..lli

IBM Compiler and Library for SAA REXX/370

User’s Guide and Reference

Release 3

SH19-8160-04

.||I

IBM Compiler and Library for SAA REXX/370

User’s Guide and Reference

Release 3

SH19-8160-04

Note!

Before using this information and the product it supports, be sure to read the general information under Appendix G, “Notices”
on page 229.

Fifth Edition, February 2000

This edition applies to Release 3 of both the IBM Compiler for SAA REXX/370, Program Number 5695-013, and the IBM Library for
SAA REXX/370, Program Number 5695-014, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters.

This edition replaces SH19-8160-03.

© Copyright International Business Machines Corporation 1991, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Preface iX
How This Book Is Organized iX
How to Read the Syntax Notation X
Additional Information and Help in the Internet, Xi
How to Send Your Comments about This Book Xi
Summary of Changes Xiii
What's New in This Edition Xiii
Highlights of Release 3 Xiv
Part 1. Introduction to Compiling and Running REXX Programs 1
Chapter 1. Overview 3
The Level of REXX Supported by the Compiler 3
Using the Compiler in Program Development 4
Forms and Uses of Output 4
Portability of Compiled REXX Programs 5
Porting and Running Compiled REXX Programs 5
Calling and Linking REXX Programs 6
Running above 16 Megabytes in Virtual Storage 6
SAA Compliance 6
Choosing the National Language 7
Alternate Library Overview 7
Chapter 2. Getting Started with the Compiler 9
Invoking the Compiler under MVS/ESA 9
Getting Started Using the Compiler Invocation EXEC under MVS/ESA . . 10
Invoking the Compiler under CMS 10
Batch Jobs 11
Getting Started Using the Compiler Invocation Dialog under CMS 11
Checking the Results of a Compilation 12
Return Codes e 12
Part 2. Programming Reference Information 15
Chapter 3. Invoking the Compiler—In Detail 17
Invoking the Compiler with the REXXC EXEC (MVS/ESA) 17
Derived Default Data Set Names 18
Invoking the Compiler with ISPF Panels (MVS/ESA) 18
Invoking the Compiler with JCL Statements (MVS/ESA) 20
Invoking the Compiler with Cataloged Procedures (MVS/ESA) 21
Data Sets Required by the Compiler (MVS/ESA) 21
Invoking the Compiler with REXXD (CMS) 22
Setting the Compiler Options 24
Invoking the Compiler with the REXXC EXEC (CMS) 25
Invoking the Compiler from ISPF Panels (CMS) 25
Chapter 4. Compiler Options and Control Directives 27
Compiler Options 27
© Copyright IBM Corp. 1991, 2000 ili

ALTERNATE e 27

BASE . . ., 27
CEXEC . . 28
COMPILE e 30
CONDENSE 30
DLINK . . 31
DUMP . . 33
FLAG . . 33
FORMAT . . . 34
IEXEC . . 34
LIBLEVEL 36
LINECOUNT . . . e 37
MARGINS . . . 38
OBJECT 38
OPTIMIZE 41
PRINT . . 41
SAA 42
SLINE . . . 42
SOURCE 43
TERMINAL 43
TESTHALT 43
TRACE 44
XREF . 44
Control Directives 44
%COPYRIGHT 45
%BINCLUDE 45
WPAGE 47
%SYSDATE 48
%BSYSTIME 48
WBTESTHALT 49
Chapter 5. Runtime Considerations 51
Organizing Compiled and Interpretable EXECs under MVS/ESA 51
Organizing Compiled and Interpretable EXECs under CMS 52
Organizing Compiled and Interpretable EXECs under VSE/ESA 52
Use of the Alternate Library (MVS/ESA, CMS) 53
Other Runtime Considerations 53
Chapter 6. Understanding the Compiler Listing 57
Compilation Summary 57
Source Listing 58
Messages 60
Cross-Reference Listing 63
Compilation Statistics 64
Examples with Column Numbers 65
Example of a Complete Compiler Listing 69
Chapter 7. Using Object Modules and TEXT Files 73
Initial Considerations 73
Object Modules (MVS/ESA) 74
REXXL (MVS/ESA) e 76
TEXT Files (CMS) 77
Object Modules (VSE/ESA) 79
REXXPLNK Cataloged Procedure (VSE/ESA) 80

SAA REXX/370 User’s Guide and Reference

REXXLINK Cataloged Procedure (VSE/ESA) 81

REXXL Cataloged Procedure (VSE/ESA) 82
Linking External Routines to a REXX Program 82
Resolving External References—An Example 83
Chapter 8. Converting CEXEC Output between Operating Systems ... 87
Compiling on One System and Running on Another System 87
Converting from MVS/ESA to MVS/ESA OpenEdition 87
Converting from MVS/ESAto CMS 87
Converting from MVS/ESA to VSE/ESA 88
Converting from CMS to MVS/ESA 88
Converting from CMS to VSE/ESA 89
Copying CEXEC Output 89
REXXF (MVS/ESA) 89
REXXF (CMS) 89
REXXV (MVS/ESA) 90
REXXV (CMS), 91
Chapter 9. Language Differences between the Compiler and the
Interpreters e 93
Differences from the Interpreters on VM/ESA Release 2.1, TSO/E Version 2
Release 4, and REXX/VSE Version 1 Release 1 93
Compiler Control Directives, 94
Halt Condition 94
NOVALUE Condition 95
OPTIONS Instruction 96
PARSE SOURCE Instruction 96
PARSE VERSION Instruction 97
SOURCELINE Built-In Function 97
Startof Clause 98
TRACE Instruction and TRACE Built-In Function 98
TS (Trace Start) and TE (Trace End) Commands 99
Differences to Earlier Releases of the Interpreters 99
SIGNAL Instruction 100
Integer Divide (%) and Remainder (//) Operations 100
Exponentiation (**) Operation 100
Location of PROCEDURE Instructions 101
Binary Strings 101
Templates Used by PARSE, ARG, and PULL 101
PROCEDURE EXPOSE and DROP 101
DO LOOPs 101
DBCS Symbols 101
VALUE Built-In Function 102
Argument Counting 102
Options of Built-In Functions 102
Built-In Functions 103
Options of Instructions 103
Strict Comparison Operators, 104
LINESIZE Built-In Function in Full-Screen CMS 104
Enhancement to the EXECCOMM Interface 104
Chapter 10. Limits and Restrictions 105
Implementation Limits 105
Technical Restrictions 106

Contents V

Chapter 11. Performance and Programming Considerations 109

Performance Considerations 109
Optimization, Optimization Stoppers, and Error Checking 109
Arithmetic 112
Literal Strings 112
Variables 113
Compound Variables 113
Labels within Loops 113
Procedures 113
TESTHALT Option 113
Frequently Invoked External Routines 114

Programming Considerations 114
Verifying the Availability of the Library 114
VALUE Built-in Function 114
Stream /O 115
Determining whether a Program is Interpreted or Compiled 115
Creating REXX Programs for Use with the Alternate Library (MVS/ESA,

CMS) 115
Limits on Numbers 116
Part 3. Customizing the Compiler and Library 119

Chapter 12. Customizing the Compiler and Library under MVS/ESA o121

Modifying the Cataloged Procedures Supplied by IBM 121

Customizing the REXXC EXEC 121

Customizing the REXXL EXEC 121

Message Repository 122

Chapter 13. Customizing the Compiler and Library under CMS 123

Customizing the Compiler Invocation Shells 123
Modifying the Function of the Compiler Invocation Shells 123
Setting Up Installation Defaults for the Compiler Options 124

Customizing the Compiler Invocation Dialog 124

Customizing the Library 125
Defining the Library as a Physical Segment 125
Saving the Physical Segment 126
Defining the Library as a Logical Segment 126
Selecting the Version of the Library 127
Customizing the Message Repository to Avoid a Read/Write A-Disk . . . 128
Files Needed to Run Compiled REXX Programs 128

Chapter 14. Customizing the Library under VSE/ESA 131

Modifying the Cataloged Procedures Supplied by IBM 131

Customizing the REXXL EXEC 131

Part 4. Messages 133

Chapter 15. Compilation Messages 135

Chapter 16. Runtime Messages 159

Chapter 17. Library Diagnostics Messages (CMS) 175

Vi SAA REXX/370 User’s Guide and Reference

Part 5. Appendixes 177

Appendix A. Interface for Object Modules (MVS/ESA) 179
ISPF Restrictions on Load Modules 179
Link-Editing of Object Modules, 180
DLINK Example 182
Stubs . 185
Processing Sequence for Stubs 186
Testing Stubs 188
Parameter Lists 188
CPPL Parameter List 189
EFPL Parameter List 189
CPPLEFPL 191
MVS Parameter List 191
CALLCMD Parameter List 192
Search Order 193
PARSE SOURCE e 193
Appendix B. Interface for TEXT Files (CMS) 195
The Call from the Assembler Program 195
Extended PLISTS 196
What the REXX Program Gets 196
Invocation with a Tokenized PLIST Only 196
Invocation with an Extended PLIST or a 6-Word Extended PLIST 197
Example of an Assembler Interface to a TEXT File 197
Appendix C. Interface for Object Modules (VSE/ESA) 199
Stubs . L 199
Processing Sequence for Stubs oL 200
Parameter Lists 201
VSE Parameter List 201
EFPL Parameter List 202
PARSE SOURCE e 204

Appendix D. Alternate Library Packaging and Installation (MVS/ESA,

CMS) . 205
Packaging the Alternate Library with an Application 205
Alternate Library Parts (MVS/ESA) 205
Alternate Library Parts (CMS) 206
Installation Instructions (MVS/ESA) 206
Installation Instructions (CMS) 209
Customers with the CMS REXX Compiler - Library 210
Appendix E. The MVS/ESA Cataloged Procedures Supplied by IBM ..o211
REXXC . . 211
REXXCG . . . e 213
REXXCL . . . 215
REXXCLG 217
REXXL . . o 219
REXXOEC e 221
MVS20E 223

Appendix F. The VSE/ESA Cataloged Procedures Supplied by IBM ... 225

Contents Vil

REXXPLNK . 225

REXXLINK e 227
Appendix G. Notices 229
Programming Interface Information 230
Trademarks 230
Glossary of Terms and Abbreviations 233
Bibliography 237
Index 239

Viii SAA REXX/370 User's Guide and Reference

Preface

This book is intended to help you compile and run programs written in the
Restructured EXtended eXecutor (REXX) language.

You are assumed to be familiar with the REXX language and with the operating
system under which you compile or run your programs:

e Multiple Virtual Storage/Enterprise System Architecture (MVS/ESA*) with Time
Sharing Option Extensions (TSO/E)

e Conversational Monitor System (CMS) on Virtual Machine/System Product
(VM/SP), Virtual Machine/Extended Architecture (VM/XA), or Virtual
Machine/Enterprise System Architecture (VM/ESA¥)

» Virtual Storage Extended/Enterprise System Architecture (VSE/ESA*) with
REXX/VSE

This book documents the use of the IBM Compiler for SAA* REXX/370 (the
Compiler), the IBM Library for SAA REXX/370 (the Library), and the Library for
REXX/370 in REXX/VSE (also referred to as the Library) for MVS/ESA, CMS and
VSE/ESA users. It also describes how the Alternate Library can be used by
software developers and users of MVS/ESA or CMS who do not have the IBM
Library for SAA REXX/370.

Some of the information applies to all three systems: MVS/ESA, CMS and VSE/ESA.
Information that applies to only one system is marked in the text. For example, a
section heading may include the label “(CMS),” or a paragraph may begin “Under
MVS/ESA” to let you know that the information that follows applies to that system
only.

Technical changes to the text are indicated by a vertical line (|) to the left of the
change.

— About information in boxes

In the text, labeled boxes such as this contain background information about
topics related to compilers, runtime libraries, or the MVS/ESA, CMS, or VSE/ESA
systems.

How This Book Is Organized
This book is organized into five parts:

Part 1, Introduction to Compiling and Running REXX Programs provides
an overview of the IBM Compiler for SAA REXX/370, the IBM Library for SAA
REXX/370, the Alternate Library, and the ways of invoking the Compiler. It
describes one of these ways for users who want to quickly start compiling
programs.

Part 2, Programming Reference Information provides detailed descriptions of
the ways of invoking the Compiler, and the Compiler options and control
directives. It also:

» Describes the enhanced options for the REXXC EXEC.

© Copyright IBM Corp. 1991, 2000 4

e Contains suggestions for organizing your libraries and instructions for
running compiled programs.

e Explains the parts of the compiler listing.
e Describes when to use OBJECT output instead of CEXEC output.

e Describes what to do to run CEXEC output on an operating system other
than the one on which you generated the output. It also explains how to
copy, under MVS/ESA, CEXEC output from one data set to another.

e Describes how to copy compiled EXECs from MVS/ESA or CMS to VSE/ESA.

e Explains how to use the REXXL command to create object modules on
MVS/ESA and on VSE/ESA.

e Lists implementation limits, technical restrictions, and other performance
and programming considerations that you should be aware of.

Also in this part, Chapter 9, Language Differences between the Compiler and
the Interpreters explains the differences between the language processed by
the Compiler and the language processed by the interpreters.

Part 3, Customizing the Compiler and Library contains information for the
systems programmer about customizing the Compiler and the Library.

Part 4, Messages describes the compilation and runtime messages and the
runtime diagnostic messages.

Part 5, Appendixes contains reference information about the following:

¢ Generating a load module under MVS/ESA from a REXX program that was
compiled with the OBJECT option of the Compiler. It also describes the
various conventions for passing parameters in MVS/ESA that are supported,
and how they are mapped into an invocation of the EXEC handler,
IRXEXEC. This appendix also describes the PARSE SOURCE information,
as it appears in the REXX program.

¢ How an Assembler program can invoke a REXX program that was compiled
into a TEXT file under CMS. It also describes the parameters and PARSE
SOURCE information received by the REXX program.

* Generating a load module under VSE/ESA from a REXX program that was
compiled with the OBJECT option under MVS/ESA or CMS. This appendix
also describes the PARSE SOURCE information, as it appears in the REXX
program.

e How to install the Alternate Library and package it with an application.
e The cataloged procedures for MVS/ESA supplied by IBM.
e The cataloged procedures for VSE/ESA supplied by IBM.

How to Read the Syntax Notation

The notation used to define the command syntax in this book is as follows:

X

A symbol (word) in boldface, such as CEXEC, denotes a keyword.

Words in italics, such as options-list, denote variables or collections of
variables.

The brackets [and] delimit optional parts of the commands.

SAA REXX/370 User's Guide and Reference

* The logical OR character | separates choices within brackets.

Additional Information and Help in the Internet

Visit our home page at http.//www.ibm.com/software/ad/obj-rexx . There you will
find:

e This book in Acrobat Adobe format

¢ Information about this program and other REXX programs

If you have questions about, or problems with, this program, you can contact us
directly using rexxhelp@vnet.ibm.com .

How to Send Your Comments about This Book

Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book:

e Our home page at http://www.ibm.com/software/ad/obj-rexx contains the
feedback page where you can enter comments and send them.

e Send your comments by e-mail to swsdid@de.ibm.com, or to the IBMMAIL
address DEIBM3P3@IBMMAIL. Be sure to include the name of the book, the
part number of the book, the version of REXX, and, if applicable, the specific
location of the text you are commenting on (for example, a page number or
table number).

¢ Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative. The mailing address is on the back of the
Readers’ Comments form. The fax number is +49-(0)7031-16-4892.

Preface Xi

Xii SAA REXX/370 User's Guide and Reference

Summary of Changes

What's New in This Edition
Changes to this information for this edition include:

e Up to five arguments can now be added when invoking the DATE() built-in
function (BIF). These arguments include an input date and its format, and the
definition of the separator characters for the input and output dates.

e The name of the source file (MVS*: DD name, CMS: file ID) is written to the
compiled program, enabling a correlation between the compiled program and
the program source.

* A new variant has been added to the SLINE compiler option, hamely
SLINE(AUTO). This variant enables the compiler to check if the
SOURCELINE() BIF has been used in the REXX program and, if so, to
automatically include the REXX source in the compiled program.

e The following compiler options have been added:

— FORMAT to enable the compiler to produce column numbers in addition to
the line numbers in the cross-reference listing and list of error messages.

— LIBLEVEL(n) to enable the compiler to check the language constructs in
the program being compiled against the level of the runtime system.

— OPTIMIZE|NOOPTIMIZE to enable the compiler to suppress the
optimization (NOOPTIMIZE) of the compiled program. This option is mainly
intended for compiler debugging purposes and facilitates compiler
maintenance.

» The following control directives have been added:

— %SYSDATE and %SYSTIME to create the variables SYSDATE and
SYSTIME containing the date and time of the compilation.

— %TESTHALT to enable users to specifically place testhalt hooks in their
programs.

e An improved numbering scheme for the nesting levels of the SELECT, IF, and
DO language constructs has been implemented.

e The compiler’s listings have been improved in the following respect:

— A cross-reference of error numbers pointing to the erroneous lines has
been introduced.

— The ID of the source input file is listed in the options list for CMS.

— The DCB parameters for the data sets and files used in the compilation
including any %INCLUDE data sets or files are listed for both MVS and
CMS.

— Additional cross-reference information for labels is produced.
e Sequence humbers are now also supported in CMS.

e The arguments used in IBM supplied functions that address DBCS, such as
DBLEFT() and DBADJUST, are now checked for plausibility at compilation time.

© Copyright IBM Corp. 1991, 2000 Xiii

The arguments used in a system-specific function, such as SYSVAR() and
PROMPT() under MVS, DIAG under VM, or ASSGN() under VSE, are now
checked for plausibility at compilation time.

Highlights of Release 3

In Release 3, the IBM Compiler and Library for SAA REXX/370 contain several
enhancements:

Xiv

The TRACE instruction and the trace built-in function are supported (except for
TRACE setting SCAN), provided that the TRACE compiler option is used.

The stream 1/0 built-in functions (LINES, LINEIN, LINEOUT, CHARS, CHARIN,
CHAROUT, and STREAM), PARSE LINEIN, and the corresponding exception
handling (NOTREADY condition) are supported on VM/ESA Release 2.1 and
subsequent releases.

An Alternate Library has been introduced to enable users who do not have the
IBM Library for SAA REXX/370 installed to run compiled REXX programs.
Software developers can distribute the Alternate Library, free of charge, with
their compiled REXX programs.

The %COPYRIGHT Compiler control directive inserts a visible text string, for
example a copyright notice, in both the CEXEC and OBJECT output of the
compiler.

The %INCLUDE Compiler control directive inserts, at compilation time, REXX
code contained in MVS data sets or in CMS files into the REXX source program.

The MARGINS Compiler option specifies the left and right margins of the REXX
program. Only the text contained between the specified margins is compiled.

The IEXEC Compiler option produces output that contains the expanded source
of the REXX program being compiled. Expanded means that the main program
and all the parts included at compilation time are contained in the IEXEC output.
If the MARGINS option is active, only the text within the specified margins is
written to the IEXEC output.

Compiled EXECs of type CEXEC can run under MVS/ESA OpenEdition*.

REXX source lines containing commands, including ADDRESS clauses, are
now also listed in the cross-reference listing.

SAA REXX/370 User's Guide and Reference

Part 1. Introduction to Compiling and Running REXX
Programs

This part assumes that you have coded and are ready to compile your program. It
provides an overview of the IBM Compiler and Library for SAA REXX/370 and, to
help you get started quickly, describes one method of invoking the Compiler. It
also explains how to check the results of a compilation and how to run a compiled
REXX program.

© Copyright IBM Corp. 1991, 2000 1

2 SAA REXX/370 User's Guide and Reference

Chapter 1. Overview

This chapter provides an overview of the features and functions of the IBM
Compiler for SAA REXX/370, the IBM Library for SAA REXX/370, and the Alternate
Library. The Compiler translates REXX source programs into compiled programs.
The Library contains routines that are called by compiled programs at run time.
The Alternate Library contains a language processor that transforms the compiled
programs and runs them with the interpreter. It can be used by MVS/ESA and CMS
users who do not have the IBM Library for SAA REXX/370 to run compiled
programs.

The Compiler and Library run on MVS/ESA systems with TSO/E, and under CMS on
VM/SP, VM/XA, and VM/ESA systems. The Library for REXX/370 in REXX/VSE
Version 1 Release 1 runs under VSE/ESA.

— Background information about compilers

Instructions written in any high-level language, such as REXX, must be prepared
for execution. The two types of programs that can perform this task are:

e An interpreter, which parses and executes an instruction before it parses
and executes the next instruction.

e A compiler, which translates all the instructions of a program into a machine
code program. It can keep the machine code program for later execution.
It does not execute the program.
The input to a compiler is the source program that you write.

The output from a compiler is the compiled program and the listing.

The process of translating a source program into a compiled program is known
as compilation.

You may prefer to leave some programs uncompiled. This would be a good choice
for simple programs that are used infrequently. An example is a program that
renames all the files in a library in accordance with a new naming convention, and
then never needs to be run again.

The Level of REXX Supported by the Compiler

The Compiler supports REXX language level 3.48 on MVS/ESA in TSO/E Version 2
Release 4, CMS in VM/ESA releases earlier than Release 2.1, and on VSE/ESA in
REXX/VSE Version1l Releasel. On CMS in VM/ESA Release 2.1 and subsequent
releases, the language level supported is 4.02.

Most of your existing REXX programs should compile without error and should give
the same runtime results without modification.

Most of the language features that are new in VM/ESA Release 2 and TSO/E
Version 2 Release 4 are available when running compiled programs, even when
they are not accepted by the interpreters. See Chapter 9, “Language Differences
between the Compiler and the Interpreters” on page 93 for details.

© Copyright IBM Corp. 1991, 2000 3

Using the Compiler in Program Development

One effective way of using the Compiler to develop REXX programs is the following:

1. Compile the program with the TRACE and NOTESTHALT compiler options and
without the %TESTHALT control directive. This step performs comprehensive
error checking and produces an output that can be traced.

2. Debug the program using the output of the previous step.

3. Compile the program with the NOTRACE compiler option and, if required, the
TESTHALT compiler option and %TESTHALT control directive.

— Background information about error checking

A compiler scans an entire program for such errors as incorrect instructions and
variable names, even in parts of a program that are not used when the program
is run. By contrast, an interpreter stops as soon as it detects an error. It does
not detect syntax errors in parts of a program that are not used during a
particular invocation.

A compiler, however, cannot detect errors that do not arise until run time.
Consider this assignment:

averagescore = totalscore/numberofgames

This is valid during compilation, but could give an error at run time. For
example, if the variable numberofgames is assigned the value zero, an arithmetic
error occurs.

Forms and Uses of Output

4

The Compiler can produce output in the following forms:

e Compiled EXECs: These behave exactly like interpreted REXX programs.
They are invoked the same way by the system’s EXEC handler, and the search
sequence is the same. The easiest way of replacing interpreted programs with
compiled programs is by producing compiled EXECs. Users need not know
whether the REXX programs they use are compiled EXECs or interpretable
programs. Compiled EXECs can be sent to VSE/ESA to be run there. In this
book, compiled EXECs are often referred to as CEXEC output.

e Object modules under MVS/ESA or TEXT files under CMS: These must be
transformed into executable form (load modules) before they can be used.
Load modules and MODULE files are invoked the same way as load modules
derived from other compilers, and the same search sequence applies.
However, the search sequence is different from that of interpreted REXX
programs and compiled EXECs. These load modules can be used as
commands and as parts of REXX function packages. Object modules or
MODULE files can be sent to VSE/ESA to build phases.

e |EXEC output: This output contains the expanded source of the REXX program
being compiled. Expanded means that the main program and all the parts
included at compilation time by means of the %INCLUDE directive are contained
in the IEXEC output. Only the text within the specified margins is contained in
the IEXEC output. Note, however, that the default setting of MARGINS includes
the entire text in the input records.

SAA REXX/370 User's Guide and Reference

You can produce all forms of output in one compilation. Compiled EXECs and
object modules contain the compiled code for the program.

Generate load modules from object modules: Under MVS/ESA, object modules
can be used to generate load modules. You need to link-edit the object modules
with stubs before you can run them or before you can link them with other
programs. See “Object Modules (MVS/ESA)” on page 74 and Appendix A,
“Interface for Object Modules (MVS/ESA)” on page 179 for more information.

Generate load modules from TEXT files: Under CMS, a TEXT file can be
processed into a MODULE file. The MODULE file can be invoked like any other CMS
module. See “TEXT Files (CMS)” on page 77 and Appendix B, “Interface for
TEXT Files (CMS)” on page 195 for more information.

Build phases from object modules: Under VSE/ESA, object modules can be
used to build phases. You need to combine the object modules with the
appropriate stub, before you can use them. See “Object Modules (VSE/ESA)” on
page 79 and Appendix C, “Interface for Object Modules (VSE/ESA)” on page 199
for more information.

Linking TEXT files to Assembler programs: A TEXT file can be linked to an
Assembler program. See “TEXT Files (CMS)” on page 77 for more information.

Portability of Compiled REXX Programs
A REXX program compiled under MVS/ESA can run under CMS. Similarly, a REXX
program compiled under CMS can run under MVS/ESA.

Under CMS, a REXX program compiled in /370 mode can run in non-/370 mode.
Similarly, a program compiled in non-/370 mode can run in /370 mode.

A REXX program compiled under MVS/ESA or CMS can run under VSE/ESA if
REXX/VSE is installed.

See Chapter 8, “Converting CEXEC Output between Operating Systems” on
page 87 for more information.

Programs compiled with the CMS REXX Compiler or with the IBM Compiler for SAA
REXX/370 Release 1 or 2 run without the need to be recompiled.

Porting and Running Compiled REXX Programs

This section tells you where to look to find out how to port a compiled REXX
program to a system other than that on which it was compiled, and how to run your
compiled program.
If you compiled your program under MVS/ESA using:
e The CEXEC option, and want to run it under:
— MVS/ESA, see “CEXEC” on page 28

— MVS/ESA OpenEdition, see “Converting from MVS/ESA to MVS/ESA
OpenEdition” on page 87

— CMS, see “Converting from MVS/ESA to CMS” on page 87

Chapter 1. Overview 5

— VSE/ESA, see “Converting from MVS/ESA to VSE/ESA” on page 88
e The OBJECT option, and want to run it under:
— MVS/ESA, see “OBJECT” on page 38.

— CMS, transfer the OBJECT output to CMS and generate a module; see
“TEXT Files (CMS)” on page 77

— VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase;
see “Object Modules (VSE/ESA)” on page 79
If you compiled your program under CMS using:

e The CEXEC option, and want to run it under:
— MVS/ESA, see “Converting from CMS to MVS/ESA” on page 88
— CMS, see “CEXEC” on page 28
— VSE/ESA, see “Converting from CMS to VSE/ESA” on page 89

e The OBJECT option, and want to run it under:

— MVS/ESA, transfer the OBJECT output to MVS/ESA and generate an object
module; see “Object Modules (MVS/ESA)” on page 74

— CMS, see “OBJECT” on page 38

— VSE/ESA, transfer the OBJECT output to VSE/ESA and generate a phase;
see “Object Modules (VSE/ESA)” on page 79

Calling and Linking REXX Programs

Compiled REXX programs can interface with other programs in the same ways as
interpreted REXX programs. For details, refer to one of the following manuals:

TSO/E Version 2 REXX/MVS: Reference

VM/SP System Product Interpreter: Reference

VM/XA SP Interpreter: Reference

VM/ESA Release 2 REXX/VM: Reference

IBM VSE/Enterprise Systems Architecture REXX/VSE: Reference

Running above 16 Megabytes in Virtual Storage

Under MVS/ESA systems and under VM systems running in XA mode, the Compiler,
the Library, and the compiled REXX programs can run above 16 megabytes in
virtual storage. Under VSE/ESA, the compiled REXX programs can run above 16
megabytes in virtual storage. This requires no user action. Data used during a
compilation or by a running program can reside above 16 megabytes in virtual
storage.

SAA Compliance

The Systems Application Architecture* (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems.

The SAA REXX interface is supported by the interpreters under TSO/E, CMS, and
VSE/ESA, and can be used in any of these environments. Users whose programs

6 sAA RExx/370 User's Guide and Reference

run under TSO/E, CMS, or VSE/ESA can use the language extensions provided by
these interpreters. If you plan to run your programs in other environments,
however, some restrictions may apply. For details of the restrictions, consult the
Systems Application Architecture Common Programming Interface REXX Level 2
Reference.

To help you to write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, a warning message
is issued for each non-SAA item found in a program.

Choosing the National Language

The Compiler and Library provide optional support for languages other than
American English. The language you select is used for:

¢ Messages

e Some of the constant text in the compiler listing, such as the page headings
e Help panels

e Compiler invocation panels under MVS/ESA

For information on selecting a national language:
e Under MVS/ESA, see the descriptions of:

— The SETLANG function in the TSO/E Version 2 REXX/MVS: Reference
manual

— The PLANGUAGE and SLANGUAGE operands of the PROFILE command in
the TSO/E Version 2: Command Reference

¢ Under CMS, see the description of the SET LANGUAGE command in the
command reference for your system.

e Under VSE/ESA, only English is supported when running the Library for
REXX/370 in REXX/VSE Release 1.

e Under MVS/SP Version 3, only English is supported when running the Compiler
or the Library. See Chapter 10, “Limits and Restrictions” on page 105 for
more information.

Alternate Library Overview

The Alternate Library enables users who do not have the Library installed to run
compiled REXX programs. It contains a language processor that transforms the
compiled programs and runs them with the interpreter, which is part of TSO/E and
CMS.

Software developers can distribute the Alternate Library, free of charge, with their
compiled REXX programs. In this way, if their customer:

e Has the Library installed, the programs run as compiled REXX programs

¢ |Installs the Alternate Library, the programs are interpreted
Distributing the compiled REXX program, without the source, has these
advantages:

e Maintenance of the program is simplified, because the code cannot be modified
inadvertently.

Chapter 1. Overview 7

e Compiled programs can be shipped in load module format and used to create
function packages, even for users who do not have the Library.
Notes:

1. With the Alternate Library, the performance of compiled REXX programs is
similar to that of interpreted programs. The performance advantages of
compiled REXX are available only when the Library is installed.

2. To work with the Alternate Library, you must set the ALTERNATE and SLINE
compiler options.

8 sAA REXx/370 User's Guide and Reference

Chapter 2. Getting Started with the Compiler

This chapter lists the different ways in which you can invoke the 1BM Compiler for
SAA REXX/370 and describes one of these ways, for both MVS/ESA and CMS, so
you can get started using the Compiler.

To use the Compiler, you supply:

e A source program.

e Compiler options. These control aspects of the Compiler's processing.
Depending on the options used, the Compiler produces the following types of
output:

e The compiled program, which can be a compiled EXEC, an object module for
MVS/ESA or VSE/ESA, or a TEXT file for CMS

e The compiler listing, which may include a source listing, messages, and a
cross-reference listing

¢ Messages on the terminal

e |EXEC output, which can be interpreted

If you compile a program that was previously only interpreted, you may find that, at
run time, its behavior is not identical. This is because there are some differences
between the language supported by the Compiler and that supported by the
interpreters. These differences are explained in Chapter 9, “Language Differences
between the Compiler and the Interpreters” on page 93.

When you are ready to invoke the Compiler, go to one of the following:

“Invoking the Compiler under MVS/ESA”
“Invoking the Compiler under CMS” on page 10

Invoking the Compiler under MVS/ESA
You can invoke the Compiler from:

e A compiler invocation EXEC

¢ An ISPF compiler invocation panel

e Job control language (JCL) statements
* A cataloged procedure

Compiler invocation EXEC: You can invoke the Compiler in a TSO/E environment
by using the compiler invocation EXEC, REXXC. This way is described in “Getting
Started Using the Compiler Invocation EXEC under MVS/ESA” on page 10.

ISPF compiler invocation panel; You can invoke the Compiler from an ISPF
compiler invocation panel in the same way that you invoke other high-level
language compilers. “Invoking the Compiler with ISPF Panels (MVS/ESA)” on
page 18 describes how to do this.

JCL statement or a cataloged procedure: You can invoke the Compiler from an

MVS batch environment by writing and running your own JCL statements or by
running the supplied cataloged procedures. “Invoking the Compiler with JCL

© Copyright IBM Corp. 1991, 2000 9

Statements (MVS/ESA)” on page 20 and “Invoking the Compiler with Cataloged
Procedures (MVS/ESA)” on page 21 describe how to do this.

The main advantage of using cataloged procedures is that they can include most of
the JCL statements that you would otherwise have to write yourself. This is useful
for sets of JCL statements that you use regularly.

You can also invoke the Compiler in the foreground using ADDRESS LINKMVS
'"REXXCOMP'. In this case, ensure that an input data set is allocated under SYSIN.
If there is no data set, TSO displays the prompt mode. To exit the prompt mode,
specify /*.

Getting Started Using the Compiler Invocation EXEC under MVS/ESA

The REXXC compiler invocation EXEC is supplied with the Compiler for compiling
REXX source programs.

For example, you may have stored an interpretable REXX program named SAMPLE
in the data set prefREXX.EXEC, which is allocated to the ddname SYSPROC.

You can generate a compiled REXX EXEC by allocating the data set
pref.REXX.CEXEC to the ddname SYSEXEC and entering the following command:

rexxc rexx.exec(sample) cexec(rexx.cexec(sample)) print(*)

In this command, print(*) is an option that writes the listing to ddname SYSTERM.
Installation defaults are used for options that you do not specify.

You can run the compiled program as you would an interpreted EXEC, by entering
its name as a command. However, your compiled program must be in the search
sequence (see TSO/E Version 2 REXX/MVS Reference for information on search
sequence). For example, by entering: sample

For complete information on REXXC, including the available options, see “Invoking
the Compiler with the REXXC EXEC (MVS/ESA)” on page 17.

Invoking the Compiler under CMS

10

You can invoke the Compiler from:

* A compiler invocation dialog
e A compiler invocation EXEC
e An ISPF compiler invocation panel

Compiler invocation dialog: Enter the command REXXD to display the main
panel of the compiler invocation dialog. From this panel, you can invoke the
Compiler and perform associated tasks, such as inspecting the listing and editing
the source program. The main advantage of using an interactive dialog is that you
do not have to remember any commands or options: you are prompted for all the
necessary information. This is the way that is described in “Getting Started Using
the Compiler Invocation Dialog under CMS” on page 11.

Compiler invocation EXEC: The compiler invocation EXEC, REXXC, operates in
line mode; using it can be quicker than the dialog. For any options that you do not
specify, the EXEC uses defaults defined when the Compiler was installed. You may

SAA REXX/370 User's Guide and Reference

Batch Jobs

prefer this method if you are an experienced CMS user. Refer to “Invoking the
Compiler with the REXXC EXEC (CMS)” on page 25 for details.

ISPF compiler invocation panel: With ISPF Version3 or a subsequent release,
you can invoke the Compiler from an ISPF compiler invocation panel in the same
way that you invoke other high-level language compilers. Refer to ISPF/PDF Guide
Version 3 Release 2 for VM for details.

The Compiler can run in a batch machine with the CMS Batch Facility or with the
IBM licensed program VM Batch Facility (Program Number 5664-364). To run the
compiler invocation EXEC in batch, use your standard procedure for submitting
batch jobs.

Getting Started Using the Compiler Invocation Dialog under CMS

To use the compiler invocation dialog under CMS, do the following:
1. Invoke the dialog by entering the command:
rexxd test exec a

The following panel appears:

IBM Compiler for SAA REXX/370, Release 3

Specify a program. Licensed Materials - Property of IBM
Then select an action. 5695-013 (C) Copyright IBM Corp. 1989, 1994
A1l rights reserved.
Program TEST EXEC A Output disk: _
Action _ Source active Compiled
1 Compile TEST EXEC Al into TEST CEXEC Al
2 Switch (rename) source and compiled exec

Run active (source) program with argument string
Edit source program

Inspect compiler Tisting

Print source program

Print compiler listing

Noorbw

[ee]

Specify compiler options

Argument string:

Command ===>
Enter Fl=Help F2=Filelist F3=Exit

F12=Cancel

Figure 1. Main Panel of the Sample Compiler Invocation Dialog

2. Select Action 1 to compile the source program.

3. Select Action 2 to rename the source program and the compiled EXEC. For
background information, refer to “Background information about compiled
EXECs” on page 29.

4. Select Action 3 to run the program.

If you need more information, refer to the online help by pressing the F1 key.

The sample dialog may have been customized by your system administrator.

Chapter 2. Getting Started with the Compiler 11

For detailed information about REXXD, see “Invoking the Compiler with REXXD
(CMS)” on page 22.

Checking the Results of a Compilation

Return Codes

A return code or message indicates how successful your compilation was. If there
is a problem, you receive messages on your terminal or in the compiler listing. See
“Return Codes.” For a description of the compiler listing, see Chapter 6,
“Understanding the Compiler Listing” on page 57. For explanations of the compiler
messages, see Chapter 15, “Compilation Messages” on page 135.

If you receive a return code of 0, you can run the compiled EXEC. Refer to
Chapter 5, “Runtime Considerations” on page 51 before you do run your EXEC.

Regardless of what return code you receive, always check the results of your
compilation.

The return code indicates the maximum severity of any messages issued, as
follows:

Return Code Meaning

0 No messages or only informational messages
4 Warning
8 Error
12 Severe error
16 Terminating error
>16 C/370* runtime return codes. They indicate that the Compiler has

terminated abnormally.

Notes:
1. No compiled code is generated if one of the following occurs:
e NOTRACE is in effect and a severe or terminating error is detected
e TRACE is in effect and a terminating error is detected
¢ NOCOMPILE is in effect

e Warnings or errors have been issued and the appropriate options, such as
NOCOMPILE(W) or NOCOMPILE(E), apply.

2. You can get unpredictable results if one of the following occurs:
e NOTRACE is in effect and an error is detected
e TRACE is in effect and an error or severe error is detected.

3. If the Compiler issues warning or informational messages, the program might
still run correctly. However, you should examine the source code to assess the
likely effects. For example, if the Compiler detects more than one definition of
the same label, check whether some occurrences are misspellings.

4. It is good programming practice to correct all compilation errors.

12 saa REXX/370 User's Guide and Reference

5. A program that can be interpreted successfully may give compilation errors.
There could be errors in parts of the program that are rarely, or never,
executed. Also, the program may contain language elements that are either
not supported by the Compiler or that must be coded differently. Refer to
Chapter 9, “Language Differences between the Compiler and the Interpreters”
on page 93 for details.

Chapter 2. Getting Started with the Compiler 13

14 saa REXX/370 User's Guide and Reference

Part 2. Programming Reference Information

This part describes the ways of invoking the Compiler, and the Compiler options
and control directives. It also:

Describes the enhanced options for the REXXC EXEC.

Contains suggestions for organizing your libraries and instructions for running
compiled programs.

Explains the parts of the compiler listing.
Describes when to use OBJECT output instead of CEXEC output.

Describes what to do to run CEXEC output on an operating system other than
the one on which you generated the output. It also explains how to copy,
under MVS/ESA, CEXEC output from one data set to another.

Describes how to copy compiled EXECs from MVS/ESA or CMS to VSE/ESA.

Explains how to use the REXXL command to create object modules on
MVS/ESA and on VSE/ESA.

Lists implementation limits, technical restrictions, and other performance and
programming considerations that you should be aware of.

Also in this part, Chapter 9, “Language Differences between the Compiler and the
Interpreters” on page 93 explains the differences between the language processed
by the Compiler and the language processed by the interpreters.

© Copyright IBM Corp. 1991, 2000 15

16 saa REXX/370 User's Guide and Reference

Chapter 3. Invoking the Compiler—In Detall

This chapter describes in detail the various ways of invoking the 1BM Compiler for
SAA REXX/370 under MVS/ESA and under CMS.

MVS/ESA users can invoke the Compiler by using:

e REXXC, the compiler invocation EXEC
e ISPF compiler invocation panels

e JCL statements

e Cataloged procedures

CMS users can invoke the Compiler by using:

e REXXC, the compiler invocation EXEC
e REXXD, the compiler invocation dialog
e ISPF compiler invocation panels

Invoking the Compiler with the REXXC EXEC (MVS/ESA)

A compiler invocation EXEC, REXXC, is supplied with the Compiler to compile REXX
source programs. This EXEC must run in a TSO/E address space. To start the
EXEC, enter the REXXC command in the following format:

REXXC source [options-list]

where:

source Specifies the data set containing the REXX source program.

options-list Any of the compiler options that are described in “Compiler
Options” on page 27. They can be specified in any order.

The following options have been enhanced so that you can explicitly specify where
the Compiler output is to be stored:

Option Description on page
BASE 27
CEXEC 28
DUMP 33
IEXEC 34
OBJECT 38
PRINT 41

REXXC allocates the specified or defaulted output data sets if they do not already
exist. It uses defaults for data set attributes and allocation values that are
described in “Customizing the REXXC EXEC” on page 121. For information about
how the names of the default data sets are derived, see “Derived Default Data Set
Names” on page 18.

REXXC checks the data set organization for each output. It ends with an error

rather than overwriting a partitioned data set with a sequential data set of the same
name, and vice versa.

© Copyright IBM Corp. 1991, 2000 17

Derived Default Data Set Names

If you do not specify data set names, REXXC derives default names for output data
sets. The following tables show the default data set names that may be created by
the REXXC command.

This table shows the defaults that are derived from the specified source (or the
BASE option’s value, if specified). The source program was either a member of a
partitioned data set or a sequential data set.

Partitioned Data Set Sequential Data Set
Option pref.cccc.qual(member) pref.cccc.qual
CEXEC upref.cccc. CEXEC(member) upref.cccc.qual.CEXEC
IEXEC upref.cccc.IEXEC(member) upref.cccc.qual.lIEXEC
OBJECT upref.cccc.OBJ(member) upref.cccc.qual.OBJ
PRINT upref.cccc.member.LIST upref.cccc.qual.LIST
DUMP upref.cccc.member.DUMP upref.cccc.qual.DUMP

The following table shows the default name for the load-data-set-name parameter
of the OBJECT option. It is derived from the name of the data set that contains the
output from the OBJECT option. This can be either a member of a partitioned data
set or a sequential data set.

Partitioned Data Set Sequential Data Set
pref.cccc.qual(member) pref.cccc.qual
load-data-set-name upref.cccc.LOAD(csect) upref.cccc.qual.LOAD(csect)

where:

pref and qual represent the prefix and the last level qualifier, respectively; csect
represents the name the Compiler puts in the ESD from the OBJECT output. See
Chapter 7, “Using Object Modules and TEXT Files” on page 73 for more
information on csect.

Note that the user’s default prefix upref (as set by the PROFILE PREFIX command)
is used for the output data sets.

Invoking the Compiler with ISPF Panels (MVS/ESA)

18

Under ISPF, you can invoke the Compiler from the Foreground REXX/370
Compilation panel or the Batch REXX/370 Compilation panel. The panels, Figure 2
on page 19 and Figure 3 on page 19, are similar to those for other high-level
language compilers.

Because the ISPF panels use the REXXC EXEC to invoke the Compiler, you can
specify the enhanced options as well as all other Compiler options.

SAA REXX/370 User's Guide and Reference

COMMAND ===>
ISPF LIBRARY:
PROJECT ===> TEST
GROUP ===> LIBI1 ===> | [B2 ===> LIB3 ===>
TYPE ===> REXX
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

LIST ID ===>

COMPILER OPTIONS:
>

INCLUDE DATA SETS:

>

nu n
vV Vv

Figure 2. Foreground REXX/370 Compilation Panel (Panel ID: FANFP14)
This panel may have been customized by your system administrator.

To use the Foreground REXX Compile panel:
1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.

3. Enter the appropriate data set names with the extensions described in

“Compiler Options” on page 27, and the compiler options.

See “Checking the Results of a Compilation” on page 12.

DATA SET NAME ===>

LIST ID
SYSOUT CLASS

>
> %

COMPILER OPTIONS:
>

INCLUDE DATA SETS:

nn u
vV VvV Vv

COMMAND ===>
ISPF LIBRARY:
PROJECT ===> TEST
GROUP ===> LIB1 ===> LIB2 ===> LIB3 ===>
TYPE ===> REXX
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:

(Blank for hardcopy listing)
(If hardcopy requested)

Figure 3. Batch REXX/370 Compilation Panel (Panel ID: FANJP14)

This panel may have been customized by your system administrator.

Chapter 3. Invoking the Compiler—In Detail

19

To use the Batch REXX Compile panel:
1. Select BATCH on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.

3. Enter the appropriate data set names with the extensions described in
“Compiler Options” on page 27, and the compiler options.

See “Checking the Results of a Compilation” on page 12.

The source program you specify must be stored in an ISPF library, a partitioned
data set, or a sequential data set. If you do not specify a member name of a
library or partitioned data set, a list is displayed from which you can select the
member to be compiled.

The default output data set names are the same as those described for the REXXC
EXEC (see “Derived Default Data Set Names” on page 18) with the following
additions:

e If the PRINT option is not specified, the compiler listing is named
upref.mmm.LIST, where uprefis the user’s default data set prefix and mmm is
the specified list identifier (LIST ID) or the member name of the source program.

» The first group is used for the default output data set names if the source
comes from an ISPF library and more than one group is specified. Figure 2 on
page 19 and Figure 3 on page 19 show examples of a first group ISPF library
name TEST.LIB1.REXX.

In contrast to the compilation panels for other languages, not only the compiler
options but all REXXC command options can be specified. For example, you can
explicitly specify data set names for compiler output, thus overriding the defaults.

Online help is available for the invocation panels.

Invoking the Compiler with JCL Statements (MVS/ESA)

20

You can compile a REXX program in an MVS/ESA batch environment by writing your
own JCL statements.

The JCL statements that you need are:
e A JOB statement that identifies the start of the job.

e An EXEC statement (PGM=REXXCOMP) that identifies the Compiler and the
compiler options. Additionally, a JOBLIB or STEPLIB data definition (DD)
statement may be necessary, so that the system can locate the REXXCOMP
program.

* DD statements that identify both the input and the output data sets that the
Compiler requires. These are described in “Data Sets Required by the
Compiler (MVS/ESA)” on page 21.

¢ A delimiter statement that separates data in the input stream from the JCL
statements that follow the data.

¢ Job entry subsystem (JES) control statements that provide information to the
JES.

SAA REXX/370 User's Guide and Reference

Invoking the Compiler with Cataloged Procedures (MVS/ESA)
You can compile a REXX program in an MVS/ESA batch environment by using a
cataloged procedure that is invoked by an EXEC statement in your job.

Your system administrator may have customized the cataloged procedures on your
system.

The first four cataloged procedures listed below are supplied with the Compiler.
The cataloged procedure REXXL is supplied with the Library.

REXXC Compile a REXX program.

REXXCG Compile and run a REXX program of type CEXEC.

REXXCL Compile and link-edit a REXX program of type OBJECT.

REXXCLG Compile, link-edit, and run a REXX program of type OBJECT.

REXXL Link-edit a REXX program of type OBJECT.

These cataloged procedures are listed in Appendix E, “The MVS/ESA Cataloged
Procedures Supplied by IBM” on page 211.

Data Sets Required by the Compiler (MVS/ESA)

The Compiler requires some standard input and output data sets. The number of
data sets depends on the compiler options specified. You must define these data
sets in DD statements with the ddnames shown in Figure 4 on page 22. The
SYSIN DD statement is always required. DD statements corresponding to
%INCLUDE directives are also required. Their DCB requirements correspond to
those of SYSIN in the following table.

Chapter 3. Invoking the Compiler—In Detail 21

Figure 4. Data Sets Required by the Compiler (MVS/ESA)

Record Required
Format Record Size for
DDNAME RECFM LRECL Contents Option
SYSCEXEC F, FB <32 760 and =20 Compiled EXEC CEXEC
V, VB <32 756 and =24
SYSDUMP FA, FBA 121 Formatted dumps DUMP
VA, VBA 125
SYSIEXEC* F, FB <32 760 Expanded source IEXEC
V, VB <32 756 program
SYSIN F, FB <32 760 Input to the Compiler
V, VB <32 756
SYSPRINT FA, FBA 121 Listing, including PRINT
VA, VBA 125 messages
SYSPUNCH F, FB 80 Object module OBJECT
SYSTERM F, FB 80 (Recommended) Errors, error TERMINAL or for
FA, FBA 81 (Recommended) gﬁ;asris, message messages of severity T
V, VB 84 (Recommended)
VA, VBA 85 (Recommended)

* See “"IEXEC” on page 34 for more details.

Invoking the Compiler with REXXD (CMS)

A sample compiler invocation dialog, REXXD, is supplied with the Compiler to
compile REXX source programs. The sample dialog may have been customized by
your system administrator. Ask your system administrator what command you
should enter to start this dialog if you do not succeed in using REXXD.

Start the dialog as follows:
REXXD [source-file-identifier]

where:

source-file-identifier
Is the file identifier of the source program. If you omit the file identifier,
the program last processed with REXXD is used again. You need not
fully specify the source file identifier. If you specify only the file name,
all accessed disks are searched for a REXX program that has this file
name and one of the supported file types (listed in variable $.0ptypes
in the file REXXDX XEDIT; see “Customizing the Compiler Invocation
Shells” on page 123). Alternatively, the file type could be prefixed
according to the rule specified in REXXDX in variable $.0ssft. The
selected file identifier appears in the main panel of the dialog. You
can change it there if you wish.

An example of the panel follows:

22 saA REXX/370 User's Guide and Reference

IBM Compiler for SAA REXX/370, Release 3

Specify a program. Licensed Materials - Property of IBM
Then select an action. 5695-013 (C) Copyright IBM Corp. 1989, 1994
A11 rights reserved.

Program TEST EXEC A Output disk: _
Action _ Source active Compiled

1 Compile TEST EXEC Al into TEST CEXEC Al

2 Switch (rename) source and compiled exec

3 Run active (source) program with argument string

4 Edit source program

5 Inspect compiler Tisting

6 Print source program

7 Print compiler listing

8 Specify compiler options

Argument string:

Command ===>
Enter Fl=Help F2=Filelist F3=Exit

F12=Cancel

Figure 5. Main Panel of the Sample Compiler Invocation Dialog

Use the various functions of the dialog as you need them:

* In the field Program, type or change the identifier of the program you want to
work with.

* In the field Output disk, you can specify the disk on which the Compiler output

is to be stored.

e To select an action, type its number in the selection field and press the Enter
key.

e You can use the default compiler options to begin with.

¢ Whenever you need further guidance, press the Help key (F1) for online help.

When you start using the Compiler regularly, set up suitable values in the REXX
Compiler Options Specifications panel, shown in Figure 6 on page 24, and save
them for future use. The compiler options are explained in the online help and in
“Compiler Options” on page 27.

Chapter 3. Invoking the Compiler—In Detail

23

Setting the Compiler Options

When you select the “Specify compiler options” action you get the following panels
that prompt you for the compiler options:

REXX Compiler Options Specifications 1 of 2

Specify the output files you want, and their file IDs More: +
File identifiers
Program name TEST EXEC

A
Y Compiler listing (Y/N/P) = LISTING =
Y Compiled EXEC (Y/N) = C* =
N TEXT file (Y/N) = TEXT =
N IEXEC file (Y/N) = I* =
Specify compiler messages to be issued
I FLAG Minimum severity of messages to be shown (I/W/E/S/T/N)
N TERM Display messages at the terminal (Y/N)
N SAA SAA-compliance checking (Y/N)
* LL LIBLEVEL (*/2/3/4/5/6)

Specify contents of compiler listing

Y SOURCE Include source Tisting (Y/N)
N XREF Include cross-reference Tisting (Y/S/N)

N FORMAT Format with column numbers (Y/N)

55 LC Number of lines per page (10-99 or, for no page headings, 0 or N)

Command ===>
Enter Fl=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F8=Fwd
F12=Cancel

Figure 6. Options Specification Panel (1 of 2)

REXX Compiler Options Specifications 2 of 2
Specify additional compiler options More: -

Additional options

SL Support SOURCELINE built-in function (Y/A/N)

TH Support HI immediate command (Y/N)

NOC Error level to suppress compilation (*/W/E/S/T)

COND Condense compiled program (Y/N)

DL Include ESD and RLD in TEXT output (Y/N)

ALT Compiled program supports the Alternate Library (Y/N)
TR Compiled program can be traced (Y/N)

* MARGINS Left and right source margins

|Z|Z|IZIZIn|I=ZI=

Special compiler diagnostics
N DUMP Produce diagnostic output (0-2047, Y, or N)

Y OPT Optimize compiled program (Y/N)

Command ===>
Enter Fl=Help F2=Filelist F3=Exit F4=Save F5=Refresh F6=Reset F7=Bkwd
F12=Cancel

Figure 7. Options Specification Panel (2 of 2)

The current default options are displayed. You can type and optionally save new
values in any of the fields. The compiler invocation dialog will use the saved
options the next time it is invoked.

24 saa REXX/370 User's Guide and Reference

Invoking the Compiler with the REXXC EXEC (CMS)

A sample compiler invocation EXEC, REXXC, is supplied with the Compiler to
compile REXX source programs. Ask your system administrator what command
you should enter to start this EXEC if you do not succeed in using the IBM-supplied
EXEC.

Enter the command to start the EXEC in the following format:
REXXC source-file-identifier [(options-lisf)]]

where:

source-file-identifier
Is the file identifier of the source program. You need not fully specify
the source file identifier. If the file type is not specified, EXEC is used.
If you do not specify the file mode, it defaults according to the CMS
search order.

options-list 1s a list of compiler options to be used, separated by blanks. For
details of the options that can be specified, see “Compiler Options” on
page 27. The defined defaults are used for any options that you do
not specify. See “Setting Up Installation Defaults for the Compiler
Options” on page 124 for details.

Invoking the Compiler from ISPF Panels (CMS)

For information on how to invoke the Compiler from ISPF panels, see ISPF/PDF
Guide Version 3 Release 2 for VM.

Chapter 3. Invoking the Compiler—In Detail 25

26 saa REXx/370 User's Guide and Reference

Chapter 4. Compiler Options and Control Directives

This chapter describes the compiler options, including the enhanced options for
REXXC, and the control directives that are available.

While the Compiler options are specified when the Compiler is invoked, the control
directives are within your program as part of the REXX code.

Compiler Options

ALTERNATE

BASE

This section describes the functions and syntax of the compiler options, along with
their abbreviations and defaults supplied by IBM.

Make sure you separate the options by blanks. The last specification of an option
takes precedence.

The compiler options are described in alphabetical order.

The ALTERNATE option specifies that at run time the Alternate Library may be
used.

ALTERNATE Creates a compiled program of CEXEC or OBJECT type that can
run both with the Alternate Library and the Library.

The SLINE Compiler option must also be specified.

If the DLINK option is specified, the program can take
advantage of directly linked programs only when running with
the Library. For programs that run with the Alternate Library,
DLINK has no effect; the standard REXX search order is used.
See “Creating REXX Programs for Use with the Alternate
Library (MVS/ESA, CMS)” on page 115 for more information.

NOALTERNATE Creates a compiled program of CEXEC or OBJECT type that will
run using the Library. The program cannot run with the
Alternate Library.

Abbreviations: ALT, NOALT
IBM default: NOALTERNATE

The BASE option can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17) or when invoking REXXC indirectly using the
ISPF panels (see page 18).

It can be used to specify the base for constructing the default output data set
names for CEXEC, DUMP, IEXEC, OBJECT, and PRINT output.

BASE (data-set-name[(member)])
The data set name and member name are used to construct the
default data set names for compiler output.

If the BASE option is not specified, the output data set names are created as
explained in “Derived Default Data Set Names” on page 18.

© Copyright IBM Corp. 1991, 2000 27

CEXEC

28

The CEXEC option specifies whether the Compiler is to produce a compiled EXEC.
See also “OBJECT” on page 38 for an alternative form of compiled output.

CEXEC

Under MVS/ESA, this option produces a compiled EXEC in the
data set allocated to the ddname SYSCEXEC.

CEXEC](data-set-name)]

Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates a compiled
EXEC.

This option is extended so that you can specify the name of the
data set in which the compiled EXEC is to be stored. A default
data set name is used if you do not specify data-set-name.

CEXEC](file-identifier)]

NOCEXEC
Abbreviations:

IBM default:

Under CMS, this option produces a compiled EXEC. You need
not fully specify the file identifier. The default file name is the
name of the source file. The default file type is the letter C
concatenated with the source file type. The default file mode is
the file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1l is
used.

Does not produce a compiled EXEC.
CE, NOCE
CEXEC

You can use compiled EXECs for:

e Programs to be used in command environments

e XEDIT macros

¢ PDF edit macros

e GDDM* macros

¢ Pipe filters

e Any other program that is not required to be in the form of a TEXT file or object

module

SAA REXX/370 User's Guide and Reference

— Background information about compiled EXECs

You can replace your existing source EXECs with compiled EXECs. The search
order for compiled and interpretable EXECs is the same, and they can be
invoked in the same way. This makes it possible to ensure that there is no
difference, from a user’s point of view, between invoking a compiled EXEC and
invoking the interpreter for the source program.

To achieve this aim:

e Under MVS/ESA, using the explicit method of invoking EXECs, the TSO/E
EXEC command specifies the location of the REXX EXEC.

Using the implicit method of invoking EXECs, the interpretable EXEC is
invoked as a command using the member name of the interpretable EXEC.
For the system to give control to the compiled EXEC, the EXEC must have

interpretable EXEC. For more information, see “Organizing Compiled and
Interpretable EXECs under MVS/ESA” on page 51, TSO/E Version 2
REXX/MVS Reference, and TSO/E Version 2 Command Reference.

e Under CMS, the compiled EXEC must be given the same file type, such as
EXEC or XEDIT, that the source program would have for interpretation. The
source file must, therefore, be renamed, removed, or moved further down
the search order. The sample compiler-invocation dialog, REXXD, handles
this requirement. See “Invoking the Compiler with REXXD (CMS)” on
page 22 for a description of this dialog.

A compiled EXEC behaves the same as an interpretable EXEC: the
EXECLOAD command makes the EXEC resident; the DCSSGEN utility loads
the EXEC in a discontiguous saved segment (DCSS); and the EXEC can be
loaded and started through the CMS EXEC handler.

e Under VSE/ESA, the compiled EXEC must be stored in a sublibrary with
member type PROC. To ensure that the compiled REXX program is found
before the interpretable one, use the LIBDEF statement as described in
“Organizing Compiled and Interpretable EXECs under VSE/ESA” on
page 52. See “Converting from MVS/ESA to VSE/ESA” on page 88 or
“Converting from CMS to VSE/ESA” on page 89 for details.

The compiler writes information about the source file and the compilation to the
compiled EXEC. The information includes the name of the source file (in MVS,
the DSName of the first data set in the SYSIN concatenation; in CMS, the file
ID), and the date and time of the compilation. The first 160 bytes of the
compiled program are reserved for this information. You can use a text editor,
for example, the ISPF browse, view, or edit functions or XEDIT to view the
information.

the same member name and must come earlier in the search order than the

Chapter 4. Compiler Options and Control Directives

29

COMPILE

The COMPILE option specifies whether the Compiler is to produce compiled code
after all error checking has been performed. (The CEXEC and OBJECT options
determine which files are created.)

COMPILE Generates compiled code, unless:

e NOTRACE is in effect and a severe or terminating error is
detected
e TRACE is in effect and a terminating error is detected

NOCOMPILE Unconditionally suppresses the generation of compiled code
after all error checking.

NOCOMPILE(W) Suppresses the generation of compiled code if a warning, error,
severe error, or terminating error is detected.

NOCOMPILE(E) Suppresses the generation of compiled code if an error, severe
error, or terminating error is detected.

NOCOMPILE(S) Suppresses the generation of compiled code if a severe error
or terminating error is detected.

Abbreviations: C, NOC

IBM default: NOCOMPILE(S)

Note: If you specify COMPILE with TRACE in effect, you receive output even if
severe errors are diagnosed. If you specify COMPILE with NOTRACE in effect, you
receive the same output as with NOC(S).

CONDENSE

The CONDENSE option specifies whether the generated ouput is to be condensed
to take up less space. The saving in space can be up to 66%. The condensed
program is uncondensed in storage prior to execution.

Note: The DLINK option and the CONDENSE option are mutually exclusive.

CONDENSE Condenses the output generated by the CEXEC or the OBJECT
compiler option, or both.

NOCONDENSE Does not condense the output generated by the CEXEC or the
OBJECT compiler option.

Abbreviations: COND, NOCOND

IBM default: NOCONDENSE

30 saa REXx/370 User's Guide and Reference

DLINK

— Background information about condensed programs

The size of a compiled REXX program often exceeds the size of the source
program. The CONDENSE compiler option enables you to significantly reduce
the size of both CEXEC type output and OBJECT type output. The time taken to
load the condensed program is shorter. However, execution time is longer
because the program must be uncondensed before it is run. Use the
CONDENSE compiler option for programs that are started infrequently, for
example, programs that are run once a day. It is not recommended that you
use CONDENSE for programs that are run frequently or programs that are
EXECLOADed because of the time required to unpack the program each time it
is run.

This option:
¢ Reduces the amount of disk space required by compiled REXX programs

¢ Reduces the amount of virtual storage required by preloaded compiled
REXX programs

¢ Reduces the amount of I/O activity required to load compiled REXX
programs

When a condensed compiled REXX program is invoked, the program is
automatically uncondensed. A condensed compiled REXX program requires
more storage while it is running:

e During the uncondense operation, an additional 128KB (KB equals 1024
bytes) of storage are required.

e While a condensed compiled REXX program is running, both the condensed
and the uncondensed copy exist in storage.

e Additional CPU time is required to uncondense the compiled REXX program.
Apart from that, the performance characteristics of a condensed program
equal the performance characteristics of an uncondensed program.

Note: The CONDENSE option can also be used to make a program
unreadable if the source lines were included in the compiled program using the
SLINE option.

The DLINK option specifies whether the OBJECT output is to contain references to
external routines and functions. External references are generated in the form of
weak external references, requiring explicit inclusion of referenced programs when
linking or loading. External references are not generated if the name of the routine
is longer than 8 characters, contains embedded, trailing, or leading blanks, or the
name is specified within quotes.
Notes:

1. The DLINK option and the CONDENSE option are mutually exclusive.

2. The DLINK option and the TRACE option are mutually exclusive.

3. The DLINK option has no effect for programs that run with the Alternate Library.

Chapter 4. Compiler Options and Control Directives 31

DLINK Generates weak external references in the OBJECT output for
external functions and subroutines whose names can be a
maximum of 8 characters in length. If a name is specified
within quotes, it must contain no blanks.

NODLINK Does not generate weak external references in the OBJECT
output.

Abbreviations: DL, NODL

IBM default: NODLINK

— Background information about directly linked external programs

When external functions and subroutines are linked directly to the REXX
program, the REXX search order is bypassed, and the linked program is invoked
directly. The advantages are:

e Better performance, as no search for the program is needed

¢ No possibility of accidentally accessing a program with the same name
located earlier in the search order

¢ Improved packaging, because a program and its external subroutines can
be linked into one load module

External functions and subroutines linked directly to a REXX program can be:
e Compiled REXX programs of type OBJECT.

— In MVS/ESA they must be linked with the external function parameter list
(EFPL) stub; see Appendix A, “Interface for Object Modules (MVS/ESA)”
on page 179.

— In VSE/ESA they must be combined with the EFPL stub; see
Appendix C, “Interface for Object Modules (VSE/ESA)” on page 199.

e Programs that are written in any programming language that conforms to
the following linkage conventions:

— Under MVS/ESA and VSE/ESA, a directly linked program is invoked with
an EFPL. It must conform to the linkage conventions for external
functions and subroutines, as described in TSO/E Version 2 REXX/MVS:
Reference manual for MVS/ESA, and in IBM VSE/Enterprise Systems
Architecture REXX/VSE: Reference manual for VSE/ESA.

— Under CMS, SVC linkage conventions are used, and register 13 must
not be changed by the program. When applicable, the directly linked
program is invoked in AMODE 31, and arguments are not copied below
16MB (MB equals 1 048 576 bytes) in virtual storage. The call type is
X'05', a 6-word extended PLIST is passed to the invoked program.
See Appendix B, “Interface for TEXT Files (CMS)” on page 195 for
details.

You need not link all external functions and subroutines. If they are not linked,
they will be searched for on every invocation. For more information see
Chapter 7, “Using Object Modules and TEXT Files” on page 73, “Linking
External Routines to a REXX Program” on page 82, and “DLINK Example” on
page 182.

32 saa REXx/370 User's Guide and Reference

DUMP

FLAG

Note: The DUMP option is not designed for program debugging. Use this option
only if you suspect an error in the Compiler and if an IBM support representative
asks for interphase dumps.

The DUMP option provides diagnostic information for use by IBM support personnel.
If this option is specified, formatted dumps of the Compiler’s control blocks and
intermediate texts are taken after selected phases. Under MVS/ESA, the dump is
written to the SYSDUMP data set. Under CMS, the dump file is sent to the virtual
printer.

DUMP(n) Produces the interphase dumps specified by the value of n,
where nis a number in the range 0 through 2047. The
meaning of this parameter is fully described in the 1BM
Compiler and Library for REXX/370: Diagnosis Guide.

DUMP Produces all interphase dumps.

DUMP|([data-set-name][,n])]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Produces formatted
dumps.

This option is extended so that you can specify the name of the
data set in which the formatted dumps are to be stored. A
default data set name is used if you do not specify
data-set-name. All possible dumps are produced if you do not

specify n.
NODUMP Does not produce dumps.
Abbreviations: DU, NODU
IBM default: NODUMP

The FLAG option specifies the minimum severity of errors for which messages are
to be issued. (The PRINT and TERMINAL options specify where the messages
appear.)

FLAG Is equivalent to FLAG(l).

FLAG(I) Issues all messages, including informational messages.

FLAG (W) Issues messages only for warnings, errors, severe errors, and
terminating errors.

FLAG (E) Issues messages only for errors, severe errors, and terminating
errors.

FLAG(S) Issues messages only for severe errors and terminating errors.

FLAG(T) Issues messages only for terminating errors.

NOFLAG Is equivalent to FLAG(T).

Abbreviations: F, NOF

IBM default: FLAG(I)

Chapter 4. Compiler Options and Control Directives 33

IEXEC

The FORMAT compiler option specifies that, in addition to the line numbers, the
column numbers are to be included in the list of error messages and the
cross-reference listing.

FORMAT Is equivalent to FORMAT(C).

FORMAT(C) Formats the error messages and cross reference with column
numbers.

NOFORMAT Does not format the error messages and cross reference with
column numbers.

Abbreviations: FO, NOFO

IBM default: NOFORMAT

The IEXEC option generates an expanded output that contains the REXX source
program and all members included by means of the %INCLUDE control directive.
The IEXEC output is an interpretable REXX program.

The IEXEC output can contain fixed-length or variable-length records. Fixed-length
records are written only if:

e All input files (REXX source and included files) have fixed-length records of
identical record length.

¢ All %INCLUDE directives are defined either on separate lines or at the very end
of a line to avoid a split of the line.

¢ Either all files contain sequence numbers or none of the files contains
sequence numbers.

¢ Under MVS/ESA, the output data set is explicitly defined with RECFM=F or FB.
In all other cases, variable-length records are written.

The compiler does not write sequence numbers to the IEXEC output. This is
because the sequence numbers from any %INCLUDE file might not be compatible
with the sequence numbers from the main REXX source program and lead to error
messages issued by many text editors. However, the LRECL values provided by
the compiler as default values provide 8 bytes for any renumbering.

34 saa REXx/370 User's Guide and Reference

— Background information about calculating record lengths in MVS

This box describes the record lengths supported by the compiler. If you
allocate a file for IEXEC output and assign an LRECL value to it, the value must
conform to the description given in this box. The default values used by the
compiler are described at the end of the box.

For fixed-record lengths, LRECL must be set to one of the following:
e Without sequence numbers
right margin - Teft margin + 1
e With sequence numbers
right margin - left margin + 1 + 8
The MARGINS values apply to the records remaining after the compiler has
removed the sequence numbers. If you have set MARGINS to the default value

MARGINS(1 *), LRECL is equal to the record length of the record length of the
source files.

For variable-length records, LRECL must be greater than, or equal to, one of the
following:

¢ If none of the files contain sequence numbers
right margin - Teft _margin + 5
¢ |f any of the files contain sequence numbers

right margin - left margin + 5 + 8

If you specified * for right_margin, the value of right_margin in the last two
expressions must be set to the length of the longest input record.

If no LRECL, RECFM, and BLKSIZE (MVS) parameters have been assigned to
the IEXEC output file, the compiler supplies the following default values:

RECFM = V (CMS) or VB (MVS)
LRECL = max. value of (right margin - Teft margin + 5 + x)
where x=8 if the record contains sequence numbers or
x=0 if the record does not contain sequence numbers
BLKSIZE = 10 * LRECL

If you compile fixed-length records and want to have a fixed-length IEXEC file,
create a file that assigns values to the RECFM, LRECL, and BLKSIZE
parameters before calling the compiler.

If variable-length records are written to the IEXEC output, the records that originated
from fixed-record-length files contain the trailing blanks they had in the originating
file. This is necessary to ensure that the SOURCELINE built-in function, if called,
gives the same results when the compiled program is run and when the IEXEC
output is interpreted.

If you edit an IEXEC output of variable record length with a text editor like, for
example, XEDIT under CMS, you may inadvertently remove the trailing blanks.

Chapter 4. Compiler Options and Control Directives 35

IEXEC

Under MVS/ESA, this option produces IEXEC output and stores
it in the data set allocated to the ddname SYSIEXEC.

IEXEC[(data-set-name)]

Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates IEXEC output.

This option is extended so that you can specify the name of the
data set in which the IEXEC output is to be stored. A default
data set name is used if you do not specify data-set-name.

IEXEC](file-identifier)]

NOIEXEC
Abbreviations:

IBM default:

LIBLEVEL

36

Under CMS, this option produces IEXEC output. You need not
fully specify the file identifier. The default file name is the
name of the source file. The default file type is the letter |
concatenated with the source file type. The default file mode is
the file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode Al is
used.

Does not produce IEXEC output.
I, NOI
NOIEXEC

The LIBLEVEL option specifies the version of the Library required to run the

compiled program.

LIBLEVEL (n)

LIBLEVEL (*)
Abbreviations:

IBM default:

The level of the Library required to run the compiled program,
where n is a number in the range 2 through 6. The Compiler
checks that the language features used in the program are
compatible with the Library level specified. If a feature is found
that requires a higher Library level, this is flagged in the source
listing.

Specifies that all levels of the Library are supported.
LL(N)
LL(%)

The following table shows the language features supported by the different Library

levels.

SAA REXX/370 User's Guide and Reference

LINECOUNT

Library Level Library Name New or Changed Features
2 Runtime e CALL ON ERROR|FAILURE|HALT NAME built-in
Library function
Release 1 e Addressing tails of compound variables with 1 or
(TSO) 2 components
e Assignments
3 Runtime ¢ Arithmetic operations, for example, addition,
Library multiplication
Release 2 ¢ Binary strings including B2X and X2B built-in
functions
e Variable reference list (variable name enclosed
in parentheses) in DROP and EXPOSE
e Alternate Library via PTF
4 Runtime e STREAM, LINES, LINEIN, LINEOUT, CHARS,
Library CHARIN, and CHAROUT built-in functions
Release 3 e CALL|SIGNAL OFF NOTREADY
e CALL|SIGNAL ON NOTREADY
e TRACE statement and TRACE built-in function
¢ INTERPRET statement
5 Runtime ¢ Date conversion
Library
Release 3
6 Runtime e Date separation character
Library
Release 3
Notes:

1. LIBLEVEL 0 and 1 are no longer supported.

2. Any higher library levels will be documented through APARS.

The LINECOUNT option specifies the maximum number of lines to be included on
each page of the compiler listing. This number includes the header lines and any
blank lines. You can specify that there are to be no page breaks within the source
and cross-reference listings; this is useful if you intend to display the listing at a
terminal, because there are no page headers to scroll through. However, if you
print such a listing, your output continues from one page to the next without a

break.

LINECOUNT(n)

LINECOUNT(0)
Abbreviation:

IBM default:

Puts n lines on each page of the compiler listing, where nis a
number in the range 10 through 99.

Creates continuous output in the compiler listing.

LC

LINECOUNT(55)

Chapter 4. Compiler Options and Control Directives 37

MARGINS

OBJECT

The MARGINS option specifies the left and right margins of the REXX program.
Only the text contained within the specified margins is compiled. The Compiler
listing, however, always contains the complete input records.

If the SLINE option is specified, the OBJECT or CEXEC output contains only the text
within the specified margins. Similarly, if the IEXEC option is specified, the IEXEC
output contains only the text within the specified margins.

If the first record of the source file contains only decimal digits in the first 8 bytes
(RECFM=V|VB) or in the last 8 bytes (RECFM=F|FB), then the file is assumed to
contain sequence numbers. In this case, the sequence numbers are removed and
the specified margin values are applied to the remaining part of the record. Only
the text contained within the specified margins is compiled.

Each file included by means of the %INCLUDE control directive is checked for
sequence numbers. Therefore, a REXX source file can include files with different
record formats and files with or without sequence numbers.

MARGINS (left [right])

left Specifies the first column of the source file containing valid REXX
code. Valid values for left are:
e Under MVS/ESA: from 1 to 32760
e Under CMS: from 1 to 65535
right Specifies the last column of the source file containing valid REXX
code. Valid values for right are:
e * (asterisk), the default, to indicate the last column of the
input record
e Under MVS/ESA: from left to 32760
e Under CMS: from left to 65535

Abbreviation: M
IBM default: MARGINS(1 *)

Under MVS/ESA, the OBJECT option specifies whether the Compiler is to produce
an object module.

Under CMS, the OBJECT option specifies whether the Compiler is to produce a
TEXT file.

OBJECT Under MVS/ESA, this option produces an object module in the
data set allocated to the ddname SYSPUNCH.

OBJECT [(obj-data-set-name) |
([obj-data-set-name],stub[,load-data-set-name])]

Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17). Generates an object
module and, optionally, a load module.

This option is extended so that you can specify the name of the
data set in which the object output is to be stored. A default
data set name is used if you do not specify obj-data-set-name.
Optionally, you can specify a stub, which can be a member

38 saa REXx/370 User's Guide and Reference

name, the name of a partitioned data set including a member
name, or a predefined stub name. Five predefined stubs are
provided: CPPL, EFPL, CPPLEFPL, MVS, and CALLCMD. If a
stub is specified, a load module is created when the compiler
creates an OBJECT output. The name of the data set that is to
contain the load module may be specified. If the member
name is omitted, a default member name is assumed. A
default data set name is used if you do not specify
load-data-set-name.

Note: As the stubs are part of the Library, this form of
invocation is available only if the Library is installed.

OBJECT [(file-identifier)]

NOOBJECT
Abbreviations:

IBM default:

Under CMS, this option produces a TEXT file that has the file
identifier you specify. The file identifier need not be fully
specified. The default file name is the file name of the source
file. The default file type is TEXT. The default file mode is the
file mode of the source file, provided you currently have
read/write access to that minidisk; otherwise, file mode A1l is
used.

Does not produce an object module or a TEXT file.
OBJ, NOOBJ
NOOBJECT

Refer to Chapter 7, “Using Object Modules and TEXT Files” on page 73 for
information on when to use OBJECT rather than CEXEC output, how to generate
executable modules, and how to determine the name of the TEXT file. See also
Appendix A, “Interface for Object Modules (MVS/ESA)” on page 179, Appendix B,
“Interface for TEXT Files (CMS)” on page 195, and Appendix C, “Interface for
Object Modules (VSE/ESA)” on page 199 for more information.

Chapter 4. Compiler Options and Control Directives 39

40

— Background information about using OBJECT output

Under MVS/ESA, object modules can be used to create load modules. The load
modules can be used as commands and parts of REXX function packages.

Load modules are invoked in the same way as output from other high-level
language compilers:

e From MVS JCL statements

¢ From the TSO/E command line

¢ As a host command

e As part of a function package from within a REXX program

See Chapter 7, “Using Object Modules and TEXT Files” on page 73 for
information about function packages, and Appendix A, “Interface for Object
Modules (MVS/ESA)” on page 179 for more information.

For ISPF restrictions, see ISPF/PDF Guide and Reference Version 3 Release 5
for MVS.

Under CMS, the Compiler can produce a TEXT file. A TEXT file can be
processed into a MODULE file, which can then be started like a CMS command.
A TEXT file can also be linked to an Assembler program. A MODULE file can
also be used to create a function package from a REXX program.

Notes:
1. MODULE files come after EXEC files in the CMS search order.

2. Although these TEXT files can be linked with other compiled programs, they
must receive standard SVC PLISTs as input, unlike other high-level language
programs. See Appendix B, “Interface for TEXT Files (CMS)” on page 195
for details.

3. If your program is in the form of a MODULE file and it calls another module,
the called module may overlay your program in storage. This occurs, for
example, when both modules are loaded at the default start address. You
can avoid this by specifying a start address when loading TEXT files or by
using the NUCXLOAD command or the RLDSAVE option of the LOAD
command.

4. For ISPF restrictions, see ISPF/PDF Guide Version 3 Release 1 for VM.

For more information on OBJECT output, see Chapter 7, “Using Object Modules
and TEXT Files” on page 73 and Appendix B, “Interface for TEXT Files (CMS)”
on page 195.

Under VSE/ESA, the output from the OBJECT option can be used to create a
phase. The output must be generated either on MVS/ESA or on CMS, then
transferred to VSE/ESA. When it is on VSE/ESA, phases can be built. The
phases can be invoked as programs from JCL, or as parts of REXX function
packages.

For more information see Chapter 7, “Using Object Modules and TEXT Files”
on page 73 and Appendix C, “Interface for Object Modules (VSE/ESA)” on
page 199.

SAA REXX/370 User's Guide and Reference

OPTIMIZE

PRINT

The OPTIMIZE option specifies whether the object code is to be optimized to reduce
the amount of CPU time it requires at runtime.

OPTIMIZE The compiled output is optimized.
NOOPTIMIZE The compiled output is not optimized.
Abbreviations: OPT/NOOPT

IBM default: OPTIMIZE

This option can also be coded as OPTIMISE/NOOPTIMISE to support British
spelling.

Use this option only to verify a defect encountered. In any case, report this
problem to your IBM representative.

The PRINT option specifies whether a compiler listing is to be created and, if so,
where it is to be printed or stored.

The listing shows the compiler options used and, depending on which other
compiler options are in effect, the source program, messages, and cross-reference
listing. See also Chapter 6, “Understanding the Compiler Listing” on page 57.

PRINT Under MVS/ESA, this option creates a compiler listing in the
data set allocated to the ddname SYSPRINT.

Under CMS, this option creates a compiler listing and sends it
to the virtual printer.

PRINT[(data-set-namef* [**)]
Can be used only when invoking the Compiler with the REXXC
EXEC under MVS/ESA (see page 17).

This option is extended so that you can specify the name of the
data set where the compiler output listing is to be stored. If
you specify an asterisk, the listing is written to the terminal. A
default data set name is used if you do not specify
data-set-name or * (asterisk). If you specify ** (two asterisks),
any preallocation for SYSPRINT is used.

PRINT([file-identifier])
Under CMS, this option creates a compiler listing file that has
the file identifier you specify, or a default file identifier. You
need not fully specify the file identifier. The default file name is
the file name of the source file. The default file type is LISTING.
The default file mode is the file mode of the source file,
provided you currently have read/write access to that minidisk;
otherwise, file mode A1l is used.

NOPRINT Does not create a compiler listing.
Abbreviations: PR, NOPR
IBM default: MVS/ESA: PRINT

CMS: PRINT()

Chapter 4. Compiler Options and Control Directives 41

SAA

The SAA option specifies whether the Compiler is to check the source program for
REXX language elements that are not part of level 4.00 of the SAA REXX interface.
When this option is in effect and the FLAG option is set to | or W, a warning
message is issued for each non-SAA item found.

Note: The Compiler does not detect the following:

e A non-SAA item if it is contained in an instruction that is not fully analyzed until
run time. For example, DATE('C") is flagged as a non-SAA item. However,
INTERPRET "SAY DATE('C')" is not flagged because the contents of the
character string after INTERPRET are evaluated at runtime.

¢ Wrong arguments in stream I/O built-in functions or a wrong number of
arguments in stream I/O built-in functions.

e DBCS symbols are not flagged if a program is compiled with Options 'ETMODE'

in effect.
SAA Checks for SAA compliance.
NOSAA Does not check for SAA compliance.
Abbreviations: None
IBM default: NOSAA

SLINE

The SLINE option specifies whether the Compiler is to include the source program
in the compiled output and, consequently, support the SOURCELINE built-in function
at run time. If you require support for Alternate Libraries or full tracing, you should
also set this option. If the MARGINS option is specified, the compiled output
contains only the text between the specified margins.

This option also determines whether the source code appears in traceback
messages, which are issued for runtime errors. If you specify SLINE, users can see
the source code. Also, the compiled program is larger. See also “SOURCELINE
Built-In Function” on page 97.

SLINE Includes the source program in the compiled code.

SLINE(AUTO) Includes the source program in the compiled code only if one
or more of the following are met:

¢ The SOURCELINE built-in function is found in the program.
e The TRACE compiler option is set.
e The ALTERNATE compiler option is set.

NOSLINE Does not include the source program in the compiled code.
Abbreviations: SL, SL(A), NOSL
IBM default: NOSLINE

42 saa REXx/370 User's Guide and Reference

SOURCE

TERMINAL

TESTHALT

The SOURCE option specifies whether the compiler listing is to include a source
listing. If you specify NOSOURCE, only erroneous source lines are included in the
listing with the corresponding messages. See also “Source Listing” on page 58.

SOURCE Produces a source listing.
NOSOURCE Does not produce a source listing.
Abbreviations: S, NOS

IBM default: SOURCE

The TERMINAL option specifies whether messages and the message summary are
to be displayed at the terminal (CMS) or to be written to the data set allocated to
the ddname SYSTERM (MVS/ESA), in addition to being included in the compiler
listing. The messages depend on the setting of the FLAG option. Use the
TERMINAL option when you expect only a small number of errors.

A message displayed at the terminal is always preceded by the erroneous source
line. If no messages are issued, the message summary is not displayed.

Note: Under MVS/ESA, if SYSPRINT and SYSTERM are allocated to the same
destination, messages that would otherwise be issued to both SYSPRINT and
SYSTERM are issued only once.

TERMINAL Displays messages at the terminal.
NOTERMINAL Does not display messages at the terminal.
Abbreviations: TERM, NOTERM

IBM default: NOTERMINAL

The TESTHALT compiler option specifies whether the compiled program is to
contain code that supports the halt condition. One way to set the halt condition is,
for example, the HI (Halt Interpretation) immediate command. Specify the
TESTHALT option to be able to halt the program without consequently affecting the
operation of any other programs. This is especially useful when you want to halt
an edit macro that is looping, without terminating the whole editing session, as the
HE command would do in MVS/ESA, or as the HX command would do in CMS. To
specify TESTHALT hooks in the program independently of the TESTHALT compiler
option, use the %TESTHALT compiler directive. For further information, see
“BTESTHALT” on page 49.

For performance considerations, see “TESTHALT Option” on page 113. Also see
“Halt Condition” on page 94.

TESTHALT Generates code that supports the HI command.
NOTESTHALT Does not generate code that supports the HI command.
Abbreviations: TH, NOTH

IBM default: NOTESTHALT

Chapter 4. Compiler Options and Control Directives 43

TRACE

XREF

The TRACE option specifies that the compiled program can be traced. The
performance of a program compiled with the TRACE option is not as good as that of
the same program compiled with the NOTRACE option. However, a program
compiled with the TRACE option usually has a better performance than the same
program when it is interpreted.

TRACE Creates a compiled program of CEXEC or OBJECT type that can
be traced. The TRACE instruction and the TRACE built-in
function are supported, except for the trace setting SCAN. The
initial trace setting is NORMAL, as with the interpreter.

The SLINE Compiler option must also be specified.

NOTRACE Creates a compiled program of CEXEC or OBJECT type that
cannot be traced. The compiled program behaves the same as
interpreted programs that run with TRACE set to OFF. At run
time, all valid options in the TRACE instructions and TRACE
built-in functions are set to OFF.

Note: If the program is compiled with the ALTERNATE option
and run with the Alternate Library, it can be traced like a
normal interpreted program.

Abbreviations: TR, NOTR
IBM default: NOTRACE

The XREF option specifies whether the compiler listing is to include a
cross-reference listing. This lists all variables, labels, constants, built-in functions,
and external routines, indicating the numbers of the lines on which they are
referenced. Source lines containing recognized commands and ADDRESS clauses
are also listed. Lines that contain erroneous clauses may or may not appear in the
command list. The cross-reference listing is useful for debugging and program
maintenance. See also “Cross-Reference Listing” on page 63.

XREF Produces a cross-reference listing.

XREF(SHORT) Produces a cross-reference listing that contains neither
constants nor commands.

NOXREF Does not produce a cross-reference listing.

Abbreviations: X, X(S), NOX

IBM default: NOXREF

Control Directives

This section describes the functions and syntax of the Compiler control directives in
alphabetic order.

A control directive always starts with /*% and ends with */.

44 saa REXx/370 User's Guide and Reference

%COPYRIGHT

The %COPYRIGHT control directive inserts a notice (for example a copyright notice)
in the form of a visible text string in the CEXEC, OBJECT output, and core image of
the compiled program. The text string starts after the header part.

The %COPYRIGHT control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

/*%COPYRIGHT (c) copyright MY company 1999%/

The %COPYRIGHT control directive is recognized as such only if it immediately
follows a /* comment delimiter. The word %COPYRIGHT can be in mixed case.

The notice can be broken into several %COPYRIGHT control directives. The text
following %COPYRIGHT, starting with the first nonblank character and up to the end
of the comment, is called a copyright part and is used to build the copyright notice.
The final copyright notice is the concatenation of all copyright parts defined in the
program.

This is an example of a REXX program that contains %COPYRIGHT control
directives:

/*%COPYRIGHT This is an example of a copyright */
Say 'Hello'
/*%COPYRIGHT notice. */

The string:
This is an example of a copyright notice.
is taken as the copyright notice.

Note: Blank characters immediately following %COPYRIGHT are ignored. Blank
characters at the end of a copyright part, preceding the */ delimiter, are taken as
part of the copyright notice.

A copyright part can contain comments. The text in these comments is taken as
such and used as part of the copyright notice, even if the comment contained in a
copyright part begins with a directive. For example:

/*%COPYRIGHT Example of a copyright notice containing a /*%COPYRIGHT commentx/.x/

The resulting copyright notice is:

Example of a copyright notice containing a /*%COPYRIGHT commentx/

%INCLUDE

The %INCLUDE control directive inserts, at compilation time, REXX code contained
in MVS/ESA data sets or in CMS files into the REXX source program.

The %INCLUDE control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

/*%INCLUDE filel =/

For a %INCLUDE directive to be recognized as such, the following must be true:

¢ The directive immediately follows a /* comment delimiter.

Chapter 4. Compiler Options and Control Directives 45

46

e The directive is not part of another %INCLUDE directive or of a %COPYRIGHT
directive.

e The name of the file to be included starts with the first nonblank character
following /*%INCLUDE and must not contain any blank characters.

e The MVS/ESA data set identifiers member and ddname and the CMS file identifiers
filename and ddname are restricted to 8 characters in length.

The word %INCLUDE can be in mixed case. Blanks and nested comments
following the file name are ignored. Files that are included by means of %INCLUDE
directives can contain %INCLUDE directives.

This is an example of how %INCLUDE directives can be specified:

/*%INCLUDE filel =/
Say 'Hello 1!
/*%INCLUDE file2 =/ Say 'Hello 2'

The contents of filel will be inserted before Say 'Hello 1'. The last line in the
example is split into two parts, forming two lines.

1. /*%INCLUDE file2 =/
2. Say 'Hello 2'

The contents of file2 will be inserted between the first part and the second part,
immediately following the */ delimiter. In the Compiler listing and IEXEC output, the
first line is truncated. The second part of the line is not reformatted. However, the
space previously occupied by the %INCLUDE directive and any statements
preceding it, is replaced by blanks. If the IEXEC option has been specified, the
IEXEC output will have, in this case, variable length format (see “IEXEC” on
page 34).
Notes:

1. At the end of the first part of a split line, a line end is implied.

2. The built-in function SOURCELINE() returns the line number of the final line in
the expanded program, or O if the program was compiled with the NOSLINE
option.

The naming convention for included files is as follows:
e Under MVS/ESA:
— /*%INCLUDE member =*/
Search for member:

1. In the concatenation with ddname SYSLIB, if it is allocated
2. In the same partitioned data set as the source, if the source is in a
partitioned data set

— /*%INCLUDE ddname (member) =/
Search for member in the concatenation with ddname ddname.
e Under CMS:
— /*%INCLUDE filename =*/

Search for a file with file name filename and file type COPY on all accessed
disks. If it does not exist, search for a file with file name filename and file

SAA REXX/370 User's Guide and Reference

%PAGE

type REXXINCL on all accessed disks. If it also does not exist, search for a
file with file name filename and file type EXEC on all accessed disks.

If more than one file is found for a specific file type, the one on the minidisk
which comes earlier in the search order is included.

— /*%INCLUDE ddname(filename) =*/
1. FILEDEF ddname DISK fn ft [fm]
can be used to specify a collection of files.

Note: ft must be COPY, REXXINCL, or EXEC, otherwise the file will not
be found.

Search for a file with file name fn and file type COPY within the specified
collection. If it does not exist, search for a file with file name fn and file
type REXXINCL within the specified collection. If it also does not exist,
search for a file with file name fn and file type EXEC within the specified
collection.

If more than one file is found for a specific file type, the one on the
minidisk which comes earlier in the search order is included.

2. CREATE NAMEDEF fm ddname (FILEMODE or
CREATE NAMEDEF dirid ddname followed by
ACCESS dirid fm
can be used to identify a specific minidisk. Search for a file with file
name filename, file type COPY, and file mode fm. If it does not exist,
search for a file with file name filename, file type REXXINCL, and file
mode fm. If it also does not exist, search for a file with file name
filename, file type EXEC, and file mode fm.

If a file is found for a specific file type, it is included.

3. Members of MACLIBs can be included. If ddname is SYSLIB, all
MACLIBs established with the command GLOBAL MACLIB are searched
until a member with name filename is found and included.

If ddname is not SYSLIB, search within the MACLIB with name ddname
for a member with name filename and include it.

The names of the data sets or files that have been included are contained in the
compiler listing.

The %PAGE listing control directive causes an unconditional skip to a new page in
the source listing.

The %PAGE listing control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a normal comment by the
interpreter):

[*%PAGE */

The %PAGE listing control directive is recognized as such only if it immediately
follows a /* comment delimiter and these characters are the first nonblank
characters on the line. The word %PAGE can be in mixed case. The rest of the
line can contain any other characters. It is good practice to close the comment on
the same line.

Chapter 4. Compiler Options and Control Directives 47

A line that contains the %PAGE listing control directive is printed as the last line on
the current page of the listing; the next line in the source program starts a new
page. If the compiler option LINECOUNT(O) is specified, however, %PAGE has no

effect.

%SYSDATE
The %SYSDATE control directive inserts, at compilation time, code to create the
variable SYSDATE, which contains the compilation date.
Because %SYSDATE is contained in a comment only the Compiler recognizes it as
a control directive. %SYSDATE must immediately follow a /* comment delimiter.
/*%SYSDATE =/
/*%SYSDATE (option) =/
The word %SYSDATE can also be in lowercase or mixed case.
The comment containing %SYSDATE must not be contained in a clause:
say /+%sysdate */ 'hello’
Instead, enclose the comment in semicolons (;) or put it on a new line:
say 'hello’
/*%sysdate */
The option for %SYSDATE is one of the formats of the REXX February 10, 2000
built-in function, namely B, D, E, M, N, O, S, U, or W. C and J are not supported.
The variable SYSDATE is not set if running with the alternate library or if compiled
with option TRACE. In the latter case, or if executing under the interpreter, the
contents of the variable SYSDATE are set to the character string "SYSDATE" if no
SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has been
executed, the NOVALUE condition is raised during execution. The code generated
by the compiler does not raise the NOVALUE condition if compiled with NOTRACE.
The following example raises a NOVALUE condition if interpreted or compiled with
TRACE:
/*%sysdate */
say 'compilation date=' sysdate
To avoid a NOVALUE condition, change the previous example as follows:
sysdate = ''
/*%sysdate x/
if (sysdate <> '') then say 'compilation date=' sysdate

%SYSTIME

48

The %SYSTIME control directive inserts, at compilation time, code to create the
variable SYSTIME, which contains the compilation time.

Because %SYSTIME is contained in a comment only the Compiler recognizes it as a
control directive. %SYSTIME must immediately follows a /* comment delimiter.

[*%SYSTIME =/
/*%SYSTIME (option) =/

SAA REXX/370 User's Guide and Reference

%TESTHALT

The word %SYSTIME can also be in lowercase or mixed case.

The comment containing %SYSTIME must not be contained in a clause:

say /*%systime =/ 'hello'

Instead, enclose the comment in semicolons (;) or put it on a new line:

say 'hello’
/*%systime */

The option for %SYSTIME is one of the formats of the REXX TIME built-in function,
namely C, H, L, M, N, or S. E and R are not supported.

The variable SYSTIME is not set if running with the alternate library or if compiled
with option TRACE. In the latter case, or if executing under the interpreter, the
contents of the variable SYSTIME are set to the character string "SYSTIME" if no
SIGNAL ON NOVALUE has been executed. If a SIGNAL ON NOVALUE has been
executed, the NOVALUE condition is raised during execution. The code generated
by the compiler does not raise the NOVALUE condition if compiled with NOTRACE.

The following example raises a NOVALUE condition if interpreted or compiled with
TRACE:

/*%systime */
say 'compilation time=' systime

To avoid a NOVALUE condition, change the previous example as follows:

systime =
/*%systime */
if (systime <> '') then say 'compilation time=' systime

The %TESTHALT control directive inserts, at compilation time, code to support the
HALT condition. It enables you to halt a program at specific statements during
program execution.

The %TESTHALT control directive is contained in a comment; it is recognized as a
control directive only by the Compiler (it is treated as a hormal comment by the
interpreter):

[*%TESTHALT =/

The %TESTHALT control directive is recognized as such only if it immediately
follows a /* comment delimiter. The word %TESTHALT can be in mixed case.

The generated code for the TESTHALT hook is placed at the beginning of the
clause containing the %TESTHALT compiler directive. In the following example, the
TESTHALT hook is generated before the SAY keyword.

say 'hello' /*%testhalt */

If you want the TESTHALT hook to be generated after the SAY clause, use a
semicolon (;) to end the clause, or put the compiler directive on a new line:
say 'hello'; /*%testhalt =/

say 'hello’
/*%testhalt */

Chapter 4. Compiler Options and Control Directives 49

50

The %TESTHALT control directive provides better control over the TESTHALT hooks
than the TESTHALT compiler option. It can be used either together with the
TESTHALT compiler option to provide additional hooks, or without. In the latter
case, only the hooks specified by the control directive are generated. Using the
%TESTHALT control directive without the TESTHALT compiler option improves the
runtime performance of the REXX program. This is because each TESTHALT hook
is an overhead in the compiled program and the compiler optimizes the program
less if it contains TESTHALT hooks.

SAA REXX/370 User's Guide and Reference

Chapter 5. Runtime Considerations

This chapter contains suggestions for organizing your libraries and other
information for improving the running of compiled programs. (Under CMS, see the
online help for information on how to run a program from the REXXD
compiler-invocation dialog.)

Note that to run compiled REXX programs, either the IBM Library for SAA REXX/370
or the Alternate Library must be installed on CMS or MVS/ESA. REXX/VSE must be
installed on VSE/ESA.

Organizing Compiled and Interpretable EXECs under MVS/ESA

Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run the
compiled program.

You can avoid such situations by following the procedure described below. For the
purposes of this procedure, assume that your REXX source programs are stored in
the production library pref.cccc.EXEC, which is in your search order.

1. Compile the programs and store them in the data set pref.cccc.CEXEC. For
example, to compile a REXX program named ROULETTE you could enter the
following REXXC command:

rexxc 'pref.cccc.exec(roulette) ' cexec('pref.cccc.cexec(roulette) ')

2. Save the source programs in the data set pref.cccc.SEXEC. In this example,
the program ROULETTE is saved in pref.cccc.SEXEC(roulette).

3. Copy the compiled EXECs by means of the REXXF command from the
pref.cccc.CEXEC data set to the pref.cccc.EXEC data set. (See “REXXF
(MVS/ESA)” on page 89.) You now run the compiled EXECs that are in this
data set, because it is in the search order. However, if you want to run an
interpretable REXX EXEC, copy it from the pref.cccc.SEXEC data set to the
pref.cccc.EXEC data set.

The advantages of this organization include the following:

e Users can browse the source code of EXECs in the source library.

» Users can store copies of the source code of EXECs in their private EXEC
libraries for tracing or execution.

e Source EXECs can be maintained in the source library. When the modifications
are completed and tested, the EXECs can be compiled and stored in the
production library.

e Because the data sets containing source programs and compiled EXECs have
the same data set attributes, users can easily move and replace source
programs and compiled EXECs.

For other ways to switch between interpreted and compiled REXX programs, see
“Background information about compiled EXECs” on page 29.

© Copyright IBM Corp. 1991, 2000 51

Organizing Compiled and Interpretable EXECs under CMS

Because REXX programs can either be interpreted or run compiled, you might
inadvertently interpret the source program when you intend to run the compiled
program. The following examples show how this could occur:

* You have a compiled EXEC called ROULETTE. It is stored on a library disk,
which is accessed as your L-disk. You enter roulette to invoke the compiled
EXEC. But if the source program is on your A-disk and also has a file type of
EXEC, you invoke the interpreter instead.

¢ You have access to a compiled REXX program called ROULETTE MODULE. You
enter roulette to invoke the module. However, EXEC files precede MODULE
files in the CMS search order. So if you still have access to the source program
and its file type is EXEC, you invoke the interpreter instead.

You can avoid such situations by changing the file type of the source file after
compilation. The following table shows a suggested naming convention.

Type of File Recommended File Type

Source file after compilation SEXEC, SXEDIT, and so on, as applicable

Compiled EXEC immediately after CEXEC

compilation, when the source file type may

be EXEC.

Compiled EXEC ready for execution EXEC or other required file type, such as
XEDIT

Note: You can also make source files unavailable by removing them from any
disks accessed by the program’s users.

If you are using the compiler-invocation dialog, REXXD, use the Switch (rename)
action to rename the files appropriately. Otherwise, use the CMS RENAME
command, as required.

Organizing Compiled and Interpretable EXECs under VSE/ESA

52

Because REXX programs can either be interpreted or run compiled, you might
inadvertently run the source program with the interpreter when you intend to run the
compiled program.

You can avoid such situations by following the procedure described below.

e Keep the source for all REXX programs in a library called REXXLIB.EXEC. Each
member has a member type of PROC.

¢ Once an EXEC is ready to be compiled, send it to either CMS or MVS/ESA and
compile it.

e After the compilation, send it back to VSE/ESA, and catalog the output in a
library called REXXLIB.CEXEC. The member name is the same as that of the
original source, and the member type is PROC. See “Converting from
MVS/ESA to VSE/ESA” on page 88 and “Converting from CMS to VSE/ESA”
on page 89 for more information.

¢ Use the following LIBDEF statement when running REXX programs:

SAA REXX/370 User's Guide and Reference

LIBDEF PROC,SEARCH=(REXXLIB.CEXEC,REXXLIB.EXEC)

This ensures that the compiled REXX program, if it exists, is found before the
interpreted REXX program. If there is no compiled REXX program, the
interpreted program is found.

The advantages of this organization include the following:

e The source code of REXX EXECs is maintained in a central sublibrary, and can
always be retrieved.

e |f a member with the same name is deleted in the REXXLIB.CEXEC sublibrary, a
subsequent invocation will invoke the interpreted program.

Use of the Alternate Library (MVS/ESA, CMS)
The Alternate Library is necessary for:

e Customers who want to run compiled REXX programs, but do not have the
Library installed

» Software developers who want to make their programs available to users who
do not have the Library installed

Users of the Library do not need the Alternate Library. The Library provides more
functions and better performance than the Alternate Library. Software developers
must test their applications with the Library and with the Alternate Library.

By enabling their programs to run with both the Library and the Alternate Library,
software developers give their customers the following possibilities:

e Use the Alternate Library provided with the application, if they have no library
installed.

e Use the IBM Library for SAA REXX/370, if it is installed.

Use the SLINE and ALT options to enable a compiled program to run also with the
Alternate Library.

Other Runtime Considerations
e Activation of the Alternate Library

— Under MVS/ESA, the Alternate Library is activated in different ways
depending on its intended use:

- Software developers use the Alternate Library from the ddname
STEPLIB. This is because they need to have both the Library and the
Alternate Library installed. To lower storage consumption, the Library
must reside in the link pack area (LPA) instead of residing in every
address space in the system. To test their programs with the Alternate
Library, software developers use the ddname STEPLIB to override the
Library.

- Customers use the Alternate Library from the LINKLIST. This is
because the LINKLIST is searched after the LPA. Customers should
always use the Library, if it is available. By placing the Alternate
Library in the LINKLIST, they will never override the Library in the LPA.

Chapter 5. Runtime Considerations 53

54

Figure 8 on page 54 summarizes the possible library locations.

Figure 8. Library and Alternate Library Locations (MVS/ESA)

Library name Library location
SW developer Customer
IBM Library for SAA REXX/370 LPA LPA
Alternate Library STEPLIB LINKLIST

— Under CMS, the Alternate Library must always be loaded from disk to avoid
conflicts with the Library.

- Software developers activate the Alternate Library like this:

1. Copy EAGALPRC MODULE, the library loader of the Alternate
Library, to a disk that is ahead of the disk containing the library
loader of the library (EAGRTPRC MODULE) in the system search
order. Name this copy EAGRTPRC MODULE.

2. Copy EAGALUME TXTAMENG, the message repository of the
Alternate Library, to a disk that is ahead of the disk containing the
message repository of the library (EAGUME TXTAMENG) in the
system search order. Name this copy EAGUME TXTAMENG. If in
your installation EAGUME TXTAMENG has been renamed to
EAGUME TEXT, then name your copy EAGUME TEXT, as well.

3. To ensure that the library loader from this disk is being used, you
can either IPL your virtual machine, or issue the command
NUCXDROP EAGRTPRC.

- Customers who do not have the Library installed do not need to do
anything to use the Alternate Library. The Alternate Library is available
after it has been installed.

Batch mode: Unless your program issues host commands that must be
executed in the foreground or is designed to be run interactively, you can run it
in batch mode. Use your standard procedure for submitting batch jobs.

Error handling: If an instruction has an error, the Library might not raise the
same error that the interpreter would raise.

If the length of a variable’s value is greater than 16MB, the results are
unpredictable.

Interfaces with interpreted programs: There are no restrictions on the
mutual invocation of compiled programs and interpreted programs: a compiled
program can call an interpreted program, and an interpreted program can call a
compiled program. When a program is invoked, MVS/ESA, CMS, or VSE/ESA
starts the correct language processor—either the interpreter or the Library.

Loading the Library under CMS: Depending on the system setup, the CMS
Library can be loaded in two different ways:

1. The Library and the message repository are always available and do not
need to be explicitly loaded, if they are installed as logical segments. See
“Defining the Library as a Logical Segment” on page 126 for more
information.

SAA REXX/370 User's Guide and Reference

2. The Library is loaded into virtual storage the first time a compiled REXX
program is run and remains loaded after the program ends. The Library is
loaded in the following way:

a. The library loader (EAGRTPRC MODULE), which is itself loaded from
disk, receives control and runs in the transient program area.

b. The library loader loads the message repository.

c. The library loader loads the Library from a DCSS unless one of the
following conditions applies:

— No DCSS exists.

— With Release 5 of CMS, the DCSS overlaps the storage of the
virtual machine. With subsequent releases, the storage where the
segment resides is in use. Storage can be reserved with the
SEGMENT RESERVE command in CMS.

— The library loader has been customized so that it does not look for
the Library in a DCSS.

If any of these conditions apply, the Library is loaded from disk.

d. The library loader makes the Library a nucleus extension and names it
EAGRTPRC.

Notes:

a. With systems before VM/ESA Release 1.1, the Library is made a
nucleus extension of length 0. This ensures that a
NUCXDROP EAGRTPRC or NUCXDROP * command issued from a
compiled REXX program does not free the storage into which the
Library is loaded. If a NUCXDROP command is issued, a new copy of
the Library is loaded the next time a compiled REXX program is run; the
storage occupied by the previous copy is hot regained.

b. With VM/ESA Release 1.1 or a subsequent release, the Library is loaded
by issuing a NUCXLOAD command with the PERM option, so that a
NUCXDROP * command will not release the Library. Storage can be
regained by issuing a NUCXDROP EAGRTPRC command. This
command must not be issued while a compiled REXX program is
running, otherwise unpredictable results may occur.

c. A NUCXDROP EAGRTPRC command must be issued before purging the
segment that contains the Library, otherwise an ABEND will occur.

e Runtime messages: In certain cases, the Library gives more information
about the error than is provided by the interpreter's error messages. In these
cases, a secondary message then follows the main message. For example, if
your program BRCL EXEC calls, on line 115, the LASTPOS built-in function with
a negative value for the start argument, you get both of these messages:

EAGREX4000E Error 40 running compiled BRCL EXEC, line 115: Incorrect call to routine
EAGREX4003I Argument not positive

For explanations of the runtime messages, see Chapter 16, “Runtime
Messages” on page 159.

Note: Secondary messages are for your information only. They are not
accessible through the ERRORTEXT function and do not affect the setting of the
special variable RC.

Chapter 5. Runtime Considerations 55

56

e SETVAR: Starting with Release 2 of the IBM Compiler and Library, the VALUE

built-in function provides the same support as did RXSETVAR on CMS and
SETVAR on MVS/ESA in earlier releases. Even though, for compatibility with

earlier releases, RXSETVAR and SETVAR are still part of Release 3, new REXX

programs should use the VALUE built-in function.

¢ Some common errors: This section lists some common errors that can occur

at run time.
Under MVS/ESA:
— Library not found: If the Library is not in the LPA, in the LINKLIST

concatenation, or defined in the STEPLIB DD statement, the following failure
occurs:

CSVOO3I REQUESTED MODULE EAGRTPRC NOT FOUND
CSVOO3I REQUESTED MODULE EAGRTXLD NOT FOUND
CSV0O3I REQUESTED MODULE EAGRTXVH NOT FOUND
+IRX0158E The run time processor EAGRTPRC could not be found.

Under CMS:

— Module A Overlaid by Module B: If your program is in the form of a

module, module A, and it calls another module, module B, module B might
overlay your program in storage. This occurs if, for example, both modules
are loaded at the default starting address. The failure occurs when module
B tries to return control to your program.

To determine whether an overlay caused the failure, recompile the
program, creating a compiled EXEC, and re-create the circumstances in
which the failure occurred. If the problem disappears, the failure was
almost certainly caused by a module overlay. In this case, either continue
to run the program as a compiled EXEC or explicitly specify a different
starting address when loading your module. If the problem persists, the
failure has a different cause, and you should contact your system support
personnel.

Return Code -3: If you get a return code of -3 when you invoke your
program, it usually means that the program was not found. However, it can
alternatively mean that the Library was not found. So, if you get this return
code when the program is available, make the Library available—either in a
DCSS or on disk.

SVC depth: A maximum supervisor call (SVC) nesting depth of 200 is
supported by CMS. The CMS EXEC processor invokes the Library by
means of an SVC. The invocation of a compiled REXX program of CEXEC
type requires one SVC more than the invocation of an interpreted REXX
program. The maximum SVC nesting depth is reached earlier, for example,
in recursive programs.

e Testing the Halt Condition: Testing for the halt condition is supported only for

programs that are compiled with the TESTHALT Compiler option or use the
%TESTHALT directive. See “Halt Condition” on page 94 for details.

e Tracing compiled programs: Tracing of compiled programs is supported only
for programs that are compiled with the TRACE Compiler option. See “TRACE

Instruction and TRACE Built-In Function” on page 98 for details.

SAA REXX/370 User's Guide and Reference

Chapter 6. Understanding the Compiler Listing

The Compiler produces a listing for each compilation unless the NOPRINT option
was specified. You can print the listing or store it in an MVS data set or in a CMS
file; see the description of the PRINT option on page 41 for details.
The compiler listing consists of the following items:

e The compilation summary

¢ The source listing, if the SOURCE option was specified

¢ Any messages that were produced and that were not suppressed by the FLAG
option

e A cross-reference listing, if the XREF option was specified

e The compilation statistics

At the end of this chapter you find an example of a complete compiler listing.

Compilation Summary

The information at the beginning of a compiler listing shows the outcome of the
compilation, and the options in effect for the compilation.

The text Compiled with OPTIONS 'ETMODE' follows the last compiler option if the
program was compiled with ETMODE in effect.

An example of a compilation summary is shown here:

© Copyright IBM Corp. 1991, 2000 57

===> Compilation Summary
IBM Compiler REXX/370 3.0 PTF -NONE--

ROULETTE EXEC Al

Time: 09:57:12 Date: 1994-10-27 Page:

3 message(s) reported. Highest severity code was 12 - Severe

Compiler Options

NOALTERNATE
CEXEC
NOCOMPILE (S)
NOCONDENSE
NODLINK
NODUMP
FLAG (1)
NOFORMAT
NOIEXEC
LIBLEVEL (*)
LINECOUNT (55)
MARGINS
NOOBJECT
OPTIMIZE
PRINT
NOSAA
NOSLINE
SOURCE
SYSIN
NOTERMINAL
NOTESTHALT
NOTRACE
XREF

(1 %)

(ROULETTE LISTING A1)

(ROULETTE EXEC Al)

RECFM=F,LRECL=1024

(ROULETTE CEXEC Al)

RECFM=V,LRECL=121

RECFM=V,LRECL=24

Minimum Library Level required: 0

Figure 9. Extract of Compiler Listing Showing the Compilation Summary as Printed on CMS

Source Listing

Figure 10 on page 60 shows an extract from a source listing. You can control the
page breaks in this listing by using the %PAGE listing control directive, as described
on page 94. Each line of the listing contains the following information:

If The nesting level of IF instructions
Do The nesting level of DO instructions
Sel The nesting level of SELECT instructions

For example, a 2 in the If column indicates that the instruction on that line is part
of an IF instruction that is nested within another IF instruction.

Line The line number in the expanded source program. Source lines that are
longer than the space available in a listing line are split and continued
on subsequent lines of the listing. The space available depends on
whether sequence numbers, %INCLUDE files, or both, have been found.

C Continuation (C) or splitting (S) of a line.

C Continuation line indicator. Indicates that the source line is longer
than the space available and continues on this line.

S Split line indicator. The source line has been spilt as a result of
text following the closing */ characters terminating a %INCLUDE
directive. The S is printed to the first split line that follows the
included records.

58 saa REXx/370 User's Guide and Reference

1

1

===> Source Listing

RS S [P

Sequence

T JU

Columns of the source ranging from 1 to the number of columns
available. If margins are specified, the characters > and < indicate
which part of the source has been compiled. The character > is placed
one column to the left of the left margin, if this is >1 and fits on the line.
The character < is placed one column to the right of the right margin, if it
fits on the line. For example, if you specified MARGINS (5 12), the
margins indicator shows:

B LTy [EF e Ry SR

Contains the sequence numbers taken from the records from the main
source file and any included files. Sequence numbers are expected in
the last eight character positions of the record for fixed-length records
and in the first eight character positions for variable-length records. If
the source files do not contain sequence numbers, there is no Sequence
column, but the space is used by the REXX source.

The following examples show the sequence number at the beginning
(first example) and at the end (second example) of a record:

VARTEST SEXEC Al

IBM Compiler REXX/370 3.0 LVL PQ27267 Time: 11:18:46 Date: 2000-02-03 Page:
Line € ===m#mmm=lommboo2mmoobooo 3o mboo o B b oo B fom oo T oo b oo 8o booo - dooo

If Do Sel

1
2

00000000/* REXX VARTEST =/

00000002EXIT rc

Sequence numbers in source detected

===> Source Listing

FIXTEST SEXEC Al

IBM Compiler REXX/370 3.0 LVL PQ27267 Time: 11:18:47 Date: 2000-02-03 Page:
Line C ===-+--=clommotocmc2mmccbo e 3ecmmbe et e e bt f- - - -+----7----+----8 Sequence Incl Rec

If Do Sel

B WN =

/* REXX Sub-ID=0010 Include FIXTEST SEXEC A */ 00001000

rc=4; /*%include

include x/ 00001100

/* REXX Sub-I1D=0010 Include INCLUDE COPY A */ 00001010 1

Exit rc

Incl

Recd

rc=1 1

Identifies the file, main or included, from which the line was taken.

If the column contains a blank, the print line is taken from the main
REXX source file whose file ID is printed in the first header line of the
listing.

A number in this column refers to a %INCLUDE file in the list of included
files that is printed in the compilation statistics sublisting. (See

Figure 13 on page 64.) This number is a reference number, which
does not indicate nesting of included files. The nesting of included files
can be derived from the contents of the Recd column.

If the source files do not have any included files, there is no Incl
column, but the space is used by the REXX source.

Number of REXX lines within the main or the included file. The
numbering begins with 1 for each file, so that nested files can be
recognized by a break in the line number sequence.

Chapter 6. Understanding the Compiler Listing 59

2

2
d

WN =N -

If the source files do not have any included files, there is no Recd

column.

IBM Compiler REXX/370 3.0 PTF -NONE--

> Source Listing

ROULETTE EXEC Al

Time: 09:54:30 Date: 1994-10-27

the num

If Do Sel Line C ---=t-==-l--m-tome2mmmmtocm 3o etm e g e e e he et e e o= -7 o=+ -- -8
1 /* REXX R R e R R R R R R R R R R R R
2 x Roulette Implementation in REXX
3 % This program can be used instead of the wheel usually employed in
4 % casinos.
5 * Press enter to proceed to the game's next step.
6 * After the display of a number you can stop playing by entering "end".
7 *
8 ***/
9 Call set_color /* initialize c.i with color of i */
10 rr.=0 /* initialize statistics x/
11 Say 'x* Welcome to Roulette ' /* welcome the user */
12 Do Forever /* repeat till end requested */
1 13 Say /* an empty separator line */
1 14 Say 'Faites vos jeux' /* ask players to make their bets */
1 15 Call pause('W') /* wait for input to proceed */
1 16 Say 'Rien ne va plus' /* stop them */
1 17 Call pause('W") /* wait for input to proceed x/
1 18 r=Random(0,36) /* get random number from 0 to 36 */
1 19 rr.r=rr.r+l; /* maintain statistics */
1 20 If r=0 Then /* zero */
1 1 21 Say ' 0 ZERO' /* good for the casino */
1 22 Else Do /* any other number (1 to 36) x/
1 2 23 If r//2=0 Then /* even number */
2 2 24 pi='pair'; /* in French */
1 2 25 Else /* odd number x/
2 2 26 pi="impair'; /* in French x/
1 2 27 If r<=18 Then /* lower half */
2 2 28 mp="'manque"'; /* in French