME = 'CICSPGM1';
IND_PGM_NAME = 0 ;

MIRROR_TRANS = 'MIRT';
IND_MIRROR_TRANS = 0;

P1 = ADDR(COMMAREA_STG);
COMMAREA_INPUT = 'THIS IS THE INPUT FOR CICSPGM1';
COMMAREA_OUTPUT = ' ';
COMMAREA_LEN = LENGTH(COMMAREA_INPUT);
IND_COMMAREA = 0;

COMMAREA_TOTAL_LEN = COMMAREA_LEN + LENGTH(COMMAREA_OUTPUT);
IND_COMMAREA_TOTAL_LEN = 0;

SYNC_OPTS = 1;
IND_SYNC_OPTS = 0;

IND_CICS_APPLID= -1;
IND_CICS_LEVEL = -1;
IND_CONNECT_TYPE = -1;
IND_NETNAME = -1;
/***/
/* INITIALIZE OUTPUT PARAMETERS TO NULL. */
/***/
IND_RETCODE = -1;
IND_MSG_AREA= -1;
/***/
/* CALL DSNACICS TO INVOKE CICSPGM1. */
/***/
EXEC SQL

Appendix H. Stored procedures shipped with DB2 1093

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

CALL SYSPROC.DSNACICS(:PARM_LEVEL :IND_PARM_LEVEL,
:PGM_NAME :IND_PGM_NAME,
:CICS_APPLID :IND_CICS_APPLID,
:CICS_LEVEL :IND_CICS_LEVEL,
:CONNECT_TYPE :IND_CONNECT_TYPE,
:NETNAME :IND_NETNAME,
:MIRROR_TRANS :IND_MIRROR_TRANS,
:COMMAREA_STG :IND_COMMAREA,
:COMMAREA_TOTAL_LEN :IND_COMMAREA_TOTAL_LEN,
:SYNC_OPTS :IND_SYNC_OPTS,
:RET_CODE :IND_RETCODE,
:MSG_AREA :IND_MSG_AREA);

DSNACICS output
DSNACICS places the return code from DSNACICS execution in the return-code
parameter. If the value of the return code is non-zero, DSNACICS puts its own error
messages and any error messages that are generated by CICS and the DSNACICX
user exit in the msg-area parameter.

The COMMAREA parameter contains the COMMAREA for the CICS server
program that DSNACICS calls. The COMMAREA parameter has a VARCHAR type.
Therefore, if the server program puts data other than character data in the
COMMAREA, that data can become corrupted by code page translation as it is
passed to the caller. To avoid code page translation, you can change the
COMMAREA parameter in the CREATE PROCEDURE statement for DSNACICS to
VARCHAR(32704) FOR BIT DATA. However, if you do so, the client program might
need to do code page translation on any character data in the COMMAREA to
make it readable.

DSNACICS restrictions
Because DSNACICS uses the distributed program link (DPL) function to invoke
CICS server programs, server programs that you invoke through DSNACICS can
contain only the CICS API commands that the DPL function supports. The list of
supported commands is documented in CICS for MVS/ESA Application
Programming Reference.

DSNACICS debugging
If you receive errors when you call DSNACICS, ask your system administrator to
add a DSNDUMP DD statement in the startup procedure for the address space in
which DSNACICS runs. The DSNDUMP DD statement causes DB2 to generate an
SVC dump whenever DSNACICS issues an error message.

1094 Administration Guide

#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#
#
#
#
#
#
#
#
#

#

#
#
#
#
#

#

#
#
#
#

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1982, 2001 1095

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Programming Interface Information
This book is intended to help you to plan for and administer IBM DATABASE 2
Universal Database Server for OS/390 and z/OS (DB2 for OS/390 and z/OS).

This book also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and Associated
Guidance Information provided by IBM DATABASE 2 Universal Database Server for
OS/390 and z/OS.

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 for OS/390 and z/OS.

1096 Administration Guide

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-use Programming Interface

General-use Programming Interface and Associated Guidance Information ...

End of General-use Programming Interface

Product-sensitive Programming Interfaces allow the customer installation to perform
tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of this
IBM software product. Use of such interfaces creates dependencies on the detailed
design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information ...

End of Product-sensitive Programming Interface

Notices 1097

Trademarks
The following terms are trademarks of International Business Machines Corporation
in the United States, other countries, or both.

AD/Cycle
APL2
AS/400
BookManager
C/370
CICS
CICS/ESA
CICS/MVS
DATABASE 2
DataHub
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Universal Database
DFSMSdfp
DFSMSdss
DFSMShsm
DFSMS/MVS
DFSORT
DRDA
Distributed Relational Database

Architecture
Enterprise Storage Server
Enterprise System/3090
Enterprise System/9000
ESCON
ES/3090
ES/9000

IBM
IBM Registry
IMS
IMS/ESA
Language Environment
MQSeries
MVS/DFP
MVS/ESA
Net.Data
OpenEdition
Operating System/390
OS/2
OS/390
OS/400
Parallel Sysplex
PR/SM
QMF
RACF
RAMAC
RETAIN
RMF
S/390
SAA
SecureWay
SQL/DS
System/380
System/390
VTAM

NetView is a trademark of Tivoli Systems Inc. in the United States, other countries,
or both.

JDBC, Java, and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

1098 Administration Guide

Glossary

The following terms and abbreviations are defined
as they are used in the DB2 library.

A
abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with DB2. A complete list
of DB2 abend reason codes and their explanations is
contained in DB2 Messages and Codes.

abnormal end of task (abend). Termination of a task,
job, or subsystem because of an error condition that
recovery facilities cannot resolve during execution.

access method services. The facility that is used to
define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that
is specified in SQL statements. An access path can be
indexed or sequential.

active log. The portion of the DB2 log to which log
records are written as they are generated. The active
log always contains the most recent log records,
whereas the archive log holds those records that are
older and no longer fit on the active log.

address space. A range of virtual storage pages that
is identified by a number (ASID) and a collection of
segment and page tables that map the virtual pages to
real pages of the computer’s memory.

address space connection. The result of connecting
an allied address space to DB2. Each address space
that contains a task that is connected to DB2 has
exactly one address space connection, even though
more than one task control block (TCB) can be present.
See also allied address space and task control block.

agent. As used in DB2, the structure that associates
all processes that are involved in a DB2 unit of work. An
allied agent is generally synonymous with an allied
thread. System agents are units of work that process
independently of the allied agent, such as prefetch
processing, deferred writes, and service tasks.

alias. An alternative name that can be used in SQL
statements to refer to a table or view in the same or a
remote DB2 subsystem.

allied address space. An area of storage that is
external to DB2 and that is connected to DB2. An allied
address space is capable of requesting DB2 services.

allied thread. A thread that originates at the local DB2
subsystem and that can access data at a remote DB2
subsystem.

already verified. An LU 6.2 security option that allows
DB2 to provide the user’s verified authorization ID when
allocating a conversation. The user is not validated by
the partner DB2 subsystem.

ambiguous cursor. A database cursor that is not
defined with the FOR FETCH ONLY clause or the FOR
UPDATE OF clause, is not defined on a read-only result
table, is not the target of a WHERE CURRENT clause
on an SQL UPDATE or DELETE statement, and is in a
plan or package that contains either PREPARE or
EXECUTE IMMEDIATE SQL statements.

APAR. Authorized program analysis report.

APAR fix corrective service. A temporary correction
of a DB2 defect. The correction is temporary, because it
is usually replaced at a later date by a more permanent
correction, such as a program temporary fix (PTF).

APF. Authorized program facility.

API. Application programming interface.

APPL. A VTAM network definition statement that is
used to define DB2 to VTAM as an application program
that uses SNA LU 6.2 protocols.

application. A program or set of programs that
performs a task; for example, a payroll application.

application-directed connection. A connection that
an application manages using the SQL CONNECT
statement.

application plan. The control structure that is
produced during the bind process. DB2 uses the
application plan to process SQL statements that it
encounters during statement execution.

application process. The unit to which resources and
locks are allocated. An application process involves the
execution of one or more programs.

application programming interface (API). A
functional interface that is supplied by the operating
system or by a separately orderable licensed program
that allows an application program that is written in a
high-level language to use specific data or functions of
the operating system or licensed program.

application requester. The component on a remote
system that generates DRDA requests for data on
behalf of an application. An application requester
accesses a DB2 database server using the DRDA
application-directed protocol.

application server. The target of a request from a
remote application. In the DB2 environment, the

© Copyright IBM Corp. 1982, 2001 1099

|
|
|

|
|
|
|
|

|
|

application server function is provided by the distributed
data facility and is used to access DB2 data from
remote applications.

archive log. The portion of the DB2 log that contains
log records that have been copied from the active log.

ASCII. An encoding scheme that is used to represent
strings in many environments, typically on PCs and
workstations. Contrast with EBCDIC and Unicode.

attachment facility. An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An
attachment facility allows application programs to
access DB2.

attribute. A characteristic of an entity. For example, in
database design, the phone number of an employee is
one of that employee’s attributes.

authorization ID. A string that can be verified for
connection to DB2 and to which a set of privileges is
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

authorized program analysis report (APAR). A
report of a problem that is caused by a suspected
defect in a current release of an IBM licensed program.

authorized program facility (APF). A facility that
permits the identification of programs that are
authorized to use restricted functions.

auxiliary index. An index on an auxiliary table in
which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside
the table in which they are defined. Contrast with base
table.

B
backward log recovery. The fourth and final phase of
restart processing during which DB2 scans the log in a
backward direction to apply UNDO log records for all
aborted changes.

base table. (1) A table that is created by the SQL
CREATE TABLE statement and that holds persistent
data. Contrast with result table and temporary table.

(2) A table containing a LOB column definition. The
actual LOB column data is not stored with the base
table. The base table contains a row identifier for each
row and an indicator column for each of its LOB
columns. Contrast with auxiliary table.

base table space. A table space that contains base
tables.

basic sequential access method (BSAM). An access
method for storing or retrieving data blocks in a
continuous sequence, using either a sequential access
or a direct access device.

before trigger. A trigger that is defined with the trigger
activation time BEFORE.

binary large object (BLOB). A sequence of bytes
where the size of the value ranges from 0 bytes to
2 GB−1. Such a string does not have an associated
CCSID.

binary string. A sequence of bytes that is not
associated with a CCSID. For example, the BLOB data
type is a binary string.

bind. The process by which the output from the SQL
precompiler is converted to a usable control structure,
often called an access plan, application plan, or
package. During this process, access paths to the data
are selected and some authorization checking is
performed. The types of bind are:

automatic bind. (More correctly, automatic rebind) A
process by which SQL statements are bound
automatically (without a user issuing a BIND
command) when an application process begins
execution and the bound application plan or
package it requires is not valid.
dynamic bind. A process by which SQL statements
are bound as they are entered.
incremental bind. A process by which SQL
statements are bound during the execution of an
application process, because they could not be
bound during the bind process, and
VALIDATE(RUN) was specified.
static bind. A process by which SQL statements are
bound after they have been precompiled. All static
SQL statements are prepared for execution at the
same time.

BLOB. Binary large object.

BMP. Batch Message Processing (IMS).

bootstrap data set (BSDS). A VSAM data set that
contains name and status information for DB2, as well
as RBA range specifications, for all active and archive
log data sets. It also contains passwords for the DB2
directory and catalog, and lists of conditional restart and
checkpoint records.

BSAM. Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy
the buffering requirements for one or more table spaces
or indexes.

built-in function. A function that DB2 supplies.
Contrast with user-defined function.

archive log • built-in function

1100 Administration Guide

|
|
|

|
|
|

C
CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment
facility for application programs that run in TSO or MVS
batch. The CAF is an alternative to the DSN command
processor and provides greater control over the
execution environment.

cascade delete. The way in which DB2 enforces
referential constraints when it deletes all descendent
rows of a deleted parent row.

cast function. A function that is used to convert
instances of a (source) data type into instances of a
different (target) data type. In general, a cast function
has the name of the target data type. It has one single
argument whose type is the source data type; its return
type is the target data type.

catalog. In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and
indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

CEC. Central electronic complex. See central
processor complex.

central electronic complex (CEC). See central
processor complex.

central processor complex (CPC). A physical
collection of hardware (such as an ES/3090) that
consists of main storage, one or more central
processors, timers, and channels.

character large object (CLOB). A sequence of bytes
representing single-byte characters or a mixture of
single- and double-byte characters where the size of the
value can be up to 2 GB−1. In general, character large
object values are used whenever a character string
might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent
bit data, single-byte characters, or a mixture of
single-byte and multibyte characters.

check constraint. See table check constraint.

check integrity. The condition that exists when each
row in a table conforms to the table check constraints
that are defined on that table. Maintaining check
integrity requires DB2 to enforce table check constraints
on operations that add or change data.

check pending. A state of a table space or partition
that prevents its use by some utilities and some SQL
statements because of rows that violate referential
constraints, table check constraints, or both.

checkpoint. A point at which DB2 records internal
status information on the DB2 log; the recovery process
uses this information if DB2 abnormally terminates.

CI. Control interval.

CICS. Represents (in this publication) one of the
following products:

CICS Transaction Server for OS/390: Customer
Information Control System Transaction Server for
OS/390
CICS/ESA: Customer Information Control
System/Enterprise Systems Architecture
CICS/MVS: Customer Information Control
System/Multiple Virtual Storage

CICS attachment facility. A DB2 subcomponent that
uses the MVS subsystem interface (SSI) and cross
storage linkage to process requests from CICS to DB2
and to coordinate resource commitment.

CIDF. Control interval definition field.

claim. A notification to DB2 that an object is being
accessed. Claims prevent drains from occurring until the
claim is released, which usually occurs at a commit
point. Contrast with drain.

claim class. A specific type of object access that can
be one of the following:

Cursor stability (CS)
Repeatable read (RR)
Write

claim count. A count of the number of agents that are
accessing an object.

class of service. A VTAM term for a list of routes
through a network, arranged in an order of preference
for their use.

clause. In SQL, a distinct part of a statement, such as
a SELECT clause or a WHERE clause.

client. See requester.

CLIST. Command list. A language for performing TSO
tasks.

CLOB. Character large object.

CLPA. Create link pack area.

clustering index. An index that determines how rows
are physically ordered in a table space.

CAF • clustering index

Glossary 1101

|
|
|

coded character set. A set of unambiguous rules that
establish a character set and the one-to-one
relationships between the characters of the set and their
coded representations.

coded character set identifier (CCSID). A 16-bit
number that uniquely identifies a coded representation
of graphic characters. It designates an encoding
scheme identifier and one or more pairs consisting of a
character set identifier and an associated code page
identifier.

column. The vertical component of a table. A column
has a name and a particular data type (for example,
character, decimal, or integer).

column function. An operation that derives its result
by using values from one or more rows. Contrast with
scalar function.

"come from" checking. An LU 6.2 security option
that defines a list of authorization IDs that are allowed
to connect to DB2 from a partner LU.

command. A DB2 operator command or a DSN
subcommand. A command is distinct from an SQL
statement.

command recognition character (CRC). A character
that permits an MVS console operator or an IMS
subsystem user to route DB2 commands to specific
DB2 subsystems.

commit. The operation that ends a unit of work by
releasing locks so that the database changes that are
made by that unit of work can be perceived by other
processes.

commit point. A point in time when data is considered
consistent.

committed phase. The second phase of the multisite
update process that requests all participants to commit
the effects of the logical unit of work.

common service area (CSA). In MVS, a part of the
common area that contains data areas that are
addressable by all address spaces.

communications database (CDB). A set of tables in
the DB2 catalog that are used to establish
conversations with remote database management
systems.

comparison operator. A token (such as =, >, <) that
is used to specify a relationship between two values.

compression dictionary. The dictionary that controls
the process of compression and decompression. This
dictionary is created from the data in the table space or
table space partition.

concurrency. The shared use of resources by more
than one application process at the same time.

conditional restart. A DB2 restart that is directed by a
user-defined conditional restart control record (CRCR).

connection ID. An identifier that is supplied by the
attachment facility and that is associated with a specific
address space connection.

consistency token. A timestamp that is used to
generate the version identifier for an application. See
also version.

constraint. A rule that limits the values that can be
inserted, deleted, or updated in a table. See referential
constraint, table check constraint, and uniqueness
constraint.

control interval (CI). A fixed-length area or direct
access storage in which VSAM stores records and
creates distributed free space. Also, in a key-sequenced
data set or file, the set of records pointed to by an entry
in the sequence-set index record. The control interval is
the unit of information that VSAM transmits to or from
direct access storage. A control interval always includes
an integral number of physical records.

control interval definition field (CIDF). In VSAM, a
field located in the 4 bytes at the end of each control
interval; it describes the free space, if any, in the control
interval.

conversation. Communication, which is based on LU
6.2 or Advanced Program-to-Program Communication
(APPC), between an application and a remote
transaction program over an SNA logical unit-to-logical
unit (LU-LU) session that allows communication while
processing a transaction.

coordinator. The system component that coordinates
the commit or rollback of a unit of work that includes
work that is done on one or more other systems.

correlated columns. A relationship between the value
of one column and the value of another column.

correlated subquery. A subquery (part of a WHERE
or HAVING clause) that is applied to a row or group of
rows of a table or view that is named in an outer
subselect statement.

correlation ID. An identifier that is associated with a
specific thread. In TSO, it is either an authorization ID
or the job name.

correlation name. An identifier that designates a
table, a view, or individual rows of a table or view within
a single SQL statement. It can be defined in any FROM
clause or in the first clause of an UPDATE or DELETE
statement.

cost category. A category into which DB2 places cost
estimates for SQL statements at the time the statement
is bound. A cost estimate can be placed in either of the
following cost categories:

coded character set • cost category

1102 Administration Guide

v A: Indicates that DB2 had enough information to
make a cost estimate without using default values.

v B: Indicates that some condition exists for which DB2
was forced to use default values for its estimate.

The cost category is externalized in the
COST_CATEGORY column of the
DSN_STATEMNT_TABLE when a statement is
explained.

CPC. Central processor complex.

CRC. Command recognition character.

CRCR. Conditional restart control record. See also
conditional restart.

create link pack area (CLPA). An option used during
IPL to initialize the link pack pageable area.

created temporary table. A table that holds temporary
data and is defined with the SQL statement CREATE
GLOBAL TEMPORARY TABLE. Information about
created temporary tables is stored in the DB2 catalog,
so this kind of table is persistent and can be shared
across application processes. Contrast with declared
temporary table. See also temporary table.

cross-memory linkage. A method for invoking a
program in a different address space. The invocation is
synchronous with respect to the caller.

CS. Cursor stability.

CSA. Common service area.

CT. Cursor table.

current status rebuild. The second phase of restart
processing during which the status of the subsystem is
reconstructed from information on the log.

cursor. A named control structure that an application
program uses to point to a row of interest within some
set of rows, and to retrieve rows from the set, possibly
making updates or deletions.

cursor stability (CS). The isolation level that provides
maximum concurrency without the ability to read
uncommitted data. With cursor stability, a unit of work
holds locks only on its uncommitted changes and on the
current row of each of its cursors.

cursor table (CT). The copy of the skeleton cursor
table that is used by an executing application process.

cycle. A set of tables that can be ordered so that each
table is a descendent of the one before it, and the first
table is a descendent of the last table. A self-referencing
table is a cycle with a single member.

D
DASD. Direct access storage device.

database. A collection of tables, or a collection of table
spaces and index spaces.

database access thread. A thread that accesses data
at the local subsystem on behalf of a remote
subsystem.

database administrator (DBA). An individual who is
responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

database descriptor (DBD). An internal
representation of a DB2 database definition, which
reflects the data definition that is in the DB2 catalog.
The objects that are defined in a database descriptor
are table spaces, tables, indexes, index spaces, and
relationships.

database management system (DBMS). A software
system that controls the creation, organization, and
modification of a database and the access to the data
stored within it.

database request module (DBRM). A data set
member that is created by the DB2 precompiler and that
contains information about SQL statements. DBRMs are
used in the bind process.

database server. The target of a request from a local
application or an intermediate database server. In the
DB2 environment, the database server function is
provided by the distributed data facility to access DB2
data from local applications, or from a remote database
server that acts as an intermediate database server.

DATABASE 2 Interactive (DB2I). The DB2 facility that
provides for the execution of SQL statements, DB2
(operator) commands, programmer commands, and
utility invocation.

data definition name (ddname). The name of a data
definition (DD) statement that corresponds to a data
control block containing the same name.

Data Language/I (DL/I). The IMS data manipulation
language; a common high-level interface between a
user application and IMS.

data sharing. The ability of two or more DB2
subsystems to directly access and change a single set
of data.

data sharing group. A collection of one or more DB2
subsystems that directly access and change the same
data while maintaining data integrity.

data sharing member. A DB2 subsystem that is
assigned by XCF services to a data sharing group.

data space. A range of up to 2 GB of contiguous
virtual storage addresses that a program can directly

CPC • data space

Glossary 1103

|
|
|
|
|
|

manipulate. Unlike an address space, a data space can
hold only data; it does not contain common areas,
system data, or programs.

data type. An attribute of columns, literals, host
variables, special registers, and the results of functions
and expressions.

date. A three-part value that designates a day, month,
and year.

date duration. A decimal integer that represents a
number of years, months, and days.

datetime value. A value of the data type DATE, TIME,
or TIMESTAMP.

DBA. Database administrator.

DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and
contain descriptions of DB2 objects, such as tables,
views, and indexes.

DB2 command. An instruction to the DB2 subsystem
allowing a user to start or stop DB2, to display
information on current users, to start or stop databases,
to display information on the status of databases, and
so on.

DB2 for VSE & VM. The IBM DB2 relational database
management system for the VSE and VM operating
systems.

DB2I. DATABASE 2 Interactive.

DB2I Kanji Feature. The tape that contains the panels
and jobs that allow a site to display DB2I panels in
Kanji.

DB2 PM. DATABASE 2 Performance Monitor.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

ddname. Data definition name.

deadlock. Unresolvable contention for the use of a
resource such as a table or an index.

declarations generator (DCLGEN). A subcomponent
of DB2 that generates SQL table declarations and
COBOL, C, or PL/I data structure declarations that

conform to the table. The declarations are generated
from DB2 system catalog information. DCLGEN is also
a DSN subcommand.

declared temporary table. A table that holds
temporary data and is defined with the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. Information
about declared temporary tables is not stored in the
DB2 catalog, so this kind of table is not persistent and
can only be used by the application process that issued
the DECLARE statement. Contrast with created
temporary table. See also temporary table.

default value. A predetermined value, attribute, or
option that is assumed when no other is explicitly
specified.

deferred write. The process of asynchronously writing
changed data pages to disk.

degree of parallelism. The number of concurrently
executed operations that are initiated to process a
query.

delete rule. The rule that tells DB2 what to do to a
dependent row when a parent row is deleted. For each
relationship, the rule might be CASCADE, RESTRICT,
SET NULL, or NO ACTION.

dependent. An object (row, table, or table space) that
has at least one parent. The object is also said to be a
dependent (row, table, or table space) of its parent. See
parent row, parent table, parent table space.

dependent row. A row that contains a foreign key that
matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at
least one referential constraint.

descendent. An object that is a dependent of an
object or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another
row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of
another table, or a table that is a descendent of a
dependent table.

DFHSM. Data Facility Hierarchical Storage Manager.

DFP. Data Facility Product (in MVS).

dimension. A data category such as time, products, or
markets. The elements of a dimension are referred to
as members. Dimensions offer a very concise, intuitive
way of organizing and selecting data for retrieval,
exploration, and analysis. See also dimension table.

dimension table. The representation of a dimension in
a star schema. Each row in a dimension table

data type • dimension table

1104 Administration Guide

represents all of the attributes for a particular member
of the dimension. See also dimension, star schema, and
star join.

direct access storage device (DASD). A device in
which access time is independent of the location of the
data.

directory. The DB2 system database that contains
internal objects such as database descriptors and
skeleton cursor tables.

distinct type. A user-defined data type that is
internally represented as an existing type (its source
type), but is considered to be a separate and
incompatible type for semantic purposes.

Distributed Computing Environment MVS/ESA™

(DCE MVS/ESA). A set of technologies that are
provided by the Open Software Foundation to
implement distributed computing.

distributed data facility (DDF). A set of DB2
components through which DB2 communicates with
another RDBMS.

Distributed Relational Database Architecture
(DRDA). A connection protocol for distributed relational
database processing that is used by IBM’s relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

DL/I. Data Language/I.

double-byte character large object (DBCLOB). A
sequence of bytes representing double-byte characters
where the size of the values can be up to 2 GB. In
general, double-byte character large object values are
used whenever a double-byte character string might
exceed the limits of the VARGRAPHIC type.

double-byte character set (DBCS). A set of
characters, which are used by national languages such
as Japanese and Chinese, that have more symbols
than can be represented by a single byte. Each
character is 2 bytes in length. Contrast with single-byte
character set and multibyte character set.

drain. The act of acquiring a locked resource by
quiescing access to that object.

drain lock. A lock on a claim class that prevents a
claim from occurring.

DRDA. Distributed Relational Database Architecture.

DRDA access. An open method of accessing
distributed data that you can use to can connect to
another database server to execute packages that were
previously bound at the server location. You use the

SQL CONNECT statement or an SQL statement with a
three-part name to identify the server. Contrast with
private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The
name of the TSO command processor of DB2. (3) The
first three characters of DB2 module and macro names.

duration. A number that represents an interval of time.
See date duration, labeled duration, and time duration.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program’s execution.

E
EA-enabled table space. A table space or index
space that is enabled for extended addressability and
that contains individual partitions (or pieces, for LOB
table spaces) that are greater than 4 GB.

EBCDIC. Extended binary coded decimal interchange
code. An encoding scheme that is used to represent
character data in the OS/390, MVS, VM, VSE, and
OS/400® environments. Contrast with ASCII and
Unicode.

EDM pool. A pool of main storage that is used for
database descriptors, application plans, authorization
cache, application packages, and dynamic statement
caching.

EID. Event identifier.

embedded SQL. SQL statements that are coded
within an application program. See static SQL.

enclave. In Language Environment, an independent
collection of routines, one of which is designated as the
main routine. An enclave is similar to a program or run
unit.

EOM. End of memory.

EOT. End of task.

equijoin. A join operation in which the join-condition
has the form expression = expression.

error page range. A range of pages that are
considered to be physically damaged. DB2 does not
allow users to access any pages that fall within this
range.

ESDS. Entry sequenced data set.

ESMT. External subsystem module table (in IMS).

direct access storage device (DASD) • ESMT

Glossary 1105

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

EUR. IBM European Standards.

exception table. A table that holds rows that violate
referential constraints or table check constraints that the
CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently
executing application processes from reading or
changing data. Contrast with share lock.

exit routine. A user-written (or IBM-provided default)
program that receives control from DB2 to perform
specific functions. Exit routines run as extensions of
DB2.

expression. An operand or a collection of operators
and operands that yields a single value.

extended recovery facility (XRF). A facility that
minimizes the effect of failures in MVS, VTAM, the host
processor, or high-availability applications during
sessions between high-availability applications and
designated terminals. This facility provides an
alternative subsystem to take over sessions from the
failing subsystem.

external function. A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function, built-in
function, and SQL function.

external routine. A user-defined function or stored
procedure that is based on code that is written in an
external programming language.

External subsystem module table (ESMT). The
name of the external subsystem module table, which
specifies which attachment modules must be loaded by
IMS.

F
fallback. The process of returning to a previous
release of DB2 after attempting or completing migration
to a current release.

field procedure. A user-written exit routine that is
designed to receive a single value and transform
(encode or decode) it in any way the user can specify.

filter factor. A number between zero and one that
estimates the proportion of rows in a table for which a
predicate is true.

fixed-length string. A character or graphic string
whose length is specified and cannot be changed.
Contrast with varying-length string.

foreign key. A column or set of columns in a
dependent table of a constraint relationship. The key
must have the same number of columns, with the same
descriptions, as the primary key of the parent table.

Each foreign key value must either match a parent key
value in the related parent table or be null.

forward log recovery. The third phase of restart
processing during which DB2 processes the log in a
forward direction to apply all REDO log records.

free space. The total amount of unused space in a
page; that is, the space that is not used to store records
or control information is free space.

full outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of both
tables. See also join.

function. A mapping, embodied as a program (the
function body), invocable by means of zero or more
input values (arguments), to a single value (the result).
See also column function and scalar function.

Functions can be user-defined, built-in, or generated by
DB2. (See built-in function, cast function, external
function, sourced function, SQL function, and
user-defined function.)

G
GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

generalized trace facility (GTF). An MVS service
program that records significant system events such as
I/O interrupts, SVC interrupts, program interrupts, or
external interrupts.

generic resource name. A name that VTAM uses to
represent several application programs that provide the
same function in order to handle session distribution
and balancing in a Sysplex environment.

getpage. An operation in which DB2 accesses a data
page.

GIMSMP. The load module name for the System
Modification Program/Extended, a basic tool for
installing, changing, and controlling changes to
programming systems.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive mode
locks on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache
structure that is used by a data sharing group to cache
data and to ensure that the data is consistent for all
members.

GTF. Generalized trace facility.

EUR • GTF

1106 Administration Guide

H
help panel. A screen of information presenting tutorial
text to assist a user at the terminal.

hiperspace. A range of up to 2 GB of contiguous
virtual storage addresses that a program can use as a
buffer. Like a data space, a hiperspace can hold user
data; it does not contain common areas or system data.
Unlike an address space or a data space, data in a
hiperspace is not directly addressable. To manipulate
data in a hiperspace, bring the data into the address
space in 4-KB blocks.

home address space. The area of storage that MVS
currently recognizes as dispatched.

host language. A programming language in which you
can embed SQL statements.

host program. An application program that is written
in a host language and that contains embedded SQL
statements.

host structure. In an application program, a structure
that is referenced by embedded SQL statements.

host variable. In an application program, an
application variable that is referenced by embedded
SQL statements.

HSM. Hierarchical storage manager.

I
ICF. Integrated catalog facility.

IDCAMS. An IBM program that is used to process
access method services commands. It can be invoked
as a job or jobstep, from a TSO terminal, or from within
a user’s application program.

IDCAMS LISTCAT. A facility for obtaining information
that is contained in the access method services catalog.

identify. A request that an attachment service program
in an address space that is separate from DB2 issues
via the MVS subsystem interface to inform DB2 of its
existence and to initiate the process of becoming
connected to DB2.

identity column. A column that provides a way for
DB2 to automatically generate a numeric value for each
row. The generated values are unique if cycling is not
used. Identity columns are defined with the AS
IDENTITY clause. Uniqueness of values can be
ensured by defining a single-column unique index using
the identity column. A table can have no more than one
identity column.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call. An invocation of the instrumentation facility
interface (IFI) by means of one of its defined functions.

IFP. IMS Fast Path.

image copy. An exact reproduction of all or part of a
table space. DB2 provides utility programs to make full
image copies (to copy the entire table space) or
incremental image copies (to copy only those pages
that have been modified since the last image copy).

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent that
uses MVS subsystem interface (SSI) protocols and
cross-memory linkage to process requests from IMS to
DB2 and to coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System Transaction
Manager.

in-abort. A status of a unit of recovery. If DB2 fails
after a unit of recovery begins to be rolled back, but
before the process is completed, DB2 continues to back
out the changes during restart.

in-commit. A status of a unit of recovery. If DB2 fails
after beginning its phase 2 commit processing, it
"knows," when restarted, that changes made to data are
consistent. Such units of recovery are termed in-commit.

independent. An object (row, table, or table space)
that is neither a parent nor a dependent of another
object.

index. A set of pointers that are logically ordered by
the values of a key. Indexes can provide faster access
to data and can enforce uniqueness on the rows in a
table.

index key. The set of columns in a table that is used
to determine the order of index entries.

index partition. A VSAM data set that is contained
within a partitioning index space.

index space. A page set that is used to store the
entries of one index.

indicator variable. A variable that is used to represent
the null value in an application program. If the value for
the selected column is null, a negative value is placed
in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 fails
after it has finished its phase 1 commit processing and
before it has started phase 2, only the commit
coordinator knows if an individual unit of recovery is to
be committed or rolled back. At emergency restart, if
DB2 lacks the information it needs to make this

help panel • indoubt

Glossary 1107

decision, the status of the unit of recovery is indoubt
until DB2 obtains this information from the coordinator.
More than one unit of recovery can be indoubt at
restart.

indoubt resolution. The process of resolving the
status of an indoubt logical unit of work to either the
committed or the rollback state.

inflight. A status of a unit of recovery. If DB2 fails
before its unit of recovery completes phase 1 of the
commit process, it merely backs out the updates of its
unit of recovery at restart. These units of recovery are
termed inflight.

inner join. The result of a join operation that includes
only the matched rows of both tables being joined. See
also join.

inoperative package. A package that cannot be used
because one or more user-defined functions or
procedures that the package depends on were dropped.
Such a package must be explicitly rebound. Contrast
with invalid package.

install. The process of preparing a DB2 subsystem to
operate as an MVS subsystem.

installation verification scenario. A sequence of
operations that exercises the main DB2 functions and
tests whether DB2 was correctly installed.

instrumentation facility component identifier
(IFCID). A value that names and identifies a trace
record of an event that can be traced. As a parameter
on the START TRACE and MODIFY TRACE
commands, it specifies that the corresponding event is
to be traced.

instrumentation facility interface (IFI). A
programming interface that enables programs to obtain
online trace data about DB2, to submit DB2 commands,
and to pass data to DB2.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that provides interactive dialog
services.

intermediate database server. The target of a
request from a local application or a remote application
requester that is forwarded to another database server.
In the DB2 environment, the remote request is
forwarded transparently to another database server if
the object that is referenced by a three-part name does
not reference the local location.

internal resource lock manager (IRLM). An MVS
subsystem that DB2 uses to control communication and
database locking.

invalid package. A package that depends on an
object (other than a user-defined function) that is

dropped. Such a package is implicitly rebound on
invocation. Contrast with inoperative package.

IRLM. Internal resource lock manager.

ISO. International Standards Organization.

isolation level. The degree to which a unit of work is
isolated from the updating operations of other units of
work. See also cursor stability, read stability, repeatable
read, and uncommitted read.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

J
Japanese Industrial Standards Committee (JISC).
An organization that issues standards for coding
character sets.

Java® Archive (JAR). A file format that is used for
aggregating many files into a single file.

JCL. Job control language.

JES. MVS Job Entry Subsystem.

JIS. Japanese Industrial Standard.

job control language (JCL). A control language that
is used to identify a job to an operating system and to
describe the job’s requirements.

Job Entry Subsystem (JES). An IBM licensed
program that receives jobs into the system and
processes all output data that is produced by the jobs.

join. A relational operation that allows retrieval of data
from two or more tables based on matching column
values. See also equijoin, full outer join, inner join, left
outer join, outer join, and right outer join.

K
KB. Kilobyte (1024 bytes).

Kerberos. A network authentication protocol that is
designed to provide strong authentication for
client/server applications by using secret-key
cryptography.

Kerberos ticket. A transparent application mechanism
that transmits the identity of an initiating principal to its
target. A simple ticket contains the principal’s identity, a
session key, a timestamp, and other information, which
is sealed using the target’s secret key.

key. A column or an ordered collection of columns
identified in the description of a table, index, or
referential constraint.

indoubt resolution • key

1108 Administration Guide

|
|
|
|
|
|
|

key-sequenced data set (KSDS). A VSAM file or data
set whose records are loaded in key sequence and
controlled by an index.

KSDS. Key-sequenced data set.

L
labeled duration. A number that represents a duration
of years, months, days, hours, minutes, seconds, or
microseconds.

large object (LOB). A sequence of bytes representing
bit data, single-byte characters, double-byte characters,
or a mixture of single- and double-byte characters. A
LOB can be up to 2 GB−1 byte in length. See also
BLOB, CLOB, and DBCLOB.

latch. A DB2 internal mechanism for controlling
concurrent events or the use of system resources.

LCID. Log control interval definition.

LDS. Linear data set.

leaf page. A page that contains pairs of keys and
RIDs and that points to actual data. Contrast with
nonleaf page.

left outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined, and that preserves the unmatched rows of the
first table. See also join.

linear data set (LDS). A VSAM data set that contains
data but no control information. A linear data set can be
accessed as a byte-addressable string in virtual storage.

linkage editor. A computer program for creating load
modules from one or more object modules or load
modules by resolving cross references among the
modules and, if necessary, adjusting addresses.

link-edit. The action of creating a loadable computer
program using a linkage editor.

L-lock. Logical lock.

load module. A program unit that is suitable for
loading into main storage for execution. The output of a
linkage editor.

LOB. Large object.

LOB lock. A lock on a LOB value.

LOB table space. A table space that contains all the
data for a particular LOB column in the related base
table.

local subsystem. The unique RDBMS to which the
user or application program is directly connected (in the
case of DB2, by one of the DB2 attachment facilities).

lock. A means of controlling concurrent events or
access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is
held.

lock escalation. The promotion of a lock from a row,
page, or LOB lock to a table space lock because the
number of page locks that are concurrently held on a
given resource exceeds a preset limit.

locking. The process by which the integrity of data is
ensured. Locking prevents concurrent users from
accessing inconsistent data.

lock mode. A representation for the type of access
that concurrently running programs can have to a
resource that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2
lock.

lock promotion. The process of changing the size or
mode of a DB2 lock to a higher level.

lock size. The amount of data controlled by a DB2
lock on table data; the value can be a row, a page, a
LOB, a partition, a table, or a table space.

log. A collection of records that describe the events
that occur during DB2 execution and that indicate their
sequence. The information thus recorded is used for
recovery in the event of a failure during DB2 execution.

logical index partition. The set of all keys that
reference the same data partition.

logical lock (L-lock). The lock type that transactions
use to control intra- and inter-DB2 data concurrency
between transactions. Contrast with physical lock
(P-lock).

logical recovery pending (LRECP). The state in
which the data and the index keys that reference the
data are inconsistent.

logical unit. An access point through which an
application program accesses the SNA network in order
to communicate with another application program.

logical unit of work (LUW). The processing that a
program performs between synchronization points.

logical unit of work identifier (LUWID). A name that
uniquely identifies a thread within a network. This name
consists of a fully-qualified LU network name, an LUW
instance number, and an LUW sequence number.

log initialization. The first phase of restart processing
during which DB2 attempts to locate the current end of
the log.

log record sequence number (LRSN). A number that
DB2 generates and associates with each log record.

key-sequenced data set (KSDS) • log record sequence number (LRSN)

Glossary 1109

DB2 also uses the LRSN for page versioning. The
LRSNs that a particular DB2 data sharing group
generates form a strictly increasing sequence for each
DB2 log and a strictly increasing sequence for each
page across the DB2 group.

log truncation. A process by which an explicit starting
RBA is established. This RBA is the point at which the
next byte of log data is to be written.

long string. A string whose actual length, or a
varying-length string whose maximum length, is greater
than 255 bytes or 127 double-byte characters. Any LOB
column, LOB host variable, or expression that evaluates
to a LOB is considered a long string.

LRECP. Logical recovery pending.

LRH. Log record header.

LRSN. Log record sequence number.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M
materialize. (1) The process of putting rows from a
view or nested table expression into a work file for
additional processing by a query.

(2) The placement of a LOB value into contiguous
storage. Because LOB values can be very large, DB2
avoids materializing LOB data until doing so becomes
absolutely necessary.

MB. Megabyte (1 048 576 bytes).

migration. The process of converting a DB2
subsystem with a previous release of DB2 to an
updated or current release. In this process, you can
acquire the functions of the updated or current release
without losing the data you created on the previous
release.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

MLPA. Modified link pack area.

MODEENT. A VTAM macro instruction that associates
a logon mode name with a set of parameters
representing session protocols. A set of MODEENT
macro instructions defines a logon mode table.

mode name. A VTAM name for the collection of
physical and logical characteristics and attributes of a
session.

MPP. Message processing program (in IMS).

MSS. Mass Storage Subsystem.

MTO. Master terminal operator.

multibyte character set (MBCS). A character set that
represents single characters with more than a single
byte. Contrast with single-byte character set and
double-byte character set. See also Unicode.

multisite update. Distributed relational database
processing in which data is updated in more than one
location within a single unit of work.

must-complete. A state during DB2 processing in
which the entire operation must be completed to
maintain data integrity.

MVS. Multiple Virtual Storage.

MVS/ESA. Multiple Virtual Storage/Enterprise Systems
Architecture.

N
nested table expression. A fullselect in a FROM
clause (surrounded by parentheses).

network identifier (NID). The network ID that is
assigned by IMS or CICS, or if the connection type is
RRSAF, the OS/390 RRS unit of recovery ID (URID).

NID. Network ID.

nonleaf page. A page that contains keys and page
numbers of other pages in the index (either leaf or
nonleaf pages). Nonleaf pages never point to actual
data.

nonpartitioning index. Any index that is not a
partitioning index.

NRE. Network recovery element.

NUL. In C, a single character that denotes the end of
the string.

null. A special value that indicates the absence of
information.

NUL-terminated host variable. A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator. In C, the value that indicates the end
of a string. For character strings, the NUL terminator is
X'00'.

O
OASN (origin application schedule number). In IMS,
a 4-byte number that is assigned sequentially to each
IMS schedule since the last cold start of IMS. The
OASN is used as an identifier for a unit of work. In an
8-byte format, the first 4 bytes contain the schedule
number and the last 4 bytes contain the number of IMS

log truncation • OASN (origin application schedule number)

1110 Administration Guide

|
|
|
|

sync points (commit points) during the current schedule.
The OASN is part of the NID for an IMS connection.

OBID. Data object identifier.

originating task. In a parallel group, the primary agent
that receives data from other execution units (referred to
as parallel tasks) that are executing portions of the
query in parallel.

OS/390. Operating System/390.

OS/390 OpenEdition Distributed Computing
Environment (OS/390 OE DCE). A set of technologies
that are provided by the Open Software Foundation to
implement distributed computing.

outer join. The result of a join operation that includes
the matched rows of both tables that are being joined
and preserves some or all of the unmatched rows of the
tables that are being joined. See also join.

P
package. An object containing a set of SQL
statements that have been statically bound and that is
available for processing. A package is sometimes also
called an application package.

package list. An ordered list of package names that
may be used to extend an application plan.

package name. The name of an object that is created
by a BIND PACKAGE or REBIND PACKAGE command.
The object is a bound version of a database request
module (DBRM). The name consists of a location name,
a collection ID, a package ID, and a version ID.

page. A unit of storage within a table space (4 KB, 8
KB, 16 KB, or 32 KB) or index space (4 KB). In a table
space, a page contains one or more rows of a table. In
a LOB table space, a LOB value can span more than
one page, but no more than one LOB value is stored on
a page.

page set. Another way to refer to a table space or
index space. Each page set consists of a collection of
VSAM data sets.

parallel group. A set of consecutive operations that
executed in parallel and that have the same number of
parallel tasks.

parallel I/O processing. A form of I/O processing in
which DB2 initiates multiple concurrent requests for a
single user query and performs I/O processing
concurrently (in parallel) on multiple data partitions.

Parallel Sysplex. A set of MVS systems that
communicate and cooperate with each other through
certain multisystem hardware components and software
services to process customer workloads.

parallel task. The execution unit that is dynamically
created to process a query in parallel. It is implemented
by an MVS service request block.

parent row. A row whose primary key value is the
foreign key value of a dependent row.

parent table. A table whose primary key is referenced
by the foreign key of a dependent table.

parent table space. A table space that contains a
parent table. A table space containing a dependent of
that table is a dependent table space.

participant. An entity other than the commit
coordinator that takes part in the commit process. The
term participant is synonymous with agent in SNA.

partition. A portion of a page set. Each partition
corresponds to a single, independently extendable data
set. Partitions can be extended to a maximum size of 1,
2, or 4 GB, depending on the number of partitions in the
partitioned page set. All partitions of a given page set
have the same maximum size.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, which are
called members. Each partition can contain a program,
part of a program, or data. The term partitioned data set
is synonymous with program library.

partitioned page set. A partitioned table space or an
index space. Header pages, space map pages, data
pages, and index pages reference data only within the
scope of the partition.

partitioned table space. A table space that is
subdivided into parts (based on index key range), each
of which can be processed independently by utilities.

partner logical unit. An access point in the SNA
network that is connected to the local DB2 subsystem
by way of a VTAM conversation.

PCT. Program control table (in CICS).

PDS. Partitioned data set.

piece. A data set of a nonpartitioned page set.

physical consistency. The state of a page that is not
in a partially changed state.

plan. See application plan.

plan allocation. The process of allocating DB2
resources to a plan in preparation for execution.

plan name. The name of an application plan.

plan segmentation. The dividing of each plan into
sections. When a section is needed, it is independently
brought into the EDM pool.

OBID • plan segmentation

Glossary 1111

PLT. Program list table (in CICS).

point of consistency. A time when all recoverable
data that an application accesses is consistent with
other data. The term point of consistency is
synonymous with sync point or commit point.

postponed abort UR. A unit of recovery that was
inflight or in-abort, was interrupted by system failure or
cancellation, and did not complete backout during
restart.

PPT. (1) Processing program table (in CICS). (2)
Program properties table (in MVS).

precompilation. A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes
source code that can be submitted to the compiler and
the database request module (DBRM) that is input to
the bind process.

predicate. An element of a search condition that
expresses or implies a comparison operation.

prefix. A code at the beginning of a message or
record.

primary authorization ID. The authorization ID used
to identify the application process to DB2.

primary index. An index that enforces the uniqueness
of a primary key.

primary key. In a relational database, a unique,
nonnull key that is part of the definition of a table. A
table cannot be defined as a parent unless it has a
unique key or primary key.

principal. An entity that can communicate securely
with another entity. In Kerberos, principals are
represented as entries in the Kerberos registry database
and include users, servers, computers, and others.

principal name. The name by which a principal is
known to the DCE security services.

private connection. A communications connection
that is specific to DB2.

private protocol access. A method of accessing
distributed data by which you can direct a query to
another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private
connection of the application process. See also private
connection.

privilege. The capability of performing a specific
function, sometimes on a specific object. The term
includes:

explicit privileges, which have names and are held
as the result of SQL GRANT and REVOKE
statements. For example, the SELECT privilege.
implicit privileges, which accompany the ownership
of an object, such as the privilege to drop a
synonym one owns, or the holding of an authority,
such as the privilege of SYSADM authority to
terminate any utility job.

privilege set. For the installation SYSADM ID, the set
of all possible privileges. For any other authorization ID,
the set of all privileges that are recorded for that ID in
the DB2 catalog.

process. In DB2, the unit to which DB2 allocates
resources and locks. Sometimes called an application
process, a process involves the execution of one or
more programs. The execution of an SQL statement is
always associated with some process. The means of
initiating and terminating a process are dependent on
the environment.

program. A single compilable collection of executable
statements in a programming language.

program temporary fix (PTF). A solution or bypass of
a problem that is diagnosed as a result of a defect in a
current unaltered release of a licensed program. An
authorized program analysis report (APAR) fix is
corrective service for an existing problem. A PTF is
preventive service for problems that might be
encountered by other users of the product. A PTF is
temporary, because a permanent fix is usually not
incorporated into the product until its next release.

protected conversation. A VTAM conversation that
supports two-phase commit flows.

PTF. Program temporary fix.

Q
QMF. Query Management Facility.

QSAM. Queued sequential access method.

query block. The part of a query that is represented
by one of the FROM clauses. Each FROM clause can
have multiple query blocks, depending on DB2’s internal
processing of the query.

query CP parallelism. Parallel execution of a single
query, which is accomplished by using multiple tasks.
See also Sysplex query parallelism.

query I/O parallelism. Parallel access of data, which
is accomplished by triggering multiple I/O requests
within a single query.

queued sequential access method (QSAM). An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue of data
blocks is formed. Input data blocks await processing,

PLT • queued sequential access method (QSAM)

1112 Administration Guide

and output data blocks await transfer to auxiliary
storage or to an output device.

R
RACF. Resource Access Control Facility, which is a
component of the SecureWay Security Server for
OS/390.

RAMAC. IBM family of enterprise disk storage system
products.

RBA. Relative byte address.

RCT. Resource control table (in CICS attachment
facility).

RDB. Relational database.

RDBMS. Relational database management system.

RDBNAM. Relational database name.

RDF. Record definition field.

read stability (RS). An isolation level that is similar to
repeatable read but does not completely isolate an
application process from all other concurrently executing
application processes. Under level RS, an application
that issues the same query more than once might read
additional rows that were inserted and committed by a
concurrently executing application process.

rebind. The creation of a new application plan for an
application program that has been bound previously. If,
for example, you have added an index for a table that
your application accesses, you must rebind the
application in order to take advantage of that index.

record. The storage representation of a row or other
data.

record identifier (RID). A unique identifier that DB2
uses internally to identify a row of data in a table stored
as a record. Compare with row ID.

record identifier (RID) pool. An area of main storage
above the 16-MB line that is reserved for sorting record
identifiers during list prefetch processing.

recovery. The process of rebuilding databases after a
system failure.

recovery log. A collection of records that describes
the events that occur during DB2 execution and
indicates their sequence. The recorded information is
used for recovery in the event of a failure during DB2
execution.

recovery pending (RECP). A condition that prevents
SQL access to a table space that needs to be
recovered.

recovery token. An identifier for an element that is
used in recovery (for example, NID or URID).

RECP. Recovery pending.

redo. A state of a unit of recovery that indicates that
changes are to be reapplied to the DASD media to
ensure data integrity.

referential constraint. The requirement that nonnull
values of a designated foreign key are valid only if they
equal values of the primary key of a designated table.

referential integrity. The state of a database in which
all values of all foreign keys are valid. Maintaining
referential integrity requires the enforcement of
referential constraints on all operations that change the
data in a table upon which the referential constraints are
defined.

referential structure. A set of tables and relationships
that includes at least one table and, for every table in
the set, all the relationships in which that table
participates and all the tables to which it is related.

registry. See registry database.

registry database. A database of security information
about principals, groups, organizations, accounts, and
security policies.

relational database (RDB). A database that can be
perceived as a set of tables and manipulated in
accordance with the relational model of data.

relational database management system (RDBMS).
A collection of hardware and software that organizes
and provides access to a relational database.

relational database name (RDBNAM). A unique
identifier for an RDBMS within a network. In DB2, this
must be the value in the LOCATION column of table
SYSIBM.LOCATIONS in the CDB. DB2 publications
refer to the name of another RDBMS as a LOCATION
value or a location name.

relationship. A defined connection between the rows
of a table or the rows of two tables. A relationship is the
internal representation of a referential constraint.

relative byte address (RBA). The offset of a data
record or control interval from the beginning of the
storage space that is allocated to the data set or file to
which it belongs.

remigration. The process of returning to a current
release of DB2 following a fallback to a previous
release. This procedure constitutes another migration
process.

remote attach request. A request by a remote
location to attach to the local DB2 subsystem.
Specifically, the request that is sent is an SNA Function
Management Header 5.

RACF • remote attach request

Glossary 1113

remote subsystem. Any RDBMS, except the local
subsystem, with which the user or application can
communicate. The subsystem need not be remote in
any physical sense, and might even operate on the
same processor under the same MVS system.

reoptimization. The DB2 process of reconsidering the
access path of an SQL statement at run time; during
reoptimization, DB2 uses the values of host variables,
parameter markers, or special registers.

REORG pending (REORP). A condition that restricts
SQL access and most utility access to an object that
must be reorganized.

REORP. REORG pending.

repeatable read (RR). The isolation level that provides
maximum protection from other executing application
programs. When an application program executes with
repeatable read protection, rows referenced by the
program cannot be changed by other programs until the
program reaches a commit point.

request commit. The vote that is submitted to the
prepare phase if the participant has modified data and
is prepared to commit or roll back.

requester. The source of a request to access data at
a remote server. In the DB2 environment, the requester
function is provided by the distributed data facility.

resource allocation. The part of plan allocation that
deals specifically with the database resources.

resource control table (RCT). A construct of the
CICS attachment facility, created by site-provided macro
parameters, that defines authorization and access
attributes for transactions or transaction groups.

resource definition online. A CICS feature that you
use to define CICS resources online without assembling
tables.

resource limit facility (RLF). A portion of DB2 code
that prevents dynamic manipulative SQL statements
from exceeding specified time limits. The resource limit
facility is sometimes called the governor.

resource limit specification table. A site-defined
table that specifies the limits to be enforced by the
resource limit facility.

restart pending (RESTP). A restrictive state of a page
set or partition that indicates that restart (backout) work
needs to be performed on the object. All access to the
page set or partition is denied except for access by the:
v RECOVER POSTPONED command
v Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP. Restart pending.

result table. The set of rows that are specified by a
SELECT statement.

RID. Record identifier.

RID pool. Record identifier pool.

right outer join. The result of a join operation that
includes the matched rows of both tables that are being
joined and preserves the unmatched rows of the second
join operand. See also join.

RLF. Resource limit facility.

RMID. Resource manager identifier.

RO. Read-only access.

rollback. The process of restoring data changed by
SQL statements to the state at its last commit point. All
locks are freed. Contrast with commit.

root page. The page of an index page set that follows
the first index space map page. A root page is the
highest level (or the beginning point) of the index.

routine. A term that refers to either a user-defined
function or a stored procedure.

row. The horizontal component of a table. A row
consists of a sequence of values, one for each column
of the table.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely
identifies a row. This value is stored with the row and
never changes.

row lock. A lock on a single row of data.

RRE. Residual recovery entry (in IMS).

RRSAF. Recoverable Resource Manager Services
attachment facility. RRSAF is a DB2 subcomponent that
uses OS/390 Transaction Management and
Recoverable Resource Manager Services to coordinate
resource commitment between DB2 and all other
resource managers that also use OS/390 RRS in an
OS/390 system.

RS. Read stability.

RTT. Resource translation table.

S
savepoint. A named entity that represents the state of
data and schemas at a particular point in time within a
unit of work. SQL statements exist to set a savepoint,
release a savepoint, and restore data and schemas to
the state that the savepoint represents. The restoration
of data and schemas to a savepoint is usually referred
to as rolling back to a savepoint.

remote subsystem • savepoint

1114 Administration Guide

|
|
|

|
|
|
|
|
|
|

SBCS. Single-byte character set.

scalar function. An SQL operation that produces a
single value from another value and is expressed as a
function name, followed by a list of arguments that are
enclosed in parentheses. Contrast with column function.

schema. A logical grouping for user-defined functions,
distinct types, triggers, and stored procedures. When an
object of one of these types is created, it is assigned to
one schema, which is determined by the name of the
object. For example, the following statement creates a
distinct type T in schema C:

CREATE DISTINCT TYPE C.T ...

SDWA. System diagnostic work area.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

secondary authorization ID. An authorization ID that
has been associated with a primary authorization ID by
an authorization exit routine.

section. The segment of a plan or package that
contains the executable structures for a single SQL
statement. For most SQL statements, one section in the
plan exists for each SQL statement in the source
program. However, for cursor-related statements, the
DECLARE, OPEN, FETCH, and CLOSE statements
reference the same section because, they each refer to
the SELECT statement that is named in the DECLARE
CURSOR statement. SQL statements such as COMMIT,
ROLLBACK, and some SET statements do not use a
section.

segmented table space. A table space that is divided
into equal-sized groups of pages called segments.
Segments are assigned to tables so that rows of
different tables are never stored in the same segment.

self-referencing constraint. A referential constraint
that defines a relationship in which a table is a
dependent of itself.

self-referencing table. A table with a self-referencing
constraint.

sequential data set. A non-DB2 data set whose
records are organized on the basis of their successive
physical positions, such as on magnetic tape. Several of
the DB2 database utilities require sequential data sets.

sequential prefetch. A mechanism that triggers
consecutive asynchronous I/O operations. Pages are
fetched before they are required, and several pages are
read with a single I/O operation.

server. The target of a request from a remote
requester. In the DB2 environment, the server function
is provided by the distributed data facility, which is used
to access DB2 data from remote applications.

service class. An eight-character identifier that is
used by MVS Workload Manager to associate customer
performance goals with a particular DDF thread or
stored procedure. A service class is also used to
classify work on parallelism assistants.

session. A link between two nodes in a VTAM
network.

session protocols. The available set of SNA
communication requests and responses.

share lock. A lock that prevents concurrently
executing application processes from changing data, but
not from reading data. Contrast with exclusive lock.

short string. A string whose actual length, or a
varying-length string whose maximum length, is 255
bytes (or 127 double-byte characters) or less.
Regardless of length, a LOB string is not a short string.

sign-on. A request that is made on behalf of an
individual CICS or IMS application process by an
attachment facility to enable DB2 to verify that it is
authorized to use DB2 resources.

simple page set. A nonpartitioned page set. A simple
page set initially consists of a single data set (page set
piece). If and when that data set is extended to 2 GB,
another data set is created, and so on up to a total of
32 data sets. DB2 considers the data sets to be a single
contiguous linear address space containing a maximum
of 64 GB. Data is stored in the next available location
within this address space without regard to any
partitioning scheme.

simple table space. A table space that is neither
partitioned nor segmented.

single-byte character set (SBCS). A set of characters
in which each character is represented by a single byte.
Contrast with double-byte character set or multibyte
character set.

SMF. System management facility.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

SNA network. The part of a network that conforms to
the formats and protocols of Systems Network
Architecture (SNA).

sourced function. A function that is implemented by
another built-in or user-defined function that is already
known to the database manager. This function can be a
scalar function or a column (aggregating) function; it
returns a single value from a set of values (for example,
MAX or AVG). Contrast with built-in function, external
function, and SQL function.

SBCS • sourced function

Glossary 1115

|
|
|
|

|
|
|
|

special register. A storage area that DB2 defines for
an application process to use for storing information that
can be referenced in SQL statements. Examples of
special registers are USER and CURRENT DATE.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQLCA. SQL communication area.

SQL communication area (SQLCA). A structure that
is used to provide an application program with
information about the execution of its SQL statements.

SQLDA. SQL descriptor area.

SQL descriptor area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table.

SQL/DS. Structured Query Language/Data System.
This product is now obsolete and has been replaced by
DB2 for VSE & VM.

SQL function. A user-defined function in which the
CREATE FUNCTION statement contains the source
code. The source code is a single SQL expression that
evaluates to a single value. The SQL user-defined
function can return only one parameter.

SQL processing conversation. Any conversation that
requires access of DB2 data, either through an
application or by dynamic query requests.

SQL Processor Using File Input (SPUFI). SQL
Processor Using File Input. A facility of the TSO
attachment subcomponent that enables the DB2I user
to execute SQL statements without embedding them in
an application program.

SQL routine. A user-defined function or stored
procedure that is based on code that is written in SQL.

SSI. Subsystem interface (in MVS).

SSM. Subsystem member.

stand-alone. An attribute of a program that means it is
capable of executing separately from DB2, without using
DB2 services.

star join. A method of joining a dimension column of a
fact table to the key column of the corresponding
dimension table. See also join, dimension, and star
schema.

star schema. The combination of a fact table (which
contains most of the data) and a number of dimension
tables. See also star join, dimension, and dimension
table.

statement string. For a dynamic SQL statement, the
character string form of the statement.

static SQL. SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not
change (although values of host variables that are
specified by the statement might change).

storage group. A named set of disks on which DB2
data can be stored.

stored procedure. A user-written application program
that can be invoked through the use of the SQL CALL
statement.

string. See character string or graphic string.

Structured Query Language (SQL). A standardized
language for defining and manipulating data in a
relational database.

subcomponent. A group of closely related DB2
modules that work together to provide a general
function.

subpage. The unit into which a physical index page
can be divided.

subquery. A SELECT statement within the WHERE or
HAVING clause of another SQL statement; a nested
SQL statement.

subselect. That form of a query that does not include
ORDER BY clause, UPDATE clause, or UNION
operators.

subsystem. A distinct instance of a relational
database management system (RDBMS).

sync point. See commit point.

synonym. In SQL, an alternative name for a table or
view. Synonyms can be used only to refer to objects at
the subsystem in which the synonym is defined.

Sysplex. See Parallel Sysplex.

Sysplex query parallelism. Parallel execution of a
single query that is accomplished by using multiple
tasks on more than one DB2 subsystem. See also
query CP parallelism.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

special register • system administrator

1116 Administration Guide

system agent. A work request that DB2 creates
internally such as prefetch processing, deferred writes,
and service tasks.

system conversation. The conversation that two DB2
subsystems must establish to process system
messages before any distributed processing can begin.

system diagnostic work area (SDWA). The data that
is recorded in a SYS1.LOGREC entry that describes a
program or hardware error.

system-directed connection. A connection that an
RDBMS manages by processing SQL statements with
three-part names.

System Modification Program/Extended (SMP/E). A
tool for making software changes in programming
systems (such as DB2) and for controlling those
changes.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
through and controlling the configuration and operation
of networks.

SYS1.DUMPxx data set. A data set that contains a
system dump.

SYS1.LOGREC. A service aid that contains important
information about program and hardware errors.

T
table. A named data object consisting of a specific
number of columns and some number of unordered
rows. See also base table or temporary table.

table check constraint. A user-defined constraint that
specifies the values that specific columns of a base
table can contain.

table function. A function that receives a set of
arguments and returns a table to the SQL statement
that references the function. A table function can be
referenced only in the FROM clause of a subselect.

table space. A page set that is used to store the
records in one or more tables.

table space set. A set of table spaces and partitions
that should be recovered together for one of these
reasons:
v Each of them contains a table that is a parent or

descendent of a table in one of the others.
v The set contains a base table and associated

auxiliary tables.

A table space set can contain both types of
relationships.

task control block (TCB). A control block that is used
to communicate information about tasks within an
address space that are connected to DB2. An address
space can support many task connections (as many as
one per task), but only one address space connection.
See also address space connection.

TB. Terabyte (1 099 511 627 776 bytes).

TCB. Task control block (in MVS).

temporary table. A table that holds temporary data;
for example, temporary tables are useful for holding or
sorting intermediate results from queries that contain a
large number of rows. The two kinds of temporary table,
which are created by different SQL statements, are the
created temporary table and the declared temporary
table. Contrast with result table. See also created
temporary table and declared temporary table.

thread. The DB2 structure that describes an
application’s connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources and services. Most DB2 functions execute
under a thread structure. See also allied thread and
database access thread.

three-part name. The full name of a table, view, or
alias. It consists of a location name, authorization ID,
and an object name, separated by a period.

time. A three-part value that designates a time of day
in hours, minutes, and seconds.

time duration. A decimal integer that represents a
number of hours, minutes, and seconds.

timeout. Abnormal termination of either the DB2
subsystem or of an application because of the
unavailability of resources. Installation specifications are
set to determine both the amount of time DB2 is to wait
for IRLM services after starting, and the amount of time
IRLM is to wait if a resource that an application
requests is unavailable. If either of these time
specifications is exceeded, a timeout is declared.

Time-Sharing Option (TSO). An option in MVS that
provides interactive time sharing from remote terminals.

timestamp. A seven-part value that consists of a date
and time. The timestamp is expressed in years, months,
days, hours, minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

to-do. A state of a unit of recovery that indicates that
the unit of recovery’s changes to recoverable DB2
resources are indoubt and must either be applied to the
DASD media or backed out, as determined by the
commit coordinator.

system agent • to-do

Glossary 1117

|
|
|

trace. A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

TSO. Time-Sharing Option.

TSO attachment facility. A DB2 facility consisting of
the DSN command processor and DB2I. Applications
that are not written for the CICS or IMS environments
can run under the TSO attachment facility.

type 1 indexes. Indexes that were created by a
release of DB2 before DB2 Version 4 or that are
specified as type 1 indexes in Version 4. Contrast with
type 2 indexes. As of Version 7, type 1 indexes are no
longer supported.

type 2 indexes. Indexes that are created on a release
of DB2 after Version 6 or that are specified as type 2
indexes in Version 4 or later.

U
UDF. User-defined function.

UDT. User-defined data type. In DB2 for OS/390 and
z/OS, the term distinct type is used instead of
user-defined data type. See distinct type.

uncommitted read (UR). The isolation level that
allows an application to read uncommitted data.

undo. A state of a unit of recovery that indicates that
the changes the unit of recovery made to recoverable
DB2 resources must be backed out.

Unicode. A standard that parallels the ISO-10646
standard. Several implementations of the Unicode
standard exist, all of which have the ability to represent
a large percentage of the characters contained in the
many scripts that are used throughout the world.

union. An SQL operation that combines the results of
two select statements. Unions are often used to merge
lists of values that are obtained from several tables.

unique constraint. An SQL rule that no two values in
a primary key, or in the key of a unique index, can be
the same.

unique index. An index which ensures that no
identical key values are stored in a table.

unlock. The act of releasing an object or system
resource that was previously locked and returning it to
general availability within DB2.

UR. Uncommitted read.

URE. Unit of recovery element.

URID (unit of recovery ID). The LOGRBA of the first
log record for a unit of recovery. The URID also appears
in all subsequent log records for that unit of recovery.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is
defined to DB2 by using the CREATE FUNCTION
statement and that can be referenced thereafter in SQL
statements. A user-defined function can be an external
function, a sourced function, or an SQL function.
Contrast with built-in function.

UT. Utility-only access.

V
value. The smallest unit of data that is manipulated in
SQL.

varying-length string. A character or graphic string
whose length varies within set limits. Contrast with
fixed-length string.

version. A member of a set of similar programs,
DBRMs, packages, or LOBs.

A version of a program is the source code that is
produced by precompiling the program. The program
version is identified by the program name and a
timestamp (consistency token).
A version of a DBRM is the DBRM that is produced
by precompiling a program. The DBRM version is
identified by the same program name and timestamp
as a corresponding program version.
A version of a package is the result of binding a
DBRM within a particular database system. The
package version is identified by the same program
name and consistency token as the DBRM.
A version of a LOB is a copy of a LOB value at a
point in time. The version number for a LOB is
stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one or
more tables. A view can include all or some of the
columns that are contained in tables on which it is
defined.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed- and
varying-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls
communication and the flow of data in an SNA network.

VSAM. Virtual storage access method.

trace • VSAM

1118 Administration Guide

|
|
|
|
|

VTAM. Virtual Telecommunication Access Method (in
MVS).

W
WLM application environment. An MVS Workload
Manager attribute that is associated with one or more
stored procedures. The WLM application environment
determines the address space in which a given DB2
stored procedure runs.

write to operator (WTO). An optional user-coded
service that allows a message to be written to the
system console operator informing the operator of errors
and unusual system conditions that may need to be
corrected.

WTO. Write to operator.

WTOR. Write to operator (WTO) with reply.

X
XRF. Extended recovery facility.

Z
z/OS. An operating system for the eServer product line
that supports 64-bit real storage.

VTAM • z/OS

Glossary 1119

1120 Administration Guide

Bibliography

DB2 Universal Database Server for OS/390 and
z/OS Version 7 product libraries:

DB2 for OS/390 and z/OS

v DB2 Administration Guide, SC26-9931

v DB2 Application Programming and SQL Guide,
SC26-9933

v DB2 Application Programming Guide and
Reference for Java, SC26-9932

v DB2 Command Reference, SC26-9934

v DB2 Data Sharing: Planning and Administration,
SC26-9935

v DB2 Data Sharing Quick Reference Card,
SX26-3846

v DB2 Diagnosis Guide and Reference,
LY37-3740

v DB2 Diagnostic Quick Reference Card,
LY37-3741

v DB2 Image, Audio, and Video Extenders
Administration and Programming, SC26-9947

v DB2 Installation Guide, GC26-9936

v DB2 Licensed Program Specifications,
GC26-9938

v DB2 Master Index, SC26-9939

v DB2 Messages and Codes, GC26-9940

v DB2 ODBC Guide and Reference, SC26-9941

v DB2 Reference for Remote DRDA Requesters
and Servers, SC26-9942

v DB2 Reference Summary, SX26-3847

v DB2 Release Planning Guide, SC26-9943

v DB2 SQL Reference, SC26-9944

v DB2 Text Extender Administration and
Programming, SC26-9948

v DB2 Utility Guide and Reference, SC26-9945

v DB2 What's New? GC26-9946

v DB2 XML Extender for OS/390 and z/OS
Administration and Programming, SC27-9949

v DB2 Program Directory, GI10-8182

DB2 Administration Tool

v DB2 Administration Tool for OS/390 and z/OS
User’s Guide, SC26-9847

DB2 Buffer Pool Tool

v DB2 Buffer Pool Tool for OS/390 and z/OS
User’s Guide and Reference, SC26-9306

DB2 DataPropagator™

v DB2 UDB Replication Guide and Reference,
SC26-9920

Net.Data®

The following books are available at this Web site:
http://www.ibm.com/software/net.data/library.html
v Net.Data Library: Administration and

Programming Guide for OS/390 and z/OS
v Net.Data Library: Language Environment

Interface Reference
v Net.Data Library: Messages and Codes
v Net.Data Library: Reference

DB2 PM for OS/390

v DB2 PM for OS/390 Batch User's Guide,
SC27-0857

v DB2 PM for OS/390 Command Reference,
SC27-0855

v DB2 PM for OS/390 Data Collector Application
Programming Interface Guide, SC27-0861

v DB2 PM for OS/390 General Information,
GC27-0852

v DB2 PM for OS/390 Installation and
Customization, SC27-0860

v DB2 PM for OS/390 Messages, SC27-0856

v DB2 PM for OS/390 Online Monitor User's
Guide, SC27-0858

v DB2 PM for OS/390 Report Reference Volume
1, SC27-0853

v DB2 PM for OS/390 Report Reference Volume
2, SC27-0854

v DB2 PM for OS/390 Using the Workstation
Online Monitor, SC27-0859

v DB2 PM for OS/390 Program Directory,
GI10-8223

Query Management Facility (QMF)
v Query Management Facility: Developing QMF

Applications, SC26-9579
v Query Management Facility: Getting Started

with QMF on Windows, SC26-9582
v Query Management Facility: High Peformance

Option User’s Guide for OS/390 and z/OS,
SC26-9581

v Query Management Facility: Installing and
Managing QMF on OS/390 and z/OS,
GC26-9575

© Copyright IBM Corp. 1982, 2001 1121

v Query Management Facility: Installing and
Managing QMF on Windows, GC26-9583

v Query Management Facility: Introducing QMF,
GC26-9576

v Query Management Facility: Messages and
Codes, GC26-9580

v Query Management Facility: Reference,
SC26-9577

v Query Management Facility: Using QMF,
SC26-9578

Ada/370
v IBM Ada/370 Language Reference, SC09-1297
v IBM Ada/370 Programmer's Guide, SC09-1414
v IBM Ada/370 SQL Module Processor for DB2

Database Manager User's Guide, SC09-1450

APL2®

v APL2 Programming Guide, SH21-1072
v APL2 Programming: Language Reference,

SH21-1061
v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

AS/400®

The following books are available at this Web site:
www.as400.ibm.com/infocenter
v DB2 Universal Database for AS/400 Database

Programming
v DB2 Universal Database for AS/400

Performance and Query Optimization
v DB2 Universal Database for AS/400 Distributed

Data Management
v DB2 Universal Database for AS/400 Distributed

Data Programming
v DB2 Universal Database for AS/400 SQL

Programming Concepts
v DB2 Universal Database for AS/400 SQL

Programming with Host Languages
v DB2 Universal Database for AS/400 SQL

Reference

BASIC
v IBM BASIC/MVS Language Reference,

GC26-4026
v IBM BASIC/MVS Programming Guide,

SC26-4027

BookManager® READ/MVS
v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

SAA® AD/Cycle® C/370™

v IBM SAA AD/Cycle C/370 Programming Guide,
SC09-1841

v IBM SAA AD/Cycle C/370 Programming Guide
for Language Environment/370, SC09-1840

v IBM SAA AD/Cycle C/370 User's Guide,
SC09-1763

v SAA CPI C Reference, SC09-1308

Character Data Representation Architecture
v Character Data Representation Architecture

Overview, GC09-2207
v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS/ESA
v CICS/ESA Application Programming Guide,

SC33-1169
v CICS External Interfaces Guide, SC33-1944
v CICS for MVS/ESA Application Programming

Reference, SC33-1170
v CICS for MVS/ESA CICS-RACF Security Guide,

SC33-1185
v CICS for MVS/ESA CICS-Supplied

Transactions, SC33-1168
v CICS for MVS/ESA Customization Guide,

SC33-1165
v CICS for MVS/ESA Data Areas, LY33-6083
v CICS for MVS/ESA Installation Guide,

SC33-1163
v CICS for MVS/ESA Intercommunication Guide,

SC33-1181
v CICS for MVS/ESA Messages and Codes,

GC33-1177
v CICS for MVS/ESA Operations and Utilities

Guide, SC33-1167
v CICS/ESA Performance Guide, SC33-1183
v CICS/ESA Problem Determination Guide,

SC33-1176
v CICS for MVS/ESA Resource Definition Guide,

SC33-1166
v CICS for MVS/ESA System Definition Guide,

SC33-1164
v CICS for MVS/ESA System Programming

Reference, GC33-1171

CICS Transaction Server for OS/390

v CICS Application Programming Guide,
SC33-1687

v CICS External Interfaces Guide, SC33-1703

v CICS DB2 Guide, SC33-1939

v CICS Resource Definition Guide, SC33-1684

IBM C/C++ for MVS/ESA
v IBM C/C++ for MVS/ESA Library Reference,

SC09-1995
v IBM C/C++ for MVS/ESA Programming Guide,

SC09-1994

1122 Administration Guide

IBM COBOL
v IBM COBOL Language Reference, SC26-4769
v IBM COBOL for MVS & VM Programming

Guide, SC26-4767

IBM COBOL for OS/390 & VM Programming
Guide, SC26-9049

Conversion Guide
v IMS-DB and DB2 Migration and Coexistence

Guide, GH21-1083

Cooperative Development Environment
v CoOperative Development Environment/370:

Debug Tool, SC09-1623

DataPropagator NonRelational
v DataPropagator NonRelational MVS/ESA

Administration Guide, SH19-5036
v DataPropagator NonRelational MVS/ESA

Reference, SH19-5039

Data Facility Data Set Services
v Data Facility Data Set Services: User's Guide

and Reference, SC26-4388

Database Design
v DB2 Design and Development Guide by

Gabrielle Wiorkowski and David Kull, Addison
Wesley, ISBN 0-20158-049-7

v Handbook of Relational Database Design by C.
Fleming and B. Von Halle, Addison Wesley,
ISBN 0-20111-434-8

DataHub®

v IBM DataHub General Information, GC26-4874

Data Refresher
v Data Refresher Relational Extract Manager for

MVS GI10-9927

DB2 Connect
v DB2 Connect Enterprise Edition for OS/2 and

Windows: Quick Beginnings, GC09-2953
v DB2 Connect Enterprise Edition for UNIX:

Quick Beginnings, GC09-2952
v DB2 Connect Personal Edition Quick

Beginnings, GC09-2967
v DB2 Connect User's Guide, SC09-2954

DB2 Red Books
v DB2 UDB Server for OS/390 Version 6

Technical Update, SG24-6108-00

DB2 Server for VSE & VM
v DB2 Server for VM: DBS Utility, SC09-2394

v DB2 Server for VSE: DBS Utility, SC09-2395

DB2 Universal Database for UNIX, Windows,
OS/2®

v DB2 UDB Administration Guide: Planning,
SC09-2946

v DB2 UDB Administration Guide:
Implementation, SC09-2944

v DB2 UDB Administration Guide: Performance,
SC09-2945

v DB2 UDB Administrative API Reference,
SC09-2947

v DB2 UDB Application Building Guide,
SC09-2948

v DB2 UDB Application Development Guide,
SC09-2949

v DB2 UDB CLI Guide and Reference,
SC09-2950

v DB2 UDB SQL Getting Started, SC09-2973
v DB2 UDB SQL Reference Volume 1,

SC09-2974
v DB2 UDB SQL Reference Volume 2,

SC09-2975

Device Support Facilities
v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety
of components of DFSMS, including DFSMS/MVS,
DFSMSdfp, DFSMSdss, DFSMShsm, and
MVS/DFP.
v DFSMS/MVS: Access Method Services for the

Integrated Catalog, SC26-4906
v DFSMS/MVS: Access Method Services for

VSAM Catalogs, SC26-4905
v DFSMS/MVS: Administration Reference for

DFSMSdss, SC26-4929
v DFSMS/MVS: DFSMShsm Managing Your Own

Data, SH21-1077
v DFSMS/MVS: Diagnosis Reference for

DFSMSdfp, LY27-9606
v DFSMS/MVS Storage Management Library:

Implementing System-Managed Storage,
SC26–3123

v DFSMS/MVS: Macro Instructions for Data Sets,
SC26-4913

v DFSMS/MVS: Managing Catalogs, SC26-4914
v DFSMS/MVS: Program Management,

SC26-4916
v DFSMS/MVS: Storage Administration Reference

for DFSMSdfp, SC26-4920
v DFSMS/MVS: Using Advanced Services,

SC26-4921

Bibliography 1123

v DFSMS/MVS: Utilities, SC26-4926
v MVS/DFP: Using Data Sets, SC26-4749

DFSORT™

v DFSORT Application Programming: Guide,
SC33-4035

Distributed Relational Database Architecture™

v Data Stream and OPA Reference, SC31-6806
v IBM SQL Reference, SC26-8416
v Open Group Technical Standard

The Open Group presently makes the following
DRDA® books available through its Web site at:
www.opengroup.org
– DRDA Version 2 Vol. 1: Distributed

Relational Database Architecture (DRDA)
– DRDA Version 2 Vol. 2: Formatted Data

Object Content Architecture
– DRDA Version 2 Vol. 3: Distributed Data

Management Architecture

Domain Name System
v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O’Reilly, ISBN 1-56592-512-2

Education
v IBM Dictionary of Computing, McGraw-Hill,

ISBN 0-07031-489-6
v 1999 IBM All-in-One Education and Training

Catalog, GR23-8105

Enterprise System/9000® and Enterprise
System/3090™

v Enterprise System/9000 and Enterprise
System/3090 Processor Resource/System
Manager Planning Guide, GA22-7123

High Level Assembler
v High Level Assembler for MVS and VM and

VSE Language Reference, SC26-4940
v High Level Assembler for MVS and VM and

VSE Programmer's Guide, SC26-4941

Parallel Sysplex Library
v OS/390 Parallel Sysplex Application Migration,

GC28-1863
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1862
v OS/390 Parallel Sysplex Overview: An

Introduction to Data Sharing and Parallelism,
GC28-1860

v OS/390 Parallel Sysplex Systems Management,
GC28-1861

v OS/390 Parallel Sysplex Test Report,
GC28-1963

v System/390 9672/9674 System Overview,
GA22-7148

ICSF/MVS
v ICSF/MVS General Information, GC23-0093

IMS
v IMS Batch Terminal Simulator General

Information, GH20-5522
v IMS Administration Guide: System, SC26-9420
v IMS Administration Guide: Transaction

Manager, SC26-9421
v IMS Application Programming: Database

Manager, SC26-9422
v IMS Application Programming: Design Guide,

SC26-9423
v IMS Application Programming: Transaction

Manager, SC26-9425
v IMS Command Reference, SC26-9436
v IMS Customization Guide, SC26-9427
v IMS Install Volume 1: Installation and

Verification, GC26-9429
v IMS Install Volume 2: System Definition and

Tailoring, GC26-9430
v IMS Messages and Codes, GC27-1120
v IMS Utilities Reference: System, SC26-9441

ISPF
v ISPF V4 Dialog Developer's Guide and

Reference, SC34-4486
v ISPF V4 Messages and Codes, SC34-4450
v ISPF V4 Planning and Customizing, SC34-4443
v ISPF V4 User's Guide, SC34-4484

Language Environment
v Debug Tool User's Guide and Reference,

SC09-2137

National Language Support
v IBM National Language Support Reference

Manual Volume 2, SE09-8002

NetView
v NetView Installation and Administration Guide,

SC31-8043
v NetView User's Guide, SC31-8056

Microsoft® ODBC
v Microsoft ODBC 3.0 Software Development Kit

and Programmer's Reference, Microsoft Press,
ISBN 1-57231-516-4

OS/390
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Run-Time Library Reference,

SC28-1663

1124 Administration Guide

v OS/390 C/C++ User's Guide, SC09-2361
v OS/390 eNetwork Communications Server: IP

Configuration, SC31-8513
v OS/390 Hardware Configuration Definition

Planning, GC28-1750
v OS/390 Information Roadmap, GC28-1727
v OS/390 Introduction and Release Guide,

GC28-1725
v OS/390 JES2 Initialization and Tuning Guide,

SC28-1791
v OS/390 JES3 Initialization and Tuning Guide,

SC28-1802
v OS/390 Language Environment for OS/390 &

VM Concepts Guide, GC28-1945
v OS/390 Language Environment for OS/390 &

VM Customization, SC28-1941
v OS/390 Language Environment for OS/390 &

VM Debugging Guide, SC28-1942
v OS/390 Language Environment for OS/390 &

VM Programming Guide, SC28-1939
v OS/390 Language Environment for OS/390 &

VM Programming Reference, SC28-1940
v OS/390 MVS Diagnosis: Procedures,

LY28-1082
v OS/390 MVS Diagnosis: Reference, SY28-1084
v OS/390 MVS Diagnosis: Tools and Service

Aids, LY28-1085
v OS/390 MVS Initialization and Tuning Guide,

SC28-1751
v OS/390 MVS Initialization and Tuning

Reference, SC28-1752
v OS/390 MVS Installation Exits, SC28-1753
v OS/390 MVS JCL Reference, GC28-1757
v OS/390 MVS JCL User's Guide, GC28-1758
v OS/390 MVS Planning: Global Resource

Serialization, GC28-1759
v OS/390 MVS Planning: Operations, GC28-1760
v OS/390 MVS Planning: Workload Management,

GC28-1761
v OS/390 MVS Programming: Assembler

Services Guide, GC28-1762
v OS/390 MVS Programming: Assembler

Services Reference, GC28-1910
v OS/390 MVS Programming: Authorized

Assembler Services Guide, GC28-1763
v OS/390 MVS Programming: Authorized

Assembler Services Reference, Volumes 1-4,
GC28-1764, GC28-1765, GC28-1766,
GC28-1767

v OS/390 MVS Programming: Callable Services
for High-Level Languages, GC28-1768

v OS/390 MVS Programming: Extended
Addressability Guide, GC28-1769

v OS/390 MVS Programming: Sysplex Services
Guide, GC28-1771

v OS/390 MVS Programming: Sysplex Services
Reference, GC28-1772

v OS/390 MVS Programming: Workload
Management Services, GC28-1773

v OS/390 MVS Routing and Descriptor Codes,
GC28-1778

v OS/390 MVS Setting Up a Sysplex, GC28-1779
v OS/390 MVS System Codes, GC28-1780
v OS/390 MVS System Commands, GC28-1781
v OS/390 MVS System Messages Volume 1,

GC28-1784
v OS/390 MVS System Messages Volume 2,

GC28-1785
v OS/390 MVS System Messages Volume 3,

GC28-1786
v OS/390 MVS System Messages Volume 4,

GC28-1787
v OS/390 MVS System Messages Volume 5,

GC28-1788
v OS/390 MVS Using the Subsystem Interface,

SC28-1789
v OS/390 Security Server External Security

Interface (RACROUTE) Macro Reference,
GC28-1922

v OS/390 Security Server (RACF) Auditor's
Guide, SC28-1916

v OS/390 Security Server (RACF) Command
Language Reference, SC28-1919

v OS/390 Security Server (RACF) General User's
Guide, SC28-1917

v OS/390 Security Server (RACF) Introduction,
GC28-1912

v OS/390 Security Server (RACF) Macros and
Interfaces, SK2T-6700 (OS/390 Collection Kit),
SK27-2180 (OS/390 Security Server Information
Package)

v OS/390 Security Server (RACF) Security
Administrator's Guide, SC28-1915

v OS/390 Security Server (RACF) System
Programmer's Guide, SC28-1913

v OS/390 SMP/E Reference, SC28-1806
v OS/390 SMP/E User's Guide, SC28-1740
v OS/390 Support for Unicode: Using Conversion

Services, SC33-7050
v OS/390 RMF User's Guide, SC28-1949
v OS/390 TSO/E CLISTS, SC28-1973
v OS/390 TSO/E Command Reference,

SC28-1969
v OS/390 TSO/E Customization, SC28-1965
v OS/390 TSO/E Messages, GC28-1978
v OS/390 TSO/E Programming Guide,

SC28-1970
v OS/390 TSO/E Programming Services,

SC28-1971
v OS/390 TSO/E REXX Reference, SC28-1975
v OS/390 TSO/E User's Guide, SC28-1968

Bibliography 1125

v OS/390 DCE Administration Guide, SC28-1584
v OS/390 DCE Introduction, GC28-1581
v OS/390 DCE Messages and Codes, SC28-1591
v OS/390 UNIX System Services Command

Reference, SC28-1892
v OS/390 UNIX System Services Messages and

Codes, SC28-1908
v OS/390 UNIX System Services Planning,

SC28-1890
v OS/390 UNIX System Services User's Guide,

SC28-1891
v OS/390 UNIX System Services Programming:

Assembler Callable Services Reference,
SC28-1899

IBM Enterprise PL/I for z/OS and OS/390
v IBM Enterprise PL/I for z/OS and OS/390

Language Reference, SC26-9476
v IBM Enterprise PL/I for z/OS and OS/390

Programming Guide, SC26-9473

OS PL/I
v OS PL/I Programming Language Reference,

SC26-4308
v OS PL/I Programming Guide, SC26-4307

Prolog
v IBM SAA AD/Cycle Prolog/MVS & VM

Programmer's Guide, SH19-6892

RAMAC and Enterprise Storage Server
v IBM RAMAC Virtual Array, SG24-4951
v RAMAC Virtual Array: Implementing

Peer-to-Peer Remote Copy, SG24-5338
v Enterprise Storage Server Introduction and

Planning, GC26-7294

Remote Recovery Data Facility
v Remote Recovery Data Facility Program

Description and Operations, LY37-3710

Storage Management
v DFSMS/MVS Storage Management Library:

Implementing System-Managed Storage,
SC26-3123

v MVS/ESA Storage Management Library:
Leading a Storage Administration Group,
SC26-3126

v MVS/ESA Storage Management Library:
Managing Data, SC26-3124

v MVS/ESA Storage Management Library:
Managing Storage Groups, SC26-3125

v MVS Storage Management Library: Storage
Management Subsystem Migration Planning
Guide, SC26-4659

System/370™ and System/390
v ESA/370 Principles of Operation, SA22-7200
v ESA/390 Principles of Operation, SA22-7201
v System/390 MVS Sysplex Hardware and

Software Migration, GC28-1210

System Network Architecture (SNA)
v SNA Formats, GA27-3136
v SNA LU 6.2 Peer Protocols Reference,

SC31-6808
v SNA Transaction Programmer's Reference

Manual for LU Type 6.2, GC30-3084
v SNA/Management Services Alert

Implementation Guide, GC31-6809

TCP/IP
v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134
v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105
v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132
v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

VS COBOL II
v VS COBOL II Application Programming Guide

for MVS and CMS, SC26-4045
v VS COBOL II Application Programming:

Language Reference, GC26-4047
v VS COBOL II Installation and Customization for

MVS, SC26-4048

VS Fortran
v VS Fortran Version 2: Language and Library

Reference, SC26-4221
v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

VTAM
v Planning for NetView, NCP, and VTAM,

SC31-8063
v VTAM for MVS/ESA Diagnosis, LY43-0069
v VTAM for MVS/ESA Messages and Codes,

SC31-6546
v VTAM for MVS/ESA Network Implementation

Guide, SC31-6548
v VTAM for MVS/ESA Operation, SC31-6549
v VTAM for MVS/ESA Programming, SC31-6550
v VTAM for MVS/ESA Programming for LU 6.2,

SC31-6551
v VTAM for MVS/ESA Resource Definition

Reference, SC31-6552

1126 Administration Guide

Index

Special Characters
% (percent sign)

in DDL registration tables 159
_ (underscore)

in DDL registration tables 159

Numerics
16-KB page size 85
32-KB page size 85
8-KB page size 85

A
abend

AEY9 417
after SQLCODE -923 422
ASP7 417
backward log recovery 491
CICS

abnormal termination of application 417
loops 417
scenario 422
transaction abends when disconnecting from

DB2 293, 294
waits 417

current status rebuild 479
disconnects DB2 304
DXR122E 409
effects of 348
forward log recovery 486
IMS

U3047 416
U3051 416

IMS, scenario 414, 416
IRLM

scenario 409
stop command 282
stop DB2 281

log
damage 475
initialization 478
lost information 496

page problem 496
restart 477
starting DB2 after 258
VVDS (VSAM volume data set)

destroyed 439
out of space 439

acceptance option 181
access control

authorization exit routine 909
closed application 157, 166
DB2 subsystem

local 100, 169
process overview 169
RACF 100

access control (continued)
DB2 subsystem (continued)

remote 101, 176
external DB2 data sets 101
field level 112
internal DB2 data 99

access method services
bootstrap data set definition 341
commands

ALTER 442
DEFINE 496
DEFINE CLUSTER 35, 36, 542
EXPORT 385
IMPORT 79, 495
PRINT 400
REPRO 400, 431

data set management 31, 34
delete damaged BSDS 430
redefine user work file 394
rename damaged BSDS 430
table space re-creation 496

access path
direct row access 801
hints 757
index access 780
index-only access 800
low cluster ratio

effects of 781
suggests table space scan 805
with list prefetch 826

multiple index access
description 809
disabling 574
PLAN_TABLE 799

selection
influencing with SQL 746
problems 711
queries containing host variables 734
Visual Explain 747, 789

table space scan 805
unique index with matching value 811

access profile, in RACF 200
accounting

elapsed times 546
trace

description 1034
ACQUIRE

option of BIND PLAN subcommand
locking tables and table spaces 675
thread creation 620

ACS user-exit filter on archive log data sets 337
active log

data set
changing high-level qualifier for 72
copying with IDCAMS REPRO statement 342
effect of stopped 427
offloaded to archive log 333
placement 598

© Copyright IBM Corp. 1982, 2001 X-1

active log (continued)
data set (continued)

VSAM linear 962
description 12
dual logging 334
offloading 334
problems 423
recovery scenario 423
size

determining 603
tuning considerations 603

truncation 334
writing 333

activity sample table 883
ADD VOLUMES clause of ALTER STOGROUP

statement 56
adding

foreign key 62
parent key 62
unique key 62

address space
DB2 18
priority 614
started-task 203
stored procedures 203

administrative authority 108
alias

ownership 115
qualified name 115

ALL
clause of GRANT statement 104

ALL PRIVILEGES clause
GRANT statement 105

allocating space
effect on INSERTs 540
preformatting 540
table 33

allocating storage
dictionary 87
table 84

already-verified acceptance option 181
ALTER command of access method services 442
ALTER DATABASE statement

usage 57
ALTER FUNCTION statement

usage 71
ALTER privilege

description 104
ALTER PROCEDURE statement 70
ALTER STOGROUP statement 56
ALTER TABLE statement

AUDIT clause 222
description 59

ALTER TABLESPACE statement
description 57

ALTERIN privilege
description 107

ambiguous cursor 687, 862
APPL statement

options
SECACPT 180

application plan
controlling application connections 289
controlling use of DDL 157, 166
dynamic plan selection for CICS applications 634
inoperative, when privilege is revoked 151
invalidated

dropping a table 66
dropping a view 70
dropping an index 69
when privilege is revoked 151

list of dependent objects 67, 70
monitoring 1040
privileges

explicit 105
of ownership 116

retrieving catalog information 154
application program

coding SQL statements
data communication coding 20
error checking in IMS 261

internal integrity reports 230
recovery scenarios

CICS 417
IMS 416, 417

running
batch 261
CAF (call attachment facility) 262
CICS transactions 261
error recovery scenario 412, 413
IMS 260
RRSAF (Recoverable Resource Manager

Services attachment facility) 263
TSO online 259

security measures in 121
suspension

description 644
timeout periods 666

application programmer
description 139
privileges 144

application registration table (ART) 157
archive log

ACS user-exit filter 337
BSDS 341
data set

changing high-level qualifier for 72
description 336
offloading 333
types 336

deleting 343
description 12
device type 336
dual logging 336
dynamic allocation of data sets 336
multivolume data sets 337
recovery scenario 427
retention period 343
writing 334

ARCHIVE LOG command
cancels offloads 340
use 337

X-2 Administration Guide

ARCHIVE LOG FREQ field of panel DSNTIPL 602
ARCHIVE privilege

description 106
archiving to disk volumes 336
ARCHWTOR option of DSNZPxxx module 335
ART (application registration table) 157
ASUTIME column

resource limit specification table (RLST) 585
asynchronous data from IFI 1017
attachment facility

description 19
attachment request

come-from check 186
controlling 181
definition 180
translating IDs 185, 195
using secondary IDs 186

AUDIT
clause of ALTER TABLE statement 222
clause of CREATE TABLE statement 222
option of START TRACE command 222

audit trace
class descriptions 220
controlling 220, 222
description 219, 1035
records 223

auditing
access attempts 219, 225
authorization IDs 221
classes of events 220, 221
data 1035
description 97
in sample security plan

attempted access 240
payroll data 236
payroll updates 238

reporting trace records 223
security measures in force 225
table access 222
trace data through IFI 1027

AUTH option
DSNCRCT macro

TYPE=ENTRY 634
TYPE=POOL 634

authority
administrative 108
controlling access to

CICS 261
DB2 catalog and directory 113
DB2 commands 255
DB2 functions 255
IMS application program 261
TSO application program 260

description 99, 104
explicitly granted 108, 114
hierarchy 108
level SYS for MVS command group 252
levels 255
types

DBADM 110
DBCTRL 110

authority (continued)
types (continued)

DBMAINT 110
installation SYSADM 112
installation SYSOPR 110
PACKADM 110
SYSADM 111
SYSCTRL 111
SYSOPR 110

authorization
control outside of DB2 100
data definition statements, to use 157
exit routines 901

authorization ID
auditing 221, 225
checking during thread creation 620
DB2 private protocol access 119
description 104
dynamic SQL, determining 132
exit routine input parameter 904
inbound from remote location 176
initial

connection processing 171
sign-on processing 173

package execution 118
primary

connection processing 170, 172
description 104
exit routine input 904
privileges exercised by 129
sign-on processing 173, 175

retrieving catalog information 153
routine, determining 129
secondary

attachment requests 186
connection processing 172
description 104
exit routine output 906, 919
identifying RACF groups 208
number per primary ID 129
ownership held by 116
privileges exercised by 129
sign-on processing 175

SQL
changing 104
description 104
exit routine output 906, 919
privileges exercised by 129

translating
inbound IDs 185
outbound IDs 195

verifying 181
automatic

data management 378
deletion of archive log data sets 343
rebind

EXPLAIN processing 796
restart function of MVS 353

auxiliary storage 31
auxiliary table

LOCK TABLE statement 695

Index X-3

availability
recovering

data sets 393
page sets 393

recovery planning 373
summary of functions for 16

AVGROWLEN column
SYSTABLES catalog table

data collected by RUNSTATS utility 770
SYSTABLES_HIST catalog table 775

AVGSIZE column
SYSLOBSTATS catalog table 769

B
BACKOUT DURATION field of panel DSNTIPN 354
backup

data set using DFSMShsm 378
database

concepts 373
DSN1COPY 399
image copies 391
planning 373

system procedures 373
backward log recovery phase

recovery scenario 491, 493
restart 352

base table
distinctions from temporary tables 45

basic direct access method (BDAM) 336
basic sequential access method (BSAM) 336
batch message processing (BMP) program 300
batch processing

TSO 261
BDAM (basic direct access method) 336
BIND PACKAGE subcommand of DSN

options
DISABLE 122
ENABLE 122
ISOLATION 678
OWNER 117
RELEASE 675
REOPT(VARS) 734

privileges for remote bind 122
BIND PLAN subcommand of DSN

options
ACQUIRE 675
DISABLE 122
ENABLE 122
ISOLATION 678
OWNER 117
RELEASE 675
REOPT(VARS) 734

BIND privilege
description 105

BINDADD privilege
description 106

BINDAGENT privilege
description 106
naming plan or package owner 117

binding
dynamic plan selection for CICS 634
privileges needed 132

bit data
altering subtype 65

blank
column with a field procedure 936

block fetch
description 859
enabling 861
LOB data impact 861
scrollable cursors 861

BMP (batch message processing) program
connecting from dependent regions 301

bootstrap data set (BSDS) 106, 601
BSAM (basic sequential access method)

data sets 51
reading archive log data sets 336

BSDS (bootstrap data set)
archive log information 341
changing high-level qualifier of 72
changing log inventory 342
defining 341
description 13
dual copies 341
dual recovery 431
failure symptoms 477
logging considerations 601
managing 341
recovery scenario 429, 494
registers log data 341
restart use 348
restoring from the archive log 431
single recovery 431
stand-alone log services role 972

BSDS privilege
description 106

buffer information area used in IFI 1001
buffer pool

advantages of large pools 562
advantages of multiple pools 562
altering attributes 563
available pages 553
considerations 610
description 13
displaying current status 563
hit ratio 560
immediate writes 569
in-use pages 553
monitoring 567
read operations 554
size 561, 622
statistics 567
thresholds 555, 569
update efficiency 568
updated pages 553
use in logging 333
write efficiency 568
write operations 554

BUFFERPOOL clause
ALTER INDEX statement 555

X-4 Administration Guide

BUFFERPOOL clause (continued)
ALTER TABLESPACE statement 555
CREATE DATABASE statement 555
CREATE INDEX statement 555
CREATE TABLESPACE statement 555

BUFFERPOOL privilege
description 107

C
cache

dynamic SQL
effect of RELEASE(DEALLOCATE) 676
implications for REVOKE 151

cache controller 601
cache for authorization IDs 120
CAF (call attachment facility)

application program
running 262
submitting 263

description 22
DSNALI language interface module 999

call attachment facility (CAF) 22
CANCEL THREAD command

CICS threads 293
disconnecting from TSO 286
use in controlling DB2 connections 317

capturing changed data
altering a table for 64

CARD column
SYSTABLEPART catalog table

data collected by RUNSTATS utility 769
CARDF column

SYSCOLDIST catalog table
access path selection 766
data collected by RUNSTATS utility 766

SYSCOLDIST_HIST catalog table 773
SYSINDEXPART catalog table

data collected by RUNSTATS utility 768
SYSINDEXPART_HIST catalog table 774
SYSTABLEPART_HIST catalog table 775
SYSTABLES catalog table

data collected by RUNSTATS utility 770
SYSTABLES_HIST catalog table 775
SYSTABSTATS catalog table

data collected by RUNSTATS utility 771
SYSTABSTATS_HIST catalog table 775

CARDINALITY column of SYSROUTINES catalog
table 769

Cartesian join 816
catalog, DB2

authority for access 113
changing high-level qualifier 75
description 11
DSNDB06 database 382
locks 657
point-in-time recovery 395
recovery 395
recovery scenario 438
statistics

production system 786

catalog, DB2 (continued)
statistics (continued)

querying the catalog 779
tuning 598

catalog statistics
history 773, 776
influencing access paths 754

catalog tables
frequency of image copies 377, 378
historical statistics 773, 776
retrieving information about

multiple grants 153
plans and packages 154
privileges 152
routines 154

SYSCOLAUTH 152
SYSCOLDIST

data collected by RUNSTATS utility 766
SYSCOLDIST_HIST 773
SYSCOLDISTSTATS

data collected by RUNSTATS utility 766
SYSCOLSTATS

data collected by RUNSTATS utility 766
SYSCOLUMNS

column description of a value 934
data collected by RUNSTATS utility 767
field description of a value 934
updated by ALTER TABLE statement 59
updated by DROP TABLE 66

SYSCOLUMNS_HIST 773
SYSCOPY

discarding records 407
holds image copy information 382
image copy in log 959
used by RECOVER utility 376

SYSDBAUTH 152
SYSINDEXES

access path selection 780
data collected by RUNSTATS utility 767
dropping a table 67

SYSINDEXES_HIST 774
SYSINDEXPART

data collected by RUNSTATS utility 768
space allocation information 33

SYSINDEXPART_HIST 774
SYSINDEXSTATS

data collected by RUNSTATS utility 769
SYSINDEXSTATS_HIST 774
SYSLOBSTATS

data collected by RUNSTATS utility 769
SYSLOBSTATS_HIST 774
SYSPACKAUTH 152
SYSPLANAUTH

checked during thread creation 620
plan authorization 152

SYSPLANDEP 67, 70
SYSRESAUTH 152
SYSROUTINES

using EXTERNAL_SECURITY column of 211
SYSSTOGROUP

storage groups 32

Index X-5

catalog tables (continued)
SYSSTRINGS

establishing conversion procedure 931
SYSSYNONYMS 66
SYSTABAUTH

authorization information 152
dropping a table 67
view authorizations 70

SYSTABLEPART
PAGESAVE column 609
table spaces associated with storage group 56
updated by LOAD and REORG utilities for data

compression 609
SYSTABLEPART_HIST 775
SYSTABLES

data collected by RUNSTATS utility 770
updated by ALTER TABLE statement 59
updated by DROP TABLE 66
updated by LOAD and REORG for data

compression 609
SYSTABLES_HIST 775
SYSTABLESPACE

data collected by RUNSTATS utility 771
implicitly created table spaces 43

SYSTABSTATS
data collected by RUNSTATS utility 771
PCTROWCOMP column 609

SYSUSERAUTH 152
SYSVIEWDEP

view dependencies 67, 70
SYSVOLUMES 32
SYTABSTATS_HIST 775
views of 155

CDB (communications database)
backing up 375
changing high-level qualifier 75
description 11
updating tables 185

CHANGE command of IMS
purging residual recovery entries 295

change log inventory utility
changing

BSDS 279, 342
control of data set access 216

change number of sessions (CNOS) 447
CHANGE SUBSYS command of IMS 300
CHARACTER data type

altering 65
CHECK DATA utility

checks referential constraints 230
CHECK INDEX utility

checks consistency of indexes 230
check-pending status

description for indexes 375
checkpoint

log records 957, 961
queue 357

CHECKPOINT FREQ field of panel DSNTIPN 603
CI (control interval)

description 333, 336
reading 971

CICS
commands

accessing databases 287
DSNC DISCONNECT 293
DSNC DISPLAY PLAN 290
DSNC DISPLAY STATISTICS 291
DSNC DISPLAY TRANSACTION 290
DSNC MODIFY DESTINATION 293
DSNC MODIFY TRANSACTION 293
DSNC STOP 294
DSNC STRT 288, 290
response destination 254
used in DB2 environment 249

connecting to DB2
authorization IDs 261
connection processing 170
controlling 287, 295
disconnecting applications 293, 329
sample authorization routines 173
security 214
sign-on processing 173
supplying secondary IDs 171
thread 290

correlating DB2 and CICS accounting records 536
description, attachment facility 20
disconnecting from DB2 294
dynamic plan selection

compared to packages 634
exit routine 946

dynamic plan switching 947
facilities 946

diagnostic trace 327
monitoring facility (CMF) 530, 1029
tools 1030

language interface module (DSNCLI)
IFI entry point 999
running CICS applications 261

operating
entering DB2 commands 253
identify outstanding indoubt units 365
performance options 634
recovery from system failure 20
terminates AEY9 423

planning
DB2 considerations 20
environment 261

programming
applications 261

recovery scenarios
application failure 417
attachment facility failure 422
CICS not operational 417
DB2 connection failure 418
indoubt resolution failure 419

starting a connection 288
statistics 1029
system administration 20
thread

reuse 636
transaction authority 287
two-phase commit 359

X-6 Administration Guide

CICS (continued)
using packages 634
XRF (extended recovery facility) 20

CICS transaction invocation stored procedure
user exit 957

claim
class 696
definition 696
effect of cursor WITH HOLD 689

Class 1 elapsed time 530
CLOSE

clause of CREATE INDEX statement
effect on virtual storage use 610

clause of CREATE TABLESPACE statement
deferred close 596
effect on virtual storage use 610

closed application
controlling access 157, 166
definition 157

cluster ratio
description 781
effects

low cluster ratio 781
table space scan 805

with list prefetch 826
CLUSTERED column of SYSINDEXES catalog table

data collected by RUNSTATS utility 767
CLUSTERING column

SYSINDEXES_HIST catalog table 774
CLUSTERING column of SYSINDEXES catalog table

access path selection 767
CLUSTERRATIO column

SYSINDEXSTATS_HIST catalog table 774
CLUSTERRATIOF column

SYSINDEXES catalog table
data collected by RUNSTATS utility 767

SYSINDEXES_HIST catalog table 774
SYSINDEXSTATS catalog table

access path selection 769
CNOS (change number of sessions)

failure 447
coding

exit routines
general rules 950
parameters 951

COLCARD column of SYSCOLSTATS catalog table
data collected by RUNSTATS utility 766
updating 779

COLCARDDATA column of SYSCOLSTATS catalog
table 766

COLCARDF column
SYSCOLUMNS catalog table 767
SYSCOLUMNS_HIST catalog table 773

COLCARDF column of SYSCOLUMNS catalog table
statistics not exact 771
updating 779

cold start
bypassing the damaged log 476
recovery operations during 357
special situations 496

COLGROUPCOLNO column
SYSCOLDIST catalog table

access path selection 766
SYSCOLDIST_HIST catalog table 773
SYSCOLDISTSTATS catalog table

data collected by RUNSTATS utility 766
collection, package

administrator 139
privileges on 105

column
adding to a table 59
description 10
dropping from a table 65

column description of a value 934
column value descriptor (CVD) 937
COLVALUE column

SYSCOLDIST catalog table
access path selection 766

SYSCOLDIST_HIST catalog table 773
SYSCOLDISTSTATS catalog table

data collected by RUNSTATS utility 766
come-from check 186
command prefix

messages 264
multi-character 252
usage 252

command recognition character (CRC) 253
commands

concurrency 643, 695
entering 249, 264
issuing DB2 commands from IFI 1000
operator 250, 256
prefixes 267

commit
two-phase process 359

communications database (CDB) 178, 190
compatibility

locks 656
compressing data 606
compression dictionary 608
concurrency

commands 643, 695
contention independent of databases 658
control by drains and claims 695
control by locks 644
description 643
effect of

ISOLATION options 680, 681
lock escalation 664
lock size 654
LOCKSIZE options 671
row locks 671
uncommitted read 684

recommendations 646
utilities 643, 695
utility compatibility 698
with real-time statistics 1066

concurrent copy 392
conditional restart

control record
backward log recovery failure 493

Index X-7

conditional restart (continued)
control record (continued)

current status rebuild failure 485
forward log recovery failure 490
log initialization failure 485
wrap-around queue 357

description 355
excessive loss of active log data, restart

procedure 498
total loss of log, restart procedure 497

connection
controlling CICS 287
controlling IMS 295
DB2

controlling commands 287
thread 640

displaying
IMS activity 301, 303

effect of lost, on restart 363
exit routine 171, 901
IDs

cited in message DSNR007I 350
outstanding unit of recovery 350
used by IMS 261
used to identify a unit of recovery 413

processing 170
requests

exit point 902
initial primary authorization ID 170, 905
invoking RACF 171
local 169

VTAM 202
connection exit routine

debugging 908
default 171, 172
description 901
performance considerations 908
sample

CICS change in 902
location 902
provides secondary IDs 172, 907

secondary authorization ID 172
using 171
writing 901, 909

connection processing
choosing for remote requests 181
initial primary authorization ID 171, 905
invoking RACF 170
supplying secondary IDs 172
usage 169
using exit routine 171

continuous block fetch 859
continuous operation

recovering table spaces and data sets 393
recovery planning 16, 373

CONTRACT THREAD STG field of panel
DSNTIPE 573

control interval (CI) 333
control region, IMS 300
CONTSTOR subsystem parameter 573
conversation acceptance option 180, 181

conversation-level security 180
conversion procedure

description 931
writing 931, 934

coordinator
in multi-site update 368
in two-phase commit 359

COPY-pending status
resetting 52

COPY privilege
description 105

COPY utility
backing up 399
copying data from table space 391
DFSMSdss concurrent copy 383, 392
effect on real-time statistics 1063
restoring data 399
using to move data 79

copying
a DB2 subsystem 81
a package, privileges for 122, 132
a relational database 81

correlated subqueries 739
correlation ID

CICS 420
duplicate 299, 421
identifier for connections from TSO 285
IMS 299
outstanding unit of recovery 350
RECOVER INDOUBT command 289, 298, 306

COST_CATEGORY_B column of RLST 586
CP processing, disabling parallel operations 558
CRC (command recognition character)

description 253
CREATE DATABASE statement

description 41
privileges required 132

CREATE GLOBAL TEMPORARY TABLE statement
distinctions from base tables 45

CREATE IN privilege
description 105

CREATE INDEX statement
privileges required 132

CREATE SCHEMA statement 48
CREATE STOGROUP statement

description 31
privileges required 132

CREATE TABLE statement
AUDIT clause 222
privileges required 132
test table 53

CREATE TABLESPACE statement
creating a table space explicitly 42
creating a table space implicitly 42
deferring allocation of data sets 36
privileges required 132

CREATE VIEW statement
privileges required 132

CREATEALIAS privilege
description 106

X-8 Administration Guide

created temporary table
distinctions from base tables 45
table space scan 805

CREATEDBA privilege
description 106

CREATEDBC privilege
description 106

CREATEIN privilege
description 107

CREATESG privilege
description 106

CREATETAB privilege
description 105

CREATETMTAB privilege
description 106

CREATETS privilege
description 105

CS (cursor stability)
claim class 696
distributed environment 679
drain lock 697
effect on locking 679
optimistic concurrency control 682
page and row locking 682

CURRENDATA option of BIND
plan and package options differ 688

CURRENT DEGREE field of panel DSNTIP4 847
CURRENT DEGREE special register

changing subsystem default 847
current status rebuild

phase of restart 350
recovery scenario 477

CURRENTDATA option
BIND PACKAGE subcommand

enabling block fetch 862
BIND PLAN subcommand 862

cursor
ambiguous 687, 862
defined WITH HOLD, subsystem parameter to

release locks 673
WITH HOLD

claims 689
locks 688

Customer Information Control System (CICS) 20, 173,
250

CVD (column value descriptor) 937, 938

D
damage, heuristic 366
data

access control
description 98
field-level 112
using option of START DB2 257

backing up 399
checking consistency of updates 229
coding

conversion procedures 931
date and time exit routines 927
edit exit routines 921

data (continued)
coding (continued)

field procedures 934
compression 606
consistency

ensuring 226
verifying 229, 231

definition control support 157
effect of locks on integrity 644
encrypting 921
improving access 789
loading into tables 51
moving 78
restoring 399
understanding access 789

DATA CAPTURE clause
ALTER TABLE statement 64

data compression
determining effectiveness 609
dictionary

description 87, 608
estimating disk storage 87
estimating virtual storage 88

DSN1COMP utility 609
edit routine 921
effect on log records 958
Huffman 922
logging 333
performance considerations 606

data definition control support
bypassing 167
controlling by

application name 158
application name with exceptions 160
object name 162
object name with exceptions 163

description 157
installing 158
registration tables 157
restarting 167
stopping 167

Data Facility Product (DFSMSdfp) 79
data management threshold (DMTH) 556
data set

adding 443
adding groups to control 215
allocation and extension 621
backing up using DFSMS 392
changing high-level qualifier 71
closing 596
control over creating 217
controlling access 215
copying 391
DSMAX value 593
extending 39, 442
generic profiles 215, 217
limit 593
managing

using access method services 34
using DFSMShsm 37
your own 31, 33

Index X-9

data set (continued)
monitoring I/O activity 598
naming convention 34
open 593, 621
recovering

using non-DB2 dump 400
using non-DB2 restore 400

renaming 388
table space, deferring allocation 36

Data Set Services (DFSMSdss) 79
data sharing

real-time statistics 1066
using IFI 1023

data space
description 13
EDM pool 573

data structure
hierarchy 8
types 7

data type
altering 65
codes for numeric data 955
subtypes 65

database
access thread

creating 628
differences from allied threads 625
failure 446
security failures in 448

altering
definition 57
design 55

backup
copying data 391
planning 373

balancing 228
controlling access 307
creating 41
default database 9
description 9
dropping 57
DSNDB07 (work file database) 394
implementing a design 41
monitoring 269, 274
page set control log records 962
privileges

administrator 139, 143
controller 143
description 105
ownership 116

recovery
description 393
failure scenarios 434
planning 373
RECOVER TOCOPY 400
RECOVER TORBA 400

sample application 897
starting 268
status information 269
stopping 274
users who need their own 41

database controller privileges 143
database descriptor (DBD) 12, 570
database exception table, log records

exception states 958
image copies of special table spaces 958
LPL 962
WEPR 962

DataPropagator NonRelational (DPropNR) 21
DataRefresher 54
DATE FORMAT field of panel DSNTIPF 928
date routine

DATE FORMAT field at installation 928
description 927
LOCAL DATE LENGTH field at installation 928
writing 927, 931

datetime
exit routine for 927
format

table 927
DB2 coded format for numeric data 955
DB2 commands

authority 255
authorized for SYSOPR 256
commands

RECOVER INDOUBT 367
RESET INDOUBT 367
START DB2 257
START DDF 308
STOP DDF 325
STOP DDF MODE(SUSPEND) 308

description 250
destination of responses 254
entering from

CICS 253
DSN session 260
IMS 252
MVS 252
TSO 253

issuing from IFI 1000, 1002
users authorized to enter 255

DB2 Connect 23
DB2 data set statistics

obtaining through IFCID 0199 1013
DB2 DataPropagator

altering a table for 64
moving data 79
reformatting DL/I data 51

DB2 decoded procedure for numeric data 955
DB2 Interactive (DB2I) 16
DB2-managed objects, changing data set high-level

qualifier 77
DB2 Performance Monitor (DB2 PM) 528
DB2 PM (DB2 Performance Monitor)

accounting report
concurrency scenario 703
overview 528

description 1029, 1039
EXPLAIN 788
scenario using reports 702
statistics report

buffer pools 567

X-10 Administration Guide

DB2 PM (DB2 Performance Monitor) (continued)
statistics report (continued)

DB2 log 601
EDM pool 571
locking 702
thread queuing 640

DB2 private protocol access
authorization at second server 119
description 857
resource limit facility 591

DB2 tools, efficient resource usage 232
DB2I (DB2 Interactive)

description 16, 259
panels

description 22
used to connect from TSO 284

DBA (database administrator)
description 139
sample privileges 143

DBADM authority
description 110

DBCTRL authority
description 110

DBD (database descriptor)
contents 12
EDM pool 570, 572
freeing 622
load

in EDM pool 621
using ACQUIRE(ALLOCATE) 620

locks on 658
use count 622

DBD01 directory table space
contents 12
placement of data sets 598
quiescing 384
recovery after conditional restart 397
recovery information 382

DBFULTA0 (Fast Path Log Analysis Utility) 1029
DBMAINT authority

description 110
DD limit 593
DDCS (data definition control support)

database 14
DDF (distributed data facility)

block fetch 859
controlling connections 307
description 22
dispatching priority 614
resuming 308
suspending 308

DDL, controlling usage of 157
deadlock

description 645
detection scenarios 707
example 645
recommendation for avoiding 648
row vs. page locks 672
wait time calculation 667
with RELEASE(DEALLOCATE) 649
X'00C90088' reason code in SQLCA 646

DEADLOCK TIME field of panel DSNTIPJ 666
DEADLOK option of START irlmproc command 665
decision, heuristic 366
DECLARE GLOBAL TEMPORARY TABLE statement

distinctions from base tables 45
declared temporary table

distinctions from base tables 45
default database (DSNDB04)

changing high-level qualifier 75
defining 9

DEFER ALL field of panel DSNTIPS 354
deferred close 593
deferred write threshold (DWQT)

description 558
recommendation for LOBs 560

DEFINE CLUSTER command of access method
services 35, 36, 542

DEFINE command of access method services
recreating table space 496
redefine user work file 394

DEFINE NO
clause of CREATE TABLESPACE statement 36

definer, description 123
DELETE

command of access method services 496
statement

validation routine 925
DELETE privilege

description 104
deleting

archive logs 343
department sample table

description 884
dependent

regions, disconnecting from 303
DFHCOMMAREA parameter list for dynamic plan

selection routine 949
DFSLI000 (IMS language interface module) 260, 999
DFSMS (Data Facility Storage Management Subsystem)

ACS filter for archive log data sets 337
backup 392
concurrent copy

backup 392
description 24
recovery 392

DFSMSdfp (Data Facility Product) 79
DFSMSdfp partitioned data set extended (PDSE) 25
DFSMSdss (Data Set Services) 79
DFSMShsm (Data Facility Hierarchical Storage

Manager)
advantages 37
backup 378
moving data sets 79
recovery 378

DFSxxxx messages 264
dictionary 87
direct row access 801
directory

authority for access 113
changing high-level qualifier 75
description 12

Index X-11

directory (continued)
frequency of image copies 377, 378
order of recovering

I/O errors 438
point-in-time recovery 395
recovery 395
SYSLGRNX table

discarding records 407
records log RBA ranges 382

table space names 12
DISABLE option

limits plan and package use 122
disaster recovery

preparation 385
scenario 449
using a tracker site 459

disconnecting
CICS applications 293, 295
CICS from DB2, command 287
DB2 from TSO 286

disk
altering storage group assignment 56
data set, allocation and extension 606
improving utilization 606
requirements 83

DISPLAY command of IMS
SUBSYS option 295, 302

DISPLAY DATABASE command
displaying LPL entries 273
SPACENAM option 271, 274
status checking 230

DISPLAY DDF command
displays connections to DDF 309

DISPLAY FUNCTION SPECIFIC command
displaying statistics about external user-defined

functions 277
DISPLAY LOCATION command

controls connections to DDF 311
DISPLAY NET command of VTAM 319
DISPLAY OASN command of IMS

displaying RREs 300
produces OASN 416

DISPLAY privilege
description 106

DISPLAY PROCEDURE command
example 320

DISPLAY THREAD command
extensions to control DDF connections

DETAIL option 314
LOCATION option 312
LUWID option 317

messages issued 283
options

DETAIL 314
LOCATION 312
LUWID 317
TYPE (INDOUBT) 420

shows CICS threads 292
shows IMS threads 296, 301
shows parallel tasks 851

DISPLAY TRACE command
AUDIT option 222

DISPLAY UTILITY command
data set control log record 957

DISPLAYDB privilege
description 105

displaying
buffer pool information 563
indoubt units of recovery 298, 420
information about

originating threads 285
parallel threads 285

postponed units of recovery 299
distinct type

privileges of ownership 116
DISTINCT TYPE privilege, description 108
distributed data

controlling connections 307
DB2 private protocol access 857
DRDA protocol 857
operating

displaying status 1012
in an overloaded network 520

performance considerations 858
programming

block fetch 859
FOR FETCH ONLY 861
FOR READ ONLY 861

resource limit facility 591
server-elapsed time monitoring 870
tuning 858

distributed data facility (DDF) 22, 859
Distributed Relational Database Architecture

(DRDA) 22
distribution statistics 779
DL/I

batch
features 21

loading data 54
DL/I BATCH TIMEOUT field of installation panel

DSNTIPI 667
DMTH (data management threshold) 556
double-hop situation 119
down-level detection

controlling 436
LEVELID UPDATE FREQ field of panel

DSNTIPL 436
down-level page sets 435
DPMODE option of DSNCRCT macro 638
DPropNR (DataPropagator NonRelational) 21
drain

definition 696
DRAIN ALL 699
wait calculation 669

drain lock
description 643, 697
types 697
wait calculation 669

DRDA access
description 857
resource limit facility 591

X-12 Administration Guide

DRDA access (continued)
security mechanisms 176

DROP
statement

TABLE 66
TABLESPACE 57

DROP privilege
description 105

DROPIN privilege
description 107

dropping
columns from a table 65
database 57
DB2 objects 55
foreign key 62
parent key 62
privileges needed for package 132
table spaces 57
tables 66
unique key 62
views 70
volumes from a storage group 56

DSMAX
calculating 594
limit on open data sets 593

DSN command of TSO
command processor

connecting from TSO 284
description 22
invoked by TSO batch work 261
invoking 22
issues commands 260
running TSO programs 259

subcommands
END 286

DSN command processor 22
DSN message prefix 263
DSN_STATEMNT_TABLE table

column descriptions 836
DSN1CHKR utility

control of data set access 216
DSN1COMP utility

description 609
DSN1COPY utility

control of data set access 216
resetting log RBA 505
restoring data 399
service aid 79

DSN1LOGP utility
control of data set access 216
example 485
extract log records 957
JCL

sample 482
limitations 502
print log records 957
shows lost work 475

DSN1PRNT utility
description 216

DSN3@ATH connection exit routine 901
DSN3@SGN sign-on exit routine 901

DSN6SPRM macro
RELCURHL parameter 673

DSN6SYSP macro
PCLOSEN parameter 596
PCLOSET parameter 596

DSN8EAE1 exit routine 922
DSN8HUFF edit routine 922
DSNACCOR stored procedure

description 1069
example call 1080
option descriptions 1071
output 1084
syntax diagram 1071

DSNACICS stored procedure
debugging 1094
description 1087
invocation example 1092
invocation syntax 1088
output 1094
parameter descriptions 1088
restrictions 1094

DSNACICX user exit
description 1090
parameter list 1091
rules for writing 1090

DSNALI (CAF language interface module)
inserting 999

DSNC command of CICS
destination 254
prefix 267

DSNC DISCONNECT command of CICS
description 293
terminate DB2 threads 287

DSNC DISPLAY command of CICS
description 287
DSNC DISPLAY PLAN 290
DSNC DISPLAY STATISTICS 291
DSNC DISPLAY TRANSACTION 290

DSNC MODIFY command of CICS
options

DESTINATION 293
TRANSACTION 293

DSNC STOP command of CICS
stop DB2 connection to CICS 287

DSNC STRT command of CICS
attaches subtasks 290
example 288
processing 290
start DB2 connection to CICS 287

DSNC transaction code
authorization 287
entering DB2 commands 253

DSNCLI (CICS language interface module)
entry point 999
running CICS applications 261

DSNCRCT (resource control table) 264
DSNCRCT macro

TYPE=ENTRY
AUTH option 287, 634
DPMODE option 634, 638
THRDA option 634

Index X-13

DSNCRCT macro (continued)
TYPE=ENTRY (continued)

THRDS option 634
TWAIT option 634

TYPE=INIT
PURGEC option 634
THRDMAX option 634
TOKENI option 634
TXIDSO option 634, 636

TYPE=POOL
AUTH option 634
DPMODE option 634, 638
THRDA option 634
THRDS option 634
TWAIT option 634

DSNCUEXT plan selection exit routine 948
DSNDAIDL mapping macro 904
DSNDB01 database

authority for access 113
DSNDB04 default database 9
DSNDB06 database

authority for access 113
changing high-level qualifier 75

DSNDB07 database 394
DSNDDTXP mapping macro 929
DSNDEDIT mapping macro 923
DSNDEXPL mapping macro 951
DSNDFPPB mapping macro 937
DSNDIFCA mapping macro 1019
DSNDQWIW mapping macro 1025
DSNDROW mapping macro 954
DSNDRVAL mapping macro 925
DSNDSLRB mapping macro 972
DSNDSLRF mapping macro 978
DSNDWBUF mapping macro 1001
DSNDWQAL mapping macro 1004
DSNDXAPL parameter list 913
DSNELI (TSO language interface module) 259, 999
DSNJSLR macro

capturing log records 957
stand-alone CLOSE 978
stand-alone sample program 979

DSNMxxx messages 264
DSNTEJ1S job 49
DSNTESP data set 784
DSNTIJEX job

exit routines 901
DSNTIJIC job

improving recovery of inconsistent data 388
DSNTIJSG job

installation 582
DSNUM column

SYSINDEXPART catalog table
data collected by RUNSTATS utility 768

SYSINDEXPART_HIST catalog table 774
SYSTABLEPART catalog table

data collected by RUNSTATS utility 770
SYSTABLEPART_HIST catalog table 775

DSNX@XAC access control authorization exit
routine 909

DSNZPxxx
subsystem parameters module

specifying an alternate 257
dual logging

active log 334
archive logs 336
description 12
restoring 341
synchronization 334

dump
caution about using disk dump and restore 394

duration of locks
controlling 675
description 654

DWQT option of ALTER BUFFERPOOL command 558
dynamic plan selection in CICS

compared to packages 634
dynamic plan switching 947
exit routine 946

dynamic SQL
authorization 132
caching

effect of RELEASE bind option 676
example 135
privileges required 132
skeletons, EDM pool 570

DYNAMICRULES
description 132
example 135

E
edit procedure, changing 64
edit routine

description 227, 921
ensuring data accuracy 227
row formats 952
specified by EDITPROC option 921
writing 921, 925

EDITPROC clause
exit points 922
specifies edit exit routine 922

EDM pool
DBD freeing 622
description 570
in a data space 573
option to contract storage 573

EDMPOOL DATA SPACE SIZE field of panel
DSNTIPC 573

EDPROC column of SYSTABLES catalog table 770
employee photo and resume sample table 888
employee sample table 885
employee-to-project-activity sample table 892
ENABLE

option of BIND PLAN subcommand 122
enclave 629
encrypting

data 921
passwords from workstation 198
passwords on attachment requests 181, 197

X-14 Administration Guide

END
subcommand of DSN

disconnecting from TSO 286
Enterprise Storage Server

backup 392
environment, operating

CICS 261
DB2 23
IMS 260
MVS 23
TSO 259

EPDM (Enterprise Performance Data
Manager/MVS) 1040

ERRDEST option
DSNC MODIFY 287
unsolicited CICS messages 264

error
application program 412
IFI (instrumentation facility interface) 1028
physical RW 272
SQL query 229

escalation, lock 662
escape character

example 162
in DDL registration tables 159

EVALUATE UNCOMMITTED field of panel
DSNTIP4 674

EXCLUSIVE
lock mode

effect on resources 655
LOB 693
page 654
row 654
table, partition, and table space 654

EXECUTE privilege
after BIND REPLACE 122
description 104, 105
effect 117

exit parameter list (EXPL) 951
exit point

authorization routines 902
connection routine 902
conversion procedure 932
date and time routines 928
edit routine 922
field procedure 935
plan selection exit routine 948
sign-on routine 902
validation routine 925

exit routine 955
authorization control 909
determining if active 921
DSNACICX 1090
general considerations 950
writing 901, 955

expanded storage 612
EXPL (exit parameter list) 951
EXPLAIN

report of outer join 814
statement

alternative using IFI 998

EXPLAIN (continued)
statement (continued)

description 789
executing under QMF 796
index scans 800
interpreting output 798
investigating SQL processing 789

EXPLAIN PROCESSING field of panel DSNTIPO
overhead 796

EXPORT command of access method services 79,
385

EXTENDED SECURITY field of panel DSNTIPR 177
extending a data set, procedure 442
EXTENTS column

SYSINDEXPART catalog table
data collected by RUNSTATS utility 768

SYSINDEXPART_HIST catalog table 774
SYSTABLEPART catalog table

data collected by RUNSTATS utility 770
SYSTABLEPART_HIST catalog table 775

EXTERNAL_SECURITY column of
SYSIBM.SYSROUTINES catalog table, RACF access
to non-DB2 resources 211

external storage 31
EXTSEC option of CICS transaction entry 287

F
failure symptoms

abend shows
log problem during restart 491
restart failed 477, 486

BSDS 477
CICS

abends 417
attachment abends 418
loops 417
task abends 422
waits 417

IMS
abends 414
loops 414
waits 414

log 477
lost log information 496
message

DFH2206 417
DFS555 416
DSNB207I 434
DSNJ 494
DSNJ001I 430
DSNJ004I 425
DSNJ100 494
DSNJ103I 427
DSNJ105I 424
DSNJ106I 425
DSNJ107 494
DSNJ110E 424
DSNJ111E 424
DSNJ114I 427
DSNM002I 414

Index X-15

failure symptoms (continued)
message (continued)

DSNM004I 414
DSNM005I 415
DSNM3201I 417
DSNP007I 440
DSNP012I 439
DSNU086I 437, 438

MVS error recovery program message 428
no processing is occurring 410
subsystem termination 422

FARINDREF column
SYSTABLEPART_HIST 775

FARINDREF column of SYSTABLEPART catalog table
data collected by RUNSTATS utility 770

FAROFFPOSF column
SYSINDEXPART_HIST catalog table 774

FAROFFPOSF column of SYSINDEXPART catalog
table

data collected by RUNSTATS utility 768
fast copy function

Enterprise Storage Server FlashCopy 392
RVA SnapShot 392

fast log apply
use during RECOVER processing 390

Fast Path Log Analysis Utility 1029
FETCH FIRST n ROW ONLY clause

effect on distributed performance 865
effect on OPTIMIZE clause 865

FETCH FIRST n ROWS ONLY clause
effect on OPTIMIZE clause 749

field decoding operation
definition 934
input 943
output 943

field definition operation
definition 934
input 939
output 939

field description of a value 934
field encoding operation

definition 934
input 941
output 941

field-level access control 112
field procedure

changing 64
description 227, 934
ensuring data accuracy 227
specified by the FIELDPROC clause 935
writing 934, 944

field procedure information block (FPIB) 937
field procedure parameter list (FPPL) 937
field procedure parameter value list (FPPVL) 937
field value descriptor (FVD) 937
FIELDPROC clause

ALTER TABLE statement 935
CREATE TABLE statement 935

filter factor
catalog statistics used for determining 771
predicate 723

FIRSTKEYCARD column
SYSINDEXSTATS catalog table

recommendation for updating 779
FIRSTKEYCARDF column

SYSINDEXES catalog table
data collected by RUNSTATS utility 767
recommendation for updating 779

SYSINDEXES_HIST catalog table 774
SYSINDEXSTATS catalog table

data collected by RUNSTATS utility 769
SYSINDEXSTATS_HIST catalog table 774

fixed-length records, effect on processor
resources 546

FOR
option of ALTER command 33
option of DEFINE command 33

FORCE option
START DATABASE command 268
STOP DB2 command 304, 348

format
column 954
data passed to FPPVL 938
data set names 34
message 263
recovery log record 965
row 954
value descriptors 932, 939

forward log recovery
phase of restart 351
scenario 486

FPIB (field procedure information block) 937, 938
FPPL (field procedure parameter list) 937
FPPVL (field procedure parameter value list) 937, 938
FREE PACKAGE subcommand of DSN

privileges needed 132
FREE PLAN subcommand of DSN

privileges needed 132
free space

description 538
recommendations 539

FREEPAGE
clause of ALTER INDEX statement

effect on DB2 speed 538
clause of ALTER TABLESPACE statement

effect on DB2 speed 538
clause of CREATE INDEX statement

effect on DB2 speed 538
clause of CREATE TABLESPACE statement

effect on DB2 speed 538
FREESPACE column

SYSLOBSTATS catalog table 769
SYSLOBSTATS_HIST catalog table 775

FREQUENCYF column
SYSCOLDIST catalog table

access path selection 766
SYSCOLDIST_HIST catalog table 773
SYSCOLDISTSTATS catalog table 766

full image copy
use after LOAD 604
use after REORG 604

X-16 Administration Guide

FULLKEYCARDF column
SYSINDEXES catalog table

data collected by RUNSTATS utility 767
SYSINDEXES_HIST catalog table 774
SYSINDEXSTATS catalog table 769
SYSINDEXSTATS_HIST catalog table 774

function
column

when evaluated 805
function, user-defined 123
FUNCTION privilege, description 108
FVD (field value descriptor) 937, 938

G
generalized trace facility (GTF) 1039
governor (resource limit facility) 581
GRANT statement

examples 142, 146
format 142
privileges required 132

granting privileges and authorities 142
GROUP BY clause

effect on OPTIMIZE clause 748
GROUP DD statement for stand-alone log services

OPEN request 973
GTF (generalized trace facility)

event identifiers 1039
format of trace records 981
interpreting trace records 986
recording trace records 1039

H
help

DB2 UTILITIES panel 16
heuristic damage 366
heuristic decision 366
Hierarchical Storage Manager (DFSMShsm) 79
HIGH2KEY column

SYSCOLSTATS catalog table 767
SYSCOLUMNS catalog table

access path selection 767
recommendation for updating 779

SYSCOLUMNS_HIST catalog table 773
HIGHKEY column of SYSCOLSTATS catalog

table 767
hints, optimization 757
hiperpool

description 14, 550
sequential steal threshold 557

hiperspace
CASTOUT attribute 552
description 14

HMIGRATE command of DFSMShsm (Hierarchical
Storage Manager) 79

hop situation 119
host variable

example query 734
impact on access path selection 734
in equal predicate 736

host variable (continued)
tuning queries 734

HPSEQT option of ALTER BUFFERPOOL
command 557

HRECALL command of DFSMShsm (Hierarchical
Storage Manager) 79

Huffman compression
exit routine 922

hybrid join
description 818
disabling 574

I
I/O activity, monitoring by data set 598
I/O error

catalog 438
directory 438
occurrence 341
table spaces 437

I/O processing
minimizing contention 541, 613
parallel

disabling 558
queries 843

I/O scheduling priority 615
identity column

loading data into 52
IEFSSNxx member of SYS1.PARMLIB

IRLM 280
IFCA (instrumentation facility communication area)

command request 1000
description 1019
field descriptions 1019
IFI READS request 1003
READA request of IFI 1015
WRITE request of IFI 1018

IFCID (instrumentation facility component identifier)
0199 567, 598
0330 334, 424
area

description 1023
READS request of IFI 1003
WRITE request of IFI 1018

description 982, 1033
identifiers by number

0001 866, 1012, 1034
0002 1012, 1034
0003 866
0015 620
0021 622
0032 622
0033 622
0038 622
0039 622
0058 621
0070 622
0073 620
0084 622
0088 623
0089 623

Index X-17

IFCID (instrumentation facility component identifier)
(continued)

identifiers by number (continued)
0106 1012
0124 1012
0147 1012, 1036
0148 1012, 1036
0149 1012
0150 1013
0185 1013
0199 1013
0202 1013, 1034
0221 852
0222 852
0230 1013
0254 1013
0258 606
0306 969, 1013
0314 921
0316 1013
0317 1013

mapping macro list 982
SMF type 1034, 1035

IFI (instrumentation facility interface)
asynchronous data 1017
auditing data 1027
authorization 1003
buffer information area 1001
collecting trace data, example 998
command request, output example 1026
commands

READA 1015, 1016
READS 1002, 1003

data integrity 1027
data sharing group, in a 1023
decompressing log data 969
dynamic statement cache information 1013
errors 1028
issuing DB2 commands

example 1002
syntax 1000

locking 1028
output area

command request 1001
description 1023
example 1002

passing data to DB2, example 998
qualification area 1004
READS output 1025
READS request 1004
recovery considerations 1028
return area

command request 1001
description 1022
READA request 1016
READS request 1003

storage requirements 1003, 1016
summary of functions 998
synchronous data 1012
using stored procedures 1000
WRITE 1017

IFI (instrumentation facility interface) (continued)
writer header 1025

IMAGCOPY privilege
description 105

image copy
catalog 377, 378
directory 377, 378
frequency vs. recovery speed 377
full

use after LOAD 604
use after REORG 604

incremental
frequency 377

making after loading a table 52
recovery speed 377

immediate write threshold (IWTH) 556
implementor, description 123
IMPORT command of access method services 79, 495
IMS

commands
CHANGE SUBSYS 295, 300
DISPLAY OASN 300
DISPLAY SUBSYS 295, 302
response destination 254
START REGION 303
START SUBSYS 295
STOP REGION 303
STOP SUBSYS 295, 303
TRACE SUBSYS 295
used in DB2 environment 249

connecting to DB2
attachment facility 300
authorization IDs 261
connection ID 261
connection processing 170
controlling 21, 295, 303
dependent region connections 300, 303
disconnecting applications 303
security 214
sign-on processing 173
supplying secondary IDs 171

facilities
Fast Path 640
message format 264
processing limit 581
regions 639
tools 1030

indoubt units of recovery 364
language interface module (DFSLI000)

IFI applications 999
link-editing 260

LTERM authorization ID
for message-driven regions 261
shown by /DISPLAY SUBSYS 302
used with GRANT 256

operating
batch work 261
entering DB2 commands 252
recovery from system failure 21
running programs 260
tracing 327

X-18 Administration Guide

IMS (continued)
planning

design recommendations 639
environment 260

programming
application 21
error checking 261

recovery
resolution of indoubt units of recovery 364

recovery scenarios 413, 414, 417
system administration 21
thread 296, 297
two-phase commit 359
using with DB2 21

IMS BMP TIMEOUT field of panel DSNTIPI 667
IMS Performance Analyzer (IMS PA)

description 1029
IMS transit times 530

IMS.PROCLIB library
connecting from dependent regions 300

in-abort unit of recovery 362
in-commit unit of recovery 361
index

access methods
access path selection 807
by nonmatching index 809
description 806
IN-list index scan 809
matching index columns 800
matching index description 808
multiple 809
one-fetch index scan 811

altering
ALTER INDEX statement 69
effects of dropping 69

copying 391
costs 806
description 10
locking 657
ownership 115
privileges of ownership 116
reasons for using 806
space

description 10
estimating size 90
recovery scenario 437
storage allocated 33

structure
index tree 89
leaf pages 89
overall 89
root page 89
subpages 89

INDEX privilege
description 104

INDEXSPACESTATS
contents 1051
real-time statistics table 1043

indoubt thread
displaying information on 366
recovering 367

indoubt thread (continued)
resetting status 367
resolving 465, 473

indoubt unit of recovery 361
inflight unit of recovery 361
information center consultant 139
Informational copy pending status

description 375
INITIAL_INSTS column of SYSROUTINES catalog

table 769
INITIAL_IOS column of SYSROUTINES catalog

table 769
INSERT privilege

description 104
INSERT processing, effect of MEMBER CLUSTER

option of CREATE TABLESPACE 647
INSERT statement

example 53
load data 51, 53

installation
macros

automatic IRLM start 281
panels

fields 158
for data definition control support 158

installation SYSADM authority
privileges 112
use of RACF profiles 217

installation SYSOPR authority
privilege 110
use of RACF profiles 217

instrumentation facility communication area
(IFCA) 1000

instrumentation facility interface (IFI) 997
INSTS_PER_INVOC column of SYSROUTINES catalog

table 769
integrated catalog facility

changing alias name for DB2 data sets 71
controlling storage 33

integrity
IFI data 1027
reports 230

INTENT EXCLUSIVE lock mode 655, 693
INTENT SHARE lock mode 655, 693
Interactive System Productivity Facility (ISPF) 16, 259
internal resource lock manager (IRLM) 280
invalid LOB, recovering 436
invoker, description 123
invoking

DSN command processor 22
IOS_PER_INVOC column of SYSROUTINES catalog

table 769
IRLM

administering 19
description 18

IRLM (internal resource lock manager)
address space priority 614
controlling 280, 282
DB2 PM locking report 704
diagnostic trace 328

Index X-19

IRLM (internal resource lock manager) (continued)
element name

global mode 282
local mode 282

failure 409
IFI trace records 1012
modifying connection 281
monitoring connection 281
MVS dispatching priority 646
recovery scenario 409
SRM storage isolation 616
starting

automatically 257, 281
manually 281

startup procedure options 665
stopping 282
trace options, effect on performance 546
workload manager 617

ISOLATION
option of BIND PLAN subcommand

effects on locks 678
isolation level

control by SQL statement
example 689

recommendations 649
ISPF (Interactive System Productivity Facility)

DB2 considerations 22
requirement 21
system administration 22
tutorial panels 16

IWTH (immediate write threshold) 556

J
JAR 115

privileges of ownership 116
Java class for a routine 115

privileges of ownership 116
Java class privilege

description 108
join operation

Cartesian 816
description 812
hybrid

description 818
disabling 574

join sequence 820
merge scan 816
nested loop 815
star join 820
star schema 820

K
KEEP UPDATE LOCKS option of WITH clause 689
key

adding 62
dropping 62
foreign 62
parent 62
unique 62

KEYCOUNTF column
SYSINDEXSTATS catalog table 769
SYSINDEXSTATS_HIST catalog table 774

L
language interface modules

DFSLI000 999
DSNALI 999
DSNCLI

description 999
usage 261

DSNELI 999
large tables 610
latch 643
LCID (log control interval definition) 964
LE tokens 611
leaf page

description 89
index 89

LEAFDIST column
SYSINDEXPART catalog table

data collected by RUNSTATS utility 768
SYSINDEXPART_HIST catalog table 774

LEAFFAR column
SYSINDEXPART catalog table 768

example 784
SYSINDEXPART_HIST catalog table 774

LEAFNEAR column
SYSINDEXPART catalog table 768
SYSINDEXPART_HIST catalog table 774

level of a lock 650
LEVELID UPDATE FREQ field of panel DSNTIPL 436
LIMIT BACKOUT field of panel DSNTIPN 354
limited block fetch 859
limited partition scan 803
LIMITKEY column

SYSINDEXPART catalog table 768
list prefetch

description 825
disabling 574
thresholds 826

LOAD privilege
description 106

LOAD utility
availability of tables when using 52
effect on real-time statistics 1058
example

table replacement 52
loading DB2 tables 51
making corrections 52
moving data 79

loading
data

DL/I 54
sequential data sets 51
SQL INSERT statement 53

tables 51
LOB

lock
concurrency with UR readers 685

X-20 Administration Guide

LOB (continued)
lock (continued)

description 691
LOB (large object)

block fetching 861
lock duration 693
LOCK TABLE statement 695
locking 691
LOCKSIZE clause of CREATE or ALTER

TABLESPACE 695
modes of LOB locks 693
modes of table space locks 693
recommendations for buffer pool DWQT

threshold 560
recovering invalid 436
when to reorganize 786

local attachment request 180
LOCAL DATE LENGTH

field of panel DSNTIPF 928
LOCAL TIME LENGTH

field of panel DSNTIPF 928
lock

avoidance 674, 686
benefits 644
class

drain 643
transaction 643

compatibility 656
DB2 installation options 665
description 643
drain

description 697
types 697
wait calculation 669

duration
controlling 675
description 654
LOBs 693
page locks 622

effect of cursor WITH HOLD 688
effects

deadlock 645
deadlock wait calculation 667
suspension 644
timeout 645
timeout periods 666

escalation
DB2 PM reports 701
description 662

hierarchy
description 650

LOB locks 691
LOB table space, LOCKSIZE clause 695
maximum number 670
mode 654
modes for various processes 664
object

DB2 catalog 657
DBD 658
description 656
indexes 657

lock (continued)
object (continued)

LOCKMAX clause 672
LOCKSIZE clause 671
SKCT (skeleton cursor table) 658
SKPT (skeleton package table) 658

options affecting
bind 675
cursor stability 682
IFI (instrumentation facility interface) 1028
IRLM 665
program 675
read stability 681
repeatable read 680
uncommitted read 684

page locks
commit duration 622
CS, RS, and RR compared 680
description 650
performance 701

promotion 662
recommendations for concurrency 646
row locks

compared to page 671
size

controlling 671, 672
page 650
partition 650
table 650
table space 650

storage needed 665
suspension time 704
table of modes acquired 659
trace records 621

lock/latch suspension time 530
LOCK TABLE statement

effect on auxiliary tables 695
effect on locks 690

LOCKMAX clause
effect of options 672

LOCKPART clause of CREATE and ALTER
TABLESPACE

effect on locking 651
LOCKS PER TABLE(SPACE) field of panel

DSNTIPJ 673
LOCKS PER USER field of panel DSNTIPJ 670
LOCKSIZE clause

CREATE TABLESPACE statement
effect on virtual storage utilization 610

effect of options 671, 695
recommendations 647

log
buffer

creating log records 333
retrieving log records 333
size 599

capture exit routine 957, 980
changing BSDS inventory 342
checkpoint records 961
contents 957
deciding how long to keep 343

Index X-21

log (continued)
determining size of active logs 603
dual

active copy 334
archive logs 341
synchronization 334
to minimize restart effort 494

effects of data compression 958
excessive loss 496
failure

recovery scenario 423, 427
symptoms 477
total loss 496

hierarchy 333
implementing logging 337
initialization phase

failure scenario 477
process 349, 350

operation 230
performance

considerations 599
recommendations 600

reading without running RECOVER utility 391
record structure

control interval definition (LCID) 964
database page set control records 962
format 965
header (LRH) 957, 963
logical 962
physical 962
type codes 966
types 957

truncation 485
use

backward recovery 352
establishing 333
exit routine 944
forward recovery 351
managing 331, 378
monitoring 600
record retrieval 333
recovery scenario 494
restarting 348, 353

write threshold 599, 600
log capture exit routine

contents of log 957
description 944
reading log records 980
writing 944, 946

log range directory 12
log record header (LRH) 963
log record sequence number (LRSN) 957
log write, forced at commit 600
logical page list (LPL) 272, 273, 274, 354
LOW2KEY column

SYSCOLSTATS catalog table 767
SYSCOLUMNS catalog table

access path selection 767
recommendation for updating 779

SYSCOLUMNS_HIST catalog table 774
LOWKEY column of SYSCOLSTATS catalog table 767

LPL
option of DISPLAY DATABASE command 273
status in DISPLAY DATABASE output 273

LPL (logical page list)
deferred restart 354
description 272
recovering pages

methods 273
running utilities on objects 274

LRH (log record header) 963
LRSN statement of stand-alone log services OPEN

request 975

M
mapping macro

DSNDAIDL 904
DSNDDTXP 929
DSNDEDIT 923
DSNDEXPL 951
DSNDFPPB 937
DSNDIFCA 1019
DSNDQWIW 1025
DSNDROW 954
DSNDRVAL 925
DSNDSLRB 972
DSNDSLRF 978
DSNDWBUF 1001
DSNDWQAL 1004

mass delete
contends with UR process 685
validation routine 925

materialization
outer join 814
views and nested table expressions 830

MAX BATCH CONNECT field of panel DSNTIPE 640
MAX REMOTE ACTIVE field of panel DSNTIPE 625,

628
MAX REMOTE CONNECTED field of panel

DSNTIPE 625, 628
MAX TSO CONNECT field of panel DSNTIPE 640
MAXCSA

option of START irlmproc command 665
MEMBER CLUSTER option of CREATE

TABLESPACE 647
merge processing

views or nested table expressions 830
message

format
DB2 263
IMS 264

MVS abend
IEC030I 428
IEC031I 428
IEC032I 428

prefix for DB2 263
receiving subsystem 263

message by identifier
$HASP373 257
DFS058 295
DFS058I 303

X-22 Administration Guide

message by identifier (continued)
DFS3602I 415
DFS3613I 296
DFS554I 417
DFS555A 416
DFS555I 417
DSN1150I 492
DSN1157I 485, 492
DSN1160I 485, 493
DSN1162I 485, 492
DSN1213I 499
DSN2001I 419
DSN2017I 290
DSN2025I 422
DSN2034I 419
DSN2035I 419
DSN2036I 419
DSN3100I 256, 258, 422
DSN3104I 258, 422
DSN3201I 418
DSN9032I 308
DSNB204I 434
DSNB207I 434
DSNB232I 435
DSNB508I 553
DSNBB440I 851
DSNC012I 294
DSNC016I 365
DSNC022I 295
DSNC025I 294
DSNI006I 273
DSNI021I 273
DSNI103I 662
DSNJ001I 257, 335, 350, 476, 477
DSNJ002I 335
DSNJ003I 335, 431
DSNJ004I 335, 425
DSNJ005I 335
DSNJ007I 479, 482, 488, 490
DSNJ008E 335
DSNJ012I 479, 480, 488
DSNJ072E 337
DSNJ099I 257
DSNJ100I 430, 476, 494
DSNJ103I 427, 479, 481, 488, 489
DSNJ104E 488
DSNJ104I 427, 479
DSNJ105I 425
DSNJ106I 425, 479, 480, 488, 489
DSNJ107I 430, 476, 494
DSNJ108I 430
DSNJ110E 334, 424
DSNJ111E 334, 424
DSNJ113E 479, 481, 488, 489, 493
DSNJ114I 427
DSNJ115I 427
DSNJ1191 476
DSNJ119I 494
DSNJ120I 349, 430
DSNJ123E 430
DSNJ124I 426

message by identifier (continued)
DSNJ125I 342, 430
DSNJ126I 430
DSNJ127I 257
DSNJ128I 428
DSNJ130I 349
DSNJ139I 335
DSNJ301I 430
DSNJ302I 430
DSNJ303I 430
DSNJ304I 430
DSNJ305I 430
DSNJ306I 430
DSNJ307I 430
DSNJ311E 339
DSNJ312I 339
DSNJ317I 339
DSNJ318I 339
DSNJ319I 339
DSNL001I 308
DSNL002I 326
DSNL003I 308
DSNL004I 308
DSNL005I 325
DSNL006I 325
DSNL009I 317
DSNL010I 317
DSNL030I 448
DSNL080I 309, 310
DSNL200I 311
DSNL432I 325
DSNL433I 325
DSNL500I 447
DSNL501I 445, 447
DSNL502I 445, 447
DSNL700I 445
DSNL701I 446
DSNL702I 446
DSNL703I 446
DSNL704I 446
DSNL705I 446
DSNM001I 296, 303
DSNM002I 303, 414, 422
DSNM003I 296, 303
DSNM004I 364, 414
DSNM005I 300, 364, 415
DSNP001I 440, 441
DSNP007I 440
DSNP012I 439
DSNR001I 257
DSNR002I 257, 476
DSNR003I 257, 344, 490, 492
DSNR004I 257, 350, 352, 477, 486
DSNR005I 257, 352, 477, 491
DSNR006I 257, 353, 477
DSNR007I 257, 350, 352
DSNR031I 352
DSNT360I 269, 271, 272, 274
DSNT361I 269, 271, 272, 274
DSNT362I 269, 271, 272, 274
DSNT392I 274, 959

Index X-23

message by identifier (continued)
DSNT397I 271, 272, 274
DSNU086I 437, 438
DSNU234I 609
DSNU244I 609
DSNU561I 444
DSNU563I 444
DSNV086E 422
DSNV400I 339
DSNV401I 289, 298, 299, 339, 420
DSNV402I 253, 283, 301, 313, 317, 339
DSNV404I 285, 302
DSNV406I 284, 289, 298, 299, 420
DSNV407I 284
DSNV408I 289, 298, 306, 356, 420
DSNV414I 289, 298, 306, 421
DSNV415I 289, 298, 306, 421
DSNV431I 289
DSNV435I 357
DSNX940I 320
DSNY001I 257
DSNY002I 258
DSNZ002I 257
DXR105E 282
DXR117I 281
DXR1211 282
DXR122E 409
DXR1651 282
EDC3009I 439
IEC161I 434

message processing program (MPP) 301
MIGRATE command of DFSMShsm (Hierarchical

Storage Manager) 79
mixed data

altering subtype 65
mode of a lock 654
MODIFY irlmproc,ABEND command of MVS

stopping IRLM 282
MODIFY utility

retaining image copies 389
modifying

IRLM 281
monitor program

using DB2 PM 1039
using IFI 997

MONITOR1 privilege
description 106

MONITOR2 privilege
description 106

monitoring
application packages 1040
application plans 1040
CAF connections 285
CICS 1030
connections activity 301, 303
databases 269, 274
DB2 1030, 1031
DSNC commands for 290
IMS 1031
IRLM 281
server-elapsed time for remote requests 870

monitoring (continued)
threads 290
tools

DB2 trace 1033
monitor trace 1036
performance 1029

TSO connections 285
user-defined functions 277
using IFI 997

moving DB2 data 78
MPP (message processing program), connection

control 301
multi-character command prefix 252
multi-site update

illustration 370
process 368

multiple allegiance 613
multivolume archive log data sets 337
MVS

command group authorization level (SYS) 252, 255
commands

MODIFY irlmproc 282
STOP irlmproc 282

DB2 considerations 18
entering DB2 commands 252, 255
environment 18
IRLM commands control 250
performance options 614
power failure recovery scenario 410
workload manager 629

MxxACT DD statement for stand-alone log services
OPEN request 973

MxxARCHV DD statement for stand-alone log services
OPEN request 973

MxxBSDS DD statement for stand-alone log services
OPEN request 973

N
NACTIVE column

SYSTABSTATS catalog table 771
NACTIVEF column of SYSTABLESPACE catalog table

data collected by RUNSTATS utility 771
naming convention

implicitly created table spaces 43
VSAM data sets 34

NEARINDREF column
SYSTABLEPART catalog table 770
SYSTABLEPART_HIST catalog table 775

NEAROFFPOSF column
SYSINDEXPART catalog table

data collected by RUNSTATS utility 768
SYSINDEXPART_HIST catalog table 774

nested table expression
processing 829

NetView
monitoring errors in the network 323

network ID (NID) 420
NID (network ID)

indoubt threads 415
thread identification 299

X-24 Administration Guide

NID (network ID) (continued)
unique value assigned by IMS 299
use with CICS 420

NLEAF column
SYSINDEXES catalog table

data collected by RUNSTATS utility 768
SYSINDEXES_HIST catalog table 774
SYSINDEXSTATS catalog table 769
SYSINDEXSTATS_HIST catalog table 774

NLEVELS column
SYSINDEXES catalog table

data collected by RUNSTATS utility 768
SYSINDEXES_HIST catalog table 774
SYSINDEXSTATS catalog table 769
SYSINDEXSTATS_HIST catalog table 774

non-DB2 utilities
effect on real-time statistics 1064

noncorrelated subqueries 740
nonsegmented table space

dropping 604
locking 652
scan 806

normal read 554
NOT NULL clause

CREATE TABLE statement
requires presence of data 226

notices, legal 1095
NPAGES column

SYSTABLES catalog table
data collected by RUNSTATS utility 770

SYSTABSTATS catalog table 771
SYSTABSTATS_HIST catalog table 775

NPAGESF column
SYSTABLES catalog table 770
SYSTABLES_HIST catalog table 775

null value
effect on storage space 952

NUMBER OF LOGS field of panel DSNTIPL 602
NUMCOLUMNS column

SYSCOLDIST catalog table
access path selection 766

SYSCOLDIST_HIST catalog table 773
numeric

data
format in storage 955

O
OASN (originating sequence number)

indoubt threads 415
part of the NID 299

object
controlling access to 103, 155
creating 41
ownership 114, 117

object of a lock 656
object registration table (ORT) 157
objects

recovering dropped objects 403
offloading

active log 334

offloading (continued)
description 333
messages 335
trigger events 334

online monitor program using IFI 997
OPEN

statement
performance 829

operation
continuous 16
description 267, 329
log 230

operator
CICS 20
commands 249, 250
not required for IMS start 21
START command 22

optimistic concurrency control 682
optimization hints 757
OPTIMIZE FOR n ROWS clause 747

effect on distributed performance 863, 864
interaction with FETCH FIRST clause 749, 865

ORDER BY clause
effect on OPTIMIZE clause 748

ORGRATIO column
SYSLOBSTATS catalog table 769
SYSLOBSTATS_HIST catalog table 775

originating sequence number (OASN) 299
originating task 844
ORT (object registration table) 157
OS/390 environment 18
OS/390 Transaction Management and Recoverable

Resource Manager Services (OS/390 RRS),
controlling connections 304

outer join
EXPLAIN report 814
materialization 814

output, unsolicited
CICS 264
operational control 264
subsystem messages 264

output area used in IFI
command request 1001
description 1023
example 1002
WRITE request 1018

overflow 960
OWNER

qualifies names in plan or package 114
ownership

changing 116
ownership of objects

establishing 114, 115
privileges 116

P
PACKADM authority

description 110
package

accounting trace 1035

Index X-25

package (continued)
administrator 139, 143
authorization to execute SQL in 118
binding

EXPLAIN option for remote 796
PLAN_TABLE 791

controlling use of DDL 157, 166
inoperative, when privilege is revoked 151
invalidated

dropping a view 70
dropping an index 69
when privilege is revoked 151
when table is dropped 66

list
privilege needed to include package 132
privileges needed to bind 122

monitoring 1040
privileges

description 99
explicit 105
for copying 122
of ownership 116
remote bind 122

retrieving catalog information 154
RLFPKG column of RLST 586
routine 123
SKPT (skeleton package table) 570

page
16-KB 85
32-KB 85
8-KB 85
buffer pool 553
locks

description 650
in DB2 PM reports 701

number of records
description 84

root 89
size of index 89
table space 42

PAGE_RANGE column of PLAN_TABLE 803
page set

control records 962
copying 391

page size
choosing 43
choosing for LOBs 44

PAGESAVE column
SYSTABLEPART catalog table

data collected by RUNSTATS utility 770
updated by LOAD and REORG utilities for data

compression 609
SYSTABLEPART_HIST catalog table 775

Parallel Access Volumes (PAV) 613
parallel processing

description 841
disabling using resource limit facility 592
enabling 847
monitoring 850
related PLAN_TABLE columns 804
tuning 853

parallelism
modes 592

PARM option of START DB2 command 257
partial recovery 400
participant

in multi-site update 368
in two-phase commit 359

partition
compressing data 606
redefining, procedure 443

partition scan, limited 803
partitioned data set, managing 25
partitioned table space

locking 651
partner LU

trusting 181
verifying by VTAM 180

PassTicket
configuring to send 197

password
changing expired ones when using DRDA 177
encrypting, for inbound IDs 181
encrypting, from workstation 198
RACF, encrypted 197
requiring, for inbound IDs 181
sending, with attachment request 197

pattern character
examples 162
in DDL registration tables 159

PAV (Parallel Access Volumes) 613
PC option of START irlmproc command 665
PCLOSEN subsystem parameter 596
PCLOSET subsystem parameter 596
PCTFREE

effect on DB2 performance 538
PCTPAGES column

SYSTABLES catalog table 770
SYSTABLES_HIST catalog table 775
SYSTABSTATS catalog table 771

PCTROWCOMP column
SYSTABLES catalog table 609

data collected by RUNSTATS utility 771
SYSTABLES_HIST catalog table 775
SYSTABSTATS catalog table 609, 771
updated by LOAD and REORG for data

compression 609
PERCACTIVE column

SYSTABLEPART catalog table
data collected by RUNSTATS utility 770

SYSTABLEPART_HIST catalog table 775
PERCDROP column

SYSTABLEPART catalog table
data collected by RUNSTATS utility 770

SYSTABLEPART_HIST catalog table 775
performance

affected by
cache for authorization IDs 120
CLOSE NO 537
data set distribution 542
EDM and buffer pools 537
groups in MVS 616

X-26 Administration Guide

performance (continued)
affected by (continued)

I/O activity 537
lock size 654
PCTFREE 538
PRIQTY clause 544
secondary authorization IDs 129
storage group 32

monitoring
planning 523
RUNSTATS 537
tools 1029
trace 1036
using DB2 PM 1039
with EXPLAIN 789

performance considerations
scrollable cursor 744

Performance Reporter for MVS 1040
phases of execution

restart 349
PIECESIZE clause

ALTER INDEX statement
recommendations 543
relation to PRIQTY 544

CREATE INDEX statement
recommendations 543
relation to PRIQTY 544

plan, application 105
PLAN

option of DSNC DISPLAY command 290
plan selection exit routine

description 946
execution environment 947
sample routine 948
writing 946, 950

PLAN_TABLE table
column descriptions 791
report of outer join 814

planning
auditing 97, 240
security 97, 240

point-in-time recovery
catalog and directory 395
description 400

point of consistency
CICS 359
description 331
IMS 359
recovering data 396
single system 359

pointer, overflow 960
pool, type 2 inactive threads 626
populating

tables 51
postponed abort unit of recovery 362
power failure recovery scenario, MVS 410
PQTY column

SYSINDEXPART catalog table
data collected by RUNSTATS utility 768

SYSINDEXPART_HIST catalog table 774

PQTY column (continued)
SYSTABLEPART catalog table

data collected by RUNSTATS utility 770
SYSTABLEPART_HIST catalog table 775

predicate
description 714
evaluation rules 717
filter factor 723
generation 728
impact on access paths 714, 744
indexable 716
join 715
local 715
modification 728
properties 714
stage 1 (sargable) 716
stage 2

evaluated 716
influencing creation 751

subquery 715
PREFORMAT

option of LOAD utility 540
option of REORG TABLESPACE utility 540

preformatting space for data sets 540
PRIMARY_ACCESSTYPE column of

PLAN_TABLE 801
primary authorization ID 104
PRINT

command of access method services 400
print log map utility

before fall back 495
control of data set access 216
prints contents of BSDS 280, 345

prioritizing resources 580
privilege

description 99, 104
executing an application plan 99
exercised by type of ID 129
exercised through a plan or package 117, 122
explicitly granted 104, 112
granting 100, 140, 147, 152
implicitly held 114, 117
needed for various roles 139
ownership 116
remote bind 122
remote users 141
retrieving catalog information 152, 155
revoking 147
routine plans, packages 123
types 104, 108
used in different jobs 139

privilege selection, sample security plan 234
problem determination

using DB2 PM 1039
PROCEDURE privilege 108
process

description 98
processing

attachment requests 183, 194
connection requests 170, 173
sign-on requests 173, 176

Index X-27

processing speed
dispatching priority 614
processor resources consumed

accounting trace 531, 1037
buffer pool 562
fixed-length records 546
thread creation 623
thread reuse 545
traces 545
transaction manager 1033
varying-length records 546

RMF reports 1032
time needed to perform I/O operations 541

PROCLIM option of IMS TRANSACTION macro 640
production binder

description 139
privileges 145

project activity sample table 891
project sample table 890
protected threads 634
protocols

SNA 180
TCP/IP 187

PSB name, IMS 261
PSEUDO_DEL_ENTRIES column

SYSINDEXPART catalog table 768
SYSINDEXPART_HIST catalog table 774

PSRCP (page set recovery pending) status
description 53

PSTOP transaction type 301
PUBLIC* identifier 141
PUBLIC AT ALL LOCATIONS clause

GRANT statement 140
PUBLIC clause

GRANT statement 140
PUBLIC identifier 141
PURGEC option of DSNCRCT macro

terminating protected threads 637

Q
QMF (Query Management Facility)

database for each user 41
options 641
performance 641

QSAM (queued sequential access method) 336
qualification area used in IFI

description 970
description of fields 1004
READS request 1004
restricted IFCIDs 1004
restrictions 1010

qualified objects
ownership 115

QUALIFIER
qualifies names in plan or package 114

Query Management Facility (QMF) 41, 623
query parallelism 841
QUERYNO clause

reasons to use 760
queued sequential access method (QSAM) 336

QUIESCE option
STOP DB2 command 304, 348

R
RACF (Resource Access Control Facility)

authorizing
access to data sets 101, 215, 217
access to protected resources 202
access to server resource class 210
CICS attachment profile 207
group access 207
IMS access profile 207
SYSADM and SYSOPR authorities 207

checking
connection processing 170, 173
inbound remote IDs 181
sign-on processing 173, 176

defining
access profiles 200
DB2 resources 200, 212
protection for DB2 198, 212
remote user IDs 207
router table 201
started procedure table 203
user ID for DB2 started tasks 203

description 100
PassTickets 197
passwords, encrypted 197
typical external security system 169
when supplying secondary authorization ID 172,

175
RBA (relative byte address)

description 957
range shown in messages 335

RCT (resource control table)
changed by DSNC MODIFY command 293
DCT entry 287
ERRDEST option 264, 287
performance options 634

re-creating
DB2 objects 55
tables 67

read asynchronously (READA) 1015
read synchronously (READS) 1002
READA (read asynchronously) 1015, 1016
reading

normal read 554
sequential prefetch 554

READS (read synchronously) 1002, 1003
real storage 611
real-time statistics

accuracy 1066
for read-only objects 1065
for TEMP table spaces 1065
for work file table spaces 1065
improving concurrency 1066
in data sharing 1066
when DB2 externalizes 1057

real-time statistics tables
altering 1043

X-28 Administration Guide

real-time statistics tables (continued)
contents 1045
creating 1043
description 1043
effect of dropping objects 1065
effect of mass delete operations 1065
effect of SQL operations 1065
INDEXSPACESTATS 1043
recovering 1066
setting up 1043
setting update interval 1044
starting 1045
TABLESPACESTATS 1043

REAL TIME STATS
field of panel DSNTIPO 1044

reason code
X'00C90088' 646
X'00C9008E' 645

REBIND PACKAGE subcommand of DSN
options

ISOLATION 678
OWNER 117
RELEASE 675

REBIND PLAN subcommand of DSN
options

ACQUIRE 675
ISOLATION 678
OWNER 117
RELEASE 675

rebinding
after creating an index 69
after dropping a view 70
automatically

EXPLAIN processing 796
REBUILD INDEX utility

effect on real-time statistics 1062
record

performance considerations 84
size 84

RECORDING MAX field of panel DSNTIPA
preventing frequent BSDS wrapping 493

RECOVER BSDS command
copying good BSDS 341

RECOVER INDOUBT command
free locked resources 420
recover indoubt thread 367

RECOVER privilege
description 106

RECOVER TABLESPACE utility
DFSMSdss concurrent copy 392
recovers data modified after shutdown 496

RECOVER utility
cannot use with work file table space 394
catalog and directory tables 395
data inconsistency problems 388
deferred objects during restart 355
functions 393
kinds of objects 393
messages issued 393
moving data 79

RECOVER utility (continued)
options

TOCOPY 400
TOLOGPOINT 400
TORBA in application program error 412
TORBA in backing up and restoring data 400

problem on DSNDB07 395
recovers pages in error 274
running in parallel 390
use of fast log apply during processing 390

Recoverable Resource Manager Services attachment
facility (RRSAF)

RACF profile 209
stored procedures and RACF authorization 209

RECOVERDB privilege
description 106

recovery
BSDS 431
catalog and directory 395
data set

using DFSMS 392
using DFSMShsm 378
using non-DB2 dump and restore 400

database
active log 957
using a backup copy 375
using RECOVER TOCOPY 400
using RECOVER TOLOGPOINT 400
using RECOVER TORBA 400

down-level page sets 435
dropped objects 403
dropped table 403
dropped table space 405
IFI calls 1028
indexes 375
indoubt threads 465
indoubt units of recovery

CICS 289, 419
IMS 298

media 394
methods 231
minimizing outages 379
multiple systems environment 362
operation 376
point-in-time 400
prior point of consistency 396
real-time statistics tables 1066
reducing time 377
reporting information 382
restart 384, 495
scenarios 409
subsystem 957
system procedures 373
table space

COPY 399
dropped 405
DSN1COPY 399
point in time 384
QUIESCE 384
RECOVER TOCOPY 400
RECOVER TORBA 400

Index X-29

recovery (continued)
table space (continued)

scenario 437
work file table space 395

recovery log
description 12
record formats 965

RECOVERY option of REPORT utility 412
recovery scenarios

application program error 412
CICS-related failures

application failure 417
attachment facility failure 422
inability to connect to DB2 418
manually recovering indoubt units of

recovery 419
not operational 417

DB2-related failures
active log failure 423
archive log failure 427
BSDS 429
catalog or directory I/O errors 438
database failures 434
subsystem termination 422
system resource failures 423
table space I/O errors 437

disk failure 410
failure during log initialization or current status

rebuild 477, 486
IMS-related failures 413

application failure 416
control region failure 414
fails during indoubt resolution 414

indoubt threads 465
integrated catalog facility catalog VVDS failure 439
invalid LOB 436
IRLM failure 409
MVS failure 410
out of space 440
restart 475, 486
starting 256, 258

RECP (RECOVERY-pending) status
description 53

redefining a partition 443
redo log records 958
REFERENCES privilege

description 104
referential constraint

adding to existing table 61
data consistency 227
recovering from violating 443

referential structure, maintaining consistency for
recovery 389

registration tables for DDL
adding columns 164, 167
CREATE statements 166
creating 164
database name 158
escape character 159
examples 159, 164
function 157, 166

registration tables for DDL (continued)
indexes 164
managing 164
names for 158
pattern characters 159
preparing for recovery 375
required installation options 158
updating 167

relative byte address (RBA) 335, 957
RELCURHL subsystem parameter

recommendation 673
RELEASE

option of BIND PLAN subcommand
combining with other options 675

RELEASE LOCKS field of panel DSNTIP4
effect on page and row locks 688
recommendation 673

remote logical unit, failure 447
remote request 180, 189
reoptimizing access path 734
REORG privilege

description 106
REORG UNLOAD EXTERNAL 79
REORG utility

effect on real-time statistics 1060
examples 64
moving data 79

REPAIR privilege
description 106

REPAIR utility
resolving inconsistent data 502

replacing
table 52

REPORT utility
options

RECOVERY 412
TABLESPACESET 412

table space recovery 382
REPRO command of access method services 400,

431
RESET INDOUBT command

reset indoubt thread 367
residual recovery entry (RRE) 300
Resource Access Control Facility (RACF) 170
resource allocation 621
resource control table (RCT) 264, 634
resource limit facility (governor)

calculating service units 591
database 14
description 581
distributed environment 581
governing by plan or package 588
preparing for recovery 375
specification table (RLST) 582
stopping and starting 583

Resource Measurement Facility (RMF) 1029, 1031
resource objectives 579
RESOURCE TIMEOUT field of panel DSNTIPI 666
resource translation table (RTT) 301
resources

defining to RACF 200

X-30 Administration Guide

resources (continued)
efficient usage, tools for 232
limiting 580

response time 546
restart 355

automatic 353
backward log recovery

failure during 491
phase 352, 353

cold start situations 496
conditional

control record governs 355
excessive loss of active log data 498
total loss of log 497

current status rebuild
failure during 477
phase 350, 351

data object availability 354
DB2 347
deferring processing

objects 354
effect of lost connections 363
forward log recovery

failure during 486
phase 351, 352

log initialization
failure during 477
phase 349, 350

multiple systems environment 362
normal 348, 353
overriding automatic 354
preparing for recovery 384
recovery operations for 357
resolving inconsistencies after 500
unresolvable

BSDS problems during 494
log data set problems during 494

RESTART ALL field of panel DSNTIPS 354
RESTORE phase of RECOVER utility 394
restoring data to a prior level 396
RETAINED LOCK TIMEOUT field of installation panel

DSNTIPI 667
RETLWAIT subsystem parameter 667
REVOKE statement

cascading effect 146
delete a view 150
examples 146, 152
format 146
invalidates a plan or package 151
privileges required 132
revoking SYSADM authority 151

RID (record identifier) pool
size 574
storage

allocation 574
estimation 574

use in list prefetch 825
RLFASUERR column of RLST 586
RLFASUWARN column of RLST 586
RLST (resource limit specification table)

columns 584

RLST (resource limit specification table) (continued)
creating 582
distributed processing 591
precedence of entries 587

RMF (Resource Measurement Facility) 1029, 1031
RO SWITCH CHKPTS field of installation panel

DSNTIPN 596
RO SWITCH TIME field of installation panel

DSNTIPN 596
rollback

effect on performance 602
maintaining consistency 361
unit of recovery 332

root page
description 89
index 89

route codes for messages 255
router table in RACF 201, 202
routine

example, authorization 125
plans, packages 123
retrieving information about authorization IDs 154

routine privileges 108
row

formats for exit routines 952
validating 925

ROWID
index-only access 801

ROWID column
inserting 54
loading data into 52

RR (repeatable read)
claim class 696
drain lock 697
effect on locking 678
how locks are held (figure) 680
page and row locking 680

RRDF (Remote Recovery Data Facility)
altering a table for 64

RRE (residual recovery entry)
detect 300
logged at IMS checkpoint 364
not resolved 364
purge 300

RRSAF (Recoverable Resource Manager Services
attachment facility)

application program
authorization 120
running 263

transactions
using global transactions 649

RS (read stability)
claim class 696
effect on locking 679
page and row locking (figure) 681

RTT (resource translation table)
transaction type 301

RUN
subcommand of DSN

example 259

Index X-31

RUNSTATS utility
aggregate statistics 776
effect on real-time statistics 1063
timestamp 779
use

tuning DB2 537
tuning queries 775

RVA (RAMAC Virtual Array)
backup 392

S
sample application

structure of 896
sample exit routine

CICS dynamic plan selection 948
connection

location 902
processing 907
supplies secondary IDs 172

edit 922
sign-on

location 902
processing 907
supplies secondary IDs 175

sample library 49
sample security plan

employee data 233, 240
new application 142, 146

sample table 883
DSN8710.ACT (activity) 883
DSN8710.DEPT (department) 884
DSN8710.EMP (employee) 885
DSN8710.EMP_PHOTO_RESUME (employee photo

and resume) 888
DSN8710.EMPPROJACT (employee-to-project

activity) 892
DSN8710.PROJ (project) 890
PROJACT (project activity) 891
views on 893

SBCS data
altering subtype 65

schema
privileges 107

schema definition
authorization to process 49
description 48
example 48
processing 49

scope of a lock 650
SCOPE option

START irlmproc command 665
scrollable cursor

block fetching 861
optimistic concurrency control 682
performance considerations 744

SCT02 table space
description 12
placement of data sets 598

SDSNLOAD library
loading 300

SDSNSAMP library
processing schema definitions 49

SECACPT option of APPL statement 180
secondary authorization ID 104
SECQTY1 column

SYSINDEXPART_HIST catalog table 774
SECQTYI column

SYSINDEXPART catalog table 768
SYSTABLEPART catalog table 770
SYSTABLEPART_HIST catalog table 775

SecureWay Security Server for OS/390 24
security

acceptance options 181
access to

data 97, 240
DB2 data sets 215

administrator privileges 139
authorizations for stored procedures 124
CICS 214
closed application 157, 166
DDL control registration tables 157
description 97
IMS 214
measures in application program 121
measures in force 225
mechanisms 176
objectives, sample security plan 233
planning 97
sample security plan 233, 240
system, external 169

security administrator 139
segment of log record 962
segmented table space

locking 651
scan 806

SEGSIZE clause of CREATE TABLESPACE
recommendations 806

SELECT privilege
description 104

SELECT statement
example

SYSIBM.SYSPLANDEP 67
SYSIBM.SYSTABLEPART 56
SYSIBM.SYSVIEWDEP 67

sequential detection 826, 828
sequential prefetch

bind time 825
description 824

sequential prefetch threshold (SPTH) 557
SET ARCHIVE command

description 252
SET CURRENT DEGREE statement 847
SET CURRENT SQLID statement 104
SHARE

INTENT EXCLUSIVE lock mode 655, 693
lock mode

LOB 693
page 654
row 654
table, partition, and table space 654

SHDDEST option of DSNCRCT macro 264

X-32 Administration Guide

sign-on
exit point 902
exit routine 901
initial primary authorization ID 905
processing 175
requests 903

sign-on exit routine
debugging 908
default 175
description 901
initial primary authorization ID 905
performance considerations 908
sample 175

location 902
provides secondary IDs 907

secondary authorization ID 175
using 175
writing 901, 909

sign-on processing
choosing for remote requests 181
initial primary authorization ID 173
invoking RACF 173
requests 169
supplying secondary IDs 175
usage 169
using exit routine 175

SIGNON-ID option of IMS 261
simple table space

locking 651
single logging 12
SKCT (skeleton cursor table)

description 12
EDM pool 570
EDM pool efficiency 572
locks on 658

skeleton cursor table (SKCT) 12, 570
skeleton package table (SKPT) 12
SKPT (skeleton package table)

description 12
EDM pool 570
locks on 658

SMF (System Management Facility)
buffers 1038
measured usage pricing 545
record types 1034, 1035
trace record

accounting 1035
auditing 220
format 981
lost records 1038
recording 1038
statistics 1034

type 89 records 545
SMS (Storage Management Subsystem) 337
SNA

mechanisms 176
protocols 180

software protection 232
sort

description 574
performance 576

sort (continued)
pool 574
program

reducing unnecessary use 610
RIDs (record identifiers) 829
when performed 829

removing duplicates 828
shown in PLAN_TABLE 828

SORT POOL SIZE field of panel DSNTIPC 574
sorting sequence, altering by a field procedure 934
space attributes 57
SPACE column

SYSINDEXPART catalog table 768
SYSTABLEPART catalog table 770

space reservation options 538
SPACEF column

SYSINDEXES catalog table 768
SYSINDEXPART catalog table 769
SYSINDEXPART_HIST catalog table 774
SYSTABLEPART catalog table 770
SYSTABLEPART_HIST catalog table 775
SYSTABLES catalog table 771

SPACENAM option
DISPLAY DATABASE command 271, 274
START DATABASE command 268

special register
CURRENT DEGREE 847

speed, tuning DB2 537
SPT01 table space 12
SPTH (sequential prefetch threshold) 557
SPUFI

disconnecting 286
resource limit facility 588

SQL (Structured Query Language)
performance trace 621
statement cost 622
statements 622
transaction unit of recovery 331

SQL authorization ID 104
SQL Data System (SQL/DS) unload data sets 51
SQL statements

DECLARE CURSOR
to ensure block fetching 861

EXPLAIN
monitor access paths 789

RELEASE 859
SET CURRENT DEGREE 847

SQLCA (SQL communication area)
reason code for deadlock 646
reason code for timeout 645

SQLCODE
-30082 177
-510 687
-905 587

SQLSTATE
'08001' 177
'57014' 587

SQTY column
SYSINDEXPART catalog table 768
SYSTABLEPART catalog table 770

Index X-33

SSM (subsystem member)
error options 301
specified on EXEC parameter 300
thread reuse 639

SSR command of IMS
entering 252
prefix 267

stand-alone utilities
recommendation 279

standard, SQL (ANSI/ISO)
schemas 48

star schema 820
defining indexes for 752

START DATABASE command
example 268
problem on DSNDB07 395
SPACENAM option 268

START DB2 command
description 257
entered from MVS console 256
mode identified by reason code 304
PARM option 257
restart 355

START FUNCTION SPECIFIC command
starting user-defined functions 277

START REGION command of IMS 303
START SUBSYS command of IMS 295
START TRACE command

AUDIT option 222
controlling data 327

STARTDB privilege
description 106

started procedures table in RACF 206
started-task address space 203
starting

audit trace 221
databases 268
DB2

after an abend 258
process 256

IRLM
process 281

table space or index space having restrictions 268
user-defined functions 277

state
of a lock 654

statement table
column descriptions 836

static SQL
privileges required 132

statistics
aggregate 776
created temporary tables 772
distribution 779
filter factor 771
history catalog tables 773, 776
partitioned table spaces 772
trace

class 4 866
description 1034

STATISTICS option of DSNC DISPLAY command 291

STATS privilege
description 106

STATSTIME column
use by RUNSTATS 766

status
CHECK-pending

resetting 53
COPY-pending, resetting 52

STATUS
column of DISPLAY DATABASE report 270

STDDEV function
when evaluation occurs 805

STOGROUP privilege
description 107

STOP DATABASE command
example 276
problem on DSNDB07 395
SPACENAM option 268
timeout 645

STOP DDF command
description 325

STOP FUNCTION SPECIFIC command
stopping user-defined functions 278

STOP REGION command of IMS 303
STOP SUBSYS command of IMS 295, 303
STOP TRACE command

AUDIT option 222
description 327

STOP transaction type 301
STOPALL privilege

description 106
STOPDB privilege

description 106
stopping

audit trace 221
data definition control 167
databases 274
DB2 258
IRLM 282
user-defined functions 278

storage
auxiliary 31
calculating

locks 665
controller cache 612
EDM pool

contraction 573
data space 573

expanded 612
external 31
hierarchy 611
IFI requirements

READA 1016
READS 1003

isolation 616
real 611
space of dropped table, reclaiming 66
using DFSMShsm to manage 37

storage controller cache 612
storage group, DB2

adding volumes 56

X-34 Administration Guide

storage group, DB2 (continued)
altering 56
changing to SMS-managed 56
changing to use a new high-level qualifier 77
creating 31
default group 32
description 9, 31
moving data 81
order of use 31
privileges of ownership 116
sample application 897

storage management subsystem 24
stored procedure

address space 203
altering 70
authority to access non-DB2 resources 211
authorizations 123, 124
commands 320
DSNACCOR 1069
DSNACICS 1087
example, authorization 125
limiting resources 581
monitoring using accounting trace 877
privileges

of ownership 116
RACF protection for 209
running concurrently 874
starting address spaces 633

STOSPACE privilege
description 106

string conversion exit routine 931
subquery

correlated
tuning 739

join transformation 741
noncorrelated 740
tuning 738
tuning examples 743

subsystem
controlling access 101, 169, 215
recovery 957
termination scenario 422, 423

subsystem command prefix 16
subsystem member (SSM) 639
subtypes 65
synchronous data from IFI 1012
synchronous write

analyzing accounting report 531
immediate 556, 569

synonym
privileges of ownership 116

SYS1.LOGREC data set 423
SYS1.PARMLIB library

specifying IRLM in IEFSSNxx member 280
SYSADM authority

description 111
revoking 151

SYSCOPY
catalog table, retaining records in 407

SYSCTRL authority
description 111

SYSIBM.IPNAMES table of CDB
remote request processing 191
translating outbound IDs 191

SYSIBM.LUNAMES table of CDB
accepting inbound remote IDs 178, 190
dummy row 181
remote request processing 178, 190
sample entries 185
translating inbound IDs 185
translating outbound IDs 178, 190
verifying attachment requests 181

SYSIBM.USERNAMES table of CDB
managing inbound remote IDs 181
remote request processing 178, 190
sample entries for inbound translation 185
sample entries for outbound translation 196
translating inbound and outbound IDs 178, 190

SYSLGRNX directory table
information from the REPORT utility 382
table space

description 12
retaining records 407

SYSOPR authority
control authorization for DSNC transaction

code 287
description 110
usage 256

Sysplex query parallelism
disabling Sysplex query parallelism 854
disabling using buffer pool threshold 558
processing across a data sharing group 845
splitting large queries across DB2 members 841

system
management functions, controlling 326
privileges 106
recovery 231
structures 11

system administrator
description 139
privileges 142

System Management Facility (SMF) 220, 1038
system monitoring

monitoring tools
DB2 trace 1033

system operator 139
system programmer 140
SYSUTILX directory table space 12

T
table

altering
adding a column 59

auditing 222
creating

description 45
description 10
dropping

implications 66
estimating storage 84

Index X-35

table (continued)
expression, nested

processing 829
large, sorting 610
locks 650
ownership 115
populating

loading data into 51
privileges 104, 116
qualified name 115
re-creating 67
recovery of dropped 403
registration, for DDL 157, 166
retrieving

IDs allowed to access 153
plans and packages that can access 154

types 45
table expressions, nested

materialization 830
table space

compressing data 606
copying 391
creating

description 42
EA-enabled 39
explicitly 42
implicitly 42

deferring allocation of data sets 36
description 9
dropping 57
for sample application 897
loading data into 51
locks

control structures 621
description 650

maximum addressable range 42
privileges of ownership 116
quiescing 384
re-creating 57
recovery 437
recovery of dropped 405
scans

access path 805
determined by EXPLAIN 790

tables used in examples 883
TABLESPACE privilege

description 107
TABLESPACESET option of REPORT utility 412
TABLESPACESTATS

contents 1045
real-time statistics table 1043

task control block (TCB) 635
TCB (task control block)

attaching 635
detaching 637

TCP/IP
authorizing DDF to connect 212
keep_alive interval 628
protocols 187

temporary table
monitoring 599

temporary table (continued)
thread reuse 623

temporary work file 576
TERM UTILITY command

when not to use 389
terminal monitor program (TMP) 261
terminating 347

DB2
abend 348
concepts 347
normal 347
normal restart 348
scenario 422

THRDA option
DSNCRCT TYPE=ENTRY macro 634
DSNCRCT TYPE=POOL macro 634

THRDMAX option of DSNCRCT macro 634
THRDS option of DSNCRCT macro 290, 634
thread

allied 307
attachment in IMS 296
CICS

access to DB2 290
creation

CICS 635
connections 640
description 620
IMS 639

database access
creating 628
description 307

displaying
CICS 290
IMS 301

distributed
active 628
inactive vs. active 626
maximum number 625, 628
pooling of inactive threads 626

maximum number 293
monitoring in CICS 290
options 634
priority 638
queuing 640
reuse

CICS 635, 636
description 620
effect on processor resources 545
IMS 639
remote connections 629
TSO 623
when to use 623

steps in creation and termination 620
subtasks

defining storage space 290
specifying maximum allowable number 290

termination
CICS 287, 635
description 622
IMS 297, 303, 639

time out for idle distributed threads 628

X-36 Administration Guide

thread (continued)
type 2, storage usage 610

threads
protected 634
unprotected 634

TIME FORMAT field of panel DSNTIPF 928
time routine

description 927
writing 927, 931

timeout
changing multiplier

IMS BMP and DL/I batch 667
utilities 668

description 645
idle thread 628
multiplier values 666
row vs. page locks 672
X'00C9008E' reason code in SQLCA 645

TMP (terminal monitor program)
DSN command processor 284
sample job 261
TSO batch work 261

TO
option of ALTER command 33
option of DEFINE command 33

TOCOPY option of RECOVER utility 400
TOKENE option of DSNCRCT macro 536
TOKENI option of DSNCRCT macro 634
TOLOGPOINT option of RECOVER utility 400
TORBA option of RECOVER utility 400
trace

accounting 1034
audit 1035
controlling

DB2 326
IMS 327

description 1029, 1033
diagnostic

CICS 327
IRLM 328

distributed data 866
effect on processor resources 545
interpreting output 981
monitor 1036
performance 1036
recommendation 866
record descriptions 981
record processing 981
statistics

description 1034
TRACE privilege

description 106
TRACE SUBSYS command of IMS 295
tracker site 459
transaction

CICS
accessing DB2 290
DSNC code authorization 287
DSNC codes 253
entering 261

transaction (continued)
IMS

connecting to DB2 295
entering 260
thread attachment 296
thread termination 297
using global transactions 649

SQL unit of recovery 331
transaction lock

description 643
TRANSACTION option

DSNC DISPLAY command 290
DSNC MODIFY command 293

transaction types 301
TRANSEC option of CICS transaction entry 287
translating

inbound authorization IDs 185
outbound authorization IDs 195

truncation
active log 334, 485

TSO
application programs

batch 21
conditions 259
foreground 21
running 259

background execution 261
commands issued from DSN session 260
connections

controlling 284, 286
DB2 284
disconnecting from DB2 286
monitoring 285
tuning 640

DB2 considerations 21
DSNELI language interface module

IFI 999
link editing 259

entering DB2 commands 253
environment 259
foreground 623
requirement 21
resource limit facility (governor) 581
running SQL 623

tuning
DB2

active log size 603
catalog location 598
catalog size 598
directory location 598
directory size 598
disk utilization 606
queries containing host variables 734
speed 537
virtual storage utilization 609

TWAIT option of DSNCRCT macro
TYPE=ENTRY macro 634
TYPE=POOL macro 634

two-phase commit
illustration 359
process 359

Index X-37

TXIDSO option of DSNCRCT macro
controlling sign-on processing 636

type 2 inactive threads 626
TYPE column

SYSCOLDIST catalog table
access path selection 766

SYSCOLDIST_HIST catalog table 773

U
undo log records 958
UNION clause

effect on OPTIMIZE clause 748
removing duplicates with sort 828

unit of recovery
description 331
ID 965
illustration 331
in-abort

backward log recovery 352
description 362
excluded in forward log recovery 351

in-commit
description 361
included in forward log recovery 351

indoubt
causes inconsistent state 348
definition 258
description 361
displaying 298, 420
included in forward log recovery 351
recovering CICS 289
recovering IMS 298
recovery in CICS 419
recovery scenario 414
resolving 364, 367

inflight
backward log recovery 352
description 361
excluded in forward log recovery 351

log records 958
postponed

displaying 299
postponed abort 362
rollback 332, 361
SQL transaction 331

unit of recovery ID (URID) 965
unqualified objects, ownership 114
unsolicited output

CICS 255, 264
IMS 255
operational control 264
subsystem messages 264

UPDATE
lock mode

page 654
row 654
table, partition, and table space 654

update efficiency 568
UPDATE privilege

description 104

updating
registration tables for DDL 167

UR (uncommitted read)
claim class 696
concurrent access restrictions 685
effect on locking 679
effect on reading LOBs 692
page and row locking 684
recommendation 649

URID (unit of recovery ID) 965
USAGE privilege

distinct type 108
Java class 108

USE OF privileges 107
user analyst 139
user-defined function

controlling 277
DISPLAY FUNCTION SPECIFIC command 277
START FUNCTION SPECIFIC command 277
STOP FUNCTION SPECIFIC command 277

example, authorization 125
monitoring 277
privileges of ownership 116
providing access cost 876
starting 277
stopping 278

user-defined functions
altering 71
controlling 277

user-managed data sets
changing high-level qualifier 76
name format 34
requirements 34

USING clause
CREATE INDEX statement 33

utilities
access status needed 278
compatibility 698
concurrency 643, 695
controlling 278
description 16
effect on real-time statistics 1058
executing

running on objects with pages in LPL 274
internal integrity reports 231
timeout multiplier 668
types

RUNSTATS 775
UTILITY TIMEOUT field of panel DSNTIPI 668
UTSERIAL lock 697

V
validating

connections from remote application 176
existing rows with a new VALIDPROC 64
rows of a table 925

validation routine
altering assignment 63
checking existing table rows 64
description 227, 925

X-38 Administration Guide

validation routine (continued)
ensuring data accuracy 227
row formats 952
writing 925, 927

VALIDPROC clause
ALTER TABLE statement 63
exit points 925

value
descriptors in field procedures 938

VARCHAR
data type

subtypes 65
VARIANCE function

when evaluation occurs 805
VARY NET command of VTAM

TERM option 319
varying-length records

effect on processor resources 546
VDWQT option of ALTER BUFFERPOOL

command 559
verifying VTAM partner LU 180
vertical deferred write threshold (VDWQT) 559
view

altering 70
creating

on catalog tables 155
dependencies 70
description 11
dropping

deleted by REVOKE 150
invalidates plan or package 70

EXPLAIN 832, 834
list of dependent objects 67
name

qualified name 115
privileges

authorization 70
controlling data access 112
effect of revoking table privileges 150
ownership 115
table privileges for 112

processing
view materialization description 831
view materialization in PLAN_TABLE 803
view merge 829

reasons for using 11
virtual buffer pool assisting parallel sequential threshold

(VPXPSEQT) 558
virtual buffer pool parallel sequential threshold

(VPPSEQT) 558
virtual buffer pool sequential steal threshold

(VPSEQT) 557
virtual storage

buffer pools 609
improving utilization 609
IRLM 609
open data sets 610

virtual storage access method (VSAM) 333
Virtual Telecommunications Access Method

(VTAM) 319
Visual Explain 747, 788, 789

volume serial number 341
VPPSEQT option of ALTER BUFFERPOOL

command 558
VPSEQT option of ALTER BUFFERPOOL

command 557
VPXPSEQT option of ALTER BUFFERPOOL

command 558
VSAM (virtual storage access method)

control interval
block size 336
log records 333
processing 400

volume data set (VVDS) recovery scenario 439
VTAM (Virtual Telecommunications Access Method)

APPL statement 180
commands

DISPLAY NET 319
VARY NET,TERM 319

controlling connections 180, 202
conversation-level security 180
partner LU verification 180
password

choosing 180
VVDS recovery scenario 439

W
wait state at start 257
WBUFxxx field of buffer information area 1001
WITH clause

specifies isolation level 689
WITH HOLD cursor

effect on locks and claims 688
work file

table space
minimize I/O contention 541

used by sort 576
work file database

changing high-level qualifier 76
description 14
enlarging 443
error range recovery 395
minimizing I/O contention 541
problems 394
starting 268
used by sort 610

Workload Manager 629
WQAxxx fields of qualification area 970, 1004
write claim class 696
write drain lock 697
write efficiency 568
write error page range (WEPR) 273
WRITE function of IFI 1017
WRITE TO OPER field of panel DSNTIPA 335

X
XLKUPDLT subsystem parameter 674
XRF (extended recovery facility)

CICS toleration 374
IMS toleration 374

Index X-39

X-40 Administration Guide

Readers’ Comments — We’d Like to Hear from You

DB2 Universal Database for OS/390 and z/OS
Administration Guide
Version 7

Publication No. SC26-9931-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC26-9931-01

SC26-9931-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department HHX/H3
PO BOX 49023
SAN JOSE CA
U. S. A.
95161-9023

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5675-DB2

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9931-01

	Contents
	About this book
	Who should read this book
	Product terminology and citations
	How to send your comments

	Summary of changes to this book
	Part 1. Introduction
	Chapter 1. Summary of changes to DB2 for OS/390 and z/OS Version 7
	Enhancements for managing data
	Enhancements for reliability, scalability, and availability
	Easier development and integration of e-business applications
	Improved connectivity
	Features of DB2 for OS/390 and z/OS
	Migration considerations

	Chapter 2. System planning concepts
	The structure of DB2
	Data structures
	Databases
	Storage groups
	Table spaces
	Tables
	Indexes
	Views

	System structures
	DB2 catalog
	DB2 directory
	Active and archive logs
	Bootstrap data set (BSDS)
	Buffer pools
	Data definition control support database
	Resource limit facility database
	Work file database
	TEMP database

	More information about data structures

	Control and maintenance of DB2
	Commands
	Utilities
	High availability
	Daily operations and tuning
	Backup and recovery
	Restart

	More information about control and maintenance of DB2

	The DB2 environment
	Address spaces
	DB2's lock manager
	What IRLM does
	Administering IRLM

	DB2's attachment facilities
	CICS
	IMS
	TSO
	CAF
	RRS

	DB2 and distributed data
	DB2 and OS/390 and z/OS
	DB2 and the Parallel Sysplex
	DB2 and the SecureWay Security Server for OS/390
	DB2 and DFSMS
	More information about the OS/390 environment

	Part 2. Designing a database: advanced topics
	Chapter 3. Introduction to designing a database: advanced topics
	Chapter 4. Creating storage groups and managing DB2 data sets
	Creating DB2 storage groups
	Defining index space storage
	Managing your own DB2 data sets
	Managing your data sets using access method services
	Requirements for your own data sets
	DEFINE CLUSTER command

	Deferring allocation of data sets for table spaces
	Managing your DB2 data sets with DFSMShsm™
	Recalling archive logs
	Migrating to DFSMShsm
	Using DFSMShsm with the RECOVER utility

	Creating EA-enabled table spaces and index spaces
	Extending DB2-managed data sets
	Extending user-managed data sets

	Chapter 5. Implementing your design
	Implementing your databases
	Implementing your table spaces
	Creating a table space explicitly
	Creating a table space implicitly
	Choosing a page size
	Choosing a page size for LOBs

	Distinctions between DB2 base tables and temporary tables
	Using schemas
	Authorization to process schema definitions
	Processing schema definitions

	Chapter 6. Loading data into DB2 tables
	Loading methods
	Loading tables with the LOAD utility
	Replacing data
	Loading data using the SQL INSERT statement
	Loading data from DL/I

	Chapter 7. Altering your database design
	Using the ALTER statement
	Dropping and re-creating DB2 objects
	Altering DB2 storage groups
	Letting SMS manage your DB2 storage groups
	Adding or removing volumes from a DB2 storage group

	Altering DB2 databases
	Altering table spaces
	Changing the space allocation for user-managed data sets
	Dropping, re-creating, or converting a table space

	Altering tables
	Using the ALTER TABLE statement
	Adding a new column
	Altering a table for referential integrity
	Adding referential constraints to existing tables
	Adding parent keys and foreign keys
	Dropping parent keys and foreign keys
	Adding or dropping table check constraints

	Altering the assignment of a validation routine
	Checking rows of a table with a new validation routine

	Altering a table for capture of changed data
	Changing an edit procedure or a field procedure
	Altering the subtype of a string column
	Altering data types and deleting columns
	Implications of dropping a table
	Check objects that depend on the table
	Re-creating a table

	Redefining the attributes on an identity column
	Moving a table to a table space of a different page size

	Altering indexes
	Changing the description of an index
	Rebalancing data in partitioned table spaces

	Altering views
	Altering stored procedures and user-defined functions
	Altering stored procedures
	Altering user-defined functions

	Changing the high-level qualifier for DB2 data sets
	Define a new integrated catalog alias
	Change the qualifier for system data sets
	Step 1: Change the load module to reflect the new qualifier
	Step 2: Stop DB2 with no outstanding activity
	Step 3: Rename system data sets with the new qualifier
	Step 4: Update the BSDS with the new qualifier
	Step 5: Establish a new xxxxmstr cataloged procedure
	Step 6: Start DB2 with the new xxxxmstr and load module

	Change qualifiers for other databases and user data sets
	Changing your work database to use the new high-level qualifier
	Changing user-managed objects to use the new qualifier
	Changing DB2-managed objects to use the new qualifier

	Moving DB2 data
	Tools for moving DB2 data
	Moving a DB2 data set
	Copying a relational database
	Copying an entire DB2 subsystem

	Chapter 8. Estimating disk storage for user data
	Factors that affect storage
	Calculating the space required for a table
	Calculating record lengths and pages
	Saving space with data compression
	Estimating storage for LOBs
	Estimating storage when using the LOAD utility

	Calculating the space required for a dictionary
	Disk requirements
	Virtual storage requirements

	Calculating the space required for an index
	Levels of index pages
	Calculating the space required for an index

	Part 3. Security and auditing
	Chapter 9. Introduction to security and auditing in DB2
	Security planning
	If you are new to DB2
	If you have used DB2 before

	Auditing
	Controlling data access
	Access control within DB2
	Controlling access to a DB2 subsystem
	Access at a local DB2
	Access from a remote application

	Data set protection

	Chapter 10. Controlling access to DB2 objects
	Explicit privileges and authorities
	Authorization identifiers
	Explicit privileges
	Administrative authorities
	Field-level access control by views
	Authority over the catalog and directory

	Implicit privileges of ownership
	Establishing ownership of objects with unqualified names
	Establishing ownership of objects with qualified names
	Privileges by type of object
	Granting implicit privileges
	Changing ownership

	Privileges exercised through a plan or a package
	Establishing ownership of a plan or a package
	Qualifying unqualified names
	Checking authorization to execute
	Checking authorization at a second DB2 server
	Checking authorization to execute an RRSAF application without a plan
	Caching authorization IDs for best performance

	Controls in the program
	A recommendation against use of controls in the program
	Restricting a plan or a package to particular systems

	Privileges required for remote packages

	Special considerations for user-defined functions and stored procedures
	Additional authorization for stored procedures
	Controlling access to catalog tables for stored procedures
	Example of routine roles and authorizations
	How to code the user-defined function program (implementor role)
	Defining the user-defined function (definer role)
	Using the user-defined function (invoker role)
	How DB2 determines authorization IDs

	Which IDs can exercise which privileges
	Authorization for dynamic SQL statements
	Run behavior
	Bind behavior
	Define behavior
	Invoke behavior
	Common attribute values for bind, define, and invoke behavior
	Example of determining authorization IDs for dynamic SQL statements in routines
	Simplifying authorization

	Composite privileges
	Multiple actions in one statement

	Some role models
	Examples of granting and revoking privileges
	Examples using GRANT
	System administrators privileges
	Package administrators privileges
	Database administrators privileges
	Database controllers privileges

	Examples with secondary IDs
	Application programmers privileges
	Privileges for binding the plan
	Moving PROGRAM1 into production
	Spiffy's approach to distributed data

	The REVOKE statement
	Privileges granted from two or more IDs
	Revoking privileges granted by other IDs
	Restricting revocation of privileges
	Other implications of the REVOKE statement

	Finding catalog information about privileges
	Retrieving information in the catalog
	Retrieving all DB2 authorization IDs with granted privileges
	Retrieving multiple grants of the same authorization
	Retrieving all IDs with DBADM authority
	Retrieving IDs authorized to access a table
	Retrieving IDs authorized to access a routine
	Retrieving the tables an ID is authorized to access
	Retrieving the plans and packages that access a table

	Using views of the DB2 catalog tables

	Chapter 11. Controlling access through a closed application
	Controlling data definition
	Required installation options
	Controlling by application name
	Controlling by application name with exceptions
	Registering sets of objects
	Controlling by object name
	Controlling by object name with exceptions

	Managing the registration tables and their indexes
	An overview of the registration tables
	Columns of the ART
	Columns of the ORT

	Creating the tables and indexes
	Adding columns
	Updating the tables
	Columns for optional use
	Stopping data definition control

	Chapter 12. Controlling access to a DB2 subsystem
	Controlling local requests
	Processing connections
	The steps in detail
	Supplying secondary IDs for connection requests
	Required CICS specifications

	Processing sign-ons
	The steps in detail
	Supplying secondary IDs for sign-on requests

	Controlling requests from remote applications
	Overview of security mechanisms for DRDA and SNA
	Mechanisms used by DB2 for OS/390 and z/OS as a requester
	Mechanisms accepted by DB2 for OS/390 and z/OS as a server

	The communications database for the server
	Columns used in SYSIBM.LUNAMES
	Columns used in SYSIBM.USERNAMES

	Controlling inbound connections that use SNA protocols
	Controlling what LUs can attach to the network
	Verifying a partner LU
	Accepting a remote attachment request

	Controlling inbound connections that use TCP/IP protocols
	Steps, tools, and decisions

	Planning to send remote requests
	The communications database for the requester
	Columns used in SYSIBM.LUNAMES
	Columns used in SYSIBM.IPNAMES
	Columns used in SYSIBM.USERNAMES
	Columns used in SYSIBM.LOCATIONS

	What IDs you send
	Translating outbound IDs
	Sending passwords
	Sending RACF encrypted passwords
	Sending RACF PassTickets
	Sending encrypted passwords from a workstation

	Establishing RACF protection for DB2
	Defining DB2 resources to RACF
	Define the names of protected access profiles
	Add entries to the RACF router table
	Enable RACF checking for the DSNR and SERVER classes
	Enable partner-LU verification

	Permitting RACF access
	Define RACF user IDs for DB2 started tasks
	Add RACF groups
	Permit access for users and groups

	Establishing RACF protection for stored procedures
	Step 1: Control access by using the attachment facilities (required)
	Step 2: Control access to WLM (optional)
	Step 3: Control access to non-DB2 resources (optional)

	Establishing RACF protection for TCP/IP

	Establishing Kerberos authentication through RACF
	Other methods of controlling access

	Chapter 13. Protecting data sets
	Controlling data sets through RACF
	Adding groups to control DB2 data sets
	Creating generic profiles for data sets
	Permitting DB2 authorization IDs to use the profiles
	Allowing DB2 authorization IDs to create data sets

	Chapter 14. Auditing
	How can I tell who has accessed the data?
	Options of the audit trace
	The role of authorization IDs
	Auditing classes of events
	Audit class descriptions
	Auditing specific IDs
	Starting and stopping the audit trace
	Considerations for distributed data

	Auditing a specific table
	Using audit records
	Reporting the records
	Suggestions for reports

	Other sources of audit information
	What security measures are in force?
	What helps ensure data accuracy and consistency?
	Is required data present? Is it of the required type?
	Are data values unique where required?
	Has data a required pattern? Is it in a specific range?
	Is new data in a specific set? Is it consistent with other tables?
	What ensures that updates are tracked?
	What ensures that concurrent users access consistent data?
	Have any transactions been lost or left incomplete?

	How can I tell that data is consistent?
	SQL queries
	Data modifications
	CHECK utility
	DISPLAY DATABASE command
	REPORT utility
	Operation log
	Internal integrity reports

	How can DB2 recover data after failures?
	How can I protect the software?
	How can I ensure efficient usage of resources?

	Chapter 15. A sample security plan for employee data
	Managers' access
	To what ID is the SELECT privilege granted?
	Allowing distributed access
	Actions at the central server location
	Actions at remote locations

	Auditing managers' use

	Payroll operations
	Salary updates
	Additional controls
	To what ID are privileges granted?
	Auditing use by payroll operations and payroll management

	Others who have access
	IDs with database administrative authority
	IDs with system administrative authority
	The employee table owner
	Auditing for other users

	Part 4. Operation and recovery
	Chapter 16. Basic operation
	Entering commands
	DB2 operator commands
	Where DB2 commands are entered
	Where command responses go

	Authorities for DB2 commands

	Starting and stopping DB2
	Starting DB2
	Messages at start
	Options at start
	Restricting access to data
	Wait state at start
	Starting after an abend

	Stopping DB2

	Submitting work to be processed
	Using DB2I (DB2 Interactive)
	Running TSO application programs
	Running IMS application programs
	Running CICS application programs
	Running batch application programs
	Running application programs using CAF
	Running application programs using RRSAF

	Receiving messages
	Receiving unsolicited DB2 messages
	Determining operational control

	Chapter 17. Monitoring and controlling DB2 and its connections
	Controlling DB2 databases and buffer pools
	Starting databases
	Starting an object with a specific status
	Starting a table space or index space that has restrictions

	Monitoring databases
	Obtaining information about application programs
	Obtaining information about pages in error

	Stopping databases
	Altering buffer pools
	Monitoring buffer pools

	Controlling user-defined functions
	Starting user-defined functions
	Monitoring user-defined functions
	Stopping user-defined functions

	Controlling DB2 utilities
	Starting online utilities
	Monitoring online utilities
	Stand-alone utilities

	Controlling the IRLM
	Starting the IRLM
	Modifying the IRLM
	Monitoring the IRLM connection
	Stopping the IRLM

	Monitoring threads
	Display thread output

	Controlling TSO connections
	Connecting to DB2 from TSO
	Monitoring TSO and CAF connections
	Disconnecting from DB2 while under TSO

	Controlling CICS connections
	Connecting from CICS
	Messages
	Restarting CICS
	Displaying indoubt units of recovery
	Recovering indoubt units of recovery manually
	Displaying postponed units of recovery

	Controlling CICS application connections
	Defining CICS threads
	Monitoring the threads
	Changing connection parameters
	Disconnecting applications

	Disconnecting from CICS
	Orderly termination
	Forced termination

	Controlling IMS connections
	Connecting to the IMS control region
	Thread attachment
	Thread termination
	Displaying indoubt units of recovery
	Recovering indoubt units of recovery
	Displaying postponed units of recovery
	Duplicate correlation IDs
	Resolving residual recovery entries

	Controlling IMS dependent region connections
	Connecting from dependent regions
	Monitoring the activity on connections
	Disconnecting from dependent regions

	Disconnecting from IMS

	Controlling OS/390 RRS connections
	Connecting to OS/390 RRS using RRSAF
	Restarting DB2 and OS/390 RRS
	Displaying indoubt units of recovery
	Recovering indoubt units of recovery manually
	Displaying postponed units of recovery

	Monitoring RRSAF connections
	Disconnecting applications from DB2

	Controlling connections to remote systems
	Starting DDF
	Suspending and resuming DDF server activity
	Monitoring connections to other systems
	The command DISPLAY DDF
	The command DISPLAY LOCATION
	The command DISPLAY THREAD
	The command CANCEL THREAD
	Using VTAM commands to cancel threads

	Monitoring and controlling stored procedures
	Displaying information about stored procedures and their environment
	Refreshing the environment for stored procedures or user-defined functions
	Obtaining diagnostic information about stored procedures

	Using NetView® to monitor errors in the network
	Stopping DDF

	Controlling traces
	Controlling the DB2 trace
	Diagnostic traces for the attachment facilities
	Diagnostic trace for the IRLM

	Controlling the resource limit facility (governor)
	Changing subsystem parameter values

	Chapter 18. Managing the log and the bootstrap data set
	How database changes are made
	Units of recovery
	Rolling back work

	Establishing the logging environment
	Creation of log records
	Retrieval of log records
	Writing the active log
	Writing the archive log (offloading)
	Triggering offload
	The offloading process
	Archive log data sets

	Controlling the log
	Archiving the log
	Changing the checkpoint frequency dynamically
	Setting limits for archive log tape units
	Displaying log information

	Managing the bootstrap data set (BSDS)
	BSDS copies with archive log data sets
	Changing the BSDS log inventory

	Discarding archive log records
	Deleting archive log data sets or tapes automatically
	Locating archive log data sets to delete

	Chapter 19. Restarting DB2 after termination
	Termination
	Normal termination
	Abends

	Normal restart and recovery
	Phase 1: Log initialization
	Phase 2: Current status rebuild
	Phase 3: Forward log recovery
	Phase 4: Backward log recovery
	Restarting automatically

	Deferring restart processing
	Restarting with conditions
	Resolving postponed units of recovery
	Errors encountered during RECOVER POSTPONED processing
	Output from RECOVER POSTPONED processing

	Recovery operations you can choose for conditional restart
	Records associated with conditional restart

	Chapter 20. Maintaining consistency across multiple systems
	Consistency with other systems
	The two-phase commit process: coordinator and participant
	Illustration of two-phase commit
	Maintaining consistency after termination or failure
	Termination
	Normal restart and recovery
	Phase 1: Log initialization
	Phase 2: Current status rebuild
	Phase 3: Forward log recovery
	Phase 4: Backward log recovery

	Restarting with conditions

	Resolving indoubt units of recovery
	Resolution of indoubt units of recovery from IMS
	Resolution of indoubt units of recovery from CICS
	Resolution of indoubt units of recovery between DB2 and a remote system
	Making heuristic decisions
	Methods for determining the coordinator's commit or abort decision
	Displaying information on indoubt threads
	Recovering indoubt threads
	Resetting the status of an indoubt thread

	Resolution of indoubt units of recovery from OS/390 RRS

	Consistency across more than two systems
	Commit coordinator and multiple participants
	Illustration of multi-site update

	Chapter 21. Backing up and recovering databases
	Planning for backup and recovery
	Considerations for recovering distributed data
	Extended recovery facility (XRF) toleration
	Considerations for recovering indexes
	Preparing for recovery
	What happens during recovery
	Complete recovery cycles
	A recovery cycle example
	How DFSMShsm affects your recovery environment

	Making backup and recovery plans that maximize availability
	How to find recovery information
	Where recovery information resides
	Reporting recovery information

	Preparing to recover to a prior point of consistency
	Step 1: Resetting exception status
	Step 2: Copying the data
	Step 3: Establishing a point of consistency

	Preparing to recover the entire DB2 subsystem to a prior point in time
	Preparing for disaster recovery
	System-wide points of consistency
	Essential disaster recovery elements

	Ensuring more effective recovery from inconsistency problems
	Actions to take
	Actions to avoid

	Running RECOVER in parallel
	Using fast log apply during RECOVER
	Reading the log without RECOVER

	Copying page sets and data sets
	Recovering page sets and data sets
	Recovering the work file database
	Problem with user-defined work file data sets
	Problem with DB2-managed work file data sets
	Recovering error ranges for a work file table space

	Recovering the catalog and directory
	Recovering data to a prior point of consistency
	Restoring data by using DSN1COPY
	Backing up and restoring data with non-DB2 dump and restore
	Using RECOVER to restore data to a previous point in time

	Recovery of dropped objects
	Avoiding the problem
	Procedures for recovery
	Recovery of an accidentally dropped table
	Recovery of an accidentally dropped table space
	User-managed data sets
	DB2-managed data sets

	Discarding SYSCOPY and SYSLGRNX records

	Chapter 22. Recovery scenarios
	IRLM failure
	MVS or power failure
	Disk failure
	Application program error
	IMS-related failures
	IMS control region (CTL) failure
	Resolution of indoubt units of recovery
	Problem 1
	Problem 2

	IMS application failure
	Problem 1
	Problem 2

	CICS-related failures
	CICS application failure
	CICS is not operational
	CICS cannot connect to DB2
	Manually recovering CICS indoubt units of recovery
	CICS attachment facility failure

	Subsystem termination
	DB2 system resource failures
	Active log failure
	Problem 1 - Out of space in active logs
	Problem 2 - Write I/O error on active log data set
	Problem 3 - Dual logging is lost
	Problem 4 - I/O errors while reading the active log

	Archive log failure
	Problem 1 - Allocation problems
	Problem 2 - Write I/O errors during archive log offload
	Problem 3 - Read I/O errors on archive data set during recover
	Problem 4 - Insufficient disk space for offload processing

	Temporary resource failure
	BSDS failure
	Problem 1 - An I/O error occurs
	Problem 2 - An error occurs while opening
	Problem 3 - Unequal timestamps exist

	Recovering the BSDS from a backup copy

	DB2 database failures
	Recovery from down-level page sets
	Procedure for recovering invalid LOBs
	Table space input/output errors
	DB2 catalog or directory input/output errors
	Integrated catalog facility catalog VSAM volume data set failures
	VSAM volume data set (VVDS) destroyed
	Out of disk space or extent limit reached

	Violations of referential constraints
	Failures related to the distributed data facility
	Conversation failure
	Communications database failure
	Problem 1
	Problem 2

	Failure of a database access thread
	VTAM failure
	TCP/IP failure
	Failure of a remote logical unit
	Indefinite wait conditions for distributed threads
	Security failures for database access threads

	Remote site recovery from disaster at a local site
	Using a tracker site for disaster recovery
	Characteristics of a tracker site
	Setting up a tracker site
	Establishing a recovery cycle at the tracker site
	What to do about DSNDB01.SYSUTILX
	Media failures during LOGONLY recovery

	Maintaining the tracker site
	The disaster happens: making the tracker site the takeover site

	Resolving indoubt threads
	Description of the environment
	Configuration
	Applications
	Threads

	Communication failure between two systems
	Making a heuristic decision
	IMS outage that results in an IMS cold start
	DB2 outage at a requester results in a DB2 cold start
	DB2 outage at a server results in a DB2 cold start
	Correcting a heuristic decision

	Chapter 23. Recovery from BSDS or log failure during restart
	Failure during log initialization or current status rebuild
	Description of failure during log initialization
	Description of failure during current status rebuild
	Restart by truncating the log
	Step 1: Find the log RBA after the inaccessible part of the log
	Step 2: Identify lost work and inconsistent data
	Step 3: Determine what status information has been lost
	Step 4: Truncate the log at the point of error
	Step 5: Start DB2
	Step 6: Resolve data inconsistency problems

	Failure during forward log recovery
	Starting DB2 by limiting restart processing
	Step 1: Find the log RBA after the inaccessible part of the log
	Step 2: Identify incomplete units of recovery and inconsistent page sets
	Step 3: Restrict restart processing to the part of the log after the damage
	Step 4: Start DB2
	Step 5: Resolve inconsistent data problems

	Failure during backward log recovery
	Bypassing backout before restarting

	Failure during a log RBA read request
	Unresolvable BSDS or log data set problem during restart
	Preparing for recovery of restart
	Performing the fall back to a prior shutdown point

	Failure resulting from total or excessive loss of log data
	Total loss of log
	Excessive loss of data in the active log

	Resolving inconsistencies resulting from conditional restart
	Inconsistencies in a distributed environment
	Procedures for resolving inconsistencies
	Method 1. Recover to a prior point of consistency
	Method 2. Re-create the table space
	Method 3. Use the REPAIR utility on the data

	Part 5. Performance monitoring and tuning
	Chapter 24. Planning your performance strategy
	Further topics in monitoring and tuning
	Managing performance in general
	Establishing performance objectives
	Defining the workload
	Initial planning
	Translating resource requirements into objectives
	External design
	Internal design
	Coding and testing

	Post-development review

	Planning for monitoring
	Continuous monitoring
	Periodic monitoring
	Detailed monitoring
	Exception monitoring
	A monitoring strategy

	Reviewing performance data
	Typical review questions
	Are your performance objectives reasonable?

	Tuning DB2

	Chapter 25. Analyzing performance data
	Investigating the problem overall
	Looking at the entire system
	Beginning to look at DB2

	Reading accounting reports from DB2 PM
	The accounting report—short
	The accounting report—long
	Major items on the report

	A general approach to problem analysis in DB2

	Chapter 26. Improving response time and throughput
	Reducing I/O operations
	Use RUNSTATS to keep access path statistics current
	Reserve free space in table spaces and indexes
	Specifying free space on pages
	Determining pages of free space
	Recommendations for allocating free space

	Make buffer pools large enough for the workload
	Speed up preformatting by allocating in cylinders
	Allocate space in cylinders
	Preformatting during LOAD

	Reducing the time needed to perform I/O operations
	Create additional work file table spaces
	Distribute data sets efficiently
	Put frequently used data sets on fast devices
	Distribute the I/O

	Ensure sufficient primary allocation quantity

	Reducing the amount of processor resources consumed
	Reuse threads for your high-volume transactions
	Minimize the use of DB2 traces
	Global trace
	Accounting and statistics traces
	Audit trace
	Performance trace

	Use fixed-length records

	Understanding response time reporting

	Chapter 27. Tuning DB2 buffer, EDM, RID, and sort pools
	Tuning database buffer pools
	Choose backing storage: primary or data space
	Buffer pools and hiperpools
	Buffer pools and data spaces

	Terminology: Types of buffer pool pages
	Read operations
	Write operations
	Assigning a table space or index to a virtual buffer pool
	Assigning data to default buffer pools
	Assigning data to particular buffer pools

	Buffer pool thresholds
	Fixed thresholds
	Thresholds you can change
	Guidelines for setting buffer pool thresholds

	Determining size and number of buffer pools
	Virtual buffer pool and hiperpool sizes
	The buffer pool hit ratio
	Buffer pool size guidelines
	Advantages of large buffer pools
	Choosing one or many buffer pools

	Choosing a page-stealing algorithm
	Monitoring and tuning buffer pools using online commands
	Using DB2 PM to monitor buffer pool statistics

	Tuning the EDM pool
	EDM pool space handling
	Implications for database design
	Monitoring and tuning the EDM pool

	Tips for managing EDM pool storage
	Use packages
	Use RELEASE(COMMIT) when appropriate
	Release thread storage
	Understand the impact of using DEGREE(ANY)
	Put dynamic statement cache in a data space

	Increasing RID pool size
	Controlling sort pool size and sort processing
	Estimating the maximum size of the sort pool
	Understanding how sort work files are allocated
	Improving the performance of sort processing

	Chapter 28. Improving resource utilization
	Controlling resource usage
	Prioritize resources
	Limit resources for each job
	Limit resources for TSO sessions
	Limit resources for IMS and CICS
	Limit resources for a stored procedure

	Resource limit facility (governor)
	Using resource limit tables (RLSTs)
	Creating an RLST
	Descriptions of the RLST columns

	Governing dynamic queries
	Qualifying rows in the RLST
	Predictive governing
	Combining reactive and predictive governing
	Governing statements from a remote site
	Calculating service units

	Restricting bind operations
	Example

	Restricting parallelism modes

	Managing the opening and closing of data sets
	Determining the maximum number of open data sets
	How DB2 determines DSMAX
	Modifying DSMAX
	Recommendations

	Understanding the CLOSE YES and CLOSE NO options
	The process of closing
	When the data sets are closed

	Switching to read-only for infrequently updated page sets

	Planning the placement of DB2 data sets
	Estimating concurrent I/O requests
	Crucial DB2 data sets
	Changing catalog and directory size and location
	Monitoring I/O activity of data sets
	Work file data sets

	DB2 logging
	Logging performance issues and recommendations
	Log writes
	Log reads

	Log capacity
	Total capacity and the number of logs

	Controlling the amount of log data
	Utilities
	SQL
	Calculating average log record size

	Improving disk utilization: space and device utilization
	Allocating and extending data sets
	Compressing your data
	Deciding whether to compress
	Tuning recommendation
	Determining the effectiveness of compression

	Improving main storage utilization
	Performance and the storage hierarchy
	Real storage
	Expanded storage
	Storage controller cache
	The amount of storage controller cache
	Sequential cache installation option
	Utility cache option
	Parallel Access Volumes (PAV)
	Multiple Allegiance
	Fast Write

	MVS performance options for DB2
	Using SRM (compatibility mode)
	Setting address space priority
	I/O scheduling priority
	Storage isolation
	Workload control

	Determining MVS workload management velocity goals
	Recommendations for an interim situation
	Recommendations for full implementation of MVS WLM
	Other considerations
	How DB2 assigns I/O priorities

	Chapter 29. Managing DB2 threads
	Setting thread limits
	Allied thread allocation
	Step 1: Thread creation
	Performance factors in thread creation

	Step 2: Resource allocation
	Performance factors in resource allocation

	Step 3: SQL statement execution
	Performance factors in SQL statement execution

	Step 4: Commit and thread termination
	Variations on thread management
	TSO and call attachment facility differences
	Thread management for Recoverable Resource Manager Services Attachment Facility (RRSAF)
	Differences for SQL under QMF

	Providing for thread reuse
	Bind options for thread reuse
	Using reports to tell when threads were reused

	Database access threads
	Understanding allied threads and database access threads
	Setting thread limits for database access threads
	Using inactive threads
	Using type 2 inactive threads
	Determining if a thread can become inactive
	Understanding the advantages of inactive threads
	Enabling threads to become inactive
	Timing out idle active threads

	Establishing a remote connection
	Reusing threads for remote connections
	Using Workload Manager to set performance objectives
	Classifying DDF threads
	Establishing performance periods for DDF threads
	Basic procedure for establishing performance objectives
	Considerations for compatibility mode
	Considerations for goal mode

	CICS design options
	Overview of RCT options
	Plans for CICS applications
	Thread creation, reuse, and termination
	When CICS threads are created
	When CICS threads are released and available for reuse
	When CICS threads terminate

	Recommendations for RCT definitions
	Recommendations for CICS system definitions
	Recommendations for accounting information for CICS threads

	IMS design options
	TSO design options
	QMF design options

	Chapter 30. Improving concurrency
	Definitions of concurrency and locks
	Effects of DB2 locks
	Suspension
	Timeout
	Deadlock

	Basic recommendations to promote concurrency
	Recommendations for system options
	Recommendations for database design
	Recommendations for application design

	Aspects of transaction locks
	The size of a lock
	Definition
	Hierarchy of lock sizes
	General effects of size
	Effects of table spaces of different types
	Differences between simple and segmented table spaces

	The duration of a lock
	Definition
	Effects

	The mode of a lock
	Definition
	Modes of page and row locks
	Modes of table, partition, and table space locks
	Lock mode compatibility

	The object of a lock
	Definition and examples
	Indexes and data-only locking
	Locks on the DB2 catalog
	Locks on the skeleton tables (SKCT and SKPT)
	Locks on the database descriptors (DBDs)

	DB2's choice of lock types
	Modes of locks acquired for SQL statements
	Lock promotion
	Lock escalation
	Modes of transaction locks for various processes

	Lock tuning
	Startup procedure options
	Using options for DB2 locking
	Estimating the storage needed for locks

	Installation options for wait times
	DEADLOCK TIME on installation panel DSNTIPJ
	RESOURCE TIMEOUT on installation panel DSNTIPI
	Wait time for transaction locks
	IDLE THREAD TIMEOUT on installation panel DSNTIPR
	UTILITY TIMEOUT on installation panel DSNTIPI
	Wait time for drains

	Other options that affect locking
	LOCKS PER USER field of installation panel DSNTIPJ
	LOCKSIZE clause of CREATE and ALTER TABLESPACE
	LOCKMAX clause of CREATE and ALTER TABLESPACE
	LOCKS PER TABLE(SPACE) field of installation panel DSNTIPJ
	The option U LOCK FOR RR/RS
	Option to release locks for cursors defined WITH HOLD
	Option XLOCK for searched updates/deletes
	Option to avoid locks during predicate evaluation

	Bind options
	The ACQUIRE and RELEASE options
	Advantages and disadvantages of the combinations
	The ISOLATION option
	Advantages and disadvantages of the isolation values
	The CURRENTDATA option
	When plan and package options differ
	The effect of WITH HOLD for a cursor

	Isolation overriding with SQL statements
	The statement LOCK TABLE
	The purpose of LOCK TABLE
	When to use LOCK TABLE
	The effect of LOCK TABLE

	LOB locks
	Relationship between transaction locks and LOB locks
	Hierarchy of LOB locks
	LOB and LOB table space lock modes
	Modes of LOB locks
	Modes of LOB table space locks

	Duration of locks
	Duration of locks on LOB table spaces
	Duration of LOB locks

	Instances when locks on LOB table space are not taken
	Control of the number of locks
	Controlling the number of LOB locks that are acquired for a user
	Controlling LOB lock escalation

	The LOCK TABLE statement
	The LOCKSIZE clause for LOB table spaces

	Claims and drains for concurrency control
	Objects subject to takeover
	Definition of claims and drains
	Definition
	Example
	Effects of a claim
	Three classes of claims
	Definition
	Example
	Effects of a drain
	Claim classes drained

	Usage of drain locks
	Definition
	Types of drain locks

	Utility locks on the catalog and directory
	Compatibility of utilities
	Definition
	Compatibility rules

	Concurrency during REORG
	Utility operations with nonpartitioning indexes

	Monitoring of DB2 locking
	Using EXPLAIN to tell which locks DB2 chooses
	Using the statistics and accounting traces to monitor locking
	Analyzing a concurrency scenario
	Scenario description
	Accounting report
	Lock suspension
	Lockout report
	Lockout trace
	Corrective decisions

	Deadlock detection scenarios
	Scenario 1: Two-way deadlock, two resources
	Scenario 2: Three-way deadlock, three resources

	Chapter 31. Tuning your queries
	General tips and questions
	Is the query coded as simply as possible?
	Are all predicates coded correctly?
	Are there subqueries in your query?
	Does your query involve column functions?
	Do you have an input variable in the predicate of a static SQL query?
	Do you have a problem with column correlation?
	Can your query be written to use a noncolumn expression?

	Writing efficient predicates
	Properties of predicates
	Predicate types
	Indexable and nonindexable predicates
	Stage 1 and stage 2 predicates
	Boolean term (BT) predicates

	Predicates in the ON clause

	General rules about predicate evaluation
	Order of evaluating predicates
	Summary of predicate processing
	Examples of predicate properties
	Predicate filter factors
	Default filter factors for simple predicates
	Filter factors for uniform distributions
	Interpolation formulas
	Filter factors for all distributions

	DB2 predicate manipulation
	Predicate modifications for IN-list predicates
	When DB2 simplifies join operations
	Predicates generated through transitive closure

	Column correlation
	How to detect column correlation
	Impacts of column correlation
	What to do about column correlation

	Using host variables efficiently
	Using REOPT(VARS) to change the access path at run time
	Rewriting queries to influence access path selection

	Writing efficient subqueries
	Correlated subqueries
	Noncorrelated subqueries
	Single-value subqueries
	Multiple-value subqueries

	Subquery transformation into join
	Subquery tuning

	Using scrollable cursors efficiently
	Writing efficient queries on views with UNION operators
	Special techniques to influence access path selection
	Obtaining information about access paths
	Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS
	Fetching a limited number of rows: FETCH FIRST n ROWS ONLY
	Reducing the number of matching columns
	Adding extra local predicates
	Creating indexes for efficient star schemas
	Recommendations for creating indexes for star schemas
	Determining the order of columns in an index for a star schema

	Rearranging the order of tables in a FROM clause
	Updating catalog statistics
	Using a subsystem parameter
	Using a subsystem parameter to favor matching index access
	Using a subsystem parameter to control outer join processing

	Giving optimization hints to DB2
	Planning to use optimization hints
	Enabling optimization hints for the subsystem
	Scenario: Preventing a change at rebind
	Scenario: Modifying an existing access path
	Reasons to use the QUERYNO clause
	How DB2 locates the PLAN_TABLE rows for a hint
	How DB2 validates the hint

	Chapter 32. Maintaining statistics in the catalog
	Understanding statistics used for access path selection
	Filter factors and catalog statistics
	Statistics for partitioned table spaces

	Setting default statistics for created temporary tables
	History statistics
	Gathering monitor and update statistics
	Updating the catalog
	Correlations in the catalog
	Recommendation for COLCARDF and FIRSTKEYCARDF
	Recommendation for HIGH2KEY and LOW2KEY
	Statistics for distributions
	Recommendation for using the TIMESTAMP column

	Querying the catalog for statistics
	Improving index and table space access
	How clustering affects access path selection
	What other statistics provide index costs
	When to reorganize indexes and table spaces
	Reorganizing Indexes
	Reorganizing table spaces
	Reorganizing LOB table spaces

	Whether to rebind after gathering statistics

	Modeling your production system

	Chapter 33. Using EXPLAIN to improve SQL performance
	Obtaining PLAN_TABLE information from EXPLAIN
	Creating PLAN_TABLE
	Populating and maintaining a plan table
	Executing the SQL statement EXPLAIN
	Binding with the option EXPLAIN(YES)
	Executing EXPLAIN under QMF
	Maintaining a plan table

	Reordering rows from a plan table
	Retrieving rows for a plan
	Retrieving rows for a package

	Asking questions about data access
	Is access through an index? (ACCESSTYPE is I, I1, N or MX)
	Is access through more than one index? (ACCESSTYPE=M)
	How many columns of the index are used in matching? (MATCHCOLS=n)
	Is the query satisfied using only the index? (INDEXONLY=Y)
	Is direct row access possible? (PRIMARY_ACCESSTYPE = D)
	Which predicates qualify for direct row access?
	Reverting to ACCESSTYPE
	Using direct row access and other access methods

	Is a view or nested table expression materialized?
	Was a scan limited to certain partitions? (PAGE_RANGE=Y)
	What kind of prefetching is done? (PREFETCH = L, S, or blank)
	Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X)
	Are sorts performed?
	Is a subquery transformed into a join?
	When are column functions evaluated? (COLUMN_FN_EVAL)

	Interpreting access to a single table
	Table space scans (ACCESSTYPE=R PREFETCH=S)
	Table space scans of nonsegmented table spaces
	Table space scans of segmented table spaces
	Table space scans of partitioned table spaces
	Table space scans and sequential prefetch

	Overview of index access
	Using indexes to avoid sorts
	Costs of indexes

	Index access paths
	Matching index scan (MATCHCOLS>0)
	Index screening
	Nonmatching index scan (ACCESSTYPE=I and MATCHCOLS=0)
	IN-list index scan (ACCESSTYPE=N)
	Multiple index access (ACCESSTYPE is M, MX, MI, or MU)
	One-fetch access (ACCESSTYPE=I1)
	Index-only access (INDEXONLY=Y)
	Equal unique index (MATCHCOLS=number of index columns)

	UPDATE using an index

	Interpreting access to two or more tables (join)
	Definitions and examples
	Nested loop join (METHOD=1)
	Method of joining
	Performance considerations
	When it is used

	Merge scan join (METHOD=2)
	Method of joining
	Performance considerations
	When it is used

	Hybrid join (METHOD=4)
	Method of joining
	Possible results from EXPLAIN for hybrid join
	Performance considerations
	When it is used

	Star schema (star join)
	Example
	When it is used

	Interpreting data prefetch
	Sequential prefetch (PREFETCH=S)
	List prefetch (PREFETCH=L)
	The access method
	When it is used
	Bind time and execution time thresholds

	Sequential detection at execution time
	When it is used
	How to tell whether it was used
	How to tell if it might be used

	Determining sort activity
	Sorts of data
	Sorts for group by and order by
	Sorts to remove duplicates
	Sorts used in join processing
	Sorts needed for subquery processing

	Sorts of RIDs
	The effect of sorts on OPEN CURSOR

	Processing for views and nested table expressions
	Merge
	Materialization
	Two steps of materialization
	When views or table expressions are materialized

	Using EXPLAIN to determine when materialization occurs
	Using EXPLAIN to determine UNION activity and query rewrite
	Performance of merge versus materialization

	Estimating a statement's cost
	Creating a statement table
	Populating and maintaining a statement table
	Retrieving rows from a statement table
	Understanding the implications of cost categories

	Chapter 34. Parallel operations and query performance
	Comparing the methods of parallelism
	Partitioning for optimal parallel performance
	Determining if a query is I/O- or processor-intensive
	Determining the number of partitions
	Working with a table space that is already partitioned?
	Making the partitions the same size

	Enabling parallel processing
	When parallelism is not used
	Interpreting EXPLAIN output
	A method for examining PLAN_TABLE columns for parallelism
	PLAN_TABLE examples showing parallelism

	Monitoring parallel operations
	Using DISPLAY BUFFERPOOL
	Using DISPLAY THREAD
	Using DB2 trace
	Accounting trace
	Performance trace

	Tuning parallel processing
	Disabling query parallelism

	Chapter 35. Tuning and monitoring in a distributed environment
	Understanding remote access types
	Characteristics of DRDA
	Characteristics of DB2 private protocol

	Tuning distributed applications
	The application and the requesting system
	BIND options
	SQL statement options
	Block fetching result sets
	Optimizing for very large results sets for DRDA
	Optimizing for small results sets for DRDA

	The serving system

	Monitoring DB2 in a distributed environment
	Using the DISPLAY command
	Tracing distributed events
	Reporting server-elapsed time

	Using RMF to monitor distributed processing
	Duration of an enclave
	RMF records for enclaves

	Chapter 36. Monitoring and tuning stored procedures and user-defined functions
	Controlling address space storage
	Assigning procedures and functions to WLM application environments
	Providing DB2 cost information for accessing user-defined table functions
	Accounting trace
	Accounting for nested activities

	Part 6. Appendixes
	Appendix A. DB2 sample tables
	Activity table (DSN8710.ACT)
	Content
	Relationship to other tables

	Department table (DSN8710.DEPT)
	Content
	Relationship to other tables

	Employee table (DSN8710.EMP)
	Content
	Relationship to other tables

	Employee photo and resume table (DSN8710.EMP_PHOTO_RESUME)
	Content
	Relationship to other tables

	Project table (DSN8710.PROJ)
	Content
	Relationship to other tables

	Project activity table (DSN8710.PROJACT)
	Content
	Relationship to other tables

	Employee to project activity table (DSN8710.EMPPROJACT)
	Content
	Relationship to other tables

	Relationships among the tables
	Views on the sample tables
	Storage of sample application tables
	Storage group
	Databases
	Table spaces

	Appendix B. Writing exit routines
	Connection and sign-on routines
	General considerations
	Specifying the routines
	Sample exit routines
	When exits are taken
	EXPL for connection and sign-on routines
	Exit parameter list
	Authorization ID parameter list
	Input values
	For a connection routine
	For a sign-on routine

	Expected output
	Processing in the sample routines
	Performance considerations
	Debugging your exit routine

	Access control authorization exit
	General considerations
	Specifying the routine
	The default routine
	When the exit is taken
	Other considerations for using the access control authorization exit
	Parameter list for the access control authorization routine
	Exit parameter list (XAPL)

	Expected output
	Handling return codes
	Handling reason codes

	Debugging your exit routine
	Determining if the exit routine is active

	Edit routines
	General considerations
	Specifying the routine
	When exits are taken
	Parameter lists on entry
	Processing requirements
	Incomplete rows
	Expected output

	Validation routines
	General considerations
	Specifying the routine
	When exits are taken
	Parameter lists on entry
	Processing requirements
	Incomplete rows
	Expected output

	Date and time routines
	General considerations
	Specifying the routine
	When exits are taken
	Parameter lists on entry
	Expected output

	Conversion procedures
	General considerations
	Specifying the routine
	When exits are taken
	Parameter lists on entry
	Expected output

	Field procedures
	Field definition
	General considerations
	Specifying the procedure
	When exits are taken
	Control blocks for execution
	The field procedure parameter list (FPPL)
	The work area
	The field procedure information block (FPIB)
	The field procedure parameter value list (FPPVL)
	Value descriptors

	Field-definition (function code 8)
	On ENTRY
	On EXIT

	Field-encoding (function code 0)
	On ENTRY
	On EXIT

	Field-decoding (function code 4)
	On ENTRY
	On EXIT

	Log capture routines
	General considerations
	Specifying the routine
	When exits are taken
	Parameter lists on entry

	Routines for dynamic plan selection in CICS
	What the exit routine does
	General considerations
	Execution environment
	Specifying the routine
	Sample exit routine
	When exits are taken
	Dynamic plan switching
	Coding the exit routine
	Parameter list on entry

	General considerations for writing exit routines
	Coding rules
	Modifying exit routines
	Execution environment
	Registers at invocation
	Parameter lists

	Row formats for edit and validation routines
	Column boundaries
	Null values
	Fixed-length rows
	Varying-length rows
	Varying-length rows with nulls
	Internal formats for dates, times, and timestamps
	Parameter list for row format descriptions
	DB2 codes for numeric data

	Routine for CICS transaction invocation stored procedure

	Appendix C. Reading log records
	What the log contains
	Unit of recovery log records
	Undo and redo records
	Database exception table records
	Typical unit of recovery log records
	Classes of changes to data

	Checkpoint log records
	Database page set control records
	Other exception information

	The physical structure of the log
	Physical and logical log records
	The log record header
	The log control interval definition (LCID)
	Log record type codes
	Log record subtype codes
	Interpreting data change log records

	Reading log records with IFI
	Reading log records into a buffer
	Reading specific log records (IFCID 0129)
	Reading complete log data (IFCID 0306)
	Specifying the return area
	Qualifying log records

	Reading log records with OPEN, GET, and CLOSE
	Data sharing users: Which members participate in the read?
	Registers and return codes
	Stand-alone log OPEN request
	Stand-alone log GET request
	Stand-alone log CLOSE request
	Sample application program using stand-alone log services

	Reading log records with the log capture exit

	Appendix D. Interpreting DB2 trace output
	Processing trace records
	SMF writer header section
	GTF writer header section
	Self-defining section
	Product section

	Trace field descriptions

	Appendix E. Programming for the Instrumentation Facility Interface (IFI)
	Submitting DB2 commands through IFI
	Obtaining trace data
	Passing data to DB2 through IFI
	IFI functions
	Invoking IFI from your program
	Using IFI from stored procedures
	COMMAND: Syntax and usage
	Authorization
	Syntax
	Example

	READS: Syntax and usage
	Authorization
	Syntax
	Which qualifications are used?
	Usage notes
	Synchronous data
	Using READS calls to monitor the dynamic statement cache
	Controlling collection of dynamic statement cache statistics with IFCID 0318

	READA: Syntax and usage
	Authorization
	Syntax
	Usage notes
	Asynchronous data
	Example

	WRITE: Syntax and usage
	Authorization
	Syntax
	Usage notes

	Common communication areas
	IFCA
	Return area
	IFCID area
	Output area

	Using IFI in a data sharing group
	Interpreting records returned by IFI
	Trace data record format
	Command record format
	Data integrity
	Auditing data
	Locking considerations
	Recovery considerations
	Errors

	Appendix F. Using tools to monitor performance
	Using MVS, CICS, and IMS tools
	Monitoring system resources
	Monitoring transaction manager throughput

	DB2 trace
	Types of traces
	Statistics trace
	Accounting trace
	Audit trace
	Performance trace
	Monitor trace

	Effect on DB2 performance

	Recording SMF trace data
	Activating SMF
	Allocating additional SMF buffers
	Reporting data in SMF

	Recording GTF trace data
	DB2 Performance Monitor (DB2 PM)
	Performance Reporter for MVS
	Monitoring application plans and packages

	Appendix G. Real-time statistics tables
	Setting up your system for real-time statistics
	Creating and altering the real-time statistics objects
	Setting the interval for writing real-time statistics
	Starting the real-time statistics database

	Contents of the real-time statistics tables
	Operating with real-time statistics
	When DB2 externalizes real-time statistics
	How DB2 utilities affect the real-time statistics
	How LOAD affects real-time statistics
	How REORG affects real-time statistics
	How REBUILD INDEX affects real-time statistics
	How RUNSTATS affects real-time statistics
	How COPY affects real-time statistics
	How RECOVER affects real-time statistics

	How non-DB2 utilities affect real-time statistics
	Real-time statistics on objects in work file databases and the TEMP database
	Real-time statistics on read-only objects
	How dropping objects affects real-time statistics
	How SQL operations affect real-time statistics counters
	Real-time statistics in data sharing
	Improving concurrency with real-time statistics
	Recovering the real-time statistics tables
	Statistics accuracy

	Appendix H. Stored procedures shipped with DB2
	The DB2 real-time statistics stored procedure
	Environment
	Authorization required
	DSNACCOR syntax diagram
	DSNACCOR option descriptions
	Formulas for recommending actions
	Using an exception table
	Example of DSNACCOR invocation
	DSNACCOR output

	The CICS transaction invocation stored procedure (DSNACICS)
	Environment
	Authorization required
	DSNACICS syntax diagram
	DSNACICS option descriptions
	DSNACICX user exit
	General considerations
	Specifying the routine
	When the exit is taken
	Loading a new version of the exit
	Parameter list for DSNACICX

	Example of DSNACICS invocation
	DSNACICS output
	DSNACICS restrictions
	DSNACICS debugging

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

